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Abstract

Children exhibit unique activity patterns in classrooms, and their movements influence the
resuspension of particulate matter, thereby increasing the risk of inhalation. To quantify children’s
activity patterns and particulate matter inhalation doses, we measured particulate matter
concentrations and tracked the recess activities of 194 children in two primary schools. YOLO v9
combined with the DeepSORT algorithm was used to identify and track the children in the videos,
thereby calculating the speed and duration of each child. Statistical analysis revealed that
classroom activities were highly transitory and predominantly of light intensity. The proportion
of light-intensity physical activity in this study was 7%-15% higher than that reported in previous
studies, attributable to high occupant density, limited activity space, and characteristics of the
Chinese education environment. The median durations of recess activities decreased from
light-intensity (4.7 s) to moderate-intensity (2.5 s) and vigorous-intensity activities (2.2 s).
Furthermore, children’s activity speed and duration were strongly associated with variations in
indoor PM2.5 concentrations. Additionally, the daily inhalation dose during recess decreased with
increasing age, being 14.67% lower in the middle age group and 30.64% lower in the upper age
group compared to the lower age group. Our analysis provides a valuable reference for assessing
the health risks caused by particulate matter and for more effective measures to improve the
classroom environment.
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children’s health, comfort, and academic performance

Particulate matter (PM) pollution has been identified as a
significant source of indoor air pollution in primary school
environments (Xu et al. 2018; Kumar et al. 2024). Children
spend up to 10 hours per day in school environments,
primarily indoors (Oliveira et al. 2019). Consequently,
classrooms are recognized as a critical built environment
due to the potential for adverse indoor conditions to impact

E-mail: r.yao@cqu.edu.cn

(Sadrizadeh et al. 2022). Moreover, classrooms typically have
higher occupant densities than family residences, and it is
precisely the presence of occupants and their activities that
are key factors influencing PM levels (Diapouli et al. 2007;
Zhong and Ridley 2020; Yuan et al. 2024). Recess breaks,
which are the only periods of relatively unstructured time
in the school day, significantly influence physical activity
levels in schools, characterized by frequent, intense bursts
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of activity, particularly when children play indoors (Ruch
et al. 2013; De Baere et al. 2015). Children exhibit higher
activity intensity than teenagers and young adults (Sigmund
et al. 2007; Livingstone et al. 2003). These factors contribute
to elevated PM concentrations in classrooms during recess
(Madureira et al. 2012; Yang et al. 2023).

Existing research has demonstrated that activity speed
is a crucial factor influencing PM concentration, with higher
speeds enhancing PM resuspension (Boulbair et al. 2022;
Um et al. 2022; Yuan et al. 2024). However, most studies
do not consider the characteristics of children’s activities
during recess and the variability between different age
groups. Research on children’s activity patterns indicates
that their daily activities are characterised by brief periods
of high-intensity activity, interspersed with short, irregular
bouts of moderate to light-intensity activity, overall
showing a large proportion of light-intensity activity, high
intermittency, and brevity (Rowlands and Eston 2007;
Chinapaw et al. 2019; Xie et al. 2024). Yet, most of the
existing research has focused on statistics of children’s daily
activities without differentiating between indoor and outdoor
classroom activities. Additionally, significant differences in
children’s activity patterns exist between different school
types, such as kindergarten and primary school (Branco et
al. 2019; Zhou et al. 2021). Therefore, there is a need to
quantify children’s movement patterns during recess activities
in primary school classrooms.

The growing interest among researchers in dynamically
monitoring children’s activities has led to the widespread
use of devices such as pedometers and accelerometers
(Rowlands and Eston 2007; Gu et al. 2024). However, the
cost of these monitoring devices remains a significant
barrier, particularly for studies involving large cohorts of
children. In addition to expensive devices, video analysis
has emerged as a primary method for human activity analysis
in computer vision (Turaga et al. 2008; Cristani et al. 2013).
Among various video-based approaches, the YOLO series
is a leading choice for real-time object detection, widely used
for its efficiency and accuracy (Redmon et al. 2016; Wang
et al. 2023; Wang et al. 2024b). The integration of YOLO
with the DeepSORT framework enables real-time detection
of trajectories and tracking of individuals based on speed,
distance, and physical appearance (Azhar et al. 2020; Punn
et al. 2021; Ghomashchi et al. 2024).

Activity patterns in specific environments significantly
influence PM exposure doses (Du et al. 2024). Children’s
exposure to pollutants is determined by the activity type,
location, and intensity (Cohen et al. 2000; Kim et al. 2019;
Li et al. 2023). The duration and frequency of time spent in
specific locations result in different exposures and risks to
children that vary with age and development stage (Cohen
et al. 2000). However, no studies have yet investigated how

children’s activity patterns during classroom recess influence
PM exposure discrepancies. Therefore, it is essential to
characterize children’s movement patterns and quantify
exposure doses during recess in high-occupancy, limited-space
classrooms.

In this study, PM2.5 monitors were used to assess
real-time PM2.5 concentration in primary schools. Children’s
recess activities were recorded via cameras and analysed
using machine learning algorithms, allowing us to examine
the contribution of different activity patterns to PM2.5
exposure across various age groups. The main objectives
of this study are: (1) to develop a framework for extracting
activity speeds and durations using machine learning
algorithms for human recognition, tracking, and coordinate
transformation; (2) to quantify the speed, intensity, and
duration of recess activities among children of different
age groups; and (3) to investigate PM2.5 inhalation doses
and their variability in children of different age groups based
on the acquired activity patterns and measured PM2.5
concentrations.

2 Methodology

2.1 PM2.5 concentration measurement and activity video
collection

2.1.1 Characteristics of studied classrooms

The field study was conducted from September to December
2023. Two public primary schools in China, one in a rural
area of Chongqing and the other in an urban area of Ziyang
City, Sichuan Province, were selected as experimental sites.
Figure A1, which is available in the Electronic Supplementary
Material (ESM) of the online version of this paper, illustrates
the geographic locations of School A and School B. A total
of six classrooms, varying in school location, number of
students, occupant density, and grade levels, were included
in this study. Specifically, three classrooms for Year 2, Year 3,
and Year 6 were chosen in School A, and three classrooms
for Year 1, Year 4, and Year 5 were chosen in School B.
The average number of students per classroom, classroom
area, and occupant density were 32 people, 49.10 m?, and
1.9 m*/person, respectively. Both schools rely on natural
ventilation. Students were seated individually or in pairs at
separate tables facing the chalkboard. The desks and chairs
were uniformly distributed within the classrooms, with the
number of rows ranging from 4 to 6 and the number of
columns ranging from 3 to 7. A more detailed description
is provided in Table A1 of the ESM.

2.1.2  Instrumentation, data collection, and quality assurance

Newly purchased portable PM2.5 monitors (BLATN BR-A
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series, Beijing, China) were used to measure PM2.5
concentrations. The TEGONGMAO 4G Camera (Xiamen
Magic Bird Technology Co., Xiamen, China) was used to
capture video of children’s activities in classrooms. This
camera can start video capture when people are active and
automatically stop when there is no activity.

To ensure the accuracy of the collected data, collocation
measurements were conducted for two days (one before
starting and the other after the completion of the experiment),
using a research-grade instrument SDS029-FQ Multi-Channel
Particle Spectrum Sensor (NOVA Technology, Shandong,
China) (Wang et al. 2024a; Yuan et al. 2024). During the
collocation measurements, six BLATN monitors were
placed together with SDS029-FQ in controlled laboratory
conditions. The SDS029-FQ was placed in the middle of
the chamber, with six BLATN monitors situated around it
at the same inlet height. Arizona test dust was injected
into the chamber and a mixing fan was kept on during the
calibration process to mix particles uniformly throughout
the chamber (Ren et al. 2020). The BLATN monitors
and SDS029-FQ measured the indoor PM concentration
simultaneously every minute. Among all monitors used in
the study, high Pearson correlation coefficients (r) were
found between SDS029-FQ and BLATN monitors, with all
r values exceeding 0.94. This indicates a strong agreement
across all PM monitors used in the study. However, all
BLATN monitors were reporting higher average PM2.5
concentrations than those measured by SDS029-FQ during
the collocation study. Therefore, linear regression models
were required to minimize this measurement error among
BLATN monitors (Kumar et al. 2023; Kumar et al. 2024)
(Text Al and Table A2 of the ESM). The measurement
errors of portable PM2.5 monitors were reduced to 3% of
the concentration compared with high-end equipment.

