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Abstract 
Children exhibit unique activity patterns in classrooms, and their movements influence the 

resuspension of particulate matter, thereby increasing the risk of inhalation. To quantify children’s 
activity patterns and particulate matter inhalation doses, we measured particulate matter 
concentrations and tracked the recess activities of 194 children in two primary schools. YOLO v9 

combined with the DeepSORT algorithm was used to identify and track the children in the videos, 
thereby calculating the speed and duration of each child. Statistical analysis revealed that 
classroom activities were highly transitory and predominantly of light intensity. The proportion 

of light-intensity physical activity in this study was 7%–15% higher than that reported in previous 
studies, attributable to high occupant density, limited activity space, and characteristics of the 
Chinese education environment. The median durations of recess activities decreased from 

light-intensity (4.7 s) to moderate-intensity (2.5 s) and vigorous-intensity activities (2.2 s). 
Furthermore, children’s activity speed and duration were strongly associated with variations in 
indoor PM2.5 concentrations. Additionally, the daily inhalation dose during recess decreased with 

increasing age, being 14.67% lower in the middle age group and 30.64% lower in the upper age 
group compared to the lower age group. Our analysis provides a valuable reference for assessing 
the health risks caused by particulate matter and for more effective measures to improve the 

classroom environment.  
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1 Introduction 

Particulate matter (PM) pollution has been identified as a 
significant source of indoor air pollution in primary school 
environments (Xu et al. 2018; Kumar et al. 2024). Children 
spend up to 10 hours per day in school environments, 
primarily indoors (Oliveira et al. 2019). Consequently, 
classrooms are recognized as a critical built environment 
due to the potential for adverse indoor conditions to impact 

children’s health, comfort, and academic performance 
(Sadrizadeh et al. 2022). Moreover, classrooms typically have 
higher occupant densities than family residences, and it is 
precisely the presence of occupants and their activities that 
are key factors influencing PM levels (Diapouli et al. 2007; 
Zhong and Ridley 2020; Yuan et al. 2024). Recess breaks, 
which are the only periods of relatively unstructured time 
in the school day, significantly influence physical activity 
levels in schools, characterized by frequent, intense bursts 
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of activity, particularly when children play indoors (Ruch 
et al. 2013; De Baere et al. 2015). Children exhibit higher 
activity intensity than teenagers and young adults (Sigmund 
et al. 2007; Livingstone et al. 2003). These factors contribute 
to elevated PM concentrations in classrooms during recess 
(Madureira et al. 2012; Yang et al. 2023). 

Existing research has demonstrated that activity speed 
is a crucial factor influencing PM concentration, with higher 
speeds enhancing PM resuspension (Boulbair et al. 2022; 
Um et al. 2022; Yuan et al. 2024). However, most studies 
do not consider the characteristics of children’s activities 
during recess and the variability between different age 
groups. Research on children’s activity patterns indicates 
that their daily activities are characterised by brief periods 
of high-intensity activity, interspersed with short, irregular 
bouts of moderate to light-intensity activity, overall 
showing a large proportion of light-intensity activity, high 
intermittency, and brevity (Rowlands and Eston 2007; 
Chinapaw et al. 2019; Xie et al. 2024). Yet, most of the 
existing research has focused on statistics of children’s daily 
activities without differentiating between indoor and outdoor 
classroom activities. Additionally, significant differences in 
children’s activity patterns exist between different school 
types, such as kindergarten and primary school (Branco et 
al. 2019; Zhou et al. 2021). Therefore, there is a need to 
quantify children’s movement patterns during recess activities 
in primary school classrooms. 

The growing interest among researchers in dynamically 
monitoring children’s activities has led to the widespread 
use of devices such as pedometers and accelerometers 
(Rowlands and Eston 2007; Gu et al. 2024). However, the 
cost of these monitoring devices remains a significant 
barrier, particularly for studies involving large cohorts of 
children. In addition to expensive devices, video analysis 
has emerged as a primary method for human activity analysis 
in computer vision (Turaga et al. 2008; Cristani et al. 2013). 
Among various video-based approaches, the YOLO series 
is a leading choice for real-time object detection, widely used 
for its efficiency and accuracy (Redmon et al. 2016; Wang 
et al. 2023; Wang et al. 2024b). The integration of YOLO 
with the DeepSORT framework enables real-time detection 
of trajectories and tracking of individuals based on speed, 
distance, and physical appearance (Azhar et al. 2020; Punn 
et al. 2021; Ghomashchi et al. 2024). 

Activity patterns in specific environments significantly 
influence PM exposure doses (Du et al. 2024). Children’s 
exposure to pollutants is determined by the activity type, 
location, and intensity (Cohen et al. 2000; Kim et al. 2019; 
Li et al. 2023). The duration and frequency of time spent in 
specific locations result in different exposures and risks to 
children that vary with age and development stage (Cohen 
et al. 2000). However, no studies have yet investigated how 

children’s activity patterns during classroom recess influence 
PM exposure discrepancies. Therefore, it is essential to 
characterize children’s movement patterns and quantify 
exposure doses during recess in high-occupancy, limited-space 
classrooms. 

In this study, PM2.5 monitors were used to assess 
real-time PM2.5 concentration in primary schools. Children’s 
recess activities were recorded via cameras and analysed 
using machine learning algorithms, allowing us to examine 
the contribution of different activity patterns to PM2.5 
exposure across various age groups. The main objectives  
of this study are: (1) to develop a framework for extracting 
activity speeds and durations using machine learning 
algorithms for human recognition, tracking, and coordinate 
transformation; (2) to quantify the speed, intensity, and 
duration of recess activities among children of different 
age groups; and (3) to investigate PM2.5 inhalation doses 
and their variability in children of different age groups based 
on the acquired activity patterns and measured PM2.5 
concentrations. 

