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Empowering stroke recovery 
with upper limb rehabilitation 
monitoring using TinyML based 
heterogeneous classifiers
Jiayu Xie1, Qun Wu1, Nilanjan Dey2, Fuqian Shi3, R. Simon Sherratt4 & Yuxiang Kuang5

Stroke is one of the leading causes of disability worldwide, with approximately 70% of survivors 
experiencing motor impairments in the upper limbs, significantly affecting their quality of life. 
Home-based rehabilitation offers a cost-effective approach to improving motor function, but it 
faces challenges, including inaccurate movement reporting, lack of real-time feedback, and the high 
cost of rehabilitation equipment. Therefore, there is a need for affordable, lightweight home-based 
rehabilitation monitoring systems. This paper presents an intelligent wearable sensor system that 
utilizes TinyML AI technology to classify eight upper limb rehabilitation movements with minimal 
sensors. The system is designed for patients with upper limb impairments who retain antigravity 
voluntary movement, enabling them to monitor rehabilitation progress at home. The study recruited 
10 healthy volunteers to perform rehabilitation movements, creating a standardized dataset for 
model training. Data normalization, preprocessing, model training, and deployment were carried out 
using the Edge Impulse platform. A hybrid classifier, combining multilayer perceptron and k-means 
clustering, achieved 96.1% training accuracy, 95.09% testing accuracy, and 88.01% deployment 
accuracy. The proposed TinyML-based system shows promising potential for home-based rehabilitation 
of stroke patients.

Keywords  TinyML, Wearable devices, Stroke, Home rehabilitation, Inertial motion capture

Cerebral apoplexy, commonly referred to as stroke, is one of the principal aetiologies of enduring disabilities 
worldwide1. Statistical analyses indicated that approximately 70% of individuals who recovered from stroke 
experienced motor dysfunctions after discharge from medical facilities, with upper limb hemiparesis being the 
most prevalent complication. This impairment significantly hampers the ability of stroke survivors to perform 
activities of daily living (ADL)2,3, thereby imposing profound psychological and financial distress upon patients 
and their kin.

Empirical evidence suggests that prolonged and consistent rehabilitation training can significantly ameliorate 
motor functional impairments resulting from stroke4,5. However, the vast majority of stroke survivors lack 
the resources necessary for sustained clinical rehabilitation, and the rehabilitation process is hampered by 
factors such as time, distance, costs, the scarcity of specialists, and limited clinical facilities6–9. Studies have 
indicated that home-based rehabilitation represents a more sustainable model of recovery, facilitating more 
effective promotion of long-term rehabilitation training for patients and transitioning care services towards a 
decentralized model10–12, which is divergent from traditional clinical therapeutic approaches13,14. Compared 
with hospital-based rehabilitation, home rehabilitation offers greater flexibility and autonomy, affording patients 
substantial amounts of time for self-directed training, and home-based recovery has been shown to reduce 
rehabilitation healthcare costs by up to 15%15. Nonetheless, for patients receiving rehabilitation therapy within 
the home environment, accurately assessing the quality and quantity of rehabilitation movements poses a 
significant challenge. Research has documented patients’ difficulties in precisely reporting the quantity and 
quality of exercises performed16–18, as well as their struggles to adhere to rehabilitation training over extended 
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periods16. Consequently, the classification of rehabilitation movements has emerged as a pressing issue that 
needs addressing in the context of home-based rehabilitation.

Rapid advancements in artificial intelligence (AI) technologies are pivotal in supporting decentralized care 
models. Specifically, the development of unobtrusive motion capture technologies to establish simple, safe, 
effective, and objective systems for movement classification has become a strategic application in supporting 
remote home-based rehabilitation models4,19. Traditional systems for movement classification include (1) 
camera-based systems20–22, among which depth cameras, exemplified by Kinect23, have achieved significant 
milestones in the domain of rehabilitation motion recognition24–27. However, camera-based solutions necessitate 
ample, unobstructed observational space to monitor participants, a requirement that is challenging to meet 
outside laboratory environments28,29. Moreover, the deployment of visual recognition technologies within 
domestic settings may trigger privacy invasion concerns30,31. (2) Wearable-based inertiiial sensor systems, which 
employ either single or multiple inetial measurement units (IMUs), facilitate the determination of each limb’s 
position by resolving the corresponding kinematic equations32–34.

Inertial motion analysis has attracted increasing interest in recent decades because of its advantages over 
classical optical systems35. Owing to their integrative capabilities, low cost, and ease of implementation, IMUs 
are extensively employed for monitoring rehabilitation exercises within home settings36–39. Table 1 provides a 
detailed presentation of the relevant works associated with this study, including achievements in movement 
classification using either a single or multiple sensors. For example, Zinnen et al.40 reported a classification 
accuracy of 93% for 20 movements via a five-device system and an accuracy of 86% with two wrist devices, 
covering actions such as manipulating various car doors and a writing task. Zhang et al.41 introduced a two-
device framework that achieved 97.2% accuracy in classifying four arm movements. Lui and Menon33, Wang 
et al.42, Alessandrini et al.43, and Li et al.44 all rely on multiple sensors for classification. Similarly, studies by 
Basterretxea et al.45, Xu and Yuan46, and Choudhury et al.47 also demonstrate high accuracy, with substantial 
diversity in the classified movements. However, as shown in the relevant studies listed in Table 1, few studies 
have achieved high-precision motion classification using a single sensor. Multi-device systems are generally 
more complex than single-device setups are, particularly when devices are affixed to multiple limbs or when 
interdevice calibration is needed. Whenever possible, a single-device system is preferred due to its ease of 
wearability and configuration33. The rapid development of machine learning algorithms has made it possible 
to achieve rehabilitation movement classification using a single inertial sensor. For example, Zhang et al.48 

Author Sensors Power consumption Activities Performance metrics

Xie et al. 
(The present 
study)