The placement of instruments in the classroom is shown
in Figure 1. The camera was fixed above the blackboard
to cover the entire classroom, while the PM2.5 monitor was

I

. |

PM2.5 monitor

placed below the blackboard to minimize disruption to
regular classroom order and record real-time concentration
variations caused by indoor and outdoor pollutant sources.
Video data were collected over approximately three weeks
in autumn at both schools, while pollutant data were
collected in autumn at School A and in both autumn and
winter at School B.

Informed written consent was obtained from the children
and their parents for the study. All children could withdraw
from the study at any time. Data were gathered in compliance
with the principles of the Helsinki Declaration. All experimental
procedures have undergone ethical review, with the approval
number 202304002.

2.2 Architecture of the proposed framework for capturing
speed and duration

To estimate human movement speeds and durations, a
workflow was established: (1) the experimental camera
was calibrated and the captured videos were de-distorted;
(2) children were detected and tracked in the video frames
using the YOLO v9 and DeepSORT algorithms; (3) pixel
coordinates were mapped to camera coordinates; (4) the
movement speed and duration of each child in the video
were calculated.

2.2.1 Part 1: Camera calibration

A wide-angle camera, which can cause inaccurate
representations due to lens distortion, was used to capture
the entire classroom scene (Jacobson et al. 2001). To obtain
the internal reference matrix and distortion parameters,
the MATLAB camera calibration toolbox based on
Zhang’s calibration (Zhang 2000) method was employed.
Twenty images were captured at different positions by
varying the spatial location of the calibration template (an
11 x 8 checkerboard with each black square measuring

TEGONGMAO 4G Camera

Fig. 1 The placement of instruments in the classroom
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25 mm x 25 mm) while keeping the camera fixed. The
camera used had a focal length of 4 mm, and the physical
size of the image sensor was 1 inch. The calibration results
are shown in Table A3 of the ESM.

2.2.2  Part 2: Multi-object detection and tracking

Over the past half-century, YOLO has evolved through
multiple variants, with YOLO v9 emerging in 2024 as the
latest iteration (Wang et al. 2024b). Building on YOLO v7,
YOLO v9 introduces Programmable Gradient Information
(PGI) to cope with the various variations required for deep
networks to achieve multiple goals. It also proposes a new
lightweight architecture, the Generalized Efficient Layer
Aggregation Network (GELAN), based on gradient path
planning. Our application is based on YOLO v9 for its precise
detection capability and the DeepSORT algorithm for its
adeptness in handling occlusion and distinguishing between
similar objects, as described in Figure 2.

YOLO v9, with its low parameter count and computational
complexity, is well-suited for dense crowd detection in
resource-limited environments (Wang et al. 2022). DeepSORT

utilises YOLO v9 detections to track children across video
frames, using Kalman filtering for predicting target positions
(Kalman 1960; Song et al. 2023) and the Hungarian
algorithm for associating detections with predictions,
assigning unique IDs to tracked objects (Bewley et al. 2016;
Wojke et al. 2017). DeepSORT also employs a cascade
matching strategy to minimize identity switches and tracking
failures during occlusion (Wojke et al. 2017). These outputs
enable the analysis of children’s movements by estimating
their coordinates, walking speed, and duration (Shirazi and
Morris 2015).

2.2.3 Part 3: Coordinate conversion in different coordinate
systems

After obtaining the pixel coordinates of each ID, the pixel
coordinates converted to camera coordinates were performed
based on the pinhole model and camera fixed parameters
such as focal length. Figure 3 displays the schematic diagram
of monocular camera ranging. By utilizing the principle of
the pinhole model, as well as the pixel coordinate differences
between two points and the transformation relationships
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Fig. 3 Schematic diagram of pinhole model

among different coordinate systems, the real-time coordinates
(X, Y, Z) of the moving children were calculated. The detailed
calculation process is shown in Text A2 of the ESM.

2.2.4 Part 4: Speed and duration calculation

The duration and speed were calculated after obtaining
the coordinates under the camera coordinate system.
The coordinates data was extracted at intervals of every
five frames, which can effectively prevent the omission of
high-intensity activities with short duration. The number
of frames in which the target appeared was recorded to
calculate the duration of the activity and the average speed.

The Euclidean distance is used for the calculation of the
distance dist; between the coordinate points of the front
and back frames, and the formula is as Equation (1):

dist, :\/(Xi7Xi75)2+(Yi7Y'75)2+(Ziizi*5)2 (1)

i

where (X, Y;, Z) is the coordinate of the target person in
frame i and (Xi-s, Yis, Zi-s) is the coordinate of the target
person in the former target frame i—5. Speed of human
instantaneous movement speed per five frames (Speed;) can
be calculated by dividing the distance by travelling time:

dist;

)

Speed; =

where t denotes the time for every five frames (30 frames
per second), equivalent to 1/6 s. Equation (2) can be used to
estimate the speed of human movement between any two
identified frames in m/s.

Use the average of the instantaneous speeds to define
the average speed Speediversge. The calculation formula is
shown in Equation (3):

z": Speed,

i=m+5

average n—m
5

Speed G)

where m is the number of frames the target first appeared,
and # is the number of frames the target last appeared.

The formula for calculating the duration of each activity
per ID is as Equation (4):

—m

ot 4)

. n
Duration =

where n, m, and t take the same values as above.

2.3 Object detection, tracking, and speed estimation
performance

2.3.1 Custom dataset

To make the YOLO v9 model more adaptable to our data,
we retrained the YOLO v9 algorithm using a custom image
dataset, including 200 randomly selected video screenshots
from each grade, totalling 1200 screenshots. It covered every
recess throughout the day. Specifically, 17,995 bounding
boxes were labelled to identify the children in each
screenshot. The dataset was randomly selected in the ratio
of 8:1:1 and accordingly divided into training sets, validation
sets, and test sets. The evaluation results of our retrained
algorithm will be discussed in Section 2.3.3.

2.3.2  Implementation environment

The training environment is the PyCharm integrated
development environment. The hardware configuration
is NVIDIA GeForce RTX 3080 and 13th Gen Intel(R)
Core (TM) i5-13400F with 32 GB of RAM. All code
implementations were developed in Python.

2.3.3  Evaluation results

2.3.3.1 Human detection and tracking

To reasonably assess the system’s performance, the detection
and tracking performance was evaluated separately. Mean
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Average Precision (mAP) is a widely accepted metric for
evaluating object detection performance (Redmon et al.
2016; Ren et al. 2017; Zhu et al. 2020). The YOLO v9 detector
had a value of 0.89 for mAP,; and a value of 0.57 for mAPqs095
on the custom dataset. These metrics are on par with the
performance of existing algorithms for classrooms as well
as other dense scenes (Ding et al. 2020; Chen et al. 2024),
suggesting that the retrained YOLO v9 model has good
overall performance in detecting the children in our collected
videos.

Currently, key target-tracking performance metrics
include Multiple Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP). These metrics
were evaluated using nine videos categorized by population
density: three low-density videos (with 5, 10, and 15 children),
three medium-density videos (with 20, 25, and 30 children),
and three high-density videos (with 35, 40, and 45 children).
The MOTA and MOTP values were 50.37% and 0.22,
respectively. These results are comparable to those of
state-of-the-art algorithms on complex datasets (Dendorfer
et al. 2021; Dai et al. 2022), indicating that the DeepSORT
algorithm performs well in tracking children in our collected
videos.

2.3.3.2 Speed estimation

Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE) are
widely used to evaluate model performance errors (Yu and
Gu 2019; Bell et al. 2020; Sangsuwan and Ekpanyapong
2024). For detailed explanations and calculation formulas,
see Text A3 of the ESM.

