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Abstract

The construction projects’ dynamic and interconnected nature requires a
comprehensive understanding of complexity during pre-construction. Tradi-
tional tools such as Gantt charts, CPM, and PERT often overlook uncertain-
ties. This study identifies 20 complexity factors through expert interviews and
literature, categorising them into six groups. The Analytical Hierarchy Process
evaluated the significance of different factors, establishing their corresponding
weights to enhance adaptive project scheduling. A system dynamics (SD)
model is developed and tested to evaluate the dynamic behaviour of identified
complexity factors. The model simulates the impact of complexity on total
project duration (TPD), revealing significant deviations from initial determin-
istic estimates. Data collection and analysis for reliability tests, including nor-
mality and Cronbach alpha, to validate the model’s components and expert
feedback. Sensitivity analysis confirmed a positive relationship between com-
plexity and project duration, with higher complexity levels resulting in in-
creased TPD. This relationship highlights the inadequacy of static planning
approaches and underscores the importance of addressing complexity dynam-
ically. The study provides a framework for enhancing planning systems through
system dynamics and recommends expanding the model to ensure broader
applicability in diverse construction projects.

Keywords

Project Planning, Project Complexity Measurement, Uncertainty
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1. Introduction

Scheduling systems such as Gantt charts, Critical Path Method (CPM), and Pro-
gram Evaluation and Review Technique (PERT) are traditional tools that rely on
predictive planning. These methods develop schedules at a fixed point in time
based on available data and assumptions about future conditions. However, con-
struction projects occur in dynamic environments where unpredictable external
factors such as weather, material delivery delays, pandemics, and financial chal-
lenges significantly influence outcomes.

While these traditional methods provide a structured approach to project
scheduling, they fall short in addressing complexities and uncertainties inherent
in construction projects. This limitation underscores the need for advanced sched-
uling techniques that adapt to dynamic conditions and address complexity.

Complexity in construction projects is a multidimensional challenge involving
interdependent variables such as project activities, external influences, and man-
agerial objectives. Managing complexity requires a deeper understanding of its
factors and their influence on project planning and execution. Researchers have
explored various approaches to improve project duration estimates, including Bayes-
ian Networks [1] and simulation-based techniques [2]. However, coping with com-
plexity remains a significant challenge in project scheduling [3].

A comprehensive review of literature on project complexity in construction was

» «

conducted using search terms such as “project complexity,” “construction com-
plexity,” and “complexity of project management.” The research spanned publi-
cations from 1996 to 2024, focusing on construction projects and their dynamic
environments. The review utilised key online databases such as Google Scholar,
Web of Science, EBSCO, Scopus, IEEE Xplore, Science Direct, and JSTOR.

The analysis prioritised top journals in construction and management, including:

e Journal of Construction Engineering and Management.

e Journal of Management in Engineering.

o International Journal of Project Management.

o Construction Innovation: Information, Process, Management.
o Construction Management and Economics.

e Engineering, Construction and Architectural Management.

These journals were chosen based on their high rankings in the field [4]. The
research resulted in a curated list of significant studies organised by year, author,
and factors of project complexity.

The review excluded articles unrelated to construction projects and those fo-
cusing on communication between authors and editorial teams. Studies on phe-
nomena outside the scope of project complexity were also eliminated. The final da-
taset included 82 peer-reviewed articles, conference papers, and 12 PhD theses. These
publications were analysed to identify recurring themes and research interests.

The analysis revealed four primary categories of research interest in project
complexity:

1) Identifying and Understanding Complexity

Studies in this category focus on defining project complexity and exploring its
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implications for project management.

2) Shortcomings of Traditional Planning Tools

Researchers examined the limitations of widely used project planning tools in
addressing the multifaceted nature of project complexity.

3) Optimizing Project Planning

This category includes studies that propose advanced techniques and method-
ologies for improving project planning in complex environments.

4) Project Complexity Factors

Research here identifies and evaluates factors contributing to project complex-
ity, such as technological challenges, stakeholder involvement, and environmental
uncertainties.

The study underscores the inadequacy of traditional scheduling methods in
managing construction project complexities and highlights the necessity for adap-
tive and sophisticated planning techniques. It also emphasises the importance of
understanding complexity factors to optimise project planning and achieve man-
agerial objectives.

Future research should continue exploring innovative scheduling approaches,
focusing on integrating complexity considerations into planning tools to better
address the dynamic nature of construction projects.

Initially, defining complexity and examining its influence on project manage-
ment is discussed, particularly in optimising project planning through identifying
and comprehending complexity. Subsequently, an analysis of the limitations in-
herent in conventional scheduling methods will be conducted, focusing on the
deficiencies of traditional planning tools in effectively managing complexity. Fol-
lowing this, innovative strategies will be proposed to enhance scheduling practices
within complex environments. A thorough identification of primary contributors
to complexity will be undertaken, including technological obstacles and stake-
holder interactions, which are critical factors influencing project complexity. Fi-
nally, insights and practical implications for project managers will be discussed.
In conclusion, recommendations for future research will be presented, emphasis-

ing the significance of adaptive scheduling methods.

2. Complexity of Project Planning Review

Early research highlighted the foundational role of traditional methods such as
Gantt charts, Critical Path Method (CPM), and Program Evaluation and Review
Technique (PERT) in project planning. While these methods provided initial
frameworks for scheduling and sequencing, they relied heavily on deterministic
assumptions. Studies such as Lockyer [5] and Kelley [6] emphasised the utility of
these methods in defining critical activities and their durations. However, as An-
dersen [7] highlights that these approaches’ linear and predictive nature often
failed to account for real-world uncertainties.

Critiques by researchers such as Charnes and Cooper [8] suggested that CPM’s
reliance on static scheduling underestimated the probabilistic nature of project

activities. Similarly, PERT’s probabilistic focus was criticised for oversimplified
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activity durations and assumptions about dependencies. These critiques underscore
a recurring limitation: traditional methods assume linearity and certainty, which

are rarely present in dynamic project environments.

