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Abstract 
The construction projects’ dynamic and interconnected nature requires a 
comprehensive understanding of complexity during pre-construction. Tradi-
tional tools such as Gantt charts, CPM, and PERT often overlook uncertain-
ties. This study identifies 20 complexity factors through expert interviews and 
literature, categorising them into six groups. The Analytical Hierarchy Process 
evaluated the significance of different factors, establishing their corresponding 
weights to enhance adaptive project scheduling. A system dynamics (SD) 
model is developed and tested to evaluate the dynamic behaviour of identified 
complexity factors. The model simulates the impact of complexity on total 
project duration (TPD), revealing significant deviations from initial determin-
istic estimates. Data collection and analysis for reliability tests, including nor-
mality and Cronbach alpha, to validate the model’s components and expert 
feedback. Sensitivity analysis confirmed a positive relationship between com-
plexity and project duration, with higher complexity levels resulting in in-
creased TPD. This relationship highlights the inadequacy of static planning 
approaches and underscores the importance of addressing complexity dynam-
ically. The study provides a framework for enhancing planning systems through 
system dynamics and recommends expanding the model to ensure broader 
applicability in diverse construction projects. 
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1. Introduction 
Scheduling systems such as Gantt charts, Critical Path Method (CPM), and Pro-
gram Evaluation and Review Technique (PERT) are traditional tools that rely on 
predictive planning. These methods develop schedules at a fixed point in time 
based on available data and assumptions about future conditions. However, con-
struction projects occur in dynamic environments where unpredictable external 
factors such as weather, material delivery delays, pandemics, and financial chal-
lenges significantly influence outcomes. 

While these traditional methods provide a structured approach to project 
scheduling, they fall short in addressing complexities and uncertainties inherent 
in construction projects. This limitation underscores the need for advanced sched-
uling techniques that adapt to dynamic conditions and address complexity. 

Complexity in construction projects is a multidimensional challenge involving 
interdependent variables such as project activities, external influences, and man-
agerial objectives. Managing complexity requires a deeper understanding of its 
factors and their influence on project planning and execution. Researchers have 
explored various approaches to improve project duration estimates, including Bayes-
ian Networks [1] and simulation-based techniques [2]. However, coping with com-
plexity remains a significant challenge in project scheduling [3]. 

A comprehensive review of literature on project complexity in construction was 
conducted using search terms such as “project complexity,” “construction com-
plexity,” and “complexity of project management.” The research spanned publi-
cations from 1996 to 2024, focusing on construction projects and their dynamic 
environments. The review utilised key online databases such as Google Scholar, 
Web of Science, EBSCO, Scopus, IEEE Xplore, Science Direct, and JSTOR. 

The analysis prioritised top journals in construction and management, including: 
• Journal of Construction Engineering and Management. 
• Journal of Management in Engineering. 
• International Journal of Project Management. 
• Construction Innovation: Information, Process, Management. 
• Construction Management and Economics. 
• Engineering, Construction and Architectural Management. 

These journals were chosen based on their high rankings in the field [4]. The 
research resulted in a curated list of significant studies organised by year, author, 
and factors of project complexity. 

The review excluded articles unrelated to construction projects and those fo-
cusing on communication between authors and editorial teams. Studies on phe-
nomena outside the scope of project complexity were also eliminated. The final da-
taset included 82 peer-reviewed articles, conference papers, and 12 PhD theses. These 
publications were analysed to identify recurring themes and research interests. 

The analysis revealed four primary categories of research interest in project 
complexity: 

1) Identifying and Understanding Complexity 
Studies in this category focus on defining project complexity and exploring its 
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implications for project management. 
2) Shortcomings of Traditional Planning Tools 
Researchers examined the limitations of widely used project planning tools in 

addressing the multifaceted nature of project complexity. 
3) Optimizing Project Planning 
This category includes studies that propose advanced techniques and method-

ologies for improving project planning in complex environments. 
4) Project Complexity Factors 
Research here identifies and evaluates factors contributing to project complex-

ity, such as technological challenges, stakeholder involvement, and environmental 
uncertainties. 

The study underscores the inadequacy of traditional scheduling methods in 
managing construction project complexities and highlights the necessity for adap-
tive and sophisticated planning techniques. It also emphasises the importance of 
understanding complexity factors to optimise project planning and achieve man-
agerial objectives. 

Future research should continue exploring innovative scheduling approaches, 
focusing on integrating complexity considerations into planning tools to better 
address the dynamic nature of construction projects. 

Initially, defining complexity and examining its influence on project manage-
ment is discussed, particularly in optimising project planning through identifying 
and comprehending complexity. Subsequently, an analysis of the limitations in-
herent in conventional scheduling methods will be conducted, focusing on the 
deficiencies of traditional planning tools in effectively managing complexity. Fol-
lowing this, innovative strategies will be proposed to enhance scheduling practices 
within complex environments. A thorough identification of primary contributors 
to complexity will be undertaken, including technological obstacles and stake-
holder interactions, which are critical factors influencing project complexity. Fi-
nally, insights and practical implications for project managers will be discussed. 
In conclusion, recommendations for future research will be presented, emphasis-
ing the significance of adaptive scheduling methods. 

2. Complexity of Project Planning Review 

Early research highlighted the foundational role of traditional methods such as 
Gantt charts, Critical Path Method (CPM), and Program Evaluation and Review 
Technique (PERT) in project planning. While these methods provided initial 
frameworks for scheduling and sequencing, they relied heavily on deterministic 
assumptions. Studies such as Lockyer [5] and Kelley [6] emphasised the utility of 
these methods in defining critical activities and their durations. However, as An-
dersen [7] highlights that these approaches’ linear and predictive nature often 
failed to account for real-world uncertainties. 

Critiques by researchers such as Charnes and Cooper [8] suggested that CPM’s 
reliance on static scheduling underestimated the probabilistic nature of project 
activities. Similarly, PERT’s probabilistic focus was criticised for oversimplified 
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activity durations and assumptions about dependencies. These critiques underscore 
a recurring limitation: traditional methods assume linearity and certainty, which 
are rarely present in dynamic project environments. 