To assess the performance of speed evaluation, 10 subjects
were observed walking and running at three different
speeds (low: 0.6 m/s, medium: 1.2 m/s, high: 1.8 m/s) in a
classroom setting. Their speeds were determined by measuring
distances and timing intervals, while corresponding activities
were recorded and analysed using the algorithm. The
resulting MAE was 0.08 m/s, RMSE was 0.09 m/s, and MAPE
was 8.96%, aligning with the precision of prior research

A035 B 033

(Jiao and Fei 2023). These metrics indicate good accuracy
in identifying children’s activity speeds in classrooms.

3 Results and Discussion

3.1 Differences in speed distribution across years

3.1.1 Distribution of activity speed in different age groups

As children’s chronological age increases, they undergo
changes in biological, psychological, and social aspects (Eccles
1999), which are the key factors influencing children’s
activity patterns (Kohl and Hobbs 1998). Therefore, for
data analysis, we divided the students in Years 1 to 6 into
three groups according to the commonly used criteria for
children’s chronological age in related research (Doyle et al.
2006; Goodway et al. 2019): the lower age group (Years 1
and 2; approximately 6-7 years old; middle childhood), the
middle age group (Years 3 and 4; approximately 8-9 years
old; late childhood), and the upper age group (Years 5 and 6;
approximately 1011 years old; early adolescence).

Data cleansing was performed by deleting very brief
activities of less than 1 s. The speed values were categorized
at 0.2 m/s intervals, and the frequency distribution within
each interval was calculated. Figure 4 illustrates the range
of speeds and their frequency distributions across different
age groups. The lower age group exhibited a slightly narrower
range of speeds compared to the middle and upper age
groups. This trend can be attributed to the increase in walking
and running speeds with age (Papaiakovou et al. 2009;
Cadieux et al. 2023). Additionally, the speed distributions for
all groups were predominantly within the 0-3 m/s range.

Table A4 of the ESM presents statistics on average
activity speeds by age group, including mean, median, and
range. The data reveal a decreasing trend in both mean and
median speeds from the lower to the upper age groups,
indicating that the intensity of activity is higher in the lower
age group than in the middle and upper age groups. While
children’s running speed increases with age (Papaiakovou
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et al. 2009; Cadieux et al. 2023), their subjective willingness
to engage in activities may be a more significant determinant
of activity intensity. Research has shown that as children grow
older, they tend to shift from active play to light-intensity
social activities (Ridgers et al. 2012), which may account for
the observed decline in activity speeds.

3.1.2 Statistical analysis of speed differences in different age
groups

To further clarify the differences in activity speed between
age groups, statistical analysis was conducted using SPSS
software. The Kolmogorov-Smirnov test indicated the activity
speeds of children in all three groups (p < 0.001) were
not normally distributed. Consequently, a nonparametric
Kruskal-Wallis ANOVA test was used to examine overall
differences in group distributions based on mean ranks.
A p-value of less than 0.05 was considered statistically
significant.

The Kruskal-Wallis ANOVA test revealed significant
differences in activity speeds across the three age groups
(¥*(2, N = 66,216) = 269.34, df = 2, p < 0.001), with mean
ranks of 34,501.08 for the lower age group, 33,306.02 for
the middle age group, and 31,562.35 for the upper age group.
The activity speeds of children in the middle and upper age
groups were significantly lower than those in the lower age
group. Post-hoc pairwise comparisons using the Nemenyi
test further indicated significant differences in speeds between
the lower and middle age groups (p < 0.001), between the
lower and upper age groups (p < 0.001), and between the
middle and upper age groups (p < 0.001). These results are
summarized in Table A5 of the ESM.

Combined with the median values in Table A4 of the
ESM, the Nemenyi test results demonstrate a significant
decline in activity speeds with increasing age. This trend
may be attributed to the higher frequency of strenuous
activities among younger children (Telford et al. 2005;
Ridgers et al. 2012).

3.2 Distribution of physical activity intensity in different
age groups

3.2.1 Criteria for the classification of physical activity
intensity

According to the Physical Activity Guidelines for Chinese
Children and Youth (Zhang et al. 2017), the intensity of
activity is categorised into three levels based on Metabolic
Equivalent (MET), namely light-intensity activity (1.5-2.9
MET), moderate-intensity activity (3.0-5.9 MET) and
vigorous-intensity activity (26.0 MET). Reading, writing,
and drawing are common light-intensity activities, while
walking and running are typical for moderate- and vigorous-
intensity activities, respectively (Zhang et al. 2017; US
Department of Health and Human Services 2018).

Based on data sources recommended by the Physical
Activity Guidelines for Chinese Children and Youth (Zhang
et al. 2017), 1.79 m/s (with a MET value close to 6.0 for
children aged 6-12 (Butte et al. 2018)) was identified as the
threshold for moderate-intensity physical activity (MPA)
and vigorous-intensity physical activity (VPA); 0.89 m/s
(with a MET value close to 3.0 for children aged 6-12 (Butte
et al. 2018)) was identified as the threshold for MPA and
light-intensity physical activity (LPA).

3.2.2 Physical activity intensity distribution based on the
criteria

Figure 5 presents the frequency distribution of activity
intensity across different age groups, revealing that LPA
constitutes the largest proportion for all age groups. This
finding aligns with that of Pawlowski et al. (2016), who
reported that LPA is most prevalent in school settings.
Compared to previous studies by Bailey et al. (1995)
and Ruch et al. (2013), our study found a 7%-15% higher
proportion of LPA. This discrepancy may be attributed to
differences in activity space and characteristics of the Chinese
education environment. Previous research has shown that
children tend to be more active in spacious environments,
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Fig. 5 The frequency distribution of activity intensity of (A) lower, (B) middle, and (C) upper age groups of primary school
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with increased per capita play space correlating to higher
levels of strenuous activity (Pellegrini and Smith 1993;
Ridgers et al. 2010). However, in Chinese primary school
classrooms, high population density and the dispersed
layout of desks and chairs restrict children’s movement.
Additionally, the emphasis on academic success (Johns and
Vertinsky 2006), safety concerns (Wang 2019; Xie et al.
2024), and the requirement for regular eye exercises during
recess (Beresin 2016) further limit physical activity. These
factors likely contribute to the higher proportion of LPA
observed in our study. The restricted activity space within
classrooms results in more scattered PM distribution due
to prolonged interaction between the body and particles,
leading to higher PM concentrations near the breathing
zone (Tao et al. 2017a, 2017b).

For LPA, the frequencies were 0.869, 0.885, and 0.896
for the lower, middle, and upper age groups, respectively,
showing an overall increasing trend. In the case of MPA,
the frequencies were 0.113, 0.101, and 0.093 for the lower,
middle, and upper age groups, respectively. For VPA, the
frequencies were 0.018, 0.014, and 0.011, respectively. Both
MPA and VPA exhibited a clear decline in frequency with
increasing age. These trends align with findings by Rowlands
et al. (2008), who reported that older children engage less
in strenuous physical activity and more in rest or light physical
activity compared to younger children. The preferences for
children’s activities we obtained for recess in the classroom
are consistent with trends for activities in open-ended
settings.

In the present study, MPA and VPA decreased by 2.0%
and 0.5%, respectively, from the lower to the upper age
groups. Consistent with our findings, previous research has
shown that younger children tend to be more active than
older children during recess (Telford et al. 2005; Ridgers
et al. 2012). Specifically, each year of age increase is associated
with a relative reduction in mean VPA and MPA (Telford
et al. 2005; Lopes et al. 2006; Corder et al. 2016).

The lower motivation to participate in MPA and VPA
among older children may be attributed to a shift in focus
from active play to social behaviours with low levels of physical
activity (Hardy et al. 2007). LPA, such as sit-down
conversations to develop interactions with peers, have become
mainstream, particularly during early adolescence (Larson
and Verma 1999; Hardy et al. 2007). Additionally, in regions
where education is highly valued, such as Asia, the increasing
academic pressure leads adolescents to allocate more time
to their studies as they grow older (Chung et al. 1993; Larson
and Verma 1999).

3.2.3 Speed distribution at different activity intensities in
different age groups

The statistical results of activity speed at different activity

intensities in different age groups are shown in Table 1. It
can be seen that as age rose, activity speeds of LPA and MPA
decreased. For VPA, the activity speed decreased in the
middle age group but increased in the upper age group.