An accelerometer is utilized The peak power 
consumption is 54.05 mW

Eight types of upper limb rehabilitation 
movements are analysed

The testing accuracy achieved is 95.09%, with a 
final deployment accuracy of 88.01%

Lui and C. 
Menon.33

One wrist-worn inertial device 
(MPU9250) and an Omron 
D6T thermal sensor

- Twenty-four types of upper limb movements The classification accuracy for the 24 upper 
limb movements reaches 93.55%

Giordano, et 
al.52 One accelerometer

Peak power consumption 
is approximately 8 mA. 
8 mA represents the 
operating current of the 
device during operation 
(the common voltage of 
NRF52832 is 3 V, and 
the corresponding power 
consumption is 24mW)

four different usage classes (Tool transportation, 
no-load, metal, and wood drilling)

achieving an
accuracy of 90.6% with a model size of 
approximately 30 kB

Wang et al.42

The upper limb wearable 
rehabilitation training data 
collection device is composed 
of three inertial sensor units, 
MPU6050

– There are eight types of upper limb rehabilitation 
exercises

The CNN-LSTM model demonstrates the best 
performance with an identification accuracy 
of 99.67%, followed by the multilayer LSTM 
model with an identification accuracy of 97.00%

Basterretxea 
et al.45

The device utilizes 
accelerometers and stretch 
sensors to capture data

1.13 mW sensing and 11.24 
mW computation power 
consumption

It can distinguish between various activities such 
as walking, sitting, standing, driving, lying down, 
jumping, and the transitions between these states

With a power consumption of less than 12.5 
mW, the system achieves an accuracy of 97.7% 
in recognizing six activities and their transitions

Alessandrini 
et al.43

photoplethysmogram (PPG) 
sensors and accelerometers –

the device can differentiate between walking, 
ascending stairs, descending stairs, sitting, 
standing, and lying down

Average test time is 150.1 at the
highest test accuracy of 95.54% on
the microcontroller unit (MCU)

Xu and 
Yuan46

The accelerometers are worn 
on the mid-waist and front of 
the ankle

–

The device can distinguish between nine types 
of activities: walking, running, ascending stairs, 
descending stairs, resting, standing, sitting-to-
standing, standing-to-squatting, and squatting-
to-standing

The average recognition rate for these nine 
activities is 97.26%, with an identification rate 
of 98.56% for the four transition movements

Choudhury 
et al.47

The device employs 
accelerometers, microphones, 
and light sensors

Power consumption is 
approximately 43 mW
(with all sensors running
continuously)

It can differentiate between activities such as 
walking, running, cycling, using an elliptical 
machine, and using a stair machine

Highest Accuracy is 93.8% (Inference
v2.0 with temporal information
included and supervised learning)

Li et al.44

Two IMU modules 
(MPU9250), each comprising 
a tri-axis accelerometer, a tri-
axis gyroscope, and a tri-axis 
magnetometer

–
Five types of upper limb rehabilitation exercises: 
forearm pronation & supination, lumbar touch, 
shoulder touch, shoulder anteflexion, and 
shoulder extension

The overall recognition accuracy for five 
motions achieves 99.34%

Table 1.  Comparative analysis of related work.
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achieved an accuracy of 96.1% for nine activities among healthy participants, including actions such as walking, 
running, sitting, and standing. In another study, Khan et al.49 achieved a precision of 97.9% using chest-
mounted devices for 15 movements across various activities (e.g., lying, sitting, standing, and transitions among 
these postures). The rapid advancement of machine learning algorithms has facilitated the implementation of 
rehabilitation movement classification via a single inertial sensor. Tseng et al.50 reported a single-device system 
that achieved a classification accuracy of 93.3% for three movements associated with door opening in a study 
involving five healthy participants. Zhang et al.51 presented a system employing a solitary IMU for discerning 
six-arm manoeuvres among fourteen stroke subjects, with classification accuracies of 99.4% with an innovative 
algorithm and 98.8% when an SVM framework was used. These manoeuvres, which encapsulate four of the 
human arms’ seven degrees of freedom, include flexion and extension at the shoulder joint, signifying the arm’s 
forward and backwards motion; abduction and adduction at the same joint, indicating lateral movement away 
from and towards the torso; pronation and supination of the forearm, involving rotational movement to orient 
the palm downwards and upwards, respectively; and flexion and extension at the elbow joint, denoting the arm’s 
bending and straightening. This delineation underscores the integral relationship of movements with specific 
joint actions, which are crucial for comprehensive upper limb rehabilitation in stroke recovery.

However, the aforementioned wearable sensor-based rehabilitation systems are still often categorized 
as traditional cloud computing solutions due to the limited computational capabilities of wearable devices, 
which are often inadequate for extracting useful information from collected data31,52. The data gathered by 
the sensors are typically streamed by a node and transmitted to an external device via a wireless network for 
subsequent processing in the cloud. These cloud-based processing methodologies inevitably increase the energy 
requirements for wearable device communication, development costs, and system latency and introduce security 
and privacy concerns. Consequently, most of the current research on wearable sensor-based rehabilitation 
systems is conducted within a clinical context and primarily serves to aid clinicians in rehabilitation centers.

