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This is the first of two articles presenting a detailed review of the historical evolution
of mathematical models applied in the development of building technology,
including conventional buildings and intelligent buildings. After presenting the
technical differences between conventional and intelligent buildings, this article
reviews the existing mathematical models, the abstract levels of these models, and
their links to the literature for intelligent buildings. The advantages and limitations
of the applied mathematical models are identified and the models are classified in
terms of their application range and goal. We then describe how the early
mathematical models, mainly physical models applied to conventional buildings,
have faced new challenges for the design and management of intelligent buildings
and led to the use of models which offer more flexibility to better cope with various
uncertainties. In contrast with the early modelling techniques, model approaches
adopted in neural networks, expert systems, fuzzy logic and genetic models provide
a promising method to accommodate these complications as intelligent buildings
now need integrated technologies which involve solving complex, multi-objective
and integrated decision problems.

Keywords: buildings; intelligent buildings; mathematical modelling

INTRODUCTION
Mathematical modelling has been used for decades to help building scientists
design, construct and operate buildings. In the development of technologies in

the building industry, one of the most cited models is the heat conduction
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equation by Joseph Fourier publishedin 1822 (e.g.Luetal.,2005a—c; Luand Tervola,
2005). Building researchers have applied and extended the heat conduction equation
to more complicated models for detailed thermal analysis of energy demands,
passive design, environmental comfort and the response of control, especially
since the energy crisis in 1973 (Mitalas and Stephenson, 1967; Stephenson and
Mitalas, 1971). Other extension models have asimilar partial differential equation
basis describing underlying mechanisms, for instanceenergy and mass transport
(Ben and Perre, 1988; Pedersen, 1992; Hartwig and Kurt, 1997; Haupl etal.,1997;
Lu,2002). Even more detailed and complicated models include the Navier- Stokes
equations which describe the flow of fluids for air flow, temperature and
contaminant distributions (Tsou, 2001). Various numerical techniques such as finite
element method, finite difference method, boundary element method and
computational fluid dynamics (CFD) are employed to handle these equations
(Press et al., 1992).

Validating these models requires experimental data which can be difficult
and expensive to obtain. Moreover, these models can be computationally
intensive. This partly reflects the limitations of the early models but thesituation
is changing as computational power has increased several fold. New mathematical
models are being developed that incorporate the early models to solve the large set of
equations and to formalize the reasoning about uncertain knowledge in buildings.
It is now possible that intelligent buildings can not only offer better control over
various automotive features, but also have learning and adaptation abilities. We are
facinganew eraofanincreasing demandfor intelligent buildings worldwide.

It should be recognized that the development of intelligent buildings from
conventional buildings is a continuous improvement process. No universal
definition of intelligent buildings has been accepted, since the definition is still
evolving, and there is no clear-cut difference between conventional and intelligent

buildings. The definition was first brought out in the late 1970s when buildings
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were equipped with IT (Caffrey, 1998). It is now commonly acknowledgedthatan
intelligent building should also be able to learn from its occupants and the
environment and adjust its performance (Clements-Croome, 1997). Nevertheless,
it can be loosely defined as a building integrated with information processing
capabilities and intelligence, at each stage of its life — from design and
construction through to lifetime management and use. Intelligent buildings have to
be sustainable in terms of energy, water and pollution; provide healthy
environmental conditions; optimize whole-life value and be responsive to the needs
of occupants and organizations. This demands the measurement and analysis of
objective and subjective data. Today,embedded technologies are being developed to
link the building and its systems more closely to the occupants. The decision-
making chain is complex and involves many stakeholders and each decision contains
multi-variables. Traditionally this process is generally simplified to a linear
dynamic model but in reality a non-linear dynamic approach is needed.

In this review we present a broad classification of mathematical models and
approaches applied to developing intelligent buildings, but without the complex
mathematical details. The review begins by examining technical differences
between conventional and intelligent buildings. It proceeds to describe goals,
expectations and application areas of some important mathematical models
and then discusses the extent to which it is reasonable to expect these
mathematical models to provide proper simulations. Ultimately it explores the
gap between mathematical models applied to conventional and intelligent
buildings.