The Kruskal-Wallis ANOVA test was used to perform
an omnibus test on the differences in group distributions
because of the non-normal distribution of activity speed.
Significant differences in speed were detected across age
groups for LPA (p < 0.001), MPA (p = 0.011), and VPA (p =
0.022). The Nemenyi test was applied to the subsequent
pairwise comparisons, as presented in Table A6 of the ESM.
The data revealed significant differences in activity speed
between all pairs of age groups at LPA, whereas significant
differences were observed only between the middle and
upper age groups at MPA and VPA.

3.3 Duration of different types of children’s activities

3.3.1 Distribution of activity duration in different age groups

Histograms depicting the durations of activities at different
intensity levels across various age groups are presented
in Figure 6. Notably, regardless of the activity intensity,
the durations are consistently brief, highlighting the
highly transient nature of children’s classroom activities.
This finding is consistent with previous studies that have
emphasized the transient characteristics of children’s activities
(Bailey et al. 1995; Lopes et al. 2006; Rowlands et al. 2008).
As illustrated in Figure 6, the range of variation in the
duration of recess activities decreases gradually from LPA
to VPA. This trend has also been observed in studies not
restricted to classroom settings (Bailey et al. 1995; Lopes et
al. 2006; Rowlands et al. 2008).

In the present study, with a data collection interval of
approximately 0.17 s, over 95% of LPA lasted less than 15s,
with a median duration of 4.7 s across all age groups. 96%
and 98.5% of MPA and VPA lasted less than 10 s, with

Table 1 Statistical results of activity speed at different activity
intensities in different age groups

Activity Mean speed Median speed

Group intensity (m/s) (m/s)

LPA 0.39 0.36

Lower age group MPA 1.19 1.13
VPA 2,51 225

LPA 0.38 0.35

Middle age group MPA 1.19 1.13
VPA 2.45 221

LPA 0.36 0.32

Upper age group MPA 1.17 1.11
VPA 2.58 2.30
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Fig. 6 Histograms of the duration of activities of different intensities in (A) lower, (B) middle, and (C) upper age groups of primary

school

median durations of 2.5 and 2.2 s, respectively. Previous
studies have reported that most VPA fall within the 2-10 s
range (Baquet et al. 2007), and over 95% of MPA and VPA
episodes last less than 15 s (Bailey et al. 1995; Lopes et al.
2006; Baquet et al. 2007). Median durations for LPA, MPA,
and VPA have been reported as 4-6 s, 2-6 s, and 1-3 s,
respectively (Bailey et al. 1995; Ruch et al. 2013).

The median duration of activities across all intensity
levels in our study was lower than in other studies. This
discrepancy may be attributed to the restricted activity
space within classrooms, which limits the area available
for movement and results in shorter activity durations.
Additionally, the shorter data collection interval used in this
study (compared to previous studies) enabled more precise
identification of activity durations (Baquet et al. 2007).

3.3.2 Statistical analysis of activity duration in different
age groups

The duration of different activity intensities in different age

groups is shown in Figure 7. An overall increasing trend in
activity duration was observed from the lower to the upper
age groups for activities at all intensity levels. Additionally,
a gradual decrease in duration was noted from LPA to VPA
across all groups.

Differences in activity duration across age groups at
various intensity levels were further analysed using
Kruskal-Wallis ANOVA tests due to the non-normal
distribution of activity duration. The statistical results are
presented in Table 2. Significant differences in the duration
of LPA and MPA were observed across the lower, middle,
and upper age groups, with activity duration increasing
with age. Similar findings were reported by Lopes et al.
(2006), who also observed significant differences in LPA
duration among children aged 6-10 years, with durations
increasing with age. In contrast, the present study additionally
identified significant differences in MPA duration among
different age groups. This may be attributed to the shorter
data collection epoch used in this study compared to previous

Table 2 Statistical results of duration in different activity intensities of different age groups

Activity intensity Median duration (s) Kruskal Wallis-H p-value
Lower age group Middle age group Upper age group
LPA 150.611 <0.001
4.33 4.50 5.00
Lower age grou Middle age grou Upper age grou
MPA ge group ge group PPET age 8T0UP 19.815 <0.001
2.33 2.50 2.67
Lower age group Middle age group Upper age group
VPA 3.724 0.155
1.92 2.16 2.33
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research, which better distinguishes lower-intensity activities
from higher-intensity activities (Ridgers et al. 2005).

Following the Kruskal-Wallis test, the results of pairwise
comparisons using the Nemenyi test are presented in Table A7
of the ESM. For LPA, the duration was significantly longer
in the upper age group compared to the middle and lower age
groups. This phenomenon may be because older children
face academic pressures and devote more time to LPA of
sedentary learning (Chung et al. 1993; Larson and Verma
1999). For MPA, children in the lower age group spent
significantly less time compared to the other two groups,
likely because younger children tend to engage in physical
activities for shorter durations (Obeid et al. 2011).

3.4 Assessment of PM2.5 inhalation dose during recess
activities for children in different age groups

3.4.1 Distribution of PM2.5 concentration in different age
groups

Figure 8 illustrates the detailed distribution of PM2.5

concentrations across different age groups and seasons
during recess. The overall concentration range decreased
from the lower to the upper age groups. This trend aligns
with previous studies reporting higher PM concentrations
in classrooms of younger children compared to other age
groups (Fromme et al. 2007; Alves et al. 2013). Children in
the lower age groups exhibit higher activity intensity, which
likely contributes to the elevated PM levels observed in
their classrooms.

Indoor PM concentrations are significantly higher in
winter than in autumn. Specifically, the average PM
concentrations for the lower, middle, and upper age groups
in autumn were 54.08, 51.70, and 49.88 ug/m?, respectively.
During the non-heating season, windows are primarily
kept open, leading to a higher air change rate and
consequently lower indoor PM concentrations. In contrast,
the average PM concentrations for the lower, middle, and
upper age groups during winter were 183.02, 177.42, and
174.57 pg/m?, respectively. This disparity may be attributed
to inadequate ventilation rates and higher outdoor PM2.5
concentrations.
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Fig. 8 PM2.5 concentration distribution in classrooms during recess across different age groups and seasons
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A few higher concentrations, even reaching about
180 pg/m’® in autumn and 240 pg/m? in winter. The higher
values were found in the morning when children entered the
school, at the end of the school day, and during the recess
exercise period. These peaks are attributed to children’s
intensive activities, which cause the resuspension of settled
particles from daily tasks, skin shedding, and clothing
(Fromme et al. 2007; Licina et al. 2017; Yuan et al. 2023).
Children arriving at and leaving school in large numbers
drive PM2.5 concentrations to peak during these periods
(Yang et al. 2023; Zhou et al. 2021). Similarly, as children leave
the classroom for activities during recess, their high activity
levels lead to elevated PM2.5 concentrations.

3.4.2 The effects of outdoor PM2.5 and children’s activity
patterns on indoor PM2.5 concentrations

In school classrooms, indoor PM concentrations are primarily
determined by surrounding air pollution levels and occupant
activity types (Majd et al. 2019; Son 2023). To investigate
this relationship, we included outdoor PM2.5 concentration,
activity speed, and duration as influencing factors. Data
collected over a single day from each classroom, with average
activity speed, duration, and indoor/outdoor PM2.5
concentrations calculated per minute, generated a dataset
comprising 1,416 records. Multiple linear regression models
were then constructed to identify the relationship between
indoor PM2.5 concentrations and these factors. Prior to
analysis, collinearity was assessed using variance inflation
factors (VIF), with values ranging from 1.024 to 1.132,
all below 10, indicating no multicollinearity among the
independent variables (Ul-Saufie et al. 2011).

Table 3 presents the parameters derived from the multiple
regression analysis for outdoor PM2.5, speed, and duration.
As expected, outdoor PM2.5 and children’s activity speed
were strongly associated with elevated indoor PM2.5
concentrations. Specifically, a 1 pg/m® increase in outdoor
PM2.5 corresponded to a 0.528 pg/m® increase in indoor
PM2.5 (p < 0.001), while a 1 m/s increase in speed resulted
in a 15.197 pg/m? increase in indoor PM2.5 (p < 0.001).
Conversely, children’s activity duration was significantly
associated with lower indoor PM2.5 concentrations, with
a 1 s increase in duration corresponding to a 0.658 pg/m?