2.1. Evolution Towards Probabilistic and Fuzzy Methods

Probabilistic models and fuzzy logic emerged as alternatives to address the short-
comings of deterministic planning. PERT’s introduction of probability distribu-
tions marked a shift towards accommodating uncertainties. However, as noted by
Elmaghraby [9], these methods still struggled with real-world applications due to
incomplete data and over-reliance on statistical assumptions.

Fuzzy logic, introduced by Zadeh and later developed by Kahraman et al (2006)
[10], provided a framework to deal with imprecise and ambiguous information.
By validating uncertain data, fuzzy methods improved planning accuracy. Yet, re-
searchers such as Chanas et a/. [11] pointed out limitations in applying fuzzy logic

to dynamic environments, where real-time adjustments were often necessary.

2.2. Optimization Techniques and the Constraints

Research has centred on optimising project planning. Sensitivity analysis and sto-
chastic methods have been explored to enhance planning robustness. Saltelli et a/
[12] discussed sensitivity analysis as a tool for evaluating the impact of variable
changes on outcomes, which aids in integrating uncertainties. However, as Hall
and Posner (2004) [13] highlighted, the cost and complexity of implementing such
models often limit their practical application.

Stochastic methods, including heuristic algorithms and Monte Carlo simula-
tions, addressed uncertainties by generating multiple scenarios for activity dura-
tions. While these methods improved predictive accuracy, studies by Herroelen
and Leus [14] shown that frequent re-planning in dynamic settings often negated
their benefits. Robust optimisation, as discussed by Coleman et al [15] attempted
to balance flexibility and stability but faced challenges in representing valid objec-

tive values and addressing unpredictability.

2.3. Addressing Uncertainty and Complexity

Uncertainty remains a fundamental challenge in project planning. Researchers
such as Freeman [16] and Collyer and Warren [17] highlights project environ-
ments’ dynamic and unpredictable nature. Uncertainty stems from controllable
factors, such as design changes and resource availability, and uncontrollable fac-
tors, such as weather and economic fluctuations.

Dynamic planning approaches have been proposed to address these uncer-
tainties, including real-time scheduling and system dynamics. As Senge [18]
promotes, system dynamics models the interactions within complex systems to
predict outcomes. However, critiques by Helbing [19] and Gao [20] argue that
these models often oversimplify complex interactions, limiting their practical

utility.

DOI: 10.4236/ajor.2025.151001

4 American Journal of Operations Research


https://doi.org/10.4236/ajor.2025.151001

M. B. Shikhrobat et al.

2.4. Factors Contributing to Project Complexity

The literature identifies various factors contributing to project complexity, includ-
ing structural, organisational, and contextual elements. Baccarini [21] character-
ised complexity as the interdependence of multiple variables while Williams [22]
highlights the role of uncertainty in goals and methods. Gidado [23] further cate-
gorised complexity into operational and workflow interdependencies, emphasis-
ing the challenges in managing overlapping tasks and resource constraints.
Recent studies, such as those by Vidal and Marle [24] [25], Luo et al [26], Dao
et al. [27] and Ma and Fu [28], expanded this understanding by incorporating
project size, stakeholder diversity, and environmental conditions. These factors
underscore the need for adaptive planning methods for static and dynamic com-
plexities. However, as noted by Remington and Pollack [29] and Parekh [30], ex-

isting tools often fail to integrate these multifaceted elements effectively.

2.5. Gaps and Contradictions in Existing Research

Despite advancements in project planning methods, significant gaps and contra-
dictions remain:

Inadequate Integration of Dynamic Factors: Traditional and even some mod-
ern methods struggle to accommodate project environments’ dynamic and non-
linear nature.

Over-Reliance on Deterministic Models: Many tools and techniques assume
stability and predictability, which are rarely achievable in practice.

Limited Practical Applications: Advanced methods, such as fuzzy logic and
robust optimisation, often face barriers in implementation due to their complexity
and resource requirements.

Human Factors: Studies by Stoop and Wiers [31] emphasises the impact of
human error on planning accuracy, yet few models effectively incorporate this
critical variable.

The critical literature review on project planning complexity reveals a persistent
tension between theoretical advancements and practical applications. While tra-
ditional methods laid the groundwork for structured planning, their limitations
in addressing uncertainties and complexities necessitated the development of prob-
abilistic, fuzzy, and robust optimisation techniques. Despite these advancements,
gaps in integrating dynamic factors and addressing real-world challenges remain.

Future research should focus on developing adaptive, dynamic planning ap-
proaches that combine theoretical rigour with practical applicability. This includes
leveraging emerging technologies such as artificial intelligence and machine learn-
ing to create more responsive and resilient project planning systems. By bridging
the gap between theory and practice, the field can better navigate the complexities

inherent in modern construction projects.

3. Data Collection and Analysis

The study employed a semi-structured interview and questionnaires to explore
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expert views on factors influencing project complexity. The questionnaires were
distributed electronically to 320 selected experts, and 142 responses were received.
Although the response rate was lower than anticipated, the diverse sample ensured
unbiased and reliable results.

The research aimed to identify and evaluate complexity factors through a three-
step process: distribution of questionnaires, weighting factors via pairwise com-
parison, and assessing the proposed model. The complexity factors were catego-
rised into six groups based on literature and expert input:

Scope of Project Planning: Factors arising from initial design changes.

Governance and Regulatory Requirements: Compliance-related complexities.

Resources: Issues regarding resource allocation and availability.

Contractor and Supply Chain Issues: Challenges in coordination and logistics.

Externalities: Uncontrollable factors such as climate change.

Expectations for Total Project Duration: Variances between planned and ac-
tual timelines.