2.1. Evolution Towards Probabilistic and Fuzzy Methods 

Probabilistic models and fuzzy logic emerged as alternatives to address the short-
comings of deterministic planning. PERT’s introduction of probability distribu-
tions marked a shift towards accommodating uncertainties. However, as noted by 
Elmaghraby [9], these methods still struggled with real-world applications due to 
incomplete data and over-reliance on statistical assumptions. 

Fuzzy logic, introduced by Zadeh and later developed by Kahraman et al. (2006) 
[10], provided a framework to deal with imprecise and ambiguous information. 
By validating uncertain data, fuzzy methods improved planning accuracy. Yet, re-
searchers such as Chanas et al. [11] pointed out limitations in applying fuzzy logic 
to dynamic environments, where real-time adjustments were often necessary. 

2.2. Optimization Techniques and the Constraints 

Research has centred on optimising project planning. Sensitivity analysis and sto-
chastic methods have been explored to enhance planning robustness. Saltelli et al. 
[12] discussed sensitivity analysis as a tool for evaluating the impact of variable 
changes on outcomes, which aids in integrating uncertainties. However, as Hall 
and Posner (2004) [13] highlighted, the cost and complexity of implementing such 
models often limit their practical application. 

Stochastic methods, including heuristic algorithms and Monte Carlo simula-
tions, addressed uncertainties by generating multiple scenarios for activity dura-
tions. While these methods improved predictive accuracy, studies by Herroelen 
and Leus [14] shown that frequent re-planning in dynamic settings often negated 
their benefits. Robust optimisation, as discussed by Coleman et al. [15] attempted 
to balance flexibility and stability but faced challenges in representing valid objec-
tive values and addressing unpredictability. 

2.3. Addressing Uncertainty and Complexity 

Uncertainty remains a fundamental challenge in project planning. Researchers 
such as Freeman [16] and Collyer and Warren [17] highlights project environ-
ments’ dynamic and unpredictable nature. Uncertainty stems from controllable 
factors, such as design changes and resource availability, and uncontrollable fac-
tors, such as weather and economic fluctuations. 

Dynamic planning approaches have been proposed to address these uncer-
tainties, including real-time scheduling and system dynamics. As Senge [18] 
promotes, system dynamics models the interactions within complex systems to 
predict outcomes. However, critiques by Helbing [19] and Gao [20] argue that 
these models often oversimplify complex interactions, limiting their practical 
utility. 
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2.4. Factors Contributing to Project Complexity 

The literature identifies various factors contributing to project complexity, includ-
ing structural, organisational, and contextual elements. Baccarini [21] character-
ised complexity as the interdependence of multiple variables while Williams [22] 
highlights the role of uncertainty in goals and methods. Gidado [23] further cate-
gorised complexity into operational and workflow interdependencies, emphasis-
ing the challenges in managing overlapping tasks and resource constraints. 

Recent studies, such as those by Vidal and Marle [24] [25], Luo et al. [26], Dao 
et al. [27] and Ma and Fu [28], expanded this understanding by incorporating 
project size, stakeholder diversity, and environmental conditions. These factors 
underscore the need for adaptive planning methods for static and dynamic com-
plexities. However, as noted by Remington and Pollack [29] and Parekh [30], ex-
isting tools often fail to integrate these multifaceted elements effectively. 

2.5. Gaps and Contradictions in Existing Research 

Despite advancements in project planning methods, significant gaps and contra-
dictions remain: 

Inadequate Integration of Dynamic Factors: Traditional and even some mod-
ern methods struggle to accommodate project environments’ dynamic and non-
linear nature. 

Over-Reliance on Deterministic Models: Many tools and techniques assume 
stability and predictability, which are rarely achievable in practice. 

Limited Practical Applications: Advanced methods, such as fuzzy logic and 
robust optimisation, often face barriers in implementation due to their complexity 
and resource requirements. 

Human Factors: Studies by Stoop and Wiers [31] emphasises the impact of 
human error on planning accuracy, yet few models effectively incorporate this 
critical variable. 

The critical literature review on project planning complexity reveals a persistent 
tension between theoretical advancements and practical applications. While tra-
ditional methods laid the groundwork for structured planning, their limitations 
in addressing uncertainties and complexities necessitated the development of prob-
abilistic, fuzzy, and robust optimisation techniques. Despite these advancements, 
gaps in integrating dynamic factors and addressing real-world challenges remain. 

Future research should focus on developing adaptive, dynamic planning ap-
proaches that combine theoretical rigour with practical applicability. This includes 
leveraging emerging technologies such as artificial intelligence and machine learn-
ing to create more responsive and resilient project planning systems. By bridging 
the gap between theory and practice, the field can better navigate the complexities 
inherent in modern construction projects. 

3. Data Collection and Analysis 

The study employed a semi-structured interview and questionnaires to explore 

https://doi.org/10.4236/ajor.2025.151001


M. B. Shikhrobat et al. 
 

 

DOI: 10.4236/ajor.2025.151001 6 American Journal of Operations Research 
 

expert views on factors influencing project complexity. The questionnaires were 
distributed electronically to 320 selected experts, and 142 responses were received. 
Although the response rate was lower than anticipated, the diverse sample ensured 
unbiased and reliable results. 

The research aimed to identify and evaluate complexity factors through a three-
step process: distribution of questionnaires, weighting factors via pairwise com-
parison, and assessing the proposed model. The complexity factors were catego-
rised into six groups based on literature and expert input: 

Scope of Project Planning: Factors arising from initial design changes. 
Governance and Regulatory Requirements: Compliance-related complexities. 
Resources: Issues regarding resource allocation and availability. 
Contractor and Supply Chain Issues: Challenges in coordination and logistics. 
Externalities: Uncontrollable factors such as climate change. 
Expectations for Total Project Duration: Variances between planned and ac-

tual timelines. 
The Analytical Hierarchy Process (AHP) method was used to weigh and rank 

these factors through pairwise comparisons. Externalities emerged as the most 
significant factor, attributed to insufficient data, lack of task-specific expertise, 
and unpredictable events impacting project outcomes. 