TinyML, a burgeoning and relatively nascent technology within the AI domain53,54, is attracting considerable 
interest across academic and industrial landscapes. This technology represents a confluence of two distinct 
paradigms, machine learning (ML) and the Internet of Things (IoT), promulgating the deployment of optimized 
ML models in devices constrained by computational resources, notably, microcontroller units (MCUs) powered 
by small batteries53,55. Notably, Prado et al.56 employed TinyML techniques to enhance the autonomous driving 
capabilities of microvehicles. Lahade et al.57 introduced a TinyML methodology to quantify the outputs of 
alcohol sensors on MCUs and to calibrate the sensor responses locally. Piątkowski and Walkowiak58 devised 
a strategy employing TinyML techniques to ascertain the correct wearing of masks, achieving remarkably low 
power consumption and high accuracy. Avellaneda et al.22 presented a TinyML-based deep learning strategy 
for indoor asset tracking, with the system attaining a classification accuracy of 88%. In essence, TinyML can 
address the challenges associated with cloud-based solutions, such as potential privacy infringement risks, 
response latency, additional network load, and significant power consumption54, and synergizes with algorithms 
capable of executing intricate tasks. This facilitates local inference on wearable devices with severely limited 
computational ability, bypassing the elaborate cloud-based process and heralding the commercialization of 
wearable devices in domestic rehabilitation contexts.

This paper describes the design, execution, and appraisal of a domiciliary upper limb rehabilitation 
framework leveraging TinyML technology aimed at furnishing stroke survivors with an inconspicuous, 
economically viable home-based upper limb rehabilitation system equipped with instantaneous feedback 
mechanisms. The architecture of the system is bifurcated into hardware and software segments. Notably, the 
hardware infrastructure is orchestrated around a microchip equipped with Bluetooth low-energy (BLE) and 
an integrated IMU system, rendering it highly suitable for the procurement and scrutiny of inertial datasets. 
The microchip can conduct sophisticated movement classifications locally in an energy-efficient manner while 
dispensing real-time feedback to the user via an LED light ring and a vibrating motor module. The software 
is engineered via the MIT APP inventor framework, establishing a wireless conduit with hardware through 
BLE, thereby facilitating efficacious directional and feedback communication to the user. To our knowledge, no 
research papers have been published, nor have any devices developed that have utilized TinyML, as used in this 
paper, for the task of locally analysing upper limb rehabilitation movements.

The main contributions of this paper are summarized as follows:

	(1)	 A comprehensive architecture is proposed, implemented, and evaluated for the recognition of upper limb 
rehabilitation actions, leveraging acceleration data to facilitate this process.

	(2)	 A multilayer perceptron (MLP) neural network model is presented to ensure the efficacious and precise 
identification of activities pertinent to upper limb rehabilitation.

	(3)	 Substantial optimization of the model size was achieved, subsequently enabling its integration into an MCU 
to facilitate ultralow power operation.

	(4)	 A flexible lightweight wearable device is presented to discern rehabilitation actions within the upper limb.

The rest of the paper is structured as follows. Section "Materials and methods" describes the methodology used 
to build the home upper limb rehabilitation system. Section "Results" describes the experiments conducted 
to evaluate the system and the results. Section "Discussion" discusses the results obtained. Finally, Section 
"Conclusion" concludes the paper and suggests future work.

Materials and methods
This section delineates the proposed architecture of a home-based upper limb rehabilitation system leveraging 
TinyML, along with the corresponding design and implementation process. Figure 1 presents a representation 
of the proposed system.
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Hardware design
Selecting the appropriate deployment device constitutes a pivotal factor influencing the overall design of the 
TinyML system. The principal characteristics to consider include cost, speed, power consumption, memory 
size, and product dimensions. Warden and Situnayake53 recommended three representative microcontrollers 
that support the TinyML framework, as illustrated in Table 2, and a detailed examination of these three 
microcontrollers was conducted. Among the three MCUs, the STMicroelectronics STM32F746G exhibits a 
marked superiority in performance; however, it presents critical drawbacks in terms of price, size, and power 
consumption. Although the SparkFun Edge (Apollo3 Blue) possesses certain advantages over the Arduino 
Nano 33 BLE Sense Rev2 in terms of price and power efficiency, the dimensions are of paramount importance 
considering the aim of this study to provide an unobtrusive home rehabilitation system. Hence, the Arduino Nano 
33 BLE Sense Rev2 was selected as the microcontroller for this research. It employs the Nordic Semiconductor 
nRF52840 microcontroller as its primary processing unit, which is sufficiently rapid for the computational tasks 
of this study and relatively low in power consumption. The Arduino Nano 33 BLE Sense Rev2 also features an 
onboard 9-axis IMU system, comprising a 6-axis BMI270 and a 3-axis BMM150, offering adequate precision for 
measuring acceleration, rotation, and magnetic fields in 3D space. Importantly, within this study, the detection 
of upper limb rehabilitation movements relies solely on accelerometer data, which measure the vector of the 
gravitational field and the linear acceleration produced by forces acting on the sensor across each of its three 
mutually orthogonal sensor axes. (​h​t​t​p​s​:​​​/​​/​​x​-​i​​o​.​​c​o​.​​u​k​/​o​​p​​e​n​-​s​o​u​​​r​c​e​​-​i​​m​u​​-​a​n​​d​​-​a​h​r​​s​-​a​l​g​o​r​i​t​h​m​s) The rationale 
for this selection is that accelerometers consume significantly less power than gyroscopes do (microwatts 
versus milliwatts)59, making them more suitable for prolonged continuous monitoring. Previous research has 
corroborated the feasibility of using accelerometer data to assess upper limb movements accurately60–62. In this 
study, we used the Arduino Nano 33 BLE Sense Rev2 chip paired with the Edge Impulse platform. This platform 
offers ready-made, open-source firmware designed for this specific development board, available on GitHub 
at edge impulse/firmware-arduino-nano33-ble-sense. By using this firmware, we streamlined our development 
process, avoiding the need to build firmware from scratch. This approach not only saved substantial development 
time but also allowed us to focus more on the fundamental aspects of our research. Figure 2 presents the details 
of the hardware system, where Fig. 2a represents the schematic diagram of the device wearing scenario. Figure 2b 

Microcontroller Price CPU, Speed Power Consumption Memory Size

SparkFun Edge (Apollo3 Blue) $16.50 ARM Cortex-M4F, 48 MHz 6uA/MHz 384 KB SRAM, 1 MB FLASH 40.6 mm*40.6 mm

Arduino Nano 33 BLE Sense Rev2 $41.90 ARM Cortex-M4F, 64 MHz 14.0625µA/MHz 256 KB SRAM, 1 MB FLASH 18 mm*45 mm

STMicroelectronics STM32F746G $55.13 ARM Cortex M7, 216 MHz 0.463 mA/MHz 340 KB SRAM, 1 MB FLASH 80 mm*130 mm

Table 2.  Comparison of selected CPUs.