In order to gain a better understanding of mathematical models to support the
development of intelligent buildings, and to provide a basis for future work, the
article provides a brief review of mathematical models applied in conventional
buildings, but with a focus on mathematical approaches in intelligent buildings.

The strengths and limitations of the applied mathematical models are discussed and new
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directions for future work are then explored. As an illustration, the feasibility of
semiotics theory applied to intelligent buildings is demonstrated conceptually with
the building’s control system model. Moreover, the review is meant to be
representative and attempts to cover all the promising mathematical methods that
can be applied in the intelligent buildings field. The mathematical abstract level of
the applied models is detailed and integrated with the most recently published
literature; review papers are used wherever possible. Finally, by focusing on an
example of intelligent buildings systems and the models that have been developed
for such systems, we show how mathematical models have played an important
part in integrating various control and management systems to maximize
technical performance for intelligent buildings. This study tries to uncover new

and potential evidence for other mathematical models which may be appropriate.

MATHEMATICAL MODELS FOR DEVELOPING INTELLIGENT BUILDINGS FROM
CONVENTIONAL BUILDINGS...

Mathematical models address, first, the question of which components of the
building system should be modelled and then the kind of equation thatisusedto
representthe dynamics of each component. Up to now, many modelling approaches
have been available and the techniques have become quite mature. However, only

two extreme modelling approaches can be generalized.

The first one, called physical models,1 builds up models entirely based on

universal laws, physical laws and principles. The second approach, called empirical

models,2 constructs models entirely based on experiments or data. Pure physical
or empirical models have both advantages and disadvantages (Estrada-Flores et al.,
2006). Very often a combination of both models is adopted to compensate for their
deficiencies as individual approaches. The final models are known as semi-physical or

grey box models.



In physical models, partial differential equations governing mass,
momentum, and energy transport describe the system components, for example,
Navier-Stokes equations with CFD approaches. CFD models have been extensively
used in many building applications such as ventilation (Gratia and De Herde, 2007;
Norton et al., 2007), thermal comfort (Somarathne et al., 2005), indoor air quality
(Guo, 2002), fire and smoke security (Lo et al., 2002; Delemont and Martin, 2007),
and many others (Bartak et al., 2002; Stamou and Katsiris, 2006). CFD models are
usually studied at steady state due tothe difficulty, forexample, insolving thermal
interactions across the boundaries and its heavy computation load, especially for a
building system with large-scale components and control processes with distributed
parameters, interactions and multivariables. In fact, a balance between model
complexity and the desired accuracy should always be a major consideration of any
model. The selection of the modelling approach often determines the outcomes of
this complexity and accuracy trade-off.

Therefore, dynamic, state-space and more simplified algebraic models are often
adopted instead, which generally provide a less detailed assessment but take into
account time-dependant internal and external environmental conditions. These can
be entirely physical models with some simplified assumptions. For example, by
assuming fully mixed, thermal conditions the thermal dynamics can be expressed
as lumped capacity models written as differential equations (Tashtoush et al., 2005).
Models combining physical and empirical approaches are also common (Nielsen
and Henrik Madsen, 2006). This is advantageous since the physical knowledge
reduces the model space, whereby the validity of the statistical methods is better
preserved.

Although these models, say physical models for simplicity, were originally
developed to simulate conventional buildings, we believe that they can also
succeed to varying degrees in modelling intelligent buildings (see CFD

application in intelligent buildings, Malkawi and Srinivasan, 2005). Given the fact
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that the difference between conventional and intelligent buildings is only a matter
of how advanced building systems are, we try to explore the major discrepancies

of mathematical models between conventional andintelligent buildings.