2 Methodology 

2.1 PM2.5 concentration measurement and activity video 
collection 

2.1.1 Characteristics of studied classrooms 

The field study was conducted from September to December 
2023. Two public primary schools in China, one in a rural 
area of Chongqing and the other in an urban area of Ziyang 
City, Sichuan Province, were selected as experimental sites. 
Figure A1, which is available in the Electronic Supplementary 
Material (ESM) of the online version of this paper, illustrates 
the geographic locations of School A and School B. A total 
of six classrooms, varying in school location, number of 
students, occupant density, and grade levels, were included 
in this study. Specifically, three classrooms for Year 2, Year 3, 
and Year 6 were chosen in School A, and three classrooms 
for Year 1, Year 4, and Year 5 were chosen in School B. 
The average number of students per classroom, classroom 
area, and occupant density were 32 people, 49.10 m2, and 
1.9 m2/person, respectively. Both schools rely on natural 
ventilation. Students were seated individually or in pairs at 
separate tables facing the chalkboard. The desks and chairs 
were uniformly distributed within the classrooms, with the 
number of rows ranging from 4 to 6 and the number of 
columns ranging from 3 to 7. A more detailed description 
is provided in Table A1 of the ESM. 

2.1.2 Instrumentation, data collection, and quality assurance 

Newly purchased portable PM2.5 monitors (BLATN BR-A 
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series, Beijing, China) were used to measure PM2.5 
concentrations. The TEGONGMAO 4G Camera (Xiamen 
Magic Bird Technology Co., Xiamen, China) was used to 
capture video of children’s activities in classrooms. This 
camera can start video capture when people are active and 
automatically stop when there is no activity. 

To ensure the accuracy of the collected data, collocation 
measurements were conducted for two days (one before 
starting and the other after the completion of the experiment), 
using a research-grade instrument SDS029-FQ Multi-Channel 
Particle Spectrum Sensor (NOVA Technology, Shandong, 
China) (Wang et al. 2024a; Yuan et al. 2024). During the 
collocation measurements, six BLATN monitors were 
placed together with SDS029-FQ in controlled laboratory 
conditions. The SDS029-FQ was placed in the middle of 
the chamber, with six BLATN monitors situated around it 
at the same inlet height. Arizona test dust was injected 
into the chamber and a mixing fan was kept on during the 
calibration process to mix particles uniformly throughout 
the chamber (Ren et al. 2020). The BLATN monitors  
and SDS029-FQ measured the indoor PM concentration 
simultaneously every minute. Among all monitors used in 
the study, high Pearson correlation coefficients (r) were 
found between SDS029-FQ and BLATN monitors, with all 
r values exceeding 0.94. This indicates a strong agreement 
across all PM monitors used in the study. However, all 
BLATN monitors were reporting higher average PM2.5 
concentrations than those measured by SDS029-FQ during 
the collocation study. Therefore, linear regression models 
were required to minimize this measurement error among 
BLATN monitors (Kumar et al. 2023; Kumar et al. 2024) 
(Text A1 and Table A2 of the ESM). The measurement 
errors of portable PM2.5 monitors were reduced to 3% of 
the concentration compared with high-end equipment. 

The placement of instruments in the classroom is shown 
in Figure 1. The camera was fixed above the blackboard  
to cover the entire classroom, while the PM2.5 monitor was  

placed below the blackboard to minimize disruption to 
regular classroom order and record real-time concentration 
variations caused by indoor and outdoor pollutant sources. 
Video data were collected over approximately three weeks 
in autumn at both schools, while pollutant data were 
collected in autumn at School A and in both autumn and 
winter at School B. 

Informed written consent was obtained from the children 
and their parents for the study. All children could withdraw 
from the study at any time. Data were gathered in compliance 
with the principles of the Helsinki Declaration. All experimental 
procedures have undergone ethical review, with the approval 
number 202304002. 

2.2 Architecture of the proposed framework for capturing 
speed and duration 

To estimate human movement speeds and durations, a 
workflow was established: (1) the experimental camera 
was calibrated and the captured videos were de-distorted; 
(2) children were detected and tracked in the video frames 
using the YOLO v9 and DeepSORT algorithms; (3) pixel 
coordinates were mapped to camera coordinates; (4) the 
movement speed and duration of each child in the video 
were calculated. 

2.2.1 Part 1: Camera calibration 

A wide-angle camera, which can cause inaccurate 
representations due to lens distortion, was used to capture 
the entire classroom scene (Jacobson et al. 2001). To obtain 
the internal reference matrix and distortion parameters, 
the MATLAB camera calibration toolbox based on 
Zhang’s calibration (Zhang 2000) method was employed. 
Twenty images were captured at different positions by 
varying the spatial location of the calibration template (an 
11 × 8 checkerboard with each black square measuring  

 
Fig. 1 The placement of instruments in the classroom 
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25 mm × 25 mm) while keeping the camera fixed. The 
camera used had a focal length of 4 mm, and the physical 
size of the image sensor was 1 inch. The calibration results 
are shown in Table A3 of the ESM. 

2.2.2 Part 2: Multi-object detection and tracking 

Over the past half-century, YOLO has evolved through 
multiple variants, with YOLO v9 emerging in 2024 as the 
latest iteration (Wang et al. 2024b). Building on YOLO v7, 
YOLO v9 introduces Programmable Gradient Information 
(PGI) to cope with the various variations required for deep 
networks to achieve multiple goals. It also proposes a new 
lightweight architecture, the Generalized Efficient Layer 
Aggregation Network (GELAN), based on gradient path 
planning. Our application is based on YOLO v9 for its precise 
detection capability and the DeepSORT algorithm for its 
adeptness in handling occlusion and distinguishing between 
similar objects, as described in Figure 2. 

YOLO v9, with its low parameter count and computational 
complexity, is well-suited for dense crowd detection in 
resource-limited environments (Wang et al. 2022). DeepSORT 

utilises YOLO v9 detections to track children across video 
frames, using Kalman filtering for predicting target positions 
(Kalman 1960; Song et al. 2023) and the Hungarian 
algorithm for associating detections with predictions, 
assigning unique IDs to tracked objects (Bewley et al. 2016; 
Wojke et al. 2017). DeepSORT also employs a cascade 
matching strategy to minimize identity switches and tracking 
failures during occlusion (Wojke et al. 2017). These outputs 
enable the analysis of children’s movements by estimating 
their coordinates, walking speed, and duration (Shirazi and 
Morris 2015). 