 

Fig. 1.  Schematic representation of the system.
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indicates the acceleration data collection of the wearable device. Figure 2c illustrates the circuit principles and 
structural layout of the wearable device.

Software design
A mobile application (app) compatible with the hardware device was developed on the MIT App Inventor 
platform63 and was designed to facilitate more intuitive rehabilitation training for patients. In Fig.  3, a) 
illustrates the application in its initialization state, which prompts the user to establish a BLE connection with 
the corresponding hardware device; In Fig.  3, b) presents how the user is alerted when the app has not yet 
been connected to the hardware device; In Fig. 3, c) displays the BLE scanning status page, where users select 
the desired device for connection on the basis of the hardware device’s name; In Fig. 3, d) indicates successful 
device connection, allowing users to initiate rehabilitation training by pressing the “Start Exercise” button on the 
interface; and In Fig. 3,e) the app guides users through rehabilitation exercises via video. By tapping the button 
labelled “Effective Repetitions”, users can view the number of exercise repetitions marked as effective by the 

Fig. 3.  Illustrates the interface interactions of the mobile application: (a) The initialization interface. (b) 
Alerting the user that the app has not yet established a BLE connection with the hardware device. (c) Scanning 
for nearby BLE devices. (d) Successful BLE connection with the hardware device. (e) The interface after 
initiating the rehabilitation exercises.

 

Fig. 2.  Details of the Hardware System: (a) Wearable Device Wearing Scenario. (b) Device Acceleration Data 
Collection. (c) Wearable Device Circuit Principles and Structural Layout.
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app. The app provides instructional videos for eight upper limb rehabilitation exercises (these exercises will be 
described in Section "Materials and methods").

The interactive logic between the app and the hardware device is depicted in Fig. 4, where the app functions 
as the central device (server) and the hardware device operates as the peripheral device (client). Upon the 
activation of the physical switch on the hardware device, the periphery initiates BLE initialization to ascertain the 
successful activation of the BLE module. Following successful activation, the periphery repetitively broadcasts 
BLE advertisements, and upon acquiring the advertisement data, the central device attempts to establish 
a connection with the node. After connection establishment, the central device interacts with the accessible 
information held by the node, a process predicated on services, each of which is further delineated into 
characteristics. In this study, two characteristics were instantiated for the BLE service of the hardware device: one 
facilitating read and write operations pertinent to action characteristics and another designated for notifications 
related to score characteristics. After the establishment of a BLE connection between the server and the client, 
information is included in the action characteristic, which conveys the current rehabilitation action ID to the 
client. Following the acquisition of acceleration data, the client executes local inference through the TinyML 
model. If the classification result aligns with the rehabilitation action ID inscribed by the server, it denotes the 
correctness of the patient’s rehabilitation action, prompting the operation of the LED ring and vibration motor 
module on the hardware device to furnish feedback to the patient. Moreover, the score characteristic designated 
for notifications apprises the central device of the count of effective actions.

Fig. 4.  System interaction logic diagram. The “score” represents the distance between a new data point and its 
nearest centroid, where "n" denotes the threshold.
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Rehabilitation movements
The Brunnstrom approach constitutes a comprehensive therapeutic methodology tailored for the motor recovery 
of stroke patients64. The Brunnstrom theory divides the restoration of limb functionality into six distinct phases, 
within which patients acquire the ability to perform active exercises against gravity during phases 4 to 6, 
facilitating advanced rehabilitative training within a home environment. In accordance with the Brunnstrom 
approach to rehabilitation, eight upper limb rehabilitation exercises were identified for this study, as illustrated 
in Fig. 5. The selection of these exercises is attributed to their prevalence in hospital settings, their familiarity 
among stroke patients, and the comprehensive nature of the training content they offer, encompassing various 
aspects of motor impairments, including multijoint flexibility, muscle strength, and spasticity. Notably, exercises 
1–5 are categorized as upper limb flexion movement training, whereas exercises 6–8 focus on upper limb 
extension movement training.

Data acquisition and analysis
This study focused on upper limb movements in poststroke rehabilitation training and included a total of ten 
physically healthy volunteers rather than actual stroke patients. The cohort comprised six males and four females, 
with an average weight of 59.2 ± 7.56 kg and height of 170 ± 7.32 cm; the mean age was 23.9 years (ranging from 
22 to 26 years). Participants reporting any prior musculoskeletal disorders, pain, or discomfort were excluded. 
Additionally, anthropometric data (height, weight, sex, and age) were collected from the participants, all of 
whom signed a written informed consent.

The device utilized for data acquisition affixed to the participant’s dominant hand at the wrist via Velcro 
is illustrated in Fig.  6. Data collection and labelling were conducted via the data acquisition tools provided 
by the Edge Impulse platform65. Previous studies reported that a signal data frequency of 10 Hz is sufficient 
for detecting arm movements66. The default sampling rate of the Arduino Nano 33 BLE Rev2 chip is 119 Hz; 
however, we adjusted the sampling rate to 50  Hz (resulting in an actual effective sampling rate of 48.8  Hz) 
through downsampling, which meets the sampling precision required for this study.