..TO INTELLIGENT BUILDINGS

The most difficult part of reviewing mathematical models for intelligent buildings is
that of defining what it is meant by intelligent buildings compared with
conventional buildings. Indeed, there is no general agreement on definitions for
intelligent machines or human behaviours. The Turing test is one of the earliest
proposals for a test of a machine’s intelligence capability described in Professor
Alan Turing’s paper ‘Computing machinery and intelligence’ in 1950. The test
involves two persons as well  as a ‘tested’ computer. Using the terminal, a
person communicates with both computer and another person. When the person
is unable to tell who is who, then the machine is said to pass the test. The Turing
test clearly emphasizes that the machine’s intelligent behaviour should be similar
to human behaviour. lll-definition, uncertainty and multiple objectives are primary
characteristics of human decision-making processes in contrast to a machine’s

behaviour. Pure physical approaches and so-called physical models as applied to

conventional buildings cannot model human behaviour-based systems.3
Mathematical modelling approaches which have uncertainty and flexibility
characteristics, such as neural networks, expert systems, fuzzy logic and
statistical models, offer much better ways of representing human behaviour.
Recent advancements in artificial intelligence are making it possible to integrate
buildings” learning and adaptation capabilities into these uncertainty
mathematical models (Hong et al., 2000). Note that, here, we viewed intelligent
buildings as machine-based systems and generalized their modelling paradigm.

Let us focus onintelligent buildings research to try and pinpoint more suitable



mathematical models. According to Carlini (1988a, b), Arkin and Paciuk (1997)and
Wongetal.(2005),a major technical difference between conventional and intelligent
buildings is that intelligent building technologies are characterized by a hierarchical
presentation of system integration. Most intelligent buildings comprise three
levels of system integration. The top level deals with the provision of various
features of building operation and communication management. The middle
level is performed by the building management systems which control,
supervise and coordinate the building’s relevant subsystems. These subsystems
comprise the bottom level. Intelligent buildings allow interaction and
integration among the subsystems. The subsystems are services systems
typically including heating, ventilation and air-conditioning (HVAC), lighting,
transportation, security and communication systems. The middle level’s control
systems can vary from traditional hard- wired relay-logic ones for conventional
buildings to computer-controlled microelectromechanical systems for intelligent
buildings. The middle and bottom levels also characterize the performances of
conventional buildings. Figure 1 illustrates the hierarchical levels of buildings in
relation to corresponding mathematical models.

The authors of this article argue that the most important difference between
intelligent buildings and conventional buildings is that intelligent buildings have
the ability to integrate their service systems to learn and adjust their
performance appropriately; this is an essential feature of any ‘intelligent’ system
(Kasabov, 1998).4 The integration and learning capabilities are performed using
frameworks5 which can be quite complex since they include consideration of not
only information flow, timing and non-deterministic human behaviour, but also
integration of various problem-solving methodologies in order that the building
can learn from its occupants and environment and adjust its performance (Power
and Bahri, 2005). In controlling such complex systems, which include subjective

responses and non- deterministic aspects of human behaviour, we need
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uncertainty models such as neural network, fuzzy logic and genetic algorithm
models.

Consider wider applications such as, intelligent manufacturing. This can be
broken down into two major areas based on its level of application, namely
strategic and tactical intelligent manufacturing. The two areas are linked
hierarchically through a semantic network (Byrd and Hauser, 1991; Gholamian
and Ghomi, 2007). An illustration of such a breakdown structure for intelligent
buildings has been demonstrated by Chen et al. (2006) and Clements-Croome et
al. (2003). Gholamian and Ghomi (2007) reviewed basic and important
mathematical models called frames, covering manufacturing aspects such that
each frame informs applications of intelligent systems in various aspects. These
frames are essentially uncertainty models, such as neural networks, expert
systems, fuzzy logic and genetic algorithm models.