2.2.3 Part 3: Coordinate conversion in different coordinate 
systems 

After obtaining the pixel coordinates of each ID, the pixel 
coordinates converted to camera coordinates were performed 
based on the pinhole model and camera fixed parameters 
such as focal length. Figure 3 displays the schematic diagram 
of monocular camera ranging. By utilizing the principle of 
the pinhole model, as well as the pixel coordinate differences 
between two points and the transformation relationships  

 
Fig. 2 The architecture of multi-object detection and tracking 
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among different coordinate systems, the real-time coordinates 
(X, Y, Z) of the moving children were calculated. The detailed 
calculation process is shown in Text A2 of the ESM. 

2.2.4 Part 4: Speed and duration calculation 

The duration and speed were calculated after obtaining 
the coordinates under the camera coordinate system.  
The coordinates data was extracted at intervals of every 
five frames, which can effectively prevent the omission of 
high-intensity activities with short duration. The number 
of frames in which the target appeared was recorded to 
calculate the duration of the activity and the average speed. 

The Euclidean distance is used for the calculation of the 
distance disti between the coordinate points of the front 
and back frames, and the formula is as Equation (1): 

( ) ( ) ( )2 2 2
5 5 5dist i i i ii i iX X Y Y Z Z- - -= - + - + -            (1) 

where (Xi, Yi, Zi) is the coordinate of the target person in 
frame i and (Xi−5, Yi−5, Zi−5) is the coordinate of the target 
person in the former target frame i−5. Speed of human 
instantaneous movement speed per five frames (Speedi) can 
be calculated by dividing the distance by travelling time: 

distSpeed i
i t
=                                     (2) 

where t denotes the time for every five frames (30 frames 
per second), equivalent to 1/6 s. Equation (2) can be used to 
estimate the speed of human movement between any two 
identified frames in m/s. 

Use the average of the instantaneous speeds to define 
the average speed Speedaverage. The calculation formula is 
shown in Equation (3): 

5
average

Speed
Speed

5

n

i
i m

n m
= +=

-

å                            (3) 

where m is the number of frames the target first appeared, 
and n is the number of frames the target last appeared. 

The formula for calculating the duration of each activity 
per ID is as Equation (4): 

Duration
5

n m t-
= ⋅                                 (4) 

where n, m, and t take the same values as above. 

2.3 Object detection, tracking, and speed estimation 
performance 

2.3.1 Custom dataset 

To make the YOLO v9 model more adaptable to our data, 
we retrained the YOLO v9 algorithm using a custom image 
dataset, including 200 randomly selected video screenshots 
from each grade, totalling 1200 screenshots. It covered every 
recess throughout the day. Specifically, 17,995 bounding 
boxes were labelled to identify the children in each 
screenshot. The dataset was randomly selected in the ratio 
of 8:1:1 and accordingly divided into training sets, validation 
sets, and test sets. The evaluation results of our retrained 
algorithm will be discussed in Section 2.3.3. 

2.3.2 Implementation environment 

The training environment is the PyCharm integrated 
development environment. The hardware configuration  
is NVIDIA GeForce RTX 3080 and 13th Gen Intel(R) 
Core (TM) i5-13400F with 32 GB of RAM. All code 
implementations were developed in Python. 

2.3.3 Evaluation results 

2.3.3.1 Human detection and tracking 

To reasonably assess the system’s performance, the detection 
and tracking performance was evaluated separately. Mean  

 
Fig. 3 Schematic diagram of pinhole model 
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Average Precision (mAP) is a widely accepted metric for 
evaluating object detection performance (Redmon et al. 
2016; Ren et al. 2017; Zhu et al. 2020). The YOLO v9 detector 
had a value of 0.89 for mAP0.5 and a value of 0.57 for mAP0.5:0.95 
on the custom dataset. These metrics are on par with the 
performance of existing algorithms for classrooms as well 
as other dense scenes (Ding et al. 2020; Chen et al. 2024), 
suggesting that the retrained YOLO v9 model has good 
overall performance in detecting the children in our collected 
videos. 

Currently, key target-tracking performance metrics 
include Multiple Object Tracking Accuracy (MOTA) and 
Multiple Object Tracking Precision (MOTP). These metrics 
were evaluated using nine videos categorized by population 
density: three low-density videos (with 5, 10, and 15 children), 
three medium-density videos (with 20, 25, and 30 children), 
and three high-density videos (with 35, 40, and 45 children). 
The MOTA and MOTP values were 50.37% and 0.22, 
respectively. These results are comparable to those of 
state-of-the-art algorithms on complex datasets (Dendorfer 
et al. 2021; Dai et al. 2022), indicating that the DeepSORT 
algorithm performs well in tracking children in our collected 
videos. 

2.3.3.2 Speed estimation 

Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE), and Root Mean Square Error (RMSE) are 
widely used to evaluate model performance errors (Yu and 
Gu 2019; Bell et al. 2020; Sangsuwan and Ekpanyapong 
2024). For detailed explanations and calculation formulas, 
see Text A3 of the ESM. 

To assess the performance of speed evaluation, 10 subjects 
were observed walking and running at three different 
speeds (low: 0.6 m/s, medium: 1.2 m/s, high: 1.8 m/s) in a 
classroom setting. Their speeds were determined by measuring 
distances and timing intervals, while corresponding activities 
were recorded and analysed using the algorithm. The 
resulting MAE was 0.08 m/s, RMSE was 0.09 m/s, and MAPE 
was 8.96%, aligning with the precision of prior research 

(Jiao and Fei 2023). These metrics indicate good accuracy 
in identifying children’s activity speeds in classrooms. 