As depicted in Fig. 6, participants are seated on a stool without armrests, maintaining an upright posture. 
The participants completed the eight rehabilitation exercises per the instructions displayed on a computer. 
Upon completion of each exercise, the arm is allowed to fall naturally to a vertical resting position before the 
exercise is repeated. This methodology is utilized to collect data on the fundamental movement units of the 
eight rehabilitation exercises during the upper limb motion process. Each posture was repeated 20 times for data 
collection, with each collection lasting 5 s, culminating in a total of 141 min and 5 s of raw accelerometer data, 
which were uploaded to the Edge Impulse platform in JSON format. The participants were afforded appropriate 
rest periods after the collection of each action. During the data acquisition process, participants were instructed 
to avoid contact with surrounding objects to prevent excessive acceleration and to refrain from making other 
significant body movements that could affect data collection. Notably, the data collection was conducted via a 
cable connected to a computer.

Fig. 5.  Schematic depiction of eight rehabilitation assessment exercises based on the Brunnstrom approach.
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Each action constitutes a time series composed of acceleration signals along three orthogonal axes, XYZ. 
However, extracting motion patterns directly from raw acceleration data is exceedingly challenging because of 
high-frequency oscillations and noise. Therefore, prior to modelling, the raw data undergo preprocessing for 
feature extraction and selection. Window size and stride are critical hyperparameters in neural networks and 
other machine learning algorithms. To identify the optimal combination for our specific network, we conducted 
a series of tests varying these two parameters. Given that the discrete wavelet transform was employed for data 
preprocessing, the minimum window size required was 2560. Therefore, in our experiments, the smallest window 
size was set to 2800, considering the maximum data length of 5000, with the largest window size capped at 4000. 
This upper limit was chosen because increasing the window size further would not sustain an adequate number 
of data points to support the creation of multiple windows given the stride, thus impacting data utilization 
and the comprehensiveness of the analysis. As demonstrated in Table 3, the results indicate that the optimal 
validation accuracy was achieved with a window size of 3600 and a step size of 1800. Through overlapping and 
repetitive segmentation, each piece of raw acceleration data was divided into two windows, each 3600 in size 
with a stride of 1800, resulting in a total of 3064 training windows. Within the edge impulse platform, a robust 
digital signal processing (DSP) module is subsequently provided. Given the data typology of this study, we 
employed an input processing module based on spectral analysis for feature extraction. The spectral feature 
block encompasses two practical tools: the fast Fourier transform (FFT) and the discrete wavelet transform 
(DWT). We opted for DWT because it allows for signal decomposition on the basis of local changes in time and 
frequency, making it more suitable for analysing complex signals with transient or irregular waveforms, such as 
those emanating from accelerometer-based motion or vibration.

The raw acceleration data are decomposed into multiple approximations and detail levels through the 
application of the discrete wavelet transform (DWT), facilitating a nuanced analysis of the signal. Specifically, 
the features encompass acceleration axes (AccX, AccY, AccZ), levels (L0, L1, L2), and 14 statistical measures or 
transformations, yielding a total of 126 features. Following signal decomposition, relevant features are computed 

Window size (ms) Stride (ms) Stride: WindowSize Ratio (%) Accuracy (%) Loss

4000 1000 25 92.2 0.45

3600 900 25 87.0 0.58

3200 800 25 84.4 0.47

2800 700 25 85.1 0.69

4000 2000 50 90.4 0.26

3600 1800 50 93.0 0.2

3200 1600 50 83.9 0.51

2800 1400 50 84.6 0.48

Table 3.  Validation set accuracy for different window lengths and overlapping, best result displayed in bold.

 

Fig. 6.  Schematic of the data collection process: (a) The chip utilized for data acquisition. (b) The USB cable 
employed for data transmission. (c) Notebook computer.
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at each level, including time-domain features (zero cross, mean cross, median, mean, standard deviation, 
variance, and root mean square), frequency-domain features (entropy), and statistical domain features (5th 
percentile, 25th percentile, 75th percentile, 95th percentile, skewness, and kurtosis).

Implementation of the TinyML model
In this section, the neural network architecture and related work are described. To identify eight distinct upper 
limb rehabilitation actions exclusively through accelerometer data, we selected Edge Impulse, a web-based 
machine learning development platform, which furnished us with a comprehensive deep learning solution.

To identify the optimal training parameters for the model, this study conducted a series of experiments 
aimed at constructing an effective data structure for deep learning model inputs, ensuring the model’s ability to 
accurately learn and predict. Table 4 presents the optimal combination of hyperparameters determined through 
these experiments. The dataset used for training the model was randomly divided into two subsets: a training 
subset comprising 80% of the data and a testing subset consisting of the remaining 20%. The model was trained 
on the training subset and subsequently tested on the testing subset.

The Edge Impulse Studio offers a straightforward and effective module for classification learning. A 
multilayer perceptron (MLP) was constructed and trained utilizing the TensorFlow and Keras libraries for this 
classification task. Specifically, model training employs a sequential model architecture, providing a linear stack 
for the hidden layers. The deep neural network is engineered with an input layer that captures 126 distinct 
features and is meticulously designed to identify the unique attributes inherent to each category. To enhance 
the model’s robustness and prevent overfitting, it includes two hidden dense layers equipped with 40 and 20 
neurons. A dropout layer, introduced with a dropout rate of 0.25, is strategically positioned between these dense 
layers to diminish the likelihood of overfitting, thereby ensuring a more generalized model performance.

For the choice of the activation function, the hidden layer uses the rectified linear unit (ReLU) activation 
function. Because ReLU can introduce nonlinearity while maintaining computational simplicity, it helps 
the model learn complex data representations and improves the model training speed, generalizability and 
robustness. Its function expression is shown in Eq. (1):

	 ReLU (x) = max (0, x)� (1)

where x is the input to the neuron, max represents taking the larger of the two numbers, and 0 is the cut-off 
point for ReLU, which outputs x if x is positive and 0 if x is negative.