Last, from the technology and investment point of view, efficiency
assessment and investment considerations are needed in order to increase the
number of buildings incorporating intelligent building concepts. Clearly, costs
and benefits have to be identified and generalized before the evaluation with
any type of method. Many authors have attempted to use various approaches,
though simplified and deterministic mostly, to identify and classify various costs
associated with intelligent buildings, but now emphasize whole life value
(Clements-Croome et al., 2007). The identified costs and values range from
technological factors to management factors and many others (Flax, 1991). In
the investment evaluation area, a plethora of evaluation techniques have been
developed to investigate and evaluate the economic desirability of intelligent
buildings (Wong et al., 2005). These techniques, in a similar fashion to those
applied in cost identification and classification, are based on the ‘time-cost-
money’ principle which clearly involves uncertainty. A general review of this

topic has been reported by Wong et al. (2005). In this report, uncertainty
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mathematical models such as fuzzy logic, analytic hierarchy process (AHP),
multi-criteria decision-making method etc. have been recommended, though
few applications of these methods have been found yet. AHP has been used for

self-assessment of productivity (Li, 1998).
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FIGURE 1 Hierarchical levels of buildings in relation to corresponding
mathematical models; historical evolution of building technologies and applied
mathematical models

TABLE 1 Classification of mathematical approaches applied in intelligent

buildings

Conceptual models Probability-based models
Simple analytical approach AHP/ANP

Bayesian inference

Petri nets
Analytical models Knowledge-based models
Linear dynamic approach Neural networks
Non-linear dynamic approach Expert systems

Fuzzy logic

Genetic algorithm

MATHEMATICAL APPROACHES

Having identified and proved the suitability of uncertainty models in intelligent

9



buildings modelling from different viewpoints (building development, intelligent
building research, intelligent manufacturing, intelligent building investment), a
summary of general mathematical models is presented in this section. The literature
of uncertainty models applied to intelligent buildingsisrich. Avariety of approaches
has been proposed to handle different forms or degrees of uncertainty. By choosing to
detail at an abstract level, four model classes can be generalized: conceptual
models, analytical models, probability- based models and knowledge-based models
as presented in Table 1. The proposed classification is certainly not exhaustive, and
the first two categories have been extensively used for modelling conventional
buildings. Nevertheless, each model category will be discussed in detail and the most

relevant literature cited.

CONCEPTUAL MODELS

Aconceptual modelillustrates multiple factors and their possible relationships for
analysing the main factor effect. The concept of ‘main factor’ is used to embrace
any uncertainties. The main factor therefore is a function of other factors. In
simple case studies, such function can be explicitly defined and is often a simplified,
deterministic and algebraic formula.

Wong and Li (2006) proposed a conceptual model for the selection of an
appropriate combination ofbuildingsystemsandcomponents for a particular
intelligent building project, based on a questionnaire. They first determined the key
attributes affecting the selection of the building systems and components based on
aliterature review. A structured questionnaire was then constructed which
required the respondents to rate theinfluence of the predetermined attributes based
on their judgement and experience. A statistical ‘significance test’ was
employed to identify the rank of these attributions, which led tothefinal
conceptual model.

In assessing intelligent building performance based on the degree of systems
10



integration, Arkin and Paciuk (1997) proposed a simple index, magnitude of
system integration (MSI), to evaluate and compare systems’ integration.

In evaluating investment performance of intelligent buildings, many models
for life-cycle cost analysis and cost—benefit analysis are based on the conceptual

model of net present value method (Akalu, 2001).

ANALYTICAL MODELS

The analytical approach generally involves detailed mathematical models. Model
equations can be based on first principles preferably, dynamic, linear, state-
space, non-linear and statistically empirical equations. Perhaps the most
important models are dynamic models, as building researchers are not simply
interested in the steady states of building performance, but also in the

mechanisms of change that lead from one statetothe next.

Linear dynamic models

Many building systems can be modelled with lineardynamicmodels(LBNL,1982;
Solar Energy Laboratory, 2000; Crawley et al., 2001; Strand et al., 2001). Model
parameter estimation, termed modal analysis, is the common approach to
performing linear modelling. Model equations are in the form of model
parameters which can describe the behaviours of a system for various inputs
and outputs. The linear superposition principleis the cornerstone which is well
developed for linear systems. Using this principle, various theories and
methods for dynamics and system identification have been developed such as
eigensystem realization method (Stephenson and Mitalas, 1971; Hittle and
Bishop, 1983); state-space method (liang, 1982); time-domain method (Davies,
1997) and frequency-domain method (Wang and Chen, 2003) to cite a few.