3 Results and Discussion 

3.1 Differences in speed distribution across years 

3.1.1 Distribution of activity speed in different age groups 

As children’s chronological age increases, they undergo 
changes in biological, psychological, and social aspects (Eccles 
1999), which are the key factors influencing children’s 
activity patterns (Kohl and Hobbs 1998). Therefore, for 
data analysis, we divided the students in Years 1 to 6 into 
three groups according to the commonly used criteria for 
children’s chronological age in related research (Doyle et al. 
2006; Goodway et al. 2019): the lower age group (Years 1 
and 2; approximately 6–7 years old; middle childhood), the 
middle age group (Years 3 and 4; approximately 8–9 years 
old; late childhood), and the upper age group (Years 5 and 6; 
approximately 10–11 years old; early adolescence). 

Data cleansing was performed by deleting very brief 
activities of less than 1 s. The speed values were categorized 
at 0.2 m/s intervals, and the frequency distribution within 
each interval was calculated. Figure 4 illustrates the range 
of speeds and their frequency distributions across different 
age groups. The lower age group exhibited a slightly narrower 
range of speeds compared to the middle and upper age 
groups. This trend can be attributed to the increase in walking 
and running speeds with age (Papaiakovou et al. 2009; 
Cadieux et al. 2023). Additionally, the speed distributions for 
all groups were predominantly within the 0–3 m/s range. 

Table A4 of the ESM presents statistics on average 
activity speeds by age group, including mean, median, and 
range. The data reveal a decreasing trend in both mean and 
median speeds from the lower to the upper age groups, 
indicating that the intensity of activity is higher in the lower 
age group than in the middle and upper age groups. While 
children’s running speed increases with age (Papaiakovou  

  

Fig. 4 The frequency distribution of activity speeds of (A) lower, (B) middle, and (C) upper age groups of primary school 
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et al. 2009; Cadieux et al. 2023), their subjective willingness 
to engage in activities may be a more significant determinant 
of activity intensity. Research has shown that as children grow 
older, they tend to shift from active play to light-intensity 
social activities (Ridgers et al. 2012), which may account for 
the observed decline in activity speeds. 

3.1.2 Statistical analysis of speed differences in different age 
groups 

To further clarify the differences in activity speed between 
age groups, statistical analysis was conducted using SPSS 
software. The Kolmogorov–Smirnov test indicated the activity 
speeds of children in all three groups (p < 0.001) were 
not normally distributed. Consequently, a nonparametric 
Kruskal–Wallis ANOVA test was used to examine overall 
differences in group distributions based on mean ranks.  
A p-value of less than 0.05 was considered statistically 
significant. 

The Kruskal–Wallis ANOVA test revealed significant 
differences in activity speeds across the three age groups 
(χ2(2, N = 66,216) = 269.34, df = 2, p < 0.001), with mean 
ranks of 34,501.08 for the lower age group, 33,306.02 for 
the middle age group, and 31,562.35 for the upper age group. 
The activity speeds of children in the middle and upper age 
groups were significantly lower than those in the lower age 
group. Post-hoc pairwise comparisons using the Nemenyi 
test further indicated significant differences in speeds between 
the lower and middle age groups (p < 0.001), between the 
lower and upper age groups (p < 0.001), and between the 
middle and upper age groups (p < 0.001). These results are 
summarized in Table A5 of the ESM. 

Combined with the median values in Table A4 of the 
ESM, the Nemenyi test results demonstrate a significant 
decline in activity speeds with increasing age. This trend 
may be attributed to the higher frequency of strenuous 
activities among younger children (Telford et al. 2005; 
Ridgers et al. 2012). 

3.2 Distribution of physical activity intensity in different 
age groups 

3.2.1 Criteria for the classification of physical activity 
intensity 

According to the Physical Activity Guidelines for Chinese 
Children and Youth (Zhang et al. 2017), the intensity of 
activity is categorised into three levels based on Metabolic 
Equivalent (MET), namely light-intensity activity (1.5–2.9 
MET), moderate-intensity activity (3.0–5.9 MET) and 
vigorous-intensity activity (≥6.0 MET). Reading, writing, 
and drawing are common light-intensity activities, while 
walking and running are typical for moderate- and vigorous- 
intensity activities, respectively (Zhang et al. 2017; US 
Department of Health and Human Services 2018). 

Based on data sources recommended by the Physical 
Activity Guidelines for Chinese Children and Youth (Zhang 
et al. 2017), 1.79 m/s (with a MET value close to 6.0 for 
children aged 6–12 (Butte et al. 2018)) was identified as the 
threshold for moderate-intensity physical activity (MPA) 
and vigorous-intensity physical activity (VPA); 0.89 m/s 
(with a MET value close to 3.0 for children aged 6–12 (Butte 
et al. 2018)) was identified as the threshold for MPA and 
light-intensity physical activity (LPA). 

3.2.2 Physical activity intensity distribution based on the 
criteria 

Figure 5 presents the frequency distribution of activity 
intensity across different age groups, revealing that LPA 
constitutes the largest proportion for all age groups. This 
finding aligns with that of Pawlowski et al. (2016), who 
reported that LPA is most prevalent in school settings. 

Compared to previous studies by Bailey et al. (1995) 
and Ruch et al. (2013), our study found a 7%–15% higher 
proportion of LPA. This discrepancy may be attributed to 
differences in activity space and characteristics of the Chinese 
education environment. Previous research has shown that 
children tend to be more active in spacious environments,  

  

Fig. 5 The frequency distribution of activity intensity of (A) lower, (B) middle, and (C) upper age groups of primary school 
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with increased per capita play space correlating to higher 
levels of strenuous activity (Pellegrini and Smith 1993; 
Ridgers et al. 2010). However, in Chinese primary school 
classrooms, high population density and the dispersed 
layout of desks and chairs restrict children’s movement. 
Additionally, the emphasis on academic success (Johns and 
Vertinsky 2006), safety concerns (Wang 2019; Xie et al. 
2024), and the requirement for regular eye exercises during 
recess (Beresin 2016) further limit physical activity. These 
factors likely contribute to the higher proportion of LPA 
observed in our study. The restricted activity space within 
classrooms results in more scattered PM distribution due 
to prolonged interaction between the body and particles, 
leading to higher PM concentrations near the breathing 
zone (Tao et al. 2017a, 2017b). 