For the output layer, a Softmax activation function was used. Since this study involves the classification of 
eight different upper limb rehabilitation actions, the output layer is configured with eight neurons, and the 
output of each neuron represents the probability of belonging to the corresponding class. The Softmax function 
can convert the output into a probability distribution, and the Softmax output of the jth neuron is defined as 
Eq. (2) For a problem with K classes:

	
Softmax(x)j = exj

∑K

k
exk

� (2)

where xj  is the input of the jth output neuron, exj  is the exponent of xj  and the denominator is the sum of the 
exponent values of all the output neurons. The Softmax function ensures that the sum of all the output values 
is 1 and that each of the output values ranges from 0 to 1, which represents the probability of belonging to the 
corresponding category.

During training, the model is compiled via the Adam optimizer with a loss function of categorical_
crossentropy, as shown in Eq. (3):

	
Cross − Entropy Loss = −

∑M

c=1
y

o,clog(po,c) � (3)

where M  is the number of categories, and for each category c, y is a binary indicator (0 or 1) of whether category 
c is correctly categorized, and p0,c is the probability that the model predicts that observation o belongs to 
category c. The function log(po,c) takes the natural logarithm of this predicted probability. Equation (3) The 
cross-entropy loss function, an extensively employed metric in classification endeavours to gauge the disparity 

Considerations Optimal value

Training set 80%

Test set 20%

Input layer 126 features

Dense layer 40 neurons

Dense layer 20 neurons

Dropout rate 0.25

Number of training cycles 60

Learning rate 0.0005

Table 4.  The optimal combination of hyperparameters.
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between the forecasted probabilities and the empirical distribution of outcomes, is delineated. The term ‘Cross’ is 
indicative of this function’s deployment over both predicted and factual outcomes, whereas ‘entropy’ encapsulates 
a metric of indeterminacy or disarray prevalent within the prognostications. Overall, the 'cross-entropy loss’ 
advantageously encapsulates the divergence of the model’s forecasts from the authentic labels, furnishing a 
formidable metric for optimization during the neural network model training regimen.

Model training was performed via the model.fit method with inputs from training and validation datasets, 
and the number of rounds, batch size, and callback functions were set. Figure 7 shows the final structure of the 
neural network after training. Among them, x in the input layer represents a 126 dimensional feature vector 
formed by extracting features from three—axis acceleration data. The first hidden layer a[1] contains 40 neurons, 
and the second hidden layer a[2] has 20 neurons. Through further feature refinement, the final output layer 
consists of—p1p8, corresponding to the 8 action classifications in the task of this paper. Each p represents the 
predicted probability of the corresponding category.

K-Means-based Anomaly Detection
Neural networks exhibit remarkable learning capabilities within the confines of their trained sample space, 
yet they present distinct limitations when encountering novel data beyond this predefined scope, such as new 
upper limb movements. This limitation stems from the inherent capacity of neural networks to recognize and 
comprehend only the data patterns they have been exposed to during their training regimens. Given that data 
significantly diverge from the training sample space, neural networks tend to erroneously categorize these novel 
inputs into one of the few known categories. To address this issue, we employed the K-means anomaly detection 
block, which is designed to discern data points that might otherwise be misconstrued within the conventional 
action classification framework.

K-means, as an unsupervised learning technique, furnishes an efficacious supplementary mechanism. It 
delves into the intrinsic structure of data, autonomously discerning latent clusters, thereby revealing unlabelled 
patterns within the dataset. The edge impulse platform has two adjustable parameters: the cluster count and axes. 
The cluster count denotes the segmentation of akin data points into a predetermined number of K clusters; the 
axes pertain to features generated by the preprocessing blocks, with the selected axes utilizing these features as 
input data for training.

Throughout the inference process, after extensive training, the optimal number of clusters was determined to 
be 32. The digital signal processing (DSP) module of the Edge Impulse Studio platform is capable of automatically 
extracting features from acceleration data and offers an option for computing feature importance. This process 
ensures the identification and utilization of the most critical features to enhance the model’s performance. 
Consequently, guided by the feature importance list generated by the Edge Impulse Studio platform, this study 
ultimately selected AccX L0-var, AccY L0-n95, AccY L0-rms, and AccZ L0-rms as the most significant features. 
For each cluster Ck , the center of mass µk  is calculated as shown in Eq. (4):

	
µk = 1

|Ck|
∑

x∈Ck

x� (4)

Fig. 7.  Final structure of the implemented and deployed neural network.
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where |Ck| is the number of data points in cluster Ck  and where Ck  is the number of data points in the cluster. 
The data points xi are assigned to the nearest center of mass µk  to form the clusters, and this process can be 
expressed as:

	 assign (xi) = argmink∥xi − µk∥2� (5)

We calculate the distance between a new data point and its nearest center of mass and detect anomalies by setting 
a threshold as:

	 d (xi, µk) = ∥xi − µk∥� (6)

If d (xi, µk) is greater than the threshold, then xi is an anomaly. The threshold in this study is set to 0. An 
anomaly score below 0 indicates that the data are within a cluster (no anomaly). Using the k-means anomaly 
detection module, this study computed the anomaly scores for new data points, which were then evaluated 
within the software. This program concurrently provides the classification outcomes from the neural network 
alongside the corresponding anomaly scores. The classification results are deemed valid when the anomaly score 
falls below a predetermined threshold; conversely, if the anomaly score exceeds this threshold, this indicates that 
the user’s performed action does not align with any of the eight predefined movements, thereby rendering the 
classification result invalid. This mechanism significantly enhances the robustness and accuracy of the overall 
classification system.