The application of linear dynamic models in intelligent building studies includes,

11



for example, Ng and Xu’s work (2007), which investigated control of a building
complex for an intelligent building, consisting of a main building and a podium

structure, by using variable friction dampers for mitigating seismicresponses.

Non-linear dynamic models

Non-linear dynamic models have been used extensively in simulating building
services systems (Bourdouxhe et al., 1998; Pasgianos et al., 2003; Jin et al., 2006;
Stables and Taylor, 2006). Apart from the service systems, we frequently need to
model human behaviour and performance for intelligent buildings in order to
understand and improve human performance in building settings. Human behaviour
results from the interaction of people’s generic, physiological and psychological
attributes with the environment. Human behaviour is unpredictable and should always
be coupled with environment events. Complicated behaviour cannot be modelled
using linear dynamic models. In addition, non-linear dynamic models can account for
marked individual differences in response to different environmental factors. This
is because the equations that describe the system are sensitive to the initial
starting behaviour conditions. For two slightly different initial sets, their states may
quickly diverge (Howe and Lewis, 2005). Chaos can result.

Other modelling studies on intelligent buildings include, for example, building
life-cycle cost analysis. Both initial construction expenses and lifetime costs need
to be appropriately addressed. The lifetime costs include those due to business
utilization, operation, maintenance, repair, damage and/or failure consequences, and
also impact on business such as improved productivity (Clements-Croome et al.,
2007). Aleatory and epistemic uncertainties should also be considered in
probabilistic performance evaluation of the structures (Cornell et al., 2002). These
uncertainties refer to the record-to-record variability and the lack of sufficient
knowledge in emergent events. The system stability can be altered such that

some states become less preferred and less reliable, while others become more
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stable and dominant. ‘Phase transition’ is often used to characterize such
phenomenon. Bifurcation can be encountered.

These features clearly exhibit non-linear behaviours which will be addressed
briefly later in this section. Indeed, non-linearity is generic in nature and linearity
is only an exception. However, the main reason why often-linear behaviour is
taken for granted is that non-linear dynamical systems are far less established
than linear systems. The basic linear superposition which is applied to linear
systems and forms the basis of model parameter estimation is no longer valid for
non-linear systems. Complicated phenomena can be found in non-linear systems
such as jumps, limit cycles, bifurcations and chaos of a highly individualistic nature
(Kerschen etal., 2006).

The traditional linearization approach of analysing non-linear systems is
based on the assumptions of weak non-linearities, but these may lead to
erroneous results (Kerschen et al., 2006). Therefore, identification of non-linear
systems is of vital importance. The identification approaches can be classified as
linearization, time-domain methods, frequency-domain methods, modal
methods, time-frequency analysis, black-box modelling and structural model
updating. Once non-linear behaviour has been detected, model parameters can
be estimated using optimization tools such as linear programming, non-linear
programming and dynamic programming.

Using time-domain methods, Rios-Moreno et al. (2007) identified non-linear
behaviours of indoor temperature variations forintelligent buildings. They then
comparedtwo time-series models: linear autoregressive models with external
input (ARX) and autoregressive moving average models with external input
(ARMAX) for forecast purposes. Outside air temperature, global solar radiation
flux, outside air relative humidity and air velocity were used as the input

variables. The result showed that the ARX models gave a better prediction.



PROBABILITY-BASED MODELS
Probability-based approaches are often used to represent uncertainty and deal with
multicriteria decisions. The AHP, its generic form analytic network process (ANP)

and Bayesian analysis are commonly applied in studying intelligent buildings.

AHP/ANP

AHP, developed by Saaty (1980) and Yager (1979), is used to derive ratio scales from
both discrete and continuous paired comparison in multilevel hierarchical structures.
Itisamethodemployedto integrate perceptions and purposes into an overall synthesis.
Box 1 summarizes the steps followed in the AHP and ANP approaches (Saaty,
1996; Chengand Li, 2004, 2005; Yurdakul,2007). Bayesian inference

Bayesian analysis is an iterative process of integrating accumulating knowledge in
order to best judge a future event based on a series of prior situations. It provides
updating information in the form of possibilities using Bayes’ theorem, a
statement in probabilities relating causes to outcomes, as shown in Box 2. It has

broad application in a multitude of scientific, technological and policy settings.