For LPA, the frequencies were 0.869, 0.885, and 0.896 
for the lower, middle, and upper age groups, respectively, 
showing an overall increasing trend. In the case of MPA, 
the frequencies were 0.113, 0.101, and 0.093 for the lower, 
middle, and upper age groups, respectively. For VPA, the 
frequencies were 0.018, 0.014, and 0.011, respectively. Both 
MPA and VPA exhibited a clear decline in frequency with 
increasing age. These trends align with findings by Rowlands 
et al. (2008), who reported that older children engage less 
in strenuous physical activity and more in rest or light physical 
activity compared to younger children. The preferences for 
children’s activities we obtained for recess in the classroom 
are consistent with trends for activities in open-ended 
settings. 

In the present study, MPA and VPA decreased by 2.0% 
and 0.5%, respectively, from the lower to the upper age 
groups. Consistent with our findings, previous research has 
shown that younger children tend to be more active than 
older children during recess (Telford et al. 2005; Ridgers  
et al. 2012). Specifically, each year of age increase is associated 
with a relative reduction in mean VPA and MPA (Telford 
et al. 2005; Lopes et al. 2006; Corder et al. 2016). 

The lower motivation to participate in MPA and VPA 
among older children may be attributed to a shift in focus 
from active play to social behaviours with low levels of physical 
activity (Hardy et al. 2007). LPA, such as sit-down 
conversations to develop interactions with peers, have become 
mainstream, particularly during early adolescence (Larson 
and Verma 1999; Hardy et al. 2007). Additionally, in regions 
where education is highly valued, such as Asia, the increasing 
academic pressure leads adolescents to allocate more time 
to their studies as they grow older (Chung et al. 1993; Larson 
and Verma 1999). 

3.2.3 Speed distribution at different activity intensities in 
different age groups 

The statistical results of activity speed at different activity 

intensities in different age groups are shown in Table 1. It 
can be seen that as age rose, activity speeds of LPA and MPA 
decreased. For VPA, the activity speed decreased in the 
middle age group but increased in the upper age group. 

The Kruskal–Wallis ANOVA test was used to perform 
an omnibus test on the differences in group distributions 
because of the non-normal distribution of activity speed. 
Significant differences in speed were detected across age 
groups for LPA (p < 0.001), MPA (p = 0.011), and VPA (p = 
0.022). The Nemenyi test was applied to the subsequent 
pairwise comparisons, as presented in Table A6 of the ESM. 
The data revealed significant differences in activity speed 
between all pairs of age groups at LPA, whereas significant 
differences were observed only between the middle and 
upper age groups at MPA and VPA. 

3.3 Duration of different types of children’s activities 

3.3.1 Distribution of activity duration in different age groups 

Histograms depicting the durations of activities at different 
intensity levels across various age groups are presented  
in Figure 6. Notably, regardless of the activity intensity, 
the durations are consistently brief, highlighting the 
highly transient nature of children’s classroom activities. 
This finding is consistent with previous studies that have 
emphasized the transient characteristics of children’s activities 
(Bailey et al. 1995; Lopes et al. 2006; Rowlands et al. 2008). 
As illustrated in Figure 6, the range of variation in the 
duration of recess activities decreases gradually from LPA 
to VPA. This trend has also been observed in studies not 
restricted to classroom settings (Bailey et al. 1995; Lopes et 
al. 2006; Rowlands et al. 2008). 

In the present study, with a data collection interval of 
approximately 0.17 s, over 95% of LPA lasted less than 15 s, 
with a median duration of 4.7 s across all age groups. 96% 
and 98.5% of MPA and VPA lasted less than 10 s, with 

Table 1 Statistical results of activity speed at different activity 
intensities in different age groups 

Group 
Activity  
intensity 

Mean speed  
(m/s) 

Median speed 
(m/s)   

LPA 0.39  0.36  

MPA 1.19  1.13  Lower age group

VPA 2.51  2.25  

LPA 0.38  0.35  

MPA 1.19  1.13  Middle age group

VPA 2.45  2.21  

LPA 0.36  0.32  

MPA 1.17  1.11  Upper age group

VPA 2.58  2.30   
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median durations of 2.5 and 2.2 s, respectively. Previous 
studies have reported that most VPA fall within the 2–10 s 
range (Baquet et al. 2007), and over 95% of MPA and VPA 
episodes last less than 15 s (Bailey et al. 1995; Lopes et al. 
2006; Baquet et al. 2007). Median durations for LPA, MPA, 
and VPA have been reported as 4–6 s, 2–6 s, and 1–3 s, 
respectively (Bailey et al. 1995; Ruch et al. 2013). 

The median duration of activities across all intensity 
levels in our study was lower than in other studies. This 
discrepancy may be attributed to the restricted activity 
space within classrooms, which limits the area available 
for movement and results in shorter activity durations. 
Additionally, the shorter data collection interval used in this 
study (compared to previous studies) enabled more precise 
identification of activity durations (Baquet et al. 2007). 

3.3.2 Statistical analysis of activity duration in different 
age groups 

The duration of different activity intensities in different age 

groups is shown in Figure 7. An overall increasing trend in 
activity duration was observed from the lower to the upper 
age groups for activities at all intensity levels. Additionally, 
a gradual decrease in duration was noted from LPA to VPA 
across all groups. 