Model compression
Given the deployment of neural networks on MCUs with severely constrained computational resources, 
quantization has emerged as one of the most efficacious optimization strategies. Conventionally, weights and 
biases within the model are stored as 32-bit floating-point numbers to facilitate high-precision computations 
during the training phase; however, this incurs excessive resource consumption when executed on MCUs. The 
technique of quantization reduces the precision of these weights and biases, enabling their storage as 8-bit integers. 
Nonetheless, transitioning models from 32-bit floating-point representations to 8-bit integer representations 
has historically been challenging, necessitating profound knowledge of model architecture and the ranges of 
activation layers. Fortuitously, the edge impulse platform has introduced the edge optimized neural compiler 
(EON), which, compared with TensorFlow Lite for microcontrollers, enhances neural network execution speeds 
by approximately 25–55% and reduces flash storage by up to 35%, all while maintaining comparable accuracy 
levels. This innovation has significantly reduced engineering time and the costs associated with repeated iterative 
experiments for this study.

Results
Input processing module
Acceleration data encapsulate a wealth of information pertaining to the dynamic characteristics of an object, 
information that may fluctuate over time and potentially reside within the frequency components of the data. 
The selection of an appropriate data processing methodology is paramount for the extraction of pertinent 
features and patterns when dealing with acceleration data. The input processing modules under consideration 
include the following:

	(1)	 Raw data: An input block that eschews data preprocessing.
	(2)	 Spectral Analysis: This input module is particularly adept at analysing repetitive motions by extracting 

features related to the variation in frequency and power over time and is applicable to data from accelerom-
eters or audio signals.

	(3)	 Flatten: This block flattens axes into singular values, which is beneficial for slowly varying means, such as 
temperature data when combined with other blocks.

Table 5 lists the precision, loss, inference time, peak RAM usage, and peak flash consumption associated with 
three input processing modules: flatten, spectral analysis, and raw data. Overall, spectral analysis demonstrated 
a significant advantage in handling acceleration data compared with flattening and raw data. By converting 
time-domain signals into frequency-domain signals, spectral analysis can reveal the periodic characteristics and 
frequency distributions of the signal, which might be obscured in the raw time-domain signal. Raw data retain 
all original information but may also encompass a considerable amount of noise and irrelevant information, 
complicating analysis and pattern recognition and demanding more resources. Flattening transforms 
multidimensional arrays into one-dimensional arrays, simplifying data handling but potentially losing temporal 
and structural information in the data, leading to suboptimal training outcomes. Hence, this study opts for 
spectral analysis as the input processing block to generate input features for neural network classification.

Accuracy (%) Loss Inferencing time (ms) Peak ram usage (KB) Flash usage (kB)

Flatten 82.4 0.48 1 1.4 16.5

Spectral Analysis 91.9 0.25 2s 1.5 20.6

Raw data 90.8 0.36 11 2.1 45.0

Table 5.  Performance metrics of the flattening, spectral analysis, and raw data input processing modules.
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Performance modelling
As illustrated in Fig. 8, the full-precision neural network achieved an accuracy of 96.1% on the training set, with 
a loss of 0.14 and an F1 score of 0.9625. The confusion matrix of the 8-bit quantized neural network, depicted 
in Fig. 9, indicates only a marginal decline in model performance, as the quantized neural network still yielded 
an accuracy of 92.2% on the same training set, with a loss of 0.45 and an F1 score of 0.924. Figure 10 shows the 
performance of the final neural network model on the test set, where it achieved an accuracy of 95.09% and an 
F1 score of 0.961. Table 6 displays the detailed scoring for the eight categorized actions.

Model performance
Table 7 delineates the model parameters with float32 precision weights, whereas Table 8 presents the parameters 
of the model postquantification to int8 precision. A comparative analysis revealed a decrease in model size from 
a full-precision neural network of 52.2 kB to a quantized dimension of 25.3 kB, resulting in a 51.53% reduction 
in model size at a modest precision cost of 7.08%. Notably, the impact of quantization on neural network 
optimization is particularly pronounced. The inference time of the classifier was augmented from 54 to 4, 
indicating a 13.5-fold acceleration. However, the enhancement attributable to quantization was not significantly 
evident for the spectral analysis input processing module. During the model training process, accuracy and loss 
demonstrated effective convergence as the number of training epochs increased, reaching saturation around the 
60th epoch. Both training and validation losses converged towards the same lower value. This indicates that the 
model has successfully assimilated the characteristics of the data and displayed commendable generalization 
capabilities.

Fig. 9.  Confusion matrix of the quantized neural network.

 

Fig. 8.  Confusion matrix for full-precision neural networks.
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Power consumption
The greatest advantage of embedded systems over computer and mobile systems is their very low power 
consumption. The energy consumption can be calculated via:

	 E = U ∗ I ∗ t� (7)

Spectral Analysis Classifier Total

Latency 13 2 15

RAM 4.6 kB 1.5 KB 4.6 KB

FLASH – 20.6 KB –

Accuracy – – 84.88%

Table 8.  Quantized model indicators (int8).

 

Spectral Analysis Classifier Total

Latency 13 54 67

RAM 4.6 kB 1.9 KB 4.6 KB

FLASH – 34.8 KB –

Accuracy – – 87.43%

Table 7.  Unoptimized (float32) model metrics.

 

Category Precision (%) Recall (%) F1-Score (%) Support

Elbow 100.0 95.75 97.83 47

Forehead 86.96 85.11 86.02 47

Hindbrain 100.0 95.45 97.67 44

Lift up 97.62 100.0 98.80 41

Mouth 83.33 85.37 84.34 41

Shoulder 97.67 100.0 98.82 42

Spine 95.65 100.0 97.78 44

Wrist Flip 100.0 100.0 100.0 40

Overall/Average 95.14 95.09 95.06 346

Table 6.  Detailed performance metrics for eight action classifications.

 

Fig. 10.  Confusion matrix of the model in the test set.
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where E is the energy, U  is the voltage, I  is the current and t is time. We tested the hardware system in both 
stationary and operational modes to evaluate its power consumption.