Table 3 Multivariate analysis of predictors of indoor PM2.5
concentrations

95% Confidence
Influencing factor ~ Coefficient interval p-value R’
Outdoor PM2.5 0.528 0.495,0.561  <0.001
(per pg/m’)
0.525
Speed (per m/s) 15.197 12.518,17.875  <0.001
Duration (per second)  —0.658 -1.078, -0.238 0.002

decrease in indoor PM2.5 (p = 0.002). This may be attributed
to the fact that longer durations are generally associated
with lower activity speeds.

3.43 PM2.5 inhalation dose calculation and feasible
improvement measures

According to the previously described methodology for the
calculation of inhalation dose (D) (Slezakova et al. 2018;
Slezakova et al. 2019; Slezakova et al. 2020), D in this study
was calculated as Equation (5):

Dose(D) = > (BR,,,, / BW)xCxT, (5)

intens;
i=1

where D is the age-group-specific dose (ug/kg); intens
represents the activity intensity; the values 1, 2, and 3 for
i represent LPA, MPA, and VPA, respectively; BRinens,
represents the age-group-specific breathing rate at different
activity intensities (m*/min); BW is the age-group-specific
body weight (kg); C is the average PM concentration in the
classroom (pg/m?); Tinens is the exposure time for different
activity intensities per day (min).

The values of BRiyens, were determined based on the data
from the Chinese Exposure Factors Handbook (Duan 2016).
The values for BW were retrieved from the data in the
standard GB/T26158-2010 Human Dimensions of Chinese
Minor (GB 2010).

Different intensity activities have varying probabilities
and durations. Based on this, the Tinen, Was calculated by
Equations (6) to (7):

P,

intens;

X Duration;

intens;
pintens, = 3 (6)
Xj(Pimeml X Durationintcns, )

i=1

’I;nlens, = p intens; X T;ola] (7)

where Pinens, i the probability proportion of different
activity intensities; Pinens;is the time proportion of different
activity intensities; Durationiyens, is the activity duration of
different intensities; Tiowl is the total time of PM exposure
per day (min). The values of Piyens, were derived from the
information provided in Section 3.2.2. Durationinens Was
obtained from Table 2. Tt Was determined based on the
timetable of the two selected primary schools (120 min).
Table 4 shows the values of each parameter and the PM2.5
inhalation dose calculation for all age groups.

As can be seen from Table 4, the PM2.5 inhalation doses
vary among different age groups. The variability in PM2.5
inhalation doses between different groups was defined by
Equation (8):

age-group; age-group;

x100% (8)

age-group;

Relative Difference =
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where i and j represent different age groups, the age groups
defined by i and j must not be the same in each calculation.

The inhalation doses in each age group and the relative
differences are shown in Table A8 of the ESM. It can be
observed that the higher indoor PM concentrations in
winter resulted in children’s daily inhalation dose being
3.38 to 3.50 times higher than that in autumn. Additionally,
the inhalation dose decreased with increasing age, with
the lower age group having the highest daily inhalation
dose. Compared to the lower age group, the inhalation dose
decreased by 14.67% in the middle age group and by 30.64%
in the upper age group. Furthermore, the inhalation dose

Table 4 Values of each parameter for different age groups

Dose
Age group Parameter (ug/kg)
Intensity level Value
“BR jyiens, 1 7.70E-03
(m?*/min) 2 1.55E-02
3 3.86E-02
>BW (kg) 22.7
C (ug/m?) 54.08 (autumn) 183.02 (winter)
Lower age In::esllty P, Duration,y,,  Value (auztfin)
group  p. 1 0869 433 0%
2 0.113 2.33 0.065 (winter)
3 0.018 1.92 0.008
Intensity level Value
intens, 1 111.24
(min) 2 7.80
3 0.96
Total (min) 120
Intensity level Value
"BR e 1 8.20E-03
(m?*/min) 2 1.65E-02
3 4.11E-02
>BW (kg) 27.0
C (ug/m?) 51.70 (autumn) 177.42 (winter)
In;enslity ntens,  DUTation,, ... Value (auztfrin)
Middle age eve
group Pintens, 1 0.885 4.5 0.934 203
2 0101 25 0.059 (winter)
3 0.014 2.16 0.007
Intensity level Value
e, 1 112.08
(min) 2 7.08
3 0.84
Tiotat (min) 120

Table 4 Values of each parameter for different age groups
(Continued)

Dose
Age group Parameter (ug/kg)
Intensity level Value
“BRyne 1 9.70E-03
(m*/min) 2 1.93E-02
3 4.83E-02
"BW (kg) 37.9
C (ug/m?) 49.88 (autumn) 174.57 (winter)
Intensity . 1.65
level l)inlens, Duratloninlens, Value (autumn)
Upper age
group Pintens 1 0.896 5 0.942
' 5.77
2 0.093 2.67 0.052 (winter)
3 0.011 2.33 0.006
Intensity level Value
e, 1 113.04
(min) 2 6.24
3 0.72
Ttotat (min) 120

* The values for the lower age group were based on the mean breathing rates of
the age groups of 5-6 years old and 6-9 years old, respectively; the values for
the middle and upper age groups were based on the mean breathing rates for
the age groups of 6-9 and 9-12 years old, respectively.

® The values for the lower age group were based on the average weights of boys
and girls aged 4-6 and 7-10, respectively; the values for the middle age group
and the upper age group were the average weights of boys and girls aged 7-10
and 11-12, respectively.

of the upper age group was 18.72% lower than that of the
middle age group.

Children, as one of the susceptible groups, are more
vulnerable to the health impacts of PM. For instance, an
increase in the average daily inhalation dose of PM2.5 was
associated with decreased lung function (Li et al. 2020).
Given these findings, it is imperative to develop air pollution
management policies that prioritize susceptible populations,
particularly younger children.

Higher PM2.5 concentrations during recess are a
significant cause of increased inhalation dose. Therefore, in
primary school classrooms, especially those with younger
children who have higher activity levels, relevant departments
should encourage schools to proactively install air purification
equipment to effectively reduce children’s inhaled dose of
PM2.5. In regions that cannot afford air purification
equipment, optimizing classroom layouts—such as adopting
a U-shaped arrangement—can effectively reduce PM2.5
concentrations, particularly in the breathing zone of
elementary students (Tikul et al. 2022). Additionally, when
outdoor PM2.5 concentrations are low, opening doors and
windows can help dilute indoor PM2.5 levels. Moreover,
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resuspension caused by children’s indoor activities also
contributes significantly to elevated indoor PM concentrations.
Therefore, increasing the frequency of cleaning is an effective
measure to reduce PM resuspension at the source.

4 Implication and limitation

Children’s higher activity intensity compared to teenagers
and young adults contributes to elevated PM concentrations
in classrooms during recess (Livingstone et al. 2003; Sigmund
et al. 2007). However, most previous studies have typically
focused on comparing exposure concentrations in schools
of different locations and analysing the contributions of
various factors (Branco et al. 2019; Villanueva et al. 2021;
Zhu et al. 2021), which cannot quantify children’s activity
patterns (speed, duration) in classrooms across different age
groups. This study, leveraging machine learning algorithms
and video data, quantified the key parameters of activity
patterns for primary school children in different age groups.
Its findings are applicable to densely populated classrooms
in other regions or countries with similar layouts and
education environments, such as Republic of Korea and
Japan (Li et al. 2017; Kim et al. 2024). For classrooms with
lower population densities and larger activity areas, the
applicability of the results of this study requires further
confirmation. This study offers a scientific foundation for
the development of targeted strategies to mitigate indoor
air pollution in educational facilities, thereby safeguarding
children’s health.