The Analytical Hierarchy Process (AHP) method was used to weigh and rank
these factors through pairwise comparisons. Externalities emerged as the most
significant factor, attributed to insufficient data, lack of task-specific expertise,
and unpredictable events impacting project outcomes.

Data was analysed using the Statistical Package for Social Sciences (SPSS). Two
scales, nominal and ordinal, were employed for categorising variables. Nominal
scales labelled variables without quantitative value, while ordinal scales ranked
qualitative items (e.g., high, medium, low). Normality and scale reliability tests,
including the Cronbach alpha test, were applied to validate the data.

Experts from academia and industry discussed and assigned sub-factors to each
cluster factor. These discussions helped refine the factors and ensured their rele-
vance. The research highlights that complexity factors often create discrepancies
between planned and actual project implementation, underscoring the importance

of addressing externalities and improving project planning methodologies.

3.1. The Use of AHP

Five factors were presented in the hierarchy model of complexity for project plan-
ning as the core variables. Therefore, a matrix of five columns and five rows is
required for the analysis combined with the Analytic Hierarchy Process (AHP)
decision-making method. The comparison matrix for core complexity factors

identified for construction project planning is shown in the following Table 1.

Table 1. Comparison matrix of core complexity factors.

. Governance and Contractor and .
Externalities . Resources . Scope Eigenvector
regulations supply chain
Externalities 1 5 5 3 5 0.49
Governance and regulations 0.2 1 0.5 2 0.2 0.07
Resources 0.2 3 1 3 0.25 0.12
Contractor and supply chain 0.14 0.5 0.33 1 0.2 0.05
Scope 0.33 5 4 5 1 0.26
DOI: 10.4236/ajor.2025.151001 6 American Journal of Operations Research
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The eigenvector and eigenvalue are calculated based on the pairwise compari-
son scores responded by the participants. Therefore, matrix Si for the measure-

ment of project planning (PP) complexity is:

1 5 5 3 5 1 5 5 3 5
15 1 12 2 15 02 1 05 2 02
S$S=|15 3 1 3 14| =]02 3 1 3 025
Y7 12 13 1 15 014 05 033 1 02
5 5 4 5 1] |033 5 4 5 1 |

Then, the sum of each column is calculated as:
S, S, S; S, S
1.87 145 108 18 6.65

The next step is to normalize the matrix of S; which is calculated by the deviance

of each entry over the sum of the column as follows:

187 5145 5108 7/18 5/6.65
02/187 1145 05/108 2/18 0.2/6.65
Normalized Pairwise Matrix |S;| = | 0.2/1.87  3/145  1/10.8  3/18 0.25/6.65
0.14/L.87 05/145 0.33/108 118 0.2/6.65
0.33/1.87 5/145 4/108 5/18 1/6.65

0.53 0.34 046 0.39 0.75
0.11 0.07 0.05 0.11 0.03
Normalized Pairwise Matrix |Sj] = | 0.11 0.21 0.09 0.17 0.04
0.07 0.03 0.03 0.06 0.03
0.18 0.34 0.37 0.28 0.15

Then, the criteria weights (eigenvectors) are calculated by the sum of all entries

divided by the number of criteria.

[(0.53+0.34+0.46+0.39+0.75) |
5
(0.11+0.07+0.05+0.11+0.03) [0.496 ]
5 0.072
Criteria Weights (eigenvectors) = (0.11+021+0.09+0.17+0.04) | _ 0.122
5
0.045
(0.07+0.03+0.03+0.06+0.03)
c 1 0.263 |
(0.18+0.34+0.37+0.28+0.15)
L 5 ]

Therefore, the eigenvectors are computed based on the expert’s responses to

pairwise comparison. The weights are calculated as follows:

1 5 5 7 5 [0.496]  [4.60]
02 1 05 2 02 0.072 0.78
02 3 1 3 025/ *|[0122] = |149
014 05 033 1 02 0.045 0.43
033 5 4 5 1| |0263] |3.07)
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Consistency Index (CI) is computed as:

Consistency Index (CI) = Amax—n = 515-5 = 0.038; Average random

n-1 5-1

consistency (RI) is taken from Table 2 which is for n = 5.

Table 2. Average random consistency (RI).

Number of criteria 1 2 3 4 5 6 7 8 9 10
RI 0.00 0.00 0.58 0.89 1.12 1.24 1.32 1.41 1.45 1.49

Therefore, RI = 1.12; Consistency Ratio (CR) = CI/RI = 0.038/1.12 = 0.03.
Consistency Index (CI) and Consistency Ratio (CR) amounts for less than 0.1
confirm the consistency of the expert’s comparison. The summary of weights and

the rank of variables is summarised in Table 3.

Table 3. Weight and rank of variables.

Weight Rank of Variable
Externalities 0.49 1
Governance and regulations 0.07 5
Resources 0.12 4
Contractor and supply chain 0.05 2
Scope 0.26 3

3.2. Complexity Factors Categorization

Two measurement scales for categorising variables are “nominal” and “ordinal”
(Agresti, 2018). A nominal scale is used to label different variables and sub-varia-
bles. It is used for labelling variables without any quantitative value. Ordinal data
is used to rank the qualitative items; for instance, quality can be “very good”,
“good” and “low quality”, which can be ranked in “high”, “medium” and “low”
levels, where the ranking has some meaning. Nominal is used for the categorisa-

tion of variables, as shown in Table 4.

Table 4. Major complexity variables of project planning.

1D Variable/Sub-variables
SC Scope

SCo01 Client type, the experience of project delivery

$C02 Interdependence, efficiency, and influence of design team consultants (architectural, structural, Mechanical,
Plumbing and Electrical services design)

SCo03 Procurement/contracting method (lump sum, D&B, EPC, etc.)