Differences in activity duration across age groups at 
various intensity levels were further analysed using 
Kruskal–Wallis ANOVA tests due to the non-normal 
distribution of activity duration. The statistical results are 
presented in Table 2. Significant differences in the duration 
of LPA and MPA were observed across the lower, middle, 
and upper age groups, with activity duration increasing 
with age. Similar findings were reported by Lopes et al. 
(2006), who also observed significant differences in LPA 
duration among children aged 6–10 years, with durations 
increasing with age. In contrast, the present study additionally 
identified significant differences in MPA duration among 
different age groups. This may be attributed to the shorter 
data collection epoch used in this study compared to previous  

  
Fig. 6 Histograms of the duration of activities of different intensities in (A) lower, (B) middle, and (C) upper age groups of primary 
school 

Table 2 Statistical results of duration in different activity intensities of different age groups 

Activity intensity Median duration (s) Kruskal Wallis-H p-value   
Lower age group Middle age group Upper age group 

LPA 
4.33 4.50 5.00 

150.611 <0.001 

Lower age group Middle age group Upper age group 
MPA 

2.33 2.50 2.67 
19.815 <0.001 

Lower age group Middle age group Upper age group 
VPA 

1.92 2.16 2.33 
3.724 0.155 
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research, which better distinguishes lower-intensity activities 
from higher-intensity activities (Ridgers et al. 2005). 

Following the Kruskal–Wallis test, the results of pairwise 
comparisons using the Nemenyi test are presented in Table A7 
of the ESM. For LPA, the duration was significantly longer 
in the upper age group compared to the middle and lower age 
groups. This phenomenon may be because older children 
face academic pressures and devote more time to LPA of 
sedentary learning (Chung et al. 1993; Larson and Verma 
1999). For MPA, children in the lower age group spent 
significantly less time compared to the other two groups, 
likely because younger children tend to engage in physical 
activities for shorter durations (Obeid et al. 2011). 

3.4 Assessment of PM2.5 inhalation dose during recess 
activities for children in different age groups 

3.4.1 Distribution of PM2.5 concentration in different age 
groups 

Figure 8 illustrates the detailed distribution of PM2.5 

concentrations across different age groups and seasons 
during recess. The overall concentration range decreased 
from the lower to the upper age groups. This trend aligns 
with previous studies reporting higher PM concentrations 
in classrooms of younger children compared to other age 
groups (Fromme et al. 2007; Alves et al. 2013). Children in 
the lower age groups exhibit higher activity intensity, which 
likely contributes to the elevated PM levels observed in 
their classrooms. 

Indoor PM concentrations are significantly higher in 
winter than in autumn. Specifically, the average PM 
concentrations for the lower, middle, and upper age groups 
in autumn were 54.08, 51.70, and 49.88 μg/m3, respectively. 
During the non-heating season, windows are primarily 
kept open, leading to a higher air change rate and 
consequently lower indoor PM concentrations. In contrast, 
the average PM concentrations for the lower, middle, and 
upper age groups during winter were 183.02, 177.42, and 
174.57 μg/m3, respectively. This disparity may be attributed 
to inadequate ventilation rates and higher outdoor PM2.5 
concentrations. 

  
Fig. 7 Duration distribution of different age groups in (A) light, (B) moderate, and (C) vigorous intensity activities 

 
Fig. 8 PM2.5 concentration distribution in classrooms during recess across different age groups and seasons 
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A few higher concentrations, even reaching about   
180 μg/m3 in autumn and 240 μg/m3 in winter. The higher 
values were found in the morning when children entered the 
school, at the end of the school day, and during the recess 
exercise period. These peaks are attributed to children’s 
intensive activities, which cause the resuspension of settled 
particles from daily tasks, skin shedding, and clothing 
(Fromme et al. 2007; Licina et al. 2017; Yuan et al. 2023). 
Children arriving at and leaving school in large numbers 
drive PM2.5 concentrations to peak during these periods 
(Yang et al. 2023; Zhou et al. 2021). Similarly, as children leave 
the classroom for activities during recess, their high activity 
levels lead to elevated PM2.5 concentrations. 

3.4.2 The effects of outdoor PM2.5 and children’s activity 
patterns on indoor PM2.5 concentrations 

In school classrooms, indoor PM concentrations are primarily 
determined by surrounding air pollution levels and occupant 
activity types (Majd et al. 2019; Son 2023). To investigate 
this relationship, we included outdoor PM2.5 concentration, 
activity speed, and duration as influencing factors. Data 
collected over a single day from each classroom, with average 
activity speed, duration, and indoor/outdoor PM2.5 
concentrations calculated per minute, generated a dataset 
comprising 1,416 records. Multiple linear regression models 
were then constructed to identify the relationship between 
indoor PM2.5 concentrations and these factors. Prior to 
analysis, collinearity was assessed using variance inflation 
factors (VIF), with values ranging from 1.024 to 1.132,  
all below 10, indicating no multicollinearity among the 
independent variables (Ul-Saufie et al. 2011). 

Table 3 presents the parameters derived from the multiple 
regression analysis for outdoor PM2.5, speed, and duration. 
As expected, outdoor PM2.5 and children’s activity speed 
were strongly associated with elevated indoor PM2.5 
concentrations. Specifically, a 1 μg/m3 increase in outdoor 
PM2.5 corresponded to a 0.528 μg/m3 increase in indoor 
PM2.5 (p < 0.001), while a 1 m/s increase in speed resulted 
in a 15.197 μg/m3 increase in indoor PM2.5 (p < 0.001). 
Conversely, children’s activity duration was significantly 
associated with lower indoor PM2.5 concentrations, with  
a 1 s increase in duration corresponding to a 0.658 μg/m3  

Table 3 Multivariate analysis of predictors of indoor PM2.5 
concentrations 

Influencing factor Coefficient 
95% Confidence 

interval p-value R2   
Outdoor PM2.5  

(per μg/m3) 0.528 0.495, 0.561 <0.001

Speed (per m/s) 15.197 12.518, 17.875 <0.001

Duration (per second) −0.658 −1.078, −0.238 0.002

0.525

 

decrease in indoor PM2.5 (p = 0.002). This may be attributed 
to the fact that longer durations are generally associated 
with lower activity speeds. 