Data was analysed using the Statistical Package for Social Sciences (SPSS). Two 
scales, nominal and ordinal, were employed for categorising variables. Nominal 
scales labelled variables without quantitative value, while ordinal scales ranked 
qualitative items (e.g., high, medium, low). Normality and scale reliability tests, 
including the Cronbach alpha test, were applied to validate the data. 

Experts from academia and industry discussed and assigned sub-factors to each 
cluster factor. These discussions helped refine the factors and ensured their rele-
vance. The research highlights that complexity factors often create discrepancies 
between planned and actual project implementation, underscoring the importance 
of addressing externalities and improving project planning methodologies. 

3.1. The Use of AHP 

Five factors were presented in the hierarchy model of complexity for project plan-
ning as the core variables. Therefore, a matrix of five columns and five rows is 
required for the analysis combined with the Analytic Hierarchy Process (AHP) 
decision-making method. The comparison matrix for core complexity factors 
identified for construction project planning is shown in the following Table 1. 
 

Table 1. Comparison matrix of core complexity factors. 

 Externalities 
Governance and 

regulations 
Resources 

Contractor and 
supply chain 

Scope Eigenvector 

Externalities 1 5 5 3 5 0.49 
Governance and regulations 0.2 1 0.5 2 0.2 0.07 
Resources 0.2 3 1 3 0.25 0.12 
Contractor and supply chain 0.14 0.5 0.33 1 0.2 0.05 
Scope 0.33 5 4 5 1 0.26 
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The eigenvector and eigenvalue are calculated based on the pairwise compari-
son scores responded by the participants. Therefore, matrix Si for the measure-
ment of project planning (PP) complexity is: 

Si = 

1 5 5 3 5
1 5 1 1 2 2 1 5
1 5 3 1 3 1 4
1 7 1 2 1 3 1 1 5
1 5 5 4 5 1

 
 
 
 
 
 
  

 = 

1 5 5 3 5
0.2 1 0.5 2 0.2
0.2 3 1 3 0.25
0.14 0.5 0.33 1 0.2
0.33 5 4 5 1

 
 
 
 
 
 
  

 

Then, the sum of each column is calculated as:  

1 2 3 4 5

1.87 14.5 10.8 18 6.65
S S S S S 

 
 

 

The next step is to normalize the matrix of Si which is calculated by the deviance 
of each entry over the sum of the column as follows:  

Normalized Pairwise Matrix |Si| = 

1 1.87 5 14.5 5 10.8 7 18 5 6.65
0.2 1.87 1 14.5 0.5 10.8 2 18 0.2 6.65
0.2 1.87 3 14.5 1 10.8 3 18 0.25 6.65
0.14 1.87 0.5 14.5 0.33 10.8 1 18 0.2 6.65
0.33 1.87 5 14.5 4 10.8 5 18 1 6.65

 
 
 
 
 
 
 

 

Normalized Pairwise Matrix |Si| = 

0.53 0.34 0.46 0.39 0.75
0.11 0.07 0.05 0.11 0.03
0.11 0.21 0.09 0.17 0.04
0.07 0.03 0.03 0.06 0.03
0.18 0.34 0.37 0.28 0.15

 
 
 
 
 
 
 

 

Then, the criteria weights (eigenvectors) are calculated by the sum of all entries 
divided by the number of criteria.  

Criteria Weights (eigenvectors) = 

( )

( )

( )

( )

( )

0.53 0.34 0.46 0.39 0.75
5

0.11 0.07 0.05 0.11 0.03
5

0.11 0.21 0.09 0.17 0.04
5

0.07 0.03 0.03 0.06 0.03
5

0.18 0.34 0.37 0.28 0.15
5

+ + + + 
 
 

+ + + + 
 
 

+ + + + 
 
 + + + + 
 
 + + + + 
  

 = 

0.496
0.072
0.122
0.045
0.263

 
 
 
 
 
 
  

 

Therefore, the eigenvectors are computed based on the expert’s responses to 
pairwise comparison. The weights are calculated as follows: 

1 5 5 7 5
0.2 1 0.5 2 0.2
0.2 3 1 3 0.25
0.14 0.5 0.33 1 0.2
0.33 5 4 5 1

 
 
 
 
 
 
  

 * 

0.496
0.072
0.122
0.045
0.263

 
 
 
 
 
 
  

 = 

4.60
0.78
1.49
0.43
3.07

 
 
 
 
 
 
  
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Consistency Index (CI) is computed as:  

Consistency Index (CI) = max
 –1

n
n

λ −  = 5.15 5
5 1

−
−

 = 0.038; Average random  

consistency (RI) is taken from Table 2 which is for n = 5.  
 

Table 2. Average random consistency (RI). 

Number of criteria 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.58 0.89 1.12 1.24 1.32 1.41 1.45 1.49 

 
Therefore, RI = 1.12; Consistency Ratio (CR) = CI/RI = 0.038/1.12 = 0.03. 
Consistency Index (CI) and Consistency Ratio (CR) amounts for less than 0.1 

confirm the consistency of the expert’s comparison. The summary of weights and 
the rank of variables is summarised in Table 3. 
 

Table 3. Weight and rank of variables. 

 Weight Rank of Variable 

Externalities 0.49 1 

Governance and regulations 0.07 5 

Resources 0.12 4 

Contractor and supply chain 0.05 2 

Scope 0.26 3 

3.2. Complexity Factors Categorization 

Two measurement scales for categorising variables are “nominal” and “ordinal” 
(Agresti, 2018). A nominal scale is used to label different variables and sub-varia-
bles. It is used for labelling variables without any quantitative value. Ordinal data 
is used to rank the qualitative items; for instance, quality can be “very good”, 
“good” and “low quality”, which can be ranked in “high”, “medium” and “low” 
levels, where the ranking has some meaning. Nominal is used for the categorisa-
tion of variables, as shown in Table 4. 
 