BOX | A brief summary of the AHP/ANP model

1. Developing the structure of the model.*
2. Conducting pair-wise comparisons on the clusters and sub-clusters.
3. Calculating elements and consistency ratio of matrices.**

* The objective of the model is further decomposed into clusters and sub-clusters. AHP is restricted to
hierarchical. ANP is a network structure where the hierarchical restriction can be relaxed.

** ANP has specific steps for generating the global priorities for elements; see references.

BOX 2 Bayes’ theorem

P(A|B)=PLEE

P(A|B) is the probability of event A, given the occurrence of a second event B with unconditional
probability P(B). P(A.4B) is the joint occurrence probability.




Petri nets

One useful mathematical model applied in intelligent systems is Petri nets and
after this there has been a number of extensions. Petri nets consist of places,
transitions, and arcs that connect them, and are very useful for modelling discrete
dynamic systems. Petri nets are a promising tool for analysing systems that are
characterized as being concurrent, synchronous, distributed, parallel, non-
deterministic, and/ or stochastic. These features are particularly important in
building services systems. With Petri nets, it is possible to set up state equations,
algebraic equations, and other mathematical models governing the behaviour of
systems.

Box 3 presents an example of the Petri netsdescribing the discrete dynamics of
the class. This class models the behaviour of a personescaping from a hall (Villani

et al., 2006).

Villanietal. (2006) analysed control strategies for fire safety systems of intelligent
buildings. The components of whole fire safety systems presented different
dynamic natures, such as continuous and discrete dynamics, and therefore a hybrid-
modelling model was applied. A Petri nets model was used to describe the

discrete dynamic components.



Chen et al. (2006) adopted the ANP model to evaluate lifetime energy efficiency of
intelligent buildings. Based on literature and a conceptual model of intelligent
building evaluation and renovation, the authors started with an energy-time
consumption index and chose its approximated gradient, presented as a simple
index function, as a sub-cluster. Its clustered index, called the key performance
indicator, was ratedthroughthe ANPapproach. Su et al. (2005) discussed Petri nets-
based supervisory control theory in discrete event systems. Such a system is a
type of dynamical system created along with the development of computer science,
communication networks and sensor technology. The system has been widely usedin
intelligent buildings.

Makarenko and Durrant-Whyte (2006) proposed an active sensor network
which combines decentralized information fusion and decision-makinginto a unified
flexible framework using a Bayesian approach. Such a framework is suitable for

sensing information applicable to intelligent buildings.

BOX 3 Anillustration of the discrete dynamics model of class (Villanietal., 2006)

21 41 —— 1

P11 t1 1 P21

t31

>~ David

Fred

Discrete dynamics:

t1. becomes aware of fire. Then
runs to hall (p2- ). Reaches the door (t3- ) and decides what
to do (pz-): can run to room (t2-) or enter hall (ts.) or run to exit
(ps-1). If enters the hall, may change direction (ts- ) and run back to
the room (ps-1). While in the hall, the person may die (t7-or tg- ) or

reach exit (to- ). Currently Paul is at the entrance of the hall, David
and Fred are runnina to the exit.




KNOWLEDGE-BASED MODELS

Since knowledge-based models are uncertainty models which are often applied for
intelligent decision support and control, they are suitable for modelling the
increased complexity in intelligent building systems and therefore are being
extensively applied in such fields. Further details, including model complications,

will be discussed in the following subsections.

Neural networks

Motivated by the structure of the human brain, neural networks are composed of
simple elements, so-called neurons, operating in parallel. These elements are
quite similar to brain neurons, which can process massive amounts of information
in parallel. Neural networks are largely determined by the connections between
elements, and their structure has to be determined from external stimulus data
(Cheng and Titterington, 1994).

Box 4 illustrates a simple example of neural networks with three inputs, one
hidden layer of neurons containing four nodes and one output. Such neural networks
system can be considered as a system connecting inputs and outputs in a possible
linear or non-linear way through hidden layers. In Box 4, arrows indicate the
direction of each relation.