Nowadays, PM pollution in primary schools in China
remains relatively severe (Zhu et al. 2021), and common
in other developing countries (Shaddick et al. 2020). It is
crucial to quantitatively describe the PM inhalation dose and
its differences across different age groups in classrooms,
especially considering the varying activity patterns of children
in different age groups, to provide more information for
policymakers and the academic community. This study
synchronously collected activity data and environmental
parameters and analysed the causal relationship between
indoor and outdoor influencing factors and indoor PM
concentrations. Additionally, this study presents a new
method for quantifying children’s inhalation doses based
on activity patterns and environmental parameters. This
method estimates and assesses the differences in PM2.5
inhalation doses among children of different age groups
under varying activity patterns, emphasizing the significant
contributions of activity speed, duration, and outdoor PM
levels. This method is considered to provide meaningful
outcomes and a methodological framework for future studies
on estimating PM inhalation doses and risk assessments for
children of other age groups or in other environments.

However, there are still some limitations that should be

noted. Firstly, field measurements were challenging due
to the study subjects being children, which restricted the
investigation to two schools and yielded a limited sample
size. Accordingly, this study did not encompass the variability
in classroom cleaning frequencies and layouts. Secondly, due
to the significant challenges associated with simultaneously
and accurately obtaining parameters such as weight, gender,
and activity patterns using machine learning algorithms,
this study examined the influence of chronological age on
activity patterns but did not account for the effects of other
factors, such as weight and gender. Finally, due to the
limitations of the machine learning algorithms employed in
this study and the camera perspectives, partial trajectory
loss occurs in a few rare blind spots and extremely crowded
scenarios. In the future, it is necessary to optimize the
algorithms, such as conducting multi-scale feature fusion
and optimization or incorporating attention mechanisms,
to improve detection accuracy and enable accurate tracking
of occluded children. Moreover, multi-camera configurations
or strategic planning of camera placement and field of view
can effectively reduce the likelihood of trajectory loss in
complex scenes. Building on these advancements, future
research should be directed towards more accurately assessing
the PM inhalation dose and the associated health risks.

5 Conclusions

This study employs an interdisciplinary approach to

investigate children’s recess activity patterns and PM2.5

inhalation doses across different age groups in primary
school classrooms. The main conclusions are:

(1) A feasibility framework has been developed to utilize
de-distorted video data from low-cost cameras for the
detection and tracking of children in videos. The results
demonstrate that the framework effectively estimates
children’s activity speeds and durations using low-cost
cameras, thereby reducing labour-intensive demands
for manual observation and data processing, as well as
high costs.

(2) Children’s classroom activities are predominantly low
intensity, with LPA comprising the highest proportion
across all age groups (ranging from 0.869 to 0.896).
This LPA proportion was 7%-15% higher than that
reported in previous studies, likely due to high occupant
density, limited activity space, and characteristics of
the Chinese education environment. Additionally, LPA
increased while MPA to VPA decreased with age, possibly
due to changing activity preferences and schoolwork
pressures.

(3) Children’s classroom activities exhibit a highly transitory
nature, with median durations of recess activities
decreasing from LPA (4.7 s) to MPA (2.5 s) and VPA
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(2.2 s). These values are lower than those in previous
studies, likely due to limited activity space and shorter
sampling intervals. Significant differences in the duration
of LPA and MPA were observed across the lower, middle,
and upper age groups, with activity duration increasing
with age.

(4) Children’s activity speed, duration, and outdoor PM2.5
were strongly associated with variations in indoor PM2.5
concentrations. A 1 pg/m?® increase in outdoor PM2.5
results in a 0.528 pg/m® increase in indoor PM2.5 (p <
0.001), a 1 m/s increase in activity speed leads to a
15.197 pg/m? increase in indoor PM2.5 (p < 0.001),
and a 1 s increase in duration reduces indoor PM2.5 by
0.658 pg/m? (p = 0.002).

(5) A new method has been developed to quantify the
contribution of activity patterns to PM inhalation dose
and inequity between different age groups. The findings
revealed that the daily inhalation dose decreased with
increasing age, being 14.67% lower in the middle age
group and 30.64% lower in the upper age group compared
to the lower age group, indicating a higher health risk for
younger children.

The findings obtained in this study offered valuable
insights for offering more accurate PM-related health risk
evaluation and developing air quality enhancement strategies
for classrooms across various age groups in the future.

Electronic Supplementary Material (ESM): Supplementary
material is available in the online version of this article at
https://doi.org/10.1007/s12273-025-1295-x.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (Grant No. 52278090), Ministry of
Science and Technology of the People’s Republic of China.
Prashant Kumar acknowledges the support received
through the EPSRC-funded COTRACE/SAMHE project
(EP/W001411/1).

Declaration of competing interest

The authors have no competing interests to declare that are
relevant to the content of this article.

Author contribution statement

All authors contributed to the study conception and design.

Investigation was performed by Feng Yuan and Ziyu Shu.
Formal analysis was performed by Feng Yuan, Runming
Yao, Prashant Kumar, Christopher Pain, and Ziyu Shu.
Funding acquisition was performed by Baizhan Li and

Runming Yao. The first draft of the manuscript was written
by Feng Yuan and all authors commented on previous
versions of the manuscript. All authors read and approved
the final manuscript.

Open Access: This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate
if changes were made.

The images or other third party material in this article
are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.
copy of this license,
http://creativecommons.org/licenses/by/4.0/

To view a visit

References

Alves C, Nunes T, Silva J, et al. (2013). Comfort parameters and
particulate matter (PM10 and PM2.5) in school classrooms and
outdoor air. Aerosol and Air Quality Research, 13: 1521-1535.

Azhar MIH, Zaman FHK, Tahir NM, et al. (2020). People tracking
system using DeepSORT. In: Proceedings of the 10th IEEE
International Conference on Control System, Computing and
Engineering, Penang, Malaysia, pp. 137-141.

Bailey RC, Olson ], Pepper SL, et al. (1995). The level and tempo of
children’s physical activities: An observational study. Medicine
and Science in Sports and Exercise, 27: 1033-1041.

Baquet G, Stratton G, Van Praagh E, et al. (2007). Improving physical
activity assessment in prepubertal children with high-frequency
accelerometry monitoring: A methodological issue. Preventive
Medicine, 44: 143-147.

Bell D, Xiao W, James P (2020). Accurate vehicle speed estimation from
monocular camera footage. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, V-2-2020:
419-426.

Beresin A (2016). Playing with time: Towards a global survey of recess
practices. International Journal of Play, 5: 159-165.

Bewley A, Ge Z, Ott L, et al. (2016). Simple online and realtime tracking.
In: Proceedings of the 2016 IEEE International Conference on
Image Processing, Phoenix, AZ, USA, pp. 3464-3468.

Boulbair A, Benabed A, Janssens B, et al. (2022). Numerical study of
the human walking-induced fine particles resuspension. Building
and Environment, 216: 109050.

Branco PTBS, Alvim-Ferraz MCM, Martins FG, et al. (2019).
Quantifying indoor air quality determinants in urban and rural
nursery and primary schools. Environmental Research, 176:
108534.



Yuan et al. / Building Simulation

Butte NF, Watson KB, Ridley K, et al. (2018). A youth compendium
of physical activities: Activity codes and metabolic intensities.
Medicine and Science in Sports and Exercise, 50: 246-256.

Cadieux JM, Pyhala SL, Johnson JV (2023). Pediatric walking speed
normal reference values in a local population. Pediatric Physical
Therapy, 35: 314-320.

Chen T, Chen J, Gao T, et al. (2024). A novel scene-aware pedestrian
detection in dense scenes. In: Proceedings of the 2024 27th
International Conference on Computer Supported Cooperative
Work in Design, Tianjin, China, pp. 1316-1321.

Chinapaw MJ, Wang X, Andersen LB, et al. (2019). From total volume
to sequence maps: Sophisticated accelerometer data analysis.
Medicine and Science in Sports and Exercise, 51: 814-820.

Chung B, Kim H, Lee S, et al. (1993). Restoring Korean Education
from the Bandage of Entrance Examination Education. Seoul:
Nanam Publication.

Cohen Hubal EA, Sheldon LS, Burke JM, et al. (2000). Children’s
exposure assessment: A review of factors influencing children’s
exposure, and the data available to characterize and assess that
exposure. Environmental Health Perspectives, 108: 475-486.