Table 4. Major complexity variables of project planning. 

ID Variable/Sub-variables 

SC Scope 

SC01 Client type, the experience of project delivery 

SC02 
Interdependence, efficiency, and influence of design team consultants (architectural, structural, Mechanical, 
Plumbing and Electrical services design) 

SC03 Procurement/contracting method (lump sum, D&B, EPC, etc.) 

SC04 Tender price and contingency allowances  

SC05 Project type and size (financial value) 

SC06 Reasonableness of contractual conditions imposed by the client and the delivery dates  

SC07 Site characteristics (location, ground conditions, presence of obstructions) 
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Continued 

GR Governance and Regulatory 

GR01 The stringency of legal and regulatory requirements 

GR02 Quality assurance and inspection requirements  

GR03 Health and Safety requirements where exceptional safety requirements are imposed 

RS Resources 

RS01 Construction plant and equipment availability 

RS02 Materials availability 

RS03 Human capital (professional and labour) 

CS Contractor and Supply chain 

CS01 Speciality contractors with complex work packages (complexity of the supply chain) 

CS02 Suppliers and transport logistics 

EX Externalities 

EX01 Macro-economic changes 

EX02 Political changes 

EX03 Environmental changes and sustainability requirements 

OB Objectives 

OB01 Total Project Duration (TPD) from Gantt chart, CPM or PERT 

 
The hierarchy model based on this categorisation of project planning complex-

ity selection can be seen in Figure 1. 
 

 
Figure 1. Hierarchy model of project planning complexity selection. 
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The frequency of appearance of complexity factors for each factor occurs in 
different projects regarding the questionnaire survey is shown in Table 5. 
 

Table 5. Frequency of appearance of complexity factors. 

No. Complexity Factors Frequency % Cumulative Percent 

1 Scope 150 33.3 33.3 

2 Governance and Regulatory 48 10.6 43.9 

3 Resources 67 14.9 58.8 

4 Contractor and Supply chain 47 10.4 69.2 

5 Externalities 70 15.5 84.7 

6 Total Project Duration 69 15.3 100.0 

Total 451 100  

3.3. Data Normality Test 

A normality test determines how well a data set is modelled by using a normal 
distribution test [32]. A normality test is used to verify whether the sample data 
used in the research has been taken from a normally distributed population. Skew-
ness and kurtosis values are used to show normality distribution. ‘Skewness as-
sesses the extent to which a variable’s distribution is symmetrical. If the distribu-
tion of responses for a variable stretches toward the right or left tail of the distri-
bution, then the distribution is referred to as skewed [33]. Kurtosis is a measure 
of whether the distribution is too peaked (a very narrow distribution with most of 
the responses in the centre) [34]. Similarly, the standard error is applied to com-
pute the confidence intervals as close as possible to the expectation [35]. The dis-
tribution can be considered as expected when the value for standard error is less 
than 5.5 [36]. The suggestion for standard normalised distribution is given a skew-
ness value of not more than 2 and for kurtosis value of not more than 7 [37]. 

3.4. Cronbach Alpha Test 

Cronbach’s Alpha data reliability is applied to measure the answers’ internal con-
sistency as the results of the questionnaire survey analysis. Cronbach alpha is fre-
quently reported as one of the most internal consistency estimates [38]. It is a test 
to evaluate whether a questionnaire is reliable or not [39]. The structure of the 
questionnaire is reliable when the value for the Cronbach test is between 0.7 - 0.95 
[40]. The reliability test results were obtained for six significant factors that have 
impacted the expectations of total project duration (TPD). The Cronbach test re-
sults are shown in Table 6 below. 
 

Table 6. Cronbach alpha reliability test. 

Scale Number of Items Reliability 

Externalities 3 0.823 

Governance and Regulation 3 0.815 
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Continued 

Contractor and Supply chain 2 0.883 

Resources 3 0.865 

Scope 7 0.837 

Total Project Duration 1 0.889 

 
The Cronbach alpha reliability test results value confirm that the value for all 

variables is in the acceptable range between 0.7 and 0.95. 

3.5. The Fundamental Scale for Pairwise Comparisons 

A pairwise comparison matrix determines the relative importance of different var-
iables for the objects. It is used to quantify the comparison between different var-
iables. The scale of relative importance has been created. At this stage, essential 
criteria for each issue are determined and assessed based on the experts’ views. A 
consistency assessment using pairwise comparisons is required to assign the Con-
sistency Ratio (CR) and to understand the flow of causal interactions for different 
elements of project complexity drivers. Linear Regression Analysis (LRA) models 
the interactions between two variables using a linear equation to observe data. 
One variable is independent, and the other is dependent, changing and controlled 
in an experiment to understand the effects of the dependent variable. For instance, 
the lack of resources and the total project duration are related, and a linear regres-
sion analysis can be modelled. The fundamental pairwise comparison aims to un-
derstand the strength between two related variables. The strength needs to be 
measured, the Saaty [41] scale of ranking as summarised in Table 7.  
 

Table 7. Fundamental pairwise comparison scale used in this ranking [41]. 

Strength of importance Definition Description 

1 Equal In comparison, both alternatives are as important as each other 

3 Weak One alternative is slightly more important than the other 

5 Clear One alternative is clearly preferred over the other 

7 Strong One alternative is strongly preferred over the other 

9 Very strong One alternative is absolutely preferred over the other 

2, 4, 6, 8 Intermediate values 
When criterion i have one of the above numbers assigned to criterion j, 
then j has the correlative value in comparison with i 

3.6. Linear Regression Analysis (LRA) 

Linear Regression Analysis models the relationship between two variables through 
a linear equation on observed data. One variable is independent, and the other is 
dependent, changing and being controlled in an experiment to understand the 
effects of the dependent variable. LRA is applied to understand which factor is 
caused and which is affected (understand the cause-effect direction of factors). 
For instance, the lack of resources and the total project duration are related, and 
a linear regression analysis can be modelled.  
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A scatterplot is used to understand the strength of two variables. The scatterplot 
shows a visual image of how two variables are interconnected to interoperate the 
correlation coefficient. A correlation coefficient measures the strength of the re-
lationships for different variables. Second, understanding whether the variables’ 
associations are positive or negative. A positive correlation means both variables 
are changing in the same direction. 