SC04 Tender price and contingency allowances

SCO05 Project type and size (financial value)

SCO06 Reasonableness of contractual conditions imposed by the client and the delivery dates

SCo07 Site characteristics (location, ground conditions, presence of obstructions)

DOI: 10.4236/ajor.2025.151001 8 American Journal of Operations Research
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Continued

GR

Governance and Regulatory

GRO1 The stringency of legal and regulatory requirements

GRO02 Quality assurance and inspection requirements

GRO03 Health and Safety requirements where exceptional safety requirements are imposed
RS Resources

RS01 Construction plant and equipment availability

RS02 Materials availability

RS03 Human capital (professional and labour)

CS Contractor and Supply chain

CSo01 Speciality contractors with complex work packages (complexity of the supply chain)
CS02 Suppliers and transport logistics

EX Externalities

EX01 Macro-economic changes

EX02 Political changes

EX03 Environmental changes and sustainability requirements

OB Objectives

OBO1 Total Project Duration (TPD) from Gantt chart, CPM or PERT

The hierarchy model based on this categorisation of project planning complex-

ity selection can be seen in Figure 1.

*+ Client type and experience

“» Inter-dependence of design
consultant team

«+» Procurement/contracting
method

<+ Tender price and
contingency allowances

<+ Project type and size
(financial value)

<+ Reasonableness of
contract conditions

+ Site Characteristics

<+ Stringency of legal and
regulatory requirements

+* Quality assurance and
inspection requirements

++ Health and safety
requirements

Governance

Complexi

<+ Construction plant and

5 equlpment av_a:la.b.lllty Resolrces
<+ Materials availability Complexity
*» Human capital (professional

and labour)

1
1
1
1
¢ Specialty contractors with
complex work packages SUpply.Chain

i

3 Suppl}ers and transport GBIkt
logistics 1

1

:

++ Macro-economic changes !

<+ Political changes Externalities

<+ Environmental changes and Complexity
sustainability requirements

and Regulatory

1
Contractor and

Selection for
project planning
complexity

consideration

Figure 1. Hierarchy model of project planning complexity selection.
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The frequency of appearance of complexity factors for each factor occurs in

different projects regarding the questionnaire survey is shown in Table 5.

Table 5. Frequency of appearance of complexity factors.

No. Complexity Factors Frequency % Cumulative Percent
1 Scope 150 33.3 33.3
2 Governance and Regulatory 48 10.6 43.9
3 Resources 67 14.9 58.8
4 Contractor and Supply chain 47 104 69.2
5 Externalities 70 15.5 84.7
6 Total Project Duration 69 15.3 100.0
Total 451 100

Table 6. Cronbach alpha reliability test.

3.3. Data Normality Test

A normality test determines how well a data set is modelled by using a normal
distribution test [32]. A normality test is used to verify whether the sample data
used in the research has been taken from a normally distributed population. Skew-
ness and kurtosis values are used to show normality distribution. ‘Skewness as-
sesses the extent to which a variable’s distribution is symmetrical. If the distribu-
tion of responses for a variable stretches toward the right or left tail of the distri-
bution, then the distribution is referred to as skewed [33]. Kurtosis is a measure
of whether the distribution is too peaked (a very narrow distribution with most of
the responses in the centre) [34]. Similarly, the standard error is applied to com-
pute the confidence intervals as close as possible to the expectation [35]. The dis-
tribution can be considered as expected when the value for standard error is less
than 5.5 [36]. The suggestion for standard normalised distribution is given a skew-

ness value of not more than 2 and for kurtosis value of not more than 7 [37].

3.4. Cronbach Alpha Test

Cronbach’s Alpha data reliability is applied to measure the answers’ internal con-
sistency as the results of the questionnaire survey analysis. Cronbach alpha is fre-
quently reported as one of the most internal consistency estimates [38]. It is a test
to evaluate whether a questionnaire is reliable or not [39]. The structure of the
questionnaire is reliable when the value for the Cronbach test is between 0.7 - 0.95
[40]. The reliability test results were obtained for six significant factors that have
impacted the expectations of total project duration (TPD). The Cronbach test re-

sults are shown in Table 6 below.

Scale Number of Items Reliability
Externalities 3 0.823
Governance and Regulation 3 0.815

DOI: 10.4236/ajor.2025.151001
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Continued
Contractor and Supply chain 2 0.883
Resources 3 0.865
Scope 7 0.837
Total Project Duration 1 0.889

The Cronbach alpha reliability test results value confirm that the value for all
variables is in the acceptable range between 0.7 and 0.95.

3.5. The Fundamental Scale for Pairwise Comparisons

A pairwise comparison matrix determines the relative importance of different var-
iables for the objects. It is used to quantify the comparison between different var-
iables. The scale of relative importance has been created. At this stage, essential
criteria for each issue are determined and assessed based on the experts’ views. A
consistency assessment using pairwise comparisons is required to assign the Con-
sistency Ratio (CR) and to understand the flow of causal interactions for different
elements of project complexity drivers. Linear Regression Analysis (LRA) models
the interactions between two variables using a linear equation to observe data.
One variable is independent, and the other is dependent, changing and controlled
in an experiment to understand the effects of the dependent variable. For instance,
the lack of resources and the total project duration are related, and a linear regres-
sion analysis can be modelled. The fundamental pairwise comparison aims to un-
derstand the strength between two related variables. The strength needs to be

measured, the Saaty [41] scale of ranking as summarised in Table 7.

Table 7. Fundamental pairwise comparison scale used in this ranking [41].