Corder K, Sharp §J, Atkin AJ, et al. (2016). Age-related patterns of
vigorous-intensity physical activity in youth: The international
children’s accelerometry database. Preventive Medicine Reports,
4:17-22.

Cristani M, Raghavendra R, Del Bue A, et al. (2013). Human behavior
analysis in video surveillance: A Social Signal Processing
perspective. Neurocomputing, 100: 86-97.

Dai Y, Hu Z, Zhang S, et al. (2022). A survey of detection-based video
multi-object tracking. Displays, 75: 102317.

De Baere S, Seghers ], Philippaerts R, et al. (2015). Intensity- and
domain-specific levels of physical activity and sedentary behavior
in 10- to 14-year-old children. Journal of Physical Activity &
Health, 12: 1543-1550.

Dendorfer P, O8ep A, Milan A, et al. (2021). MOTChallenge: A
benchmark for single-camera multiple target tracking. International
Journal of Computer Vision, 129: 845-881.

Diapouli E, Chaloulakou A, Spyrellis N (2007). Indoor and outdoor
particulate matter concentrations at schools in the Athens area.
Indoor and Built Environment, 16: 55-61.

Ding J, Xu L, Guo J, et al. (2020). Human detection in dense scene
of classrooms. In: Proceedings of the 2020 IEEE International
Conference on Image Processing, Abu Dhabi, United Arab
Emirates, pp. 618-622.

Doyle LW, Anderson P, Callanan C, et al. (2006). Respiratory function
at age 8-9 years in extremely low birthweight/very preterm
children born in Victoria in 1991-1992. Pediatric Pulmonology,
41: 570-576.

Du W, Cui Z, Wang J, et al. (2024). Quantifying the contribution
of activity patterns to PM.s exposure inequity between urban
and rural residents by a novel method. Building Simulation,
17:1323-1333.

Duan X (2016). Highlights of the Chinese Exposure Factors Handbook
(Children). China Environment Publishing Group.

Eccles JS (1999). The development of children ages 6 to 14. The
Future of Children, 9: 30-44.

Fromme H, Twardella D, Dietrich S, et al. (2007). Particulate matter
in the indoor air of classrooms—Exploratory results from Munich
and surrounding area. Atmospheric Environment, 41: 854-866.

GB (2010). GB/T 26158-2010: Human dimensions of Chinese minor.
Standard Press of China.

Ghomashchi H, Paterson J, Novak AC, et al. (2024). Estimating
pedestrian walking speed at street crossings using the YOLOv4 and
deep SORT algorithms: Proof of principle. Applied Ergonomics,
119: 104292.

Goodway JD, Ozmun JC, Gallahue DL (2019). Understanding Motor
Development: Infants, Children, Adolescents, Adults. Burlington,
USA: Jones & Bartlett Learning.

Gu Y, Kim J, Ma J, et al. (2024). Isotemporal substitution of
accelerometer-derived sedentary behavior and physical activity
on physical fitness in young children. Scientific Reports, 14: 13544.

Hardy LL, Bass SL, Booth ML (2007). Changes in sedentary behavior
among adolescent girls: A 2.5-year prospective cohort study.
Journal of Adolescent Health, 40: 158-165.

Jacobson RE, Axford N, Ray S, et al. (2001). Manual of Photography:
Photographic and Digital Imaging. Focal Press.

Jiao D, Fei T (2023). Pedestrian walking speed monitoring at street scale
by an in-flight drone. Peer] Computer Science, 9: €1226.

Johns D, Vertinsky P (2006). The influence of physical, cultural and
social environments on health-related activity. In: Physical
Activity and Health of Hong Kong Youth. The Chinese University
of Hong Kong Press. pp. 182-196.

Kalman RE (1960). A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82: 35-45.

Kim J, Park S, Kim H, et al. (2019). Emission characterization of
size-resolved particles in a pre-school classroom in relation
to children’s activities. Indoor and Built Environment, 28:
659-676.

Kim S, Kang K, Park D, et al. (2024). Assessment of PM»5 penetration
based on airflow paths in Korean classrooms. Building and
Environment, 248: 111103.

Kohl HW III, Hobbs KE (1998). Development of physical activity
behaviors among children and adolescents. Pediatrics, 101:
549-554.

Kumar P, Rawat N, Tiwari A (2023). Micro-characteristics of a naturally
ventilated classroom air quality under varying air purifier
placements. Environmental Research, 217: 114849.

Kumar P, Hama S, Abbass RA, et al. (2024). Environmental quality in
sixty primary and secondary school classrooms in London.
Journal of Building Engineering, 91: 109549.

Larson RW, Verma S (1999). How children and adolescents spend time
across the world: Work, play, and developmental opportunities.
Psychological Bulletin, 125: 701-736.

Li H, Martin AJ, Yeung WJ (2017). Academic risk and resilience for
children and young people in Asia. Educational Psychology, 37:
921-929.

Li S, Cao S, Duan X, et al. (2020). Long-term exposure to PMas and
children’s lung function: A dose-based association analysis.
Journal of Thoracic Disease, 12: 6379-6395.

Li Z, Ding Y, Wang D, et al. (2023). Understanding the time-activity
pattern to improve the measurement of personal exposure: An



Yuan et al. / Building Simulation

exploratory and experimental research. Environmental Pollution,
334:122131.

Licina D, Tian Y, Nazaroff WW (2017). Emission rates and the personal
cloud effect associated with particle release from the perihuman
environment. Indoor Air, 27: 791-802.

Livingstone MBE, Robson PJ, Wallace JMW, et al. (2003). How active
are we? Levels of routine physical activity in children and adults.
Proceedings of the Nutrition Society, 62: 681-701.

Lopes VP, Vasques C, Pereira B, et al. (2006). Physical activity patterns
during school recess: A study in children 6 to 10 years old.
International Electronic Journal of Health Education, 9: 192-201.
Available at http://bibliotecadigital.ipb.pt/handle/10198/226.

Madureira J, Paciéncia I, de Oliveira Fernandes E (2012). Levels and
indoor-outdoor relationships of size-specific particulate matter
in naturally ventilated Portuguese schools. Journal of Toxicology
and Environmental Health, Part A, 75: 1423-1436.

Majd E, McCormack M, Davis M, et al. (2019). Indoor air quality in
inner-city schools and its associations with building characteristics
and environmental factors. Environmental Research, 170: 83-91.

Obeid J, Nguyen T, Gabel L, et al. (2011). Physical activity in Ontario
preschoolers: Prevalence and measurement issues. Physiologie
Appliquee, Nutrition et Metabolisme, 36: 291-297.

Oliveira M, Slezakova K, Delerue-Matos C, et al. (2019). Children
environmental exposure to particulate matter and polycyclic
aromatic hydrocarbons and biomonitoring in school environments:
A review on indoor and outdoor exposure levels, major sources
and health impacts. Environment International, 124: 180-204.

Papaiakovou G, Giannakos A, Michailidis C, et al. (2009). The effect
of chronological age and gender on the development of sprint
performance during childhood and puberty. Journal of Strength
and Conditioning Research, 23: 2568-2573.

Pawlowski CS, Andersen HB, Troelsen J, et al. (2016). Children’s
physical activity behavior during school recess: A pilot study
using GPS, accelerometer, participant observation, and go-along
interview. PLoS One, 11: e0148786.

Pellegrini AD, Smith PK (1993). School recess: Implications for
education and development. Review of Educational Research,
63: 51-67.

Punn NS, Sonbhadra SK, Agarwal S, et al. (2021). Monitoring
COVID-19 social distancing with person detection and tracking
via fine-tuned YOLO v3 and Deepsort techniques. arXiv Preprint.
Available at https://arxiv.org/abs/2005.01385.

Redmon J, Divvala S, Girshick R, et al. (2016). You only look once:
Unified, real-time object detection. In: Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, pp. 779-788.

Ren S, He K, Girshick R, et al. (2017). Faster R-CNN: Towards
real-time object detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39:
1137-1149.

Ren J, Wade M, Corsi RL, et al. (2020). Particulate matter in mechanically
ventilated high school classrooms. Building and Environment,
184:106986.