3.4.3 PM2.5 inhalation dose calculation and feasible 
improvement measures 

According to the previously described methodology for the 
calculation of inhalation dose (D) (Slezakova et al. 2018; 
Slezakova et al. 2019; Slezakova et al. 2020), D in this study 
was calculated as Equation (5): 

intens int ns

3

1
eDose( ) (BR / BW)

i i
i

D C T
=

= ´ ´å                  (5) 

where D is the age-group-specific dose (μg/kg); intens 
represents the activity intensity; the values 1, 2, and 3 for  
i represent LPA, MPA, and VPA, respectively; BRintensi 

represents the age-group-specific breathing rate at different 
activity intensities (m3/min); BW is the age-group-specific 
body weight (kg); C is the average PM concentration in the 
classroom (μg/m3); Tintensi is the exposure time for different 
activity intensities per day (min). 

The values of BRintensi were determined based on the data 
from the Chinese Exposure Factors Handbook (Duan 2016). 
The values for BW were retrieved from the data in the 
standard GB/T26158-2010 Human Dimensions of Chinese 
Minor (GB 2010). 

Different intensity activities have varying probabilities 
and durations. Based on this, the Tintensi was calculated by 
Equations (6) to (7):  

( )

intens intens
intens

intens intens
1

3

Duration

Duration

i i

i

i i
i

P
p

P
=

=
´

´å
                    (6) 

intens inte to alns ti i
T p T= ´                                (7) 

where Pintensi is the probability proportion of different 
activity intensities; pintensi is the time proportion of different 
activity intensities; Durationintensi is the activity duration of 
different intensities; Ttotal is the total time of PM exposure 
per day (min). The values of Pintensi were derived from the 
information provided in Section 3.2.2. Durationintensi was 
obtained from Table 2. Ttotal was determined based on the 
timetable of the two selected primary schools (120 min). 
Table 4 shows the values of each parameter and the PM2.5 
inhalation dose calculation for all age groups. 

As can be seen from Table 4, the PM2.5 inhalation doses 
vary among different age groups. The variability in PM2.5 
inhalation doses between different groups was defined by 
Equation (8): 

age-group age-group

age-group
Relative Difference 100%i j

j

D D
D

-
= ´            (8) 
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where i and j represent different age groups, the age groups 
defined by i and j must not be the same in each calculation. 

The inhalation doses in each age group and the relative 
differences are shown in Table A8 of the ESM. It can be 
observed that the higher indoor PM concentrations in 
winter resulted in children’s daily inhalation dose being 
3.38 to 3.50 times higher than that in autumn. Additionally, 
the inhalation dose decreased with increasing age, with 
the lower age group having the highest daily inhalation 
dose. Compared to the lower age group, the inhalation dose 
decreased by 14.67% in the middle age group and by 30.64% 
in the upper age group. Furthermore, the inhalation dose  

Table 4 Values of each parameter for different age groups 

Age group Parameter 
Dose 

(μg/kg)  
Intensity level Value 

1 7.70E−03 

2 1.55E−02 

a
intensBR

i  
(m3/min) 

3 3.86E−02 
bBW (kg) 22.7 

C (μg/m3) 54.08 (autumn) 183.02 (winter) 

Intensity 
level intens i

P  intensDuration
i

 Value

1 0.869 4.33 0.927 

2 0.113 2.33 0.065 
intensi

p  

3 0.018 1.92 0.008 

Intensity level Value 

1 111.24 

2 7.80 
intens i

T  

(min) 

3 0.96 

Lower age 
group 

Ttotal (min) 120 

2.42 
(autumn)

 
8.18 

(winter)

Intensity level Value 

1 8.20E−03 

2 1.65E−02 

a
intensBR

i
 

(m3/min) 

3 4.11E−02 
bBW (kg) 27.0 

C (μg/m3) 51.70 (autumn) 177.42 (winter) 

Intensity 
level intensi

P  int ensDuration
i
 Value

1 0.885 4.5 0.934 

2 0.101 2.5 0.059 
intens i

p  

3 0.014 2.16 0.007 

Intensity level Value 

1 112.08 

2 7.08 
intens i

T  

(min) 

3 0.84 

Middle age 
group 

Ttotal (min) 120 

2.05 
(autumn)

 
7.03 

(winter)

 

Table 4 Values of each parameter for different age groups 
(Continued) 

Age group Parameter 
Dose 

(μg/kg)  
Intensity level Value 

1 9.70E−03 

2 1.93E−02 

a
intensBR

i

(m3/min)

3 4.83E−02 
bBW (kg) 37.9 

C (μg/m3) 49.88 (autumn) 174.57 (winter) 

Intensity 
level intens i

P  int ensDuration
i Value

1 0.896 5 0.942 

2 0.093 2.67 0.052 
intens i

p  

3 0.011 2.33 0.006 

Intensity level Value 

1 113.04 

2 6.24 
intens i

T  

(min) 

3 0.72 

Upper age 
group 

Ttotal (min) 120 

1.65 
(autumn)

 
5.77 

(winter)

 
a The values for the lower age group were based on the mean breathing rates of 
the age groups of 5–6 years old and 6–9 years old, respectively; the values for 
the middle and upper age groups were based on the mean breathing rates for 
the age groups of 6–9 and 9–12 years old, respectively. 
b The values for the lower age group were based on the average weights of boys 
and girls aged 4–6 and 7–10, respectively; the values for the middle age group 
and the upper age group were the average weights of boys and girls aged 7–10 
and 11–12, respectively. 

 
of the upper age group was 18.72% lower than that of the 
middle age group. 

Children, as one of the susceptible groups, are more 
vulnerable to the health impacts of PM. For instance, an 
increase in the average daily inhalation dose of PM2.5 was 
associated with decreased lung function (Li et al. 2020). 
Given these findings, it is imperative to develop air pollution 
management policies that prioritize susceptible populations, 
particularly younger children. 

Higher PM2.5 concentrations during recess are a 
significant cause of increased inhalation dose. Therefore, in 
primary school classrooms, especially those with younger 
children who have higher activity levels, relevant departments 
should encourage schools to proactively install air purification 
equipment to effectively reduce children’s inhaled dose of 
PM2.5. In regions that cannot afford air purification 
equipment, optimizing classroom layouts—such as adopting 
a U-shaped arrangement—can effectively reduce PM2.5 
concentrations, particularly in the breathing zone of 
elementary students (Tikul et al. 2022). Additionally, when 
outdoor PM2.5 concentrations are low, opening doors and 
windows can help dilute indoor PM2.5 levels. Moreover, 
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resuspension caused by children’s indoor activities also 
contributes significantly to elevated indoor PM concentrations. 
Therefore, increasing the frequency of cleaning is an effective 
measure to reduce PM resuspension at the source. 