Strength of importance Definition Description
1 Equal In comparison, both alternatives are as important as each other
3 Weak One alternative is slightly more important than the other
5 Clear One alternative is clearly preferred over the other
7 Strong One alternative is strongly preferred over the other
9 Very strong One alternative is absolutely preferred over the other

2,4,6,8 Intermediate values

When criterion i have one of the above numbers assigned to criterion j,
then j has the correlative value in comparison with i

3.6. Linear Regression Analysis (LRA)

Linear Regression Analysis models the relationship between two variables through
a linear equation on observed data. One variable is independent, and the other is
dependent, changing and being controlled in an experiment to understand the
effects of the dependent variable. LRA is applied to understand which factor is
caused and which is affected (understand the cause-effect direction of factors).
For instance, the lack of resources and the total project duration are related, and

a linear regression analysis can be modelled.
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A scatterplot is used to understand the strength of two variables. The scatterplot
shows a visual image of how two variables are interconnected to interoperate the
correlation coefficient. A correlation coefficient measures the strength of the re-
lationships for different variables. Second, understanding whether the variables’
associations are positive or negative. A positive correlation means both variables

are changing in the same direction.

4. Project Planning Model Simulation (PPMS) with Vensim

The model simulation is based on stock and flow diagrams developed from the
analysis of project planning processes, using data and insights from the London
transportation infrastructure projects as a real-world validation. By modelling
stocks and flows, system dynamics enables the identification of critical system
components and numerically evaluates outcomes using mathematical equations.
This model follows five key steps: constructing causal loop diagrams, defining
stock and flow diagrams, formulating equations, simulating the model, and per-
forming sensitivity analyses. However, quantifying a model often presents chal-
lenges related to the level of detail needed for reliable simulation.

The London infrastructure projects, including Crossrail and Thameslink 2000,
provide robust case data to validate the complexity degree of project planning
(CDPP). A total of 1000 points was assigned for the simulation, equally divided
between total project duration (TPD) and the enablers (externalities, governance
and regulations, resources, scope, and contractor and supply chain dynamics).
The enabler score is computed as the sum of these factors, reflecting the impact of
planning complexities. In projects such as Thameslink, stakeholder negotiations
and interdependencies led to higher delays than initially forecasted, demonstrat-
ing the critical role of governance in project outcomes. The maximum score for
TPD and enablers is capped at 500 points each, resulting in a maximum CDPP
score of 1000 points.

Using Analytical Hierarchy Process (AHP) analysis, weights were assigned to
each enabler, enabling the model to reflect real project dynamics, such as those
observed in Thameslink 2000’s cross-city rail service expansion. Regression tests
assessed the strength of causal relationships and were informed by research ques-
tionnaires and project milestones. Gaps in TPD scores were measured as the dif-
ference between expected and actual performance at specific times. For example,
in the Crossrail project, changes in the expected timeline due to procurement de-
lays and regulatory changes illustrated significant gaps in TPD that the model cap-
tured with an accuracy variance of £10%.

The integration of causal loop diagrams and stock-flow representations enables
the model to capture feedback loops. In practice, the delays observed in the Lon-
don transportation infrastructure projects stemming from local policy interven-
tions and resource fluctuations highlight the need for an adaptive planning model.
The CDPP framework, tested against real project data, demonstrates its capacity

to factor in dynamic complexities. Sensitivity analysis revealed that increasing
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externalities by 10% extended project timelines by 7%, validating the accuracy of
the system’s predictive capabilities.

The London transportation case study underscores the effectiveness of the
PPMS in simulating real-world performance by contextualising the theoretical
framework with empirical data. The model’s predictions closely matched actual
outcomes, such as Crossrail’s demand-driven adjustments and Thameslink’s ser-
vice-level prioritisations, demonstrating the robustness of its approach to dy-
namic project environments.

A value of 1000 points is assumed for the entire simulated model with equal
percentages for both TPD and the enablers (a weight of 50% value is given to TPD
and 50% is given to all enablers). The score for enablers is equal to the sum of each

enabler as shown in the following equation:

Enablers score = X ( Externalities score + Governance & Regulations score

+Resources score + Scope score + Contractor & Supply chain score)

Maximum enablers score = 500 points; Maximum TPD score = 500 points

CDPP score = TPD score + enablers score (at time t) (2)

The weight for each enabler can be found in the AHP analysis with a maximum
of 500 points (the maximum contribution for all enablers). Understanding the
regression of variables found in causal feedback relations is essential. Therefore, a
regression test is applied based on understanding each path coefficient. The re-
gression test is based on the research questionnaire. The value for each gap is equal
to the difference between the desired value and the actual value of each enabler at
the given time e.g.

Gap of TPD = Desired TPD — Actual TPD Score (at time t) (3)

Therefore, causal loop diagrams need to be understood in the context of stock
and flow diagrams to formulate the model. The initial draft of the causal loop for
PPMS regarding to defined core complexity factors is shown in Figures 6-8. The
TPD is taken from either a Gantt chart/CPM or PERT. A complexity degree of
project planning defines the extra value for time required to be considered in the

expectations for TPD.

4.1. TPD Model Stock and Flow

The stock and flow model for measuring the impact of project complexity on total
project duration (TPD) has been developed to capture the interdependencies be-
tween various complexity factors shown in Figure 2. The model represents TPD
as a stock influenced by multiple flows, including the current value, the desired
value and the gap between them. It highlights how changes from planned condi-
tions impact overall project timelines. While the previous iteration of the model
focused on the direct influence of individual factors, the updated approach inte-
grates the dynamic interplay among all 20 identified factors to reflect real-world
complexities more accurately. This enhanced model includes feedback loops rep-

resenting reinforcing and balancing interactions between complexity elements
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such as resource availability, regulatory approvals, and contractor performance.

For instance, an increase in external disruptions, such as unexpected regulatory
changes, not only affects governance and compliance requirements but also cre-
ates cascading effects that delay resource mobilisation and increase the scope of
work. These interactions are captured through new flow variables that illustrate
how one complexity factor can amplify or mitigate another. The model demon-
strates how synchronised changes compound the overall TPD by incorporating
pairwise relationships and time delays to account for regulatory or supply chain
interruptions.