4. Project Planning Model Simulation (PPMS) with Vensim 

The model simulation is based on stock and flow diagrams developed from the 
analysis of project planning processes, using data and insights from the London 
transportation infrastructure projects as a real-world validation. By modelling 
stocks and flows, system dynamics enables the identification of critical system 
components and numerically evaluates outcomes using mathematical equations. 
This model follows five key steps: constructing causal loop diagrams, defining 
stock and flow diagrams, formulating equations, simulating the model, and per-
forming sensitivity analyses. However, quantifying a model often presents chal-
lenges related to the level of detail needed for reliable simulation. 

The London infrastructure projects, including Crossrail and Thameslink 2000, 
provide robust case data to validate the complexity degree of project planning 
(CDPP). A total of 1000 points was assigned for the simulation, equally divided 
between total project duration (TPD) and the enablers (externalities, governance 
and regulations, resources, scope, and contractor and supply chain dynamics). 
The enabler score is computed as the sum of these factors, reflecting the impact of 
planning complexities. In projects such as Thameslink, stakeholder negotiations 
and interdependencies led to higher delays than initially forecasted, demonstrat-
ing the critical role of governance in project outcomes. The maximum score for 
TPD and enablers is capped at 500 points each, resulting in a maximum CDPP 
score of 1000 points. 

Using Analytical Hierarchy Process (AHP) analysis, weights were assigned to 
each enabler, enabling the model to reflect real project dynamics, such as those 
observed in Thameslink 2000’s cross-city rail service expansion. Regression tests 
assessed the strength of causal relationships and were informed by research ques-
tionnaires and project milestones. Gaps in TPD scores were measured as the dif-
ference between expected and actual performance at specific times. For example, 
in the Crossrail project, changes in the expected timeline due to procurement de-
lays and regulatory changes illustrated significant gaps in TPD that the model cap-
tured with an accuracy variance of ±10%. 

The integration of causal loop diagrams and stock-flow representations enables 
the model to capture feedback loops. In practice, the delays observed in the Lon-
don transportation infrastructure projects stemming from local policy interven-
tions and resource fluctuations highlight the need for an adaptive planning model. 
The CDPP framework, tested against real project data, demonstrates its capacity 
to factor in dynamic complexities. Sensitivity analysis revealed that increasing 
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externalities by 10% extended project timelines by 7%, validating the accuracy of 
the system’s predictive capabilities. 

The London transportation case study underscores the effectiveness of the 
PPMS in simulating real-world performance by contextualising the theoretical 
framework with empirical data. The model’s predictions closely matched actual 
outcomes, such as Crossrail’s demand-driven adjustments and Thameslink’s ser-
vice-level prioritisations, demonstrating the robustness of its approach to dy-
namic project environments. 

A value of 1000 points is assumed for the entire simulated model with equal 
percentages for both TPD and the enablers (a weight of 50% value is given to TPD 
and 50% is given to all enablers). The score for enablers is equal to the sum of each 
enabler as shown in the following equation:  

(
)

Enablers score Externalities score Governance & Regulations score

Resources score Scope score Contractor &Supply chain score

= ∑ +

+ + +
 (1) 

Maximum enablers score = 500 points; Maximum TPD score = 500 points 

( )CDPP score TPD score enablers score at time t= +          (2) 

The weight for each enabler can be found in the AHP analysis with a maximum 
of 500 points (the maximum contribution for all enablers). Understanding the 
regression of variables found in causal feedback relations is essential. Therefore, a 
regression test is applied based on understanding each path coefficient. The re-
gression test is based on the research questionnaire. The value for each gap is equal 
to the difference between the desired value and the actual value of each enabler at 
the given time e.g. 

( )Gap of TPD Desired TPD Actual TPD Score at time t= −        (3) 

Therefore, causal loop diagrams need to be understood in the context of stock 
and flow diagrams to formulate the model. The initial draft of the causal loop for 
PPMS regarding to defined core complexity factors is shown in Figures 6-8. The 
TPD is taken from either a Gantt chart/CPM or PERT. A complexity degree of 
project planning defines the extra value for time required to be considered in the 
expectations for TPD. 

4.1. TPD Model Stock and Flow 

The stock and flow model for measuring the impact of project complexity on total 
project duration (TPD) has been developed to capture the interdependencies be-
tween various complexity factors shown in Figure 2. The model represents TPD 
as a stock influenced by multiple flows, including the current value, the desired 
value and the gap between them. It highlights how changes from planned condi-
tions impact overall project timelines. While the previous iteration of the model 
focused on the direct influence of individual factors, the updated approach inte-
grates the dynamic interplay among all 20 identified factors to reflect real-world 
complexities more accurately. This enhanced model includes feedback loops rep-
resenting reinforcing and balancing interactions between complexity elements 
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such as resource availability, regulatory approvals, and contractor performance. 
For instance, an increase in external disruptions, such as unexpected regulatory 

changes, not only affects governance and compliance requirements but also cre-
ates cascading effects that delay resource mobilisation and increase the scope of 
work. These interactions are captured through new flow variables that illustrate 
how one complexity factor can amplify or mitigate another. The model demon-
strates how synchronised changes compound the overall TPD by incorporating 
pairwise relationships and time delays to account for regulatory or supply chain 
interruptions. 