The neural network approach has been widely used in pattern recognition
applications. The goal of neural networks is to adjust weights by training examples
to perform a particular task. Mathematically, this particular task often means
minimizing a cost function which measures how close predicted values are to
target values. However, the required number of training examples is often
combinatorially large meaning combinatorial complexity of learning

requirements. This complication, known as ‘the curse of dimensionality’, was first
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identified in pattern recognition research in 1960 (Bellman, 1961).

BOX4Anillustration ofaneuralnetworkmodel

Input
X1
X2

Output

X3

hidden
layer

Let weight wjj connect between input xi and neuron in the hidden layer through
activation function g. Similarly, weight w'j connects between neuron and output y
through activation functions f and g. Then,

y= f(z W'j g(z Wijxi))
j i

Expert systems

An expert system collects human expertise and transfers it to a computer for
decision-making. The computer-stored knowledge can be called on by users for advice.
The computer can make inferences and arrive at a specific conclusion. Hence an
expert system acts as an expert consultant and provides powerful and flexible means
for obtaining solutions to a variety of problems that cannot be dealt with by other
traditional approaches.

A rule-based expert system was first introduced in 1970 (Winston, 1984) to
solve the problem of combinatorial complexity of learning requirements in neural
networks. The idea behind the system was that the rules could capture knowledge
without learning (Perlovsky, 2006). A rule-based expert system contains
information such as IF-THEN. However, with the number of rules growing, such

a system suffers from combinatorial complexity of rules.



Other types of expert systems, called knowledge-based systems, beganin the
1980s (Perlovsky, 2006) and combined advantages of rules with learning adaptation
to target the problem of combinatorial complexity of rules in rule-based expert
systems. The learning adaptation is accomplished by fitting model parameters,
which requires selecting data subsets corresponding to various models. The
number of subsets can be combinatorially large. The systems have combinatorial

complexityin the computation processes.

Fuzzy logic

In parallel research, fuzzy logic was introduced in the 1960s and presents the
process of making decisions by simulating human reasoning, characterized by
uncertainty and imprecision (Zadeh, 1965). The approach is useful because process
description is not always a matter of black and white, true or false like classical
Booleanlogic. Therefore, fuzzy logic provides a simple way to arrive at a conclusion
based on vague, ambiguous and imprecise data. Takean example: the rule A= B. If
A is not observed nothing can be inferred in classic logic. However, if ‘nearly A’ is
observed, a conclusion can be drawn (and precisely constructed), which can be
expressed as ‘nearly B’ in fuzzy logic. The idea can be used to monitor systems
what would be difficult or impossible to model with classical logic ideas. In fuzzy
logic, an element can belong partially to several subsets using a membership
function asillustrated schematically with a simple example in Box 5.

One of the classical uses of fuzzy logic is the design of fuzzy rules which
can be interpreted from linguistic rules like temperature ‘low’, ‘medium’ and ‘high’.
Fuzzy logic systems treat the imprecision of inputs and outputs by definingthem
with fuzzy memberships and sets. Fuzzy logic encounters a problem of degree of
fuzziness. If too much fuzziness is specified, the solution does not achieve a good

accuracy; if too little, it becomes formal logic. Therefore, it is difficult and time-
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consuming to determine the correct set of rules and membership functions for a
complex system; fine-tuning a fuzzy solution can be time-consuming too. This
presents a combinatorial complexity problem.

To resolve these weaknesses, expert systems, neural networks and genetic
algorithms are often combined to learn the best membership functions through

training algorithms, as demonstrated by Mendel and John (2002).

BOX 5 An illustration of definition and properties of a membership function
Definition
set X : xeX ; membership function p,(x): X—> [0,1]

o fuzzy set A is defined by p,(x) which takes values in the interval of [0,1].
o for x, if p,(x) = 1 then x fully belongs to A.

e for x, if p,(x) = 0 then x does not belong to A.

e of course the intermediate cases interest us.