Ridgers ND, Stratton G, Fairclough S] (2005). Assessing physical
activity during recess using accelerometry. Preventive Medicine,
41:102-107.

Ridgers ND, Fairclough SJ, Stratton G (2010). Variables associated
with children’s physical activity levels during recess: The A-CLASS
project. International Journal of Behavioral Nutrition and Physical
Activity, 7: 74.

Ridgers ND, Timperio A, Crawford D, et al. (2012). Five-year changes
in school recess and lunchtime and the contribution to children’s
daily physical activity. British Journal of Sports Medicine, 46:
741-746.

Rowlands AV, Eston RG (2007). The measurement and interpretation
of children’s physical activity. Journal of Sports Science &
Medicine, 6: 270-276.

Rowlands AV, Pilgrim EL, Eston RG (2008). Patterns of habitual
activity across weekdays and weekend days in 9-11-year-old
children. Preventive Medicine, 46: 317-324.

Ruch N, Melzer K, Mider U (2013). Duration, frequency, and types
of children’s activities: Potential of a classification procedure.
Journal of Exercise Science & Fitness, 11: 85-94.

Sadrizadeh S, Yao R, Yuan F, et al. (2022). Indoor air quality and
health in schools: A critical review for developing the roadmap for
the future school environment. Journal of Building Engineering,
57:104908.

Sangsuwan K, Ekpanyapong M (2024). Video-based vehicle speed
estimation using speed measurement metrics. IEEE Access, 12:
4845-4858.

Shaddick G, Thomas ML, Mudu P, et al. (2020). Half the world’s
population are exposed to increasing air pollution. NPJ Climate
and Atmospheric Science, 3: 23.

Shirazi MS, Morris B (2015). Observing behaviors at intersections: A
review of recent studies & developments. In: Proceedings of the
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea,
pp. 1258-1263.

Sigmund E, De Ste Croix M, Mikldnkova L, et al. (2007). Physical activity
patterns of kindergarten children in comparison to teenagers and
young adults. European Journal of Public Health, 17: 646-651.

Slezakova K, Peixoto C, Oliveira M, et al. (2018). Indoor particulate
pollution in fitness centres with emphasis on ultrafine particles.
Environmental Pollution, 233: 180-193.

Slezakova K, de Oliveira Fernandes E, do Carmo Pereira M (2019).
Assessment of ultrafine particles in primary schools: Emphasis
on different indoor microenvironments. Environmental Pollution,
246: 885-895.

Slezakova K, Pereira MC, Morais S (2020). Ultrafine particles: Levels
in ambient air during outdoor sport activities. Environmental
Pollution, 258: 113648.

Son YS (2023). A review on indoor and outdoor factors affecting the
level of particulate matter in classrooms of elementary schools.
Journal of Building Engineering, 75: 106957.

Song H, Zhang X, Song J, et al. (2023). Detection and tracking of
safety helmet based on DeepSort and YOLOv5. Multimedia Tools
and Applications, 82: 10781-10794.

Tao Y, Inthavong K, Tu J (2017a). Computational fluid dynamics
study of human-induced wake and particle dispersion in indoor
environment. Indoor and Built Environment, 26: 185-198.

Tao Y, Inthavong K, Tu JY (2017b). Dynamic meshing modelling
for particle resuspension caused by swinging manikin motion.
Building and Environment, 123: 529-542.



Yuan et al. / Building Simulation

Telford A, Salmon J, Timperio A, et al. (2005). Quantifying and
characterizing physical activity among 5- to 6- and 10- to
12-year-old children: The children’s leisure activities study
(CLASS). Pediatric Exercise Science, 17: 266-280.

Tikul N, Hokpunna A, Chawana P (2022). Improving indoor air
quality in primary school buildings through optimized apertures
and classroom furniture layouts. Journal of Building Engineering,
62:105324.

Turaga P, Chellappa R, Subrahmanian VS, et al. (2008). Machine
recognition of human activities: A survey. IEEE Transactions on
Circuits and Systems for Video Technology, 18: 1473-1488.

Ul-Saufie AZ, Yahya AS, Ramli NA, et al. (2011). Comparison between
multiple linear regression and feed forward back propagation
neural network models for predicting PM10 concentration level
based on gaseous and meteorological parameters. International
Journal of Applied Science and Technology, 1: 42-49.

Um CY, Zhang N, Kang K, et al. (2022). Occupant behavior and
indoor particulate concentrations in daycare centers. Science of
The Total Environment, 824: 153206.

US Department of Health and Human Services (2018). Physical
Activity Guidelines for Americans, 2nd edition.

Villanueva F, Notario A, Cabafas B, et al. (2021). Assessment of
CO: and aerosol (PM.s, PMio, UFP) concentrations during the
reopening of schools in the COVID-19 pandemic: The case of a
metropolitan area in Central-Southern Spain. Environmental
Research, 197: 111092.

Wang L (2019). Accelerometer-determined physical activity of children
during segmented school days: The Shanghai perspective. European
Physical Education Review, 25: 816-829.

Wang CY, Liao HM, Yeh IH (2022). Designing network design
strategies through gradient path analysis. arXiv Preprint. Available
at https://arxiv.org/abs/2211.04800.

Wang CY, Bochkovskiy A, Liao HM (2023). YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object
detectors. In: Proceedings of the 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, pp. 7464-7475.

Wang W, Wang X, Li X, et al. (2024a). Seasonal particle size distribution
and its influencing factors in a typical polluted city in North
China. Aerosol and Air Quality Research, 24: 230127.

Wang CY, Yeh IH, Liao HM (2024b). YOLOV9: Learning what you
want to learn using programmable gradient information. arXiv
Preprint. Available at https://arxiv.org/abs/2402.13616.

Wojke N, Bewley A, Paulus D (2017). Simple online and realtime
tracking with a deep association metric. In: Proceedings of the
2017 IEEE International Conference on Image Processing, Beijing,
China, pp. 3645-3649.

Xie Z, Wang L, Chen H, et al. (2024). Accelerometer-measured
sedentary volume and bouts during the segmented school day
among Chinese school students. Journal of Exercise Science &
Fitness, 22: 145-151.

Xu H, Guinot B, Cao J, et al. (2018). Source, health risk and
composition impact of outdoor very fine particles (VEPs) to school
indoor environment in Xi’an, Northwestern China. Science of
The Total Environment, 612: 238-246.

Yang G, Zhou Y, Yan B (2023). Contribution of influential factors on
PM. s concentrations in classrooms of a primary school in North
China: A machine discovery approach. Energy and Buildings,
283:112787.

Yu JJQ, Gu J (2019). Real-time traffic speed estimation with graph
convolutional generative autoencoder. IEEE Transactions on
Intelligent Transportation Systems, 20: 3940-3951.

Yuan F, Yao R, Yu W, et al. (2023). Dynamic characteristics of
particulate matter resuspension due to human activities in indoor
environments: A comprehensive review. Journal of Building
Engineering, 79: 107914.

Yuan F, Yao R, Sadrizadeh S, et al. (2024). The influence of activity
patterns and relative humidity on particle resuspension in
classrooms. Science of The Total Environment, 946: 173898.

Zhang Z (2000). A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22:
1330-1334.

Zhang Y, Shengxia M, Chang C, et al. (2017). Physical activity
guidelines for Chinese children and youth. Chinese Journal of
Evidence-Based Pediatrics, 12: 401-409. (in Chinese)

Zhong X, Ridley IA (2020). Verification of behavioural models of
window opening: The accuracy of window-use pattern, indoor
temperature and indoor PM. s concentration prediction. Building
Simulation, 13: 527-542.

Zhou Y, Yang G, Li X (2021). Indoor PM.s concentrations and students’
behavior in primary school classrooms. Journal of Cleaner
Production, 318: 128460.

Zhu H, Wei H, Li B, et al. (2020). A review of video object detection:
Datasets, metrics and methods. Applied Sciences, 10: 7834.

Zhu Y, Li X, Fan L, et al. (2021). Indoor air quality in the primary
school of China—Results from CIEHS 2018 study. Environmental
Pollution, 291: 118094.