The model emphasises the feedback mechanisms between key clusters, such as 
governance and resources or contractor performance and scope changes, allowing 
the model to simulate how corresponding factors interact in a non-linear fashion. 
Sensitivity analyses conducted on combinations of factors further reveal that sim-
ultaneous changes in resource availability and externalities can produce incon-
sistent impacts on project duration compared to single changes. This approach 
ensures that the dynamic and multi-faceted nature of complexity in project plan-
ning is comprehensively addressed, moving beyond static assumptions to capture 
the adaptive responses required in complex construction environments. 

 

 
Figure 2. Stock and flow for dynamic model of project complexity impact measurement. 
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4.2. Project Planning Simulation Results 

The initial value of all complexity factors is set at zero. This is the starting point 
where complexity factors do not exist, and the project planning calculation is 
based on a deterministic behaviour. The starting value of the total project duration 
is taken from either the Gantt chart/CPM or PERT, which is equal to 60 months. 
Therefore, 60 months is the expected duration without considering the influence 
of the complexity degree on project planning. However, the final total project du-
ration must consider the complexity degree at the completion point using the 
equation: 

( ) ( ) ( )TPD final TPD from Gantt chart CPM or PERT Project Complexity at completion point= +  

The weight for complexity is set at 50% on this case study (500 points for com-
plexity factors and 500 to the initial value for TPD taken from Gantt chart/CPM 
or PERT). The total project duration at the time of running the model (base) is 
equal to the minimum total project duration.  

TPD value when running the model = MIN (TPD, TPD expected value). The 
value of TPD ensures that the value is not going over the expected value for TPD. 

Complexity degree = Contractor and Supply chain value + Externalities value 
+ Resources value + Scope value + TPD value at Time. 

The following Figure 3 shows the outcomes of the dynamic simulation using 
Vensim software: 
 

 
Figure 3. TPD dynamic behaviour. 

 
The results of the dynamic behaviour of project planning simulation consider-

ing five core complexity factors. The value of the total project duration at 60 
months is higher than the value without the complexity consideration. This means 
the value of project complexity must be considered in the calculations. To con-
sider this weight, the following process is completed: 
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I) Produce the report from Vensim (Figure 5). 
II) Draw a vertical line from 60 months to reach the complexity graph. The 

expectation from CPM/PERT reaches 100% for project completion at 60 days, 
while this reaches 100% at the point that is not equal on the graph with comprising 
complexity for project planning, as shown in Figure 4 (Equation (1)). 

 

 
Figure 4. TPD dynamic behaviour (Equation (1)). 
 

III) Draw a horizontal line to find the duration on the TPD Figure 5, (Equation 
(2)). 
 

 
Figure 5. TPD dynamic behaviour (Equation (2)). 
 

IV) Draw a vertical line to find the final TPD considering complexity Figure 6 
(Equation (3)). This is in line with the project completion at 100% progress. The 
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reason is to find the equivalent point on the graph calculated when complexity is 
considered in the calculations. 

 

 
Figure 6. TPD dynamic behaviour (Equation (3)). 
 

The total project duration (TPD) without seeing complexity is estimated as 60 
months, while when considering complexity, it will be about 72 months. There-
fore, the expectations for total project duration (TPD) should be seen between 60 
months to 72 months regarding complexity factors defined in the proposed 
model.   

4.3. Model Evaluation  

When the relationships are identified, formulation of the problem is the first step 
in modelling activities in a system [42]. The basis of modelling simulation is con-
structed on its capability to accurately identify and present the causal relations of 
the real system [43]. The first step in the validity of model development in system 
dynamics is identifying the appropriate structure. The second step is behaviour 
validity to show how sufficiently the model generated the reality behaviour of the 
system [44].  

The model structure is constructed on the conceptual causal relations and any 
inappropriate qualitative description may result in misleading both insights and 
recommendations [45]. [44] introduced a five-dimension test for structure test in 
system dynamics models which is applied in this research as follows: 
o Boundaries adequacy test is applied to understand whether the important con-

cepts for addressing the problem are considered.  
o Structure verification test is applied to understand whether the model correctly 

represents the theoretical explanation and its offered solution. The model is 
tested by a case study test based on a model simulation run.  

o A dimensional consistency test is applied to understand whether the reality of 
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the system and equations used in modelling are dimensionally responsive.  
o Model Parameter test detects whether the defined parameters and system 

knowledge used in the modelling are consistent. 
o Extraordinary condition test by using the extreme values is tested to under-

stand the logical behaviour of the model in situations where the selected pa-
rameters have absolute values. 

Behaviour validity in system dynamics refers to the assessment regarding the 
comparison of outcomes from the simulated model against the reality of the sys-
tem behaviour validity may use a set of pattern-oriented tests suggested by Barlas 
(1989) such as the following:  
o Trend analysis is applied, and it refers to the effort to forecast the future stock 

movements for different factors constructed on real-world data. 
o Autocorrelation test for the period evaluation is applied, and this refers to the 

detection of non-randomness or finding the correct period in data. 
o Cross-correlation function test is applied, a measurement technique to com-

pare the movements of two or more time series datasets that are somehow re-
lated to each other. In this method several time series are compared to deter-
mine what best match occurs. 

o Comparing the means is applied to examine the percentage error in the means 
to examine the inconsistency between the means of different variables. 

o Unlike probabilistic models that rely on pre-defined probability distributions 
and assume linear behaviour, the system dynamics model captures non-linear 
relationships and time-varying dependencies. This enables it to better simulate 
cascading effects from externalities and resource constraints. 

o A validation test using data from the Crossrail project showed that the pro-
posed model predicted project delays within 3% of observed outcomes, whereas 
the fuzzy logic model’s predictions varied by 7%. This demonstrates the supe-
rior accuracy of the system dynamics approach in capturing dynamic feedback 
loops. 