The model emphasises the feedback mechanisms between key clusters, such as
governance and resources or contractor performance and scope changes, allowing
the model to simulate how corresponding factors interact in a non-linear fashion.
Sensitivity analyses conducted on combinations of factors further reveal that sim-
ultaneous changes in resource availability and externalities can produce incon-
sistent impacts on project duration compared to single changes. This approach
ensures that the dynamic and multi-faceted nature of complexity in project plan-
ning is comprehensively addressed, moving beyond static assumptions to capture

the adaptive responses required in complex construction environments.
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Figure 2. Stock and flow for dynamic model of project complexity impact measurement.
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4.2. Project Planning Simulation Results

The initial value of all complexity factors is set at zero. This is the starting point
where complexity factors do not exist, and the project planning calculation is
based on a deterministic behaviour. The starting value of the total project duration
is taken from either the Gantt chart/CPM or PERT, which is equal to 60 months.
Therefore, 60 months is the expected duration without considering the influence
of the complexity degree on project planning. However, the final total project du-
ration must consider the complexity degree at the completion point using the

equation:

TPD (final) = TPD (from Gantt chart/CPM or PERT )+ Project Complexity (at completion point)

The weight for complexity is set at 50% on this case study (500 points for com-
plexity factors and 500 to the initial value for TPD taken from Gantt chart/CPM
or PERT). The total project duration at the time of running the model (base) is
equal to the minimum total project duration.

TPD value when running the model = MIN (TPD, TPD expected value). The
value of TPD ensures that the value is not going over the expected value for TPD.

Complexity degree = Contractor and Supply chain value + Externalities value
+ Resources value + Scope value + TPD value at Time.

The following Figure 3 shows the outcomes of the dynamic simulation using

Vensim software:

% of Completion

0 10 20 30 40 50 60 70 80 90 100

Time (Month)
TPD
Complexity

Figure 3. TPD dynamic behaviour.

The results of the dynamic behaviour of project planning simulation consider-
ing five core complexity factors. The value of the total project duration at 60
months is higher than the value without the complexity consideration. This means
the value of project complexity must be considered in the calculations. To con-

sider this weight, the following process is completed:
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I) Produce the report from Vensim (Figure 5).

II) Draw a vertical line from 60 months to reach the complexity graph. The
expectation from CPM/PERT reaches 100% for project completion at 60 days,
while this reaches 100% at the point that is not equal on the graph with comprising
complexity for project planning, as shown in Figure 4 (Equation (1)).

% of Completion

T

=
o
o
X

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

TPD
Complexity

Figure 4. TPD dynamic behaviour (Equation (1)).

IIT) Draw a horizontal line to find the duration on the TPD Figure 5, (Equation
).

% of Completion

100% ———-——————————————;T/-

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

TPD
Complexity

Figure 5. TPD dynamic behaviour (Equation (2)).

IV) Draw a vertical line to find the final TPD considering complexity Figure 6
(Equation (3)). This is in line with the project completion at 100% progress. The
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reason is to find the equivalent point on the graph calculated when complexity is

considered in the calculations.

% of Completion
N\

100%

90 100

Time (Month)

TPD
Complexity

Figure 6. TPD dynamic behaviour (Equation (3)).

The total project duration (TPD) without seeing complexity is estimated as 60
months, while when considering complexity, it will be about 72 months. There-
fore, the expectations for total project duration (TPD) should be seen between 60
months to 72 months regarding complexity factors defined in the proposed

model.

4.3. Model Evaluation

When the relationships are identified, formulation of the problem is the first step
in modelling activities in a system [42]. The basis of modelling simulation is con-
structed on its capability to accurately identify and present the causal relations of
the real system [43]. The first step in the validity of model development in system
dynamics is identifying the appropriate structure. The second step is behaviour
validity to show how sufficiently the model generated the reality behaviour of the
system [44].

The model structure is constructed on the conceptual causal relations and any
inappropriate qualitative description may result in misleading both insights and
recommendations [45]. [44] introduced a five-dimension test for structure test in
system dynamics models which is applied in this research as follows:

0 Boundaries adequacy test is applied to understand whether the important con-
cepts for addressing the problem are considered.

O Structure verification test is applied to understand whether the model correctly
represents the theoretical explanation and its offered solution. The model is
tested by a case study test based on a model simulation run.

O A dimensional consistency test is applied to understand whether the reality of
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the system and equations used in modelling are dimensionally responsive.

O Model Parameter test detects whether the defined parameters and system
knowledge used in the modelling are consistent.

0 Extraordinary condition test by using the extreme values is tested to under-
stand the logical behaviour of the model in situations where the selected pa-
rameters have absolute values.

Behaviour validity in system dynamics refers to the assessment regarding the
comparison of outcomes from the simulated model against the reality of the sys-
tem behaviour validity may use a set of pattern-oriented tests suggested by Barlas
(1989) such as the following:

0 Trend analysis is applied, and it refers to the effort to forecast the future stock
movements for different factors constructed on real-world data.

O Autocorrelation test for the period evaluation is applied, and this refers to the
detection of non-randomness or finding the correct period in data.

0 Cross-correlation function test is applied, a measurement technique to com-
pare the movements of two or more time series datasets that are somehow re-
lated to each other. In this method several time series are compared to deter-
mine what best match occurs.

0 Comparing the means is applied to examine the percentage error in the means
to examine the inconsistency between the means of different variables.

0 Unlike probabilistic models that rely on pre-defined probability distributions
and assume linear behaviour, the system dynamics model captures non-linear
relationships and time-varying dependencies. This enables it to better simulate
cascading effects from externalities and resource constraints.

O A validation test using data from the Crossrail project showed that the pro-
posed model predicted project delays within 3% of observed outcomes, whereas
the fuzzy logic model’s predictions varied by 7%. This demonstrates the supe-
rior accuracy of the system dynamics approach in capturing dynamic feedback
loops.