In the present investigation, a DT830B digital multimeter was utilized, with its measurement electrodes 
serially integrated into the circuitry of the wearable apparatus, facilitating an exhaustive appraisal and elucidation 
of the principal energy consumption associated with the wearable system, specifically during the TinyML model 
inference process. This approach encompasses a detailed examination of power consumption metrics across 
various operational states, including the model inference phase, BLE advertisement phase, BLE connectivity 
phase, and device energy expenditure while in standby mode. Table 9 shows the details of the core power 
consumption of the system. According to our measurements, in idle mode, the system consumes 24.75 mW of 
power and 7.50 mA of current. This reflects the baseline energy consumption of the system when there is no 
significant computational or communication activity. The system communicates at 53.96 mW when the BLE is 
advertised. The power consumption of the system is very close at 54.05 mW in the BLE connectivity mode. The 
power consumption of the acceleration sensor is also low, with a power of 1 mW, which has a relatively small 
effect on the overall power consumption of the system.

Discussion
Even with a solitary inertial sensor, the model achieved a commendable accuracy of 96.1% on the training dataset 
and 95.09% on the test dataset. Although this model does not surpass those of some of the previous studies in 
terms of accuracy, the novelty of this study lies in its ability to recognize eight distinct upper limb rehabilitation 
movements with a streamlined sensor setup. In this study, the eight types of upper-limb rehabilitation 
movements display high kinematic similarity, exhibiting subtle yet crucial differences in aspects such as motion 
trajectory, duration, and limb velocity. Therein lies a significant challenge in achieving precise classification solely 
through accelerometer data. To address this issue, the current research employs a novel strategy that combines 
a multilayer perceptron (MLP) with an anomaly recognition K-means algorithm for precise classification. 
This approach demonstrates the heterogeneity of the model by combining the strengths of deep learning and 
traditional machine learning algorithms. The multilayer perceptron, as a powerful nonlinear model, is capable of 
extracting deep features from complex data, whereas the K-means algorithm, known for its high computational 
efficiency and simplicity, performs efficient anomaly detection on the basis of these extracted features. This 
heterogeneous combination not only enhances the model’s ability to process diverse data but also optimizes the 
use of computational resources. Model quantization was facilitated by TinyML technology, resulting in a final 
deployed model size of only 20.6 KB. Notably, TinyML technology also offers substantial benefits in terms of data 
security and privacy; since only the data processed by the model are transmitted, the raw data captured by the 
sensors remain confined to the microcontroller node, thereby negating the risk of data interception.

From the power consumption assessment of this system, it is evident that the power consumption of the 
deployed model is comparatively low, with an inference time per model of approximately 15, thus resulting in 
lower energy usage. Wireless communication has emerged as the primary energy consumer within this wearable 
setup. Despite the implementation of low-power BLE technology aligning with the expectations for low-power 
communication standards, the energy expended on wireless communication still constitutes the majority of 
the system’s total power consumption67. This can be attributed primarily to the several energy-intensive tasks 
involved in the wireless communication protocol, the CPU being active, and the current for the RF transmission 
stage. The transmission of wireless signals requires a relatively substantial amount of energy to power the RF 
transmitter, ensuring that the signal’s strength is adequate for reception, particularly over extended distances 
or in the presence of interference. Moreover, wireless modules are required to sustain high-speed data handling 
and frequency alterations during both the transmission and reception phases, which further increases energy 
consumption.

In conclusion, the home upper limb rehabilitation system presented in this study, which uses TinyML 
technology on microcontroller units, achieves proficient motion classification, shows benefits such as reduced 
power consumption, minimal latency, and a lightweight framework. Nonetheless, this system is encumbered 
by certain constraints. First, the research is predicated on data derived from healthy subjects and has not been 
comprehensively validated within real stroke patient cohorts, which may limit its immediate applicability in 
clinical environments. The healthy population in this study does not directly represent real stroke patients but 
serves merely as a data source for model training, collecting limb movement data. The ultimate rehabilitation goal 
for the upper limb dysfunction group was to achieve such healthy standards through subsequent rehabilitation 
training. Furthermore, TinyML’s drive towards miniaturization and energy efficiency imposes architectural 
limitations on the model owing to the constraints of hardware resources, rendering the deployment of intricate 
machine learning models for tasks necessitating high accuracy and elaborate feature extraction a formidable 
endeavor. As a result, the ability of the proposed upper limb rehabilitation motion monitoring apparatus to 
furnish motion classification insights without improving the quality of movements is limited. There is also a 

Mode Power (mW) Current (mA)

Idle 24.75 7.50

Modelled reasoning 29.9 9.065

BLE advertising model 53.96 16.35

BLE connection mode 54.05 16.38

Table 9.  System core power consumption parameters.
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discernible need for enhancement in the differentiation of akin movements, particularly those with motion 
amplitudes closely resembling one another. The efficacy of hardware devices during data acquisition may be 
compromised by a myriad of factors, including device placement, the nature of user activities, and individual 
variances, thereby infusing additional noise into the dataset and influencing the model’s analytical precision. The 
ability of the system to identify eight fundamental upper limb rehabilitation movements does not encapsulate 
the entire spectrum of movement types that may manifest throughout the rehabilitation trajectory of stroke 
survivors. Finally, model training is executed on the Edge Impulse web platform, resulting in a static neural 
network model; any requisite modifications to the detection objectives mandate retraining and redeployment 
processes on the platform. While this limitation might be inconsequential for diminutive systems, it represents 
a substantial impediment for expansive detection frameworks encompassing thousands of MCUs, where the 
task of batch updating models emerges as an onerous challenge. In future research, we will explore the potential 
of online learning and dynamic deployment within TinyML. Specifically, by integrating online learning and 
incremental learning techniques, we aim to enhance the model’s capability for dynamic updates. Online learning 
allows for real-time model adjustments directly on