Properties
The general properties of classical sets can also be extended to fuzzy sets, e.qg. for fuzzy sets A
and B

- low medium  high
M aus = Mindu ), g x)}

'J AnR N max{"‘l A (X)I 'Jp (X)} Membership
Mo =1-p %) Function

Temperature

Genetic algorithm

A genetic algorithm, belonging to evolutionary computation, is a method for solving
optimization problems originally inspired by biological evolution (Goldberg, 1989).
A genetic algorithm encodes a potential solution to a specific problem to a
chromosome-like structure and applies recombination operators to these
structures in order to preserve critical information. A genetic algorithm starts withan
initial population and then selects parents to produce the next generation using
specific rules. Three main rules are shown in Box 6. Over successive generations,

the population evolves towards an optimal solution. Alarge number of iterations may
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be needed for a genetic algorithm to develop an optimal solution which is again a
combinatorial complexity problem.

Intelligent buildings provide a wide range of expert system applications. La Roche
and Milne (2004) developed a microcomputer-controlled thermostat as an
intelligent component for intelligent buildings based on simple rule-based decisions.
Such controllers can manage air flow according to cooling needs in a building and
the resources in the environment. Sacks et al. (2000) studied knowledge-based
models for the structural design of buildings. They created intelligent parametric
templates within an automatic building system. The template was applicable for
rectangular plane building types. Liu et al. (2004) developed a domain name system
(DNS) intelligent management system using a knowledge-based system and
ontological engineering technologies which can both be extended to intelligent
buildings applications.

Moreover, combinations of two or more knowledge-based approaches are
common, especially when applying fuzzy logic models. Tanietal. (1998) developed
an optimal adaptive and predictive control system and its digital simulations for
a five-degree-of-freedom system subjected to earthquake loading for
intelligent buildings. Prediction of earthquake input and structural
identification were performed by using neural networks and a genetic algorithm.
Optimization was carried out by means of maximizing decision using fuzzy logic

approaches.

Rafael Alcald et al. (2005) proposed intelligent HVAC control for intelligent buildings
by using weighted linguistic fuzzy rules in combination with genetic algorithms for a
rule selection process. Lo et al. (2007) did similar work for automatically detecting
faults on HVAC systems. Sierra et al. (2006) proposed an intelligent system
architecture based on neural networks, expert systems and agent technologies to

improve the performance of intelligent buildings.
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The central computer, containing a database for information and the expert system
fordecision- making, carried out monitoring, visualizing and recording parameters
while local controllers performed regulation throughout the building. The
information about relevant occupancy and setting conditions, as well as the final
values of environmental variables, was used to train a multi-layer neural network,
the outcomes of which would provide environmental setting values in the case of

absence of occupants or of preference information.

BOX 6 A brief summary of the genetic algorithm approach

e Select individuals that contribute directly to the population at the next generation (selection).
e Combine two parents to form children for the next generation (cross-over).
e Make random change to parents to form children (mutation).

CONCLUSION

This article has reviewed the historical evolution of mathematical models applied
in the development of building technology, including conventional buildings and
intelligent buildings. Physical models (or semi-physical models) have played an
important role in understanding mechanisms of buildings and generating and
testing hypotheses. They are widely applied in conventional building controls.
Knowledge-based uncertainty models are a plausible approach to modelling
intelligent building systems which have poor definition, uncertainty and multiple
objectives — characteristics similar to human decision-making processes.

In the next issue, Part 2 of this article will discuss some models and show the
advantages of approaches such as semiotics and chaos before drawing up a final

set of conclusions.
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NOTES

1. The models are also known as ‘mechanistic’, ‘phenomenological’ and “first principle’
models.

2. The models are also known as ‘black box’, ‘statistical’ or ‘input and output’ models.

3.Recent development of physical theories has great potential in modelling human
behaviours by classical physics mechanism, see Perlovsky (2006).

a.According to the latest trends in the field, intelligence in building systems tends to be
distributed (So, 1999).

s.Sometimes called model architectures, module architectures or system
architectures. It can be considered as one type of mathematical conceptual model,

which is discussed in Part 2.
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