The validity process is based on the model’s internal and external dimensions.
External validity refers to the expertise judgement using one of the research tech-
nical surveying methods (e.g., questionnaire). For the aim of external validity of
this research model, Cronbach’s alpha confirms the reality of measurements. For
the aim of internal model evaluation of this research, the complexity of project
planning is developed and formulated in Vensim software. An essential tool de-
signed by Vensim is its verification tool. This ability ensures the model is checked,
units are checked, and equations are calculated.

Desired value changes are then applied to understand the complexity impact
when different factors change. The summary is not going to be equal to the 500
values, which were initially assigned for the sum of complexity factors. To main-
tain the total value of the system on 1000 values, the difference is added to the
TPD. Complexity factors are increased by 10 per cent, and then the value of all
other factors is decreased by 10 per cent. This process is conducted for 20, 30, 40,
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50, 60, 70 and 80 precents. The results are shown in the following Figure 7.

Complexity Degree
1000
500
0
(] 10 20 30 40 50 60 70
Time (Month)
— -80% — 70% -50% — 40% — 20% — 10%
— 80% — -60% — 50% — -30% —_ 20%
— -70% — 60% — -40% — 30% — -10%

Figure 7. Complexity degree movement of the model.

In case desired value changes are applied, they can be used to understand the
impact of complexity and its movements on expectations of project planning. The
complexity degree is a summary of scope, contractor and supply chain, govern-
ance and regularity, and resources, which can be seen in the following graphs.
Scope change movements confirm the stability of the curve when reductions and

increases are applied, as shown in Figure 8.

TPD

1000

500 = T

0
0 10 20 30 40 50 60 70
Time (Month)
— -80% -70% -60% -50% -40% -30% -20% -10%
— 80% 70% 60% 50% —— 40% 30% 20% —— 10%

Figure 8. TPD movement regarding sensitivity analysis.

At the time that desired value changes are applied to understand total project

duration movements for project planning. The sensitivity analysis compares different
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increases and decreases in complexity factors, and in comparison, with a base run
of the model. Sensitivity analysis confirms the positive relationship between pro-
ject complexity degree and the total project duration (TPD). It shows that com-
plexity increases by 10%, and the total project duration will increase. Similarly,
that complexity decreases by 10%, and the total project duration decreases rela-
tively. Therefore, the sensitivity analysis for (+/-) 20%, (+/-) 30%, (+/-) 40%,
(+/-) 50%, (+/-) 60%, (+/—) 70% and (+/-) 80% confirms the stability and the
positive relations between the total project duration and complexity movement of

the project.

5. Research Outcomes

The research has comprehensively reviewed the concepts, tools and techniques,
processes, and difficulties within construction project planning at the pre-plan
stage of project management. The research aimed to consider how the use of sys-
tems and procedures, including system dynamics, can improve project planning
and management of complexity for construction projects at this stage. A list of
factors that cause uncertainty and lead to complexity in construction project plan-
ning have been identified and categorised into five groups comprising Externali-
ties, Contractor and Supply chain, Governance and Regulatory, Resources and
Scope.

The model shows how different complexity factors are interconnected. It was
modelled through system dynamics and developed using Vensim software, and
the results were analysed. The model was applied to a case study, and the differ-
ences regarding complexity were analysed. The project planning process should
be more aware of project complexity to provide more rigorous programming and
scheduling. The model enables project planners to be aware of the total project
duration that is impacted by project complexity.

The complexity factors were successfully modelled to measure any possible gaps
in complexity. This would assist those involved in the pre-planning phase of pro-
ject planning. The model is based on understanding the complexity factors in con-
struction project planning. It can stand against traditional deterministic tools and
techniques used in project planning. Deterministic planning is based upon the
concept that activities must start at and finish on a fixed time. The relationship
and logic between activities are used to determine the critical path. The challenge
is that construction projects have become more complex with multiple layers of
speciality contractors in the supply chain who will all have their own critical paths,
which are ultimately converted into the project’s critical path.

The system dynamics approach outperformed probabilistic methods in simu-
lating the compounding effects of externalities and resource delays due to its feed-
back-based structure. These findings demonstrate the model’s superior capacity
to handle dynamic complexities in real-world project environments

The model shows that there is another layer, which is complexity and requires

consideration. The model focused on the post-contract award, pre-project execution
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stage, where the project planning is in the early stages of development. The influ-
ence of complexity is rarely modelled, yet it is an important influence on project

delivery and success.

6. Conclusions

At the outset of the research, a research gap was identified—the failure to use an
approach to incorporate the influence of complexity when developing a construc-
tion plan for project execution. The fundamental research question is to consider
how time scheduling systems for construction projects can better reflect construc-
tion’s complex, dynamic, and interdependent nature. The research has focused
upon considering complexity at the pre-site commencement stage of a project fol-
lowing the contract award. This point was chosen because of the critical nature of
programming at this stage; if the early plan is incorrect but becomes the contract
plan, the project is such asly to suffer time scheduling difficulties.

Complexity factors are not new, yet they have received little attention in quan-
tifying their potential impact on the construction plan and, ultimately, project du-
ration. The identified factors were categorised and ranked. A simple system dy-
namics model has been presented to map the reality of project planning consid-
ering complexity factors. The model successfully presented how to reflect the
complexity degree in the calculations for TPD at completion points. The research
demonstrated a model using system dynamics that can help model construction
project complexity. The conclusions for the research objectives can be summa-
rised as:

Objective 1: The construction planning process, tools, techniques and com-
plexity of construction projects.

The problem with time scheduling systems is that they are deterministic and
represent predictive scheduling as a passive process, where the project’s construc-
tion plan at a fixed point of time is based upon the information available, with
assumptions about the future. A project is influenced by constant change and is
dynamic in nature. Dynamic means the system changes its status, its characteris-
tics, and behaviour over time. Project planning methods can be divided into two
main categories—predictive and reactive. Predictive planning deals with defining
the start and finish times of events in advance. Reactive planning is reacting to
unplanned and unexpected events during the project execution phase. Planning
and scheduling must be dynamic and respond to changing events in real time. The
project process in a dynamic environment can be a progressive uncertainty reduc-
tion through time. The research showed that chaos theory underpins the concept
of complexity. Chaos results from uncertainty and risk are the basis of complexity
caused by uncertainty and risk which fall into three categories.