4 Implication and limitation 

Children’s higher activity intensity compared to teenagers 
and young adults contributes to elevated PM concentrations 
in classrooms during recess (Livingstone et al. 2003; Sigmund 
et al. 2007). However, most previous studies have typically 
focused on comparing exposure concentrations in schools 
of different locations and analysing the contributions of 
various factors (Branco et al. 2019; Villanueva et al. 2021; 
Zhu et al. 2021), which cannot quantify children’s activity 
patterns (speed, duration) in classrooms across different age 
groups. This study, leveraging machine learning algorithms 
and video data, quantified the key parameters of activity 
patterns for primary school children in different age groups. 
Its findings are applicable to densely populated classrooms 
in other regions or countries with similar layouts and 
education environments, such as Republic of Korea and 
Japan (Li et al. 2017; Kim et al. 2024). For classrooms with 
lower population densities and larger activity areas, the 
applicability of the results of this study requires further 
confirmation. This study offers a scientific foundation for 
the development of targeted strategies to mitigate indoor 
air pollution in educational facilities, thereby safeguarding 
children’s health. 

Nowadays, PM pollution in primary schools in China 
remains relatively severe (Zhu et al. 2021), and common 
in other developing countries (Shaddick et al. 2020). It is 
crucial to quantitatively describe the PM inhalation dose and 
its differences across different age groups in classrooms, 
especially considering the varying activity patterns of children 
in different age groups, to provide more information for 
policymakers and the academic community. This study 
synchronously collected activity data and environmental 
parameters and analysed the causal relationship between 
indoor and outdoor influencing factors and indoor PM 
concentrations. Additionally, this study presents a new 
method for quantifying children’s inhalation doses based 
on activity patterns and environmental parameters. This 
method estimates and assesses the differences in PM2.5 
inhalation doses among children of different age groups 
under varying activity patterns, emphasizing the significant 
contributions of activity speed, duration, and outdoor PM 
levels. This method is considered to provide meaningful 
outcomes and a methodological framework for future studies 
on estimating PM inhalation doses and risk assessments for 
children of other age groups or in other environments. 

However, there are still some limitations that should be 

noted. Firstly, field measurements were challenging due 
to the study subjects being children, which restricted the 
investigation to two schools and yielded a limited sample 
size. Accordingly, this study did not encompass the variability 
in classroom cleaning frequencies and layouts. Secondly, due 
to the significant challenges associated with simultaneously 
and accurately obtaining parameters such as weight, gender, 
and activity patterns using machine learning algorithms, 
this study examined the influence of chronological age on 
activity patterns but did not account for the effects of other 
factors, such as weight and gender. Finally, due to the 
limitations of the machine learning algorithms employed in 
this study and the camera perspectives, partial trajectory 
loss occurs in a few rare blind spots and extremely crowded 
scenarios. In the future, it is necessary to optimize the 
algorithms, such as conducting multi-scale feature fusion 
and optimization or incorporating attention mechanisms, 
to improve detection accuracy and enable accurate tracking 
of occluded children. Moreover, multi-camera configurations 
or strategic planning of camera placement and field of view 
can effectively reduce the likelihood of trajectory loss in 
complex scenes. Building on these advancements, future 
research should be directed towards more accurately assessing 
the PM inhalation dose and the associated health risks. 

5 Conclusions 

This study employs an interdisciplinary approach to 
investigate children’s recess activity patterns and PM2.5 
inhalation doses across different age groups in primary 
school classrooms. The main conclusions are: 
(1) A feasibility framework has been developed to utilize 

de-distorted video data from low-cost cameras for the 
detection and tracking of children in videos. The results 
demonstrate that the framework effectively estimates 
children’s activity speeds and durations using low-cost 
cameras, thereby reducing labour-intensive demands 
for manual observation and data processing, as well as 
high costs. 

(2) Children’s classroom activities are predominantly low 
intensity, with LPA comprising the highest proportion 
across all age groups (ranging from 0.869 to 0.896). 
This LPA proportion was 7%–15% higher than that 
reported in previous studies, likely due to high occupant 
density, limited activity space, and characteristics of 
the Chinese education environment. Additionally, LPA 
increased while MPA to VPA decreased with age, possibly 
due to changing activity preferences and schoolwork 
pressures. 

(3) Children’s classroom activities exhibit a highly transitory 
nature, with median durations of recess activities 
decreasing from LPA (4.7 s) to MPA (2.5 s) and VPA 
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(2.2 s). These values are lower than those in previous 
studies, likely due to limited activity space and shorter 
sampling intervals. Significant differences in the duration 
of LPA and MPA were observed across the lower, middle, 
and upper age groups, with activity duration increasing 
with age. 

(4) Children’s activity speed, duration, and outdoor PM2.5 
were strongly associated with variations in indoor PM2.5 
concentrations. A 1 μg/m3 increase in outdoor PM2.5 
results in a 0.528 μg/m3 increase in indoor PM2.5 (p < 
0.001), a 1 m/s increase in activity speed leads to a 
15.197 μg/m3 increase in indoor PM2.5 (p < 0.001), 
and a 1 s increase in duration reduces indoor PM2.5 by 
0.658 μg/m3 (p = 0.002). 

(5) A new method has been developed to quantify the 
contribution of activity patterns to PM inhalation dose 
and inequity between different age groups. The findings 
revealed that the daily inhalation dose decreased with 
increasing age, being 14.67% lower in the middle age 
group and 30.64% lower in the upper age group compared 
to the lower age group, indicating a higher health risk for 
younger children. 
The findings obtained in this study offered valuable 

insights for offering more accurate PM-related health risk 
evaluation and developing air quality enhancement strategies 
for classrooms across various age groups in the future. 
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