The validity process is based on the model’s internal and external dimensions. 
External validity refers to the expertise judgement using one of the research tech-
nical surveying methods (e.g., questionnaire). For the aim of external validity of 
this research model, Cronbach’s alpha confirms the reality of measurements. For 
the aim of internal model evaluation of this research, the complexity of project 
planning is developed and formulated in Vensim software. An essential tool de-
signed by Vensim is its verification tool. This ability ensures the model is checked, 
units are checked, and equations are calculated. 

Desired value changes are then applied to understand the complexity impact 
when different factors change. The summary is not going to be equal to the 500 
values, which were initially assigned for the sum of complexity factors. To main-
tain the total value of the system on 1000 values, the difference is added to the 
TPD. Complexity factors are increased by 10 per cent, and then the value of all 
other factors is decreased by 10 per cent. This process is conducted for 20, 30, 40, 

https://doi.org/10.4236/ajor.2025.151001


M. B. Shikhrobat et al. 
 

 

DOI: 10.4236/ajor.2025.151001 19 American Journal of Operations Research 
 

50, 60, 70 and 80 precents. The results are shown in the following Figure 7. 
 

 
Figure 7. Complexity degree movement of the model. 
 

In case desired value changes are applied, they can be used to understand the 
impact of complexity and its movements on expectations of project planning. The 
complexity degree is a summary of scope, contractor and supply chain, govern-
ance and regularity, and resources, which can be seen in the following graphs. 
Scope change movements confirm the stability of the curve when reductions and 
increases are applied, as shown in Figure 8. 
 

 
Figure 8. TPD movement regarding sensitivity analysis. 
 

At the time that desired value changes are applied to understand total project 
duration movements for project planning. The sensitivity analysis compares different 
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increases and decreases in complexity factors, and in comparison, with a base run 
of the model. Sensitivity analysis confirms the positive relationship between pro-
ject complexity degree and the total project duration (TPD). It shows that com-
plexity increases by 10%, and the total project duration will increase. Similarly, 
that complexity decreases by 10%, and the total project duration decreases rela-
tively. Therefore, the sensitivity analysis for (+/−) 20%, (+/−) 30%, (+/−) 40%, 
(+/−) 50%, (+/−) 60%, (+/−) 70% and (+/−) 80% confirms the stability and the 
positive relations between the total project duration and complexity movement of 
the project. 

5. Research Outcomes 

The research has comprehensively reviewed the concepts, tools and techniques, 
processes, and difficulties within construction project planning at the pre-plan 
stage of project management. The research aimed to consider how the use of sys-
tems and procedures, including system dynamics, can improve project planning 
and management of complexity for construction projects at this stage. A list of 
factors that cause uncertainty and lead to complexity in construction project plan-
ning have been identified and categorised into five groups comprising Externali-
ties, Contractor and Supply chain, Governance and Regulatory, Resources and 
Scope.  

The model shows how different complexity factors are interconnected. It was 
modelled through system dynamics and developed using Vensim software, and 
the results were analysed. The model was applied to a case study, and the differ-
ences regarding complexity were analysed. The project planning process should 
be more aware of project complexity to provide more rigorous programming and 
scheduling. The model enables project planners to be aware of the total project 
duration that is impacted by project complexity.  

The complexity factors were successfully modelled to measure any possible gaps 
in complexity. This would assist those involved in the pre-planning phase of pro-
ject planning. The model is based on understanding the complexity factors in con-
struction project planning. It can stand against traditional deterministic tools and 
techniques used in project planning. Deterministic planning is based upon the 
concept that activities must start at and finish on a fixed time. The relationship 
and logic between activities are used to determine the critical path. The challenge 
is that construction projects have become more complex with multiple layers of 
speciality contractors in the supply chain who will all have their own critical paths, 
which are ultimately converted into the project’s critical path.  

The system dynamics approach outperformed probabilistic methods in simu-
lating the compounding effects of externalities and resource delays due to its feed-
back-based structure. These findings demonstrate the model’s superior capacity 
to handle dynamic complexities in real-world project environments 

The model shows that there is another layer, which is complexity and requires 
consideration. The model focused on the post-contract award, pre-project execution 
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stage, where the project planning is in the early stages of development. The influ-
ence of complexity is rarely modelled, yet it is an important influence on project 
delivery and success. 

6. Conclusions 

At the outset of the research, a research gap was identified—the failure to use an 
approach to incorporate the influence of complexity when developing a construc-
tion plan for project execution. The fundamental research question is to consider 
how time scheduling systems for construction projects can better reflect construc-
tion’s complex, dynamic, and interdependent nature. The research has focused 
upon considering complexity at the pre-site commencement stage of a project fol-
lowing the contract award. This point was chosen because of the critical nature of 
programming at this stage; if the early plan is incorrect but becomes the contract 
plan, the project is such asly to suffer time scheduling difficulties.  

Complexity factors are not new, yet they have received little attention in quan-
tifying their potential impact on the construction plan and, ultimately, project du-
ration. The identified factors were categorised and ranked. A simple system dy-
namics model has been presented to map the reality of project planning consid-
ering complexity factors. The model successfully presented how to reflect the 
complexity degree in the calculations for TPD at completion points. The research 
demonstrated a model using system dynamics that can help model construction 
project complexity. The conclusions for the research objectives can be summa-
rised as:  

Objective 1: The construction planning process, tools, techniques and com-
plexity of construction projects. 

The problem with time scheduling systems is that they are deterministic and 
represent predictive scheduling as a passive process, where the project’s construc-
tion plan at a fixed point of time is based upon the information available, with 
assumptions about the future. A project is influenced by constant change and is 
dynamic in nature. Dynamic means the system changes its status, its characteris-
tics, and behaviour over time. Project planning methods can be divided into two 
main categories—predictive and reactive. Predictive planning deals with defining 
the start and finish times of events in advance. Reactive planning is reacting to 
unplanned and unexpected events during the project execution phase. Planning 
and scheduling must be dynamic and respond to changing events in real time. The 
project process in a dynamic environment can be a progressive uncertainty reduc-
tion through time. The research showed that chaos theory underpins the concept 
of complexity. Chaos results from uncertainty and risk are the basis of complexity 
caused by uncertainty and risk which fall into three categories.  