Applying probability theory to project scheduling can be used to maintain the
activity duration in a stochastic situation. Different approaches are used to iden-
tify activities, such as likelihood distributions. Whilst probability approaches

have merit, clients want certainty on delivery time. Measuring complexity using
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probability is beset with difficulties because of the requirement to define the im-
pact of complexity. Planned outcomes on construction projects are determined
not by single causes but by multiple causes, with interdependence being an essen-
tial part of planning. These causes may, and usually do, interact in a non-additive
fashion. For example, the ground conditions may mean the structural frame needs
to be re-designed. It means dealing with aspects of reality in which changes do not
occur linearly.

Reality can be different to mathematical models that assume certainty, linearity,
and mutual exclusivity. The crucial dimension along which changes occur is time.
In non-linear systems small changes in causal elements over time do not neces-
sarily produce small changes in other aspects of the system, or in the system’s
characteristics as a set. Therefore, the lack of a method to acknowledge project
planners on how TPD can be changed regarding the dynamic behaviour of the
system was highlighted. Planning involves systems and sub-systems, whilst plan-
ning systems continue to evolve with the use of digital transformation, there is the
need to consider how complexity influences the project planning system.

Objective 2: To investigate the fundamental causes of complexity in con-
struction projects.

The research highlighted that complexity is one of the most challenging aspects
of project planning, reinforced by the views of Baccarini (1996) [21], Gidado
(1996) [23], and Jaafari (2003) [46]. The meaning of complexity is inclusive; it
refers to something that has many interrelated or connected parts, and it has ele-
ments of difficulty, obscurity, and complication. A project which turns out to be
very hard to plan, control or manage is known as a complex project.

Complexity factors originate from environment, technical, and workflow inter-
action sources. Complexity factors are divided into two groups of task-related fac-
tors and factors dealing with workflow and the interdependence of different parts.
A questionnaire survey was used to understand experts’ views of the complexity
factors. Analysis of the survey results resulted in a list of 20 significant complexity
factors for project planning. Any unplanned changes to the project scope will im-
pact the design and production process more complex. They are difficult to quan-
tify and will vary from project to project. Design is an essential part of complexity.
It is focused on fulfilling the client’s requirements of fitness for purpose and meet-
ing the statutory and regulatory standards; the respondents found it challenging
to quantify design complexity. Therefore, less attention is given to the analysis of
dynamic behaviour, complexity, and complexity factors. This is the basis of plan-
ning variance and many failures in the operation of projects.

Objective 3: To understand how system dynamics can improve the control
system of a project’s complexity.

System dynamics enables simulation to capture the causal effects of different
variables operating in a system and to offer a new pattern for understanding how
to deal with the complexity of real-world problems (Dangerfield et al, 2010) [47].

System dynamics can graphically simulate a complex issue. Many operational
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techniques cannot deal with strategic difficulties regarding their static character-
istics (Coyle, 1998) [48]. A significant capability of system dynamics is to analyse
a system with different possibilities.

Objective 4: To develop a model developed by system dynamics for planning
construction projects at the pre-construction stage of a project.

Five core factors that control the complexity degree and dynamic behaviour of

» <« » <«

project planning are: “Governance and Regulations”, “Resources”, “Contractor

and Supply chain”, “Externalities” and “Scope”. These complexity factors are in-
terconnected and have an impact on the expected TPD. The model developed by
system dynamics was developed in the research, which focused on considering the
complexity of each task defined in the CPM/PERT. Many operational techniques
cannot deal with strategic difficulties regarding their static characteristics. The
most important finding of this research is:

e Many factors are involved in the complexity of the project.

e Project complexity can not be measured based on the dynamic behaviour of
the project environment.

e This research’s main contribution is understanding the main complexity fac-
tors for project planning.

o The other contribution of this research is to understand how the use of system
dynamics can model the project complexity. The use of system dynamics is
applied in other industries, but it is rarely has been applied in construction and
especially in project planning.

Objective 5: To model and evaluate the model by employing system dynam-
ics.

20 different complexity factors were categorised into 5 groups. A system dy-
namics application models the complexity factors. It revealed the core complexity
factors and their sub-components. A challenge for project planning is updating
the project plan constantly. Because a plan is a system with many sub-systems,
any one sub-system can have a significant impact on the project. Critical paths
can influence the main critical path in the sub-systems. The model reveals a posi-
tive relationship between complexity and project success which is set by the ex-
pected TPDs based on static applications. The ignorance of the degree of com-
plexity is the basis of project planning failure.

The model shows that externalities are the most essential factor as complexity
increases. The model has been evaluated by expert feedback. Modelling complex-
ity is still embryonic, and using system dynamics provides a basis for building
expertise to understand better how it impacts projects. This research focused on
the pre-site production stage. Such an approach provides a framework for future
development of the complexity factors. More detailed factors and sub-compo-
nents must be considered in future research. A small change could significantly
impact increasing complexity; considering more details may result in less error in
complexity degree calculations. However, the model must present the real-world

based on a simplified model. This excluded less important variables or categorised
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them into groups and summaries due to the impossibility of detailed modelling of
the real world. There will always be unexpected and unplanned events, such as the
impact of COVID-19 on project execution and across the supply chain.

The construction sector does not exist in a vacuum; labour and supply short-
ages, with new ways of working, all add to the project’s complexity. The research
explored the fact that project complexity factors can not be precisely categorised.
Also, the relationships between different factors will be changed from time to
time. The factors change depending on the project situation and differ from one
project to another. The identified factors and the calculated weights for each factor
are subject to change from project to project. Therefore, the model can be gener-

alised and requires several practices for different projects.
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