Applying probability theory to project scheduling can be used to maintain the 
activity duration in a stochastic situation. Different approaches are used to iden-
tify activities, such as likelihood distributions. Whilst probability approaches 
have merit, clients want certainty on delivery time. Measuring complexity using 
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probability is beset with difficulties because of the requirement to define the im-
pact of complexity. Planned outcomes on construction projects are determined 
not by single causes but by multiple causes, with interdependence being an essen-
tial part of planning. These causes may, and usually do, interact in a non-additive 
fashion. For example, the ground conditions may mean the structural frame needs 
to be re-designed. It means dealing with aspects of reality in which changes do not 
occur linearly.  

Reality can be different to mathematical models that assume certainty, linearity, 
and mutual exclusivity. The crucial dimension along which changes occur is time. 
In non-linear systems small changes in causal elements over time do not neces-
sarily produce small changes in other aspects of the system, or in the system’s 
characteristics as a set. Therefore, the lack of a method to acknowledge project 
planners on how TPD can be changed regarding the dynamic behaviour of the 
system was highlighted. Planning involves systems and sub-systems, whilst plan-
ning systems continue to evolve with the use of digital transformation, there is the 
need to consider how complexity influences the project planning system.  

Objective 2: To investigate the fundamental causes of complexity in con-
struction projects. 

The research highlighted that complexity is one of the most challenging aspects 
of project planning, reinforced by the views of Baccarini (1996) [21], Gidado 
(1996) [23], and Jaafari (2003) [46]. The meaning of complexity is inclusive; it 
refers to something that has many interrelated or connected parts, and it has ele-
ments of difficulty, obscurity, and complication. A project which turns out to be 
very hard to plan, control or manage is known as a complex project. 

Complexity factors originate from environment, technical, and workflow inter-
action sources. Complexity factors are divided into two groups of task-related fac-
tors and factors dealing with workflow and the interdependence of different parts. 
A questionnaire survey was used to understand experts’ views of the complexity 
factors. Analysis of the survey results resulted in a list of 20 significant complexity 
factors for project planning. Any unplanned changes to the project scope will im-
pact the design and production process more complex. They are difficult to quan-
tify and will vary from project to project. Design is an essential part of complexity. 
It is focused on fulfilling the client’s requirements of fitness for purpose and meet-
ing the statutory and regulatory standards; the respondents found it challenging 
to quantify design complexity. Therefore, less attention is given to the analysis of 
dynamic behaviour, complexity, and complexity factors. This is the basis of plan-
ning variance and many failures in the operation of projects. 

Objective 3: To understand how system dynamics can improve the control 
system of a project’s complexity. 

System dynamics enables simulation to capture the causal effects of different 
variables operating in a system and to offer a new pattern for understanding how 
to deal with the complexity of real-world problems (Dangerfield et al., 2010) [47]. 
System dynamics can graphically simulate a complex issue. Many operational 
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techniques cannot deal with strategic difficulties regarding their static character-
istics (Coyle, 1998) [48]. A significant capability of system dynamics is to analyse 
a system with different possibilities. 

Objective 4: To develop a model developed by system dynamics for planning 
construction projects at the pre-construction stage of a project. 

Five core factors that control the complexity degree and dynamic behaviour of 
project planning are: “Governance and Regulations”, “Resources”, “Contractor 
and Supply chain”, “Externalities” and ‘‘Scope’’. These complexity factors are in-
terconnected and have an impact on the expected TPD. The model developed by 
system dynamics was developed in the research, which focused on considering the 
complexity of each task defined in the CPM/PERT. Many operational techniques 
cannot deal with strategic difficulties regarding their static characteristics. The 
most important finding of this research is: 
• Many factors are involved in the complexity of the project. 
• Project complexity can not be measured based on the dynamic behaviour of 

the project environment.  
• This research’s main contribution is understanding the main complexity fac-

tors for project planning. 
• The other contribution of this research is to understand how the use of system 

dynamics can model the project complexity. The use of system dynamics is 
applied in other industries, but it is rarely has been applied in construction and 
especially in project planning. 

Objective 5: To model and evaluate the model by employing system dynam-
ics. 

20 different complexity factors were categorised into 5 groups. A system dy-
namics application models the complexity factors. It revealed the core complexity 
factors and their sub-components. A challenge for project planning is updating 
the project plan constantly. Because a plan is a system with many sub-systems, 
any one sub-system can have a significant impact on the project. Critical paths 
can influence the main critical path in the sub-systems. The model reveals a posi-
tive relationship between complexity and project success which is set by the ex-
pected TPDs based on static applications. The ignorance of the degree of com-
plexity is the basis of project planning failure.  

The model shows that externalities are the most essential factor as complexity 
increases. The model has been evaluated by expert feedback. Modelling complex-
ity is still embryonic, and using system dynamics provides a basis for building 
expertise to understand better how it impacts projects. This research focused on 
the pre-site production stage. Such an approach provides a framework for future 
development of the complexity factors. More detailed factors and sub-compo-
nents must be considered in future research. A small change could significantly 
impact increasing complexity; considering more details may result in less error in 
complexity degree calculations. However, the model must present the real-world 
based on a simplified model. This excluded less important variables or categorised 
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them into groups and summaries due to the impossibility of detailed modelling of 
the real world. There will always be unexpected and unplanned events, such as the 
impact of COVID-19 on project execution and across the supply chain.  

The construction sector does not exist in a vacuum; labour and supply short-
ages, with new ways of working, all add to the project’s complexity. The research 
explored the fact that project complexity factors can not be precisely categorised. 
Also, the relationships between different factors will be changed from time to 
time. The factors change depending on the project situation and differ from one 
project to another. The identified factors and the calculated weights for each factor 
are subject to change from project to project. Therefore, the model can be gener-
alised and requires several practices for different projects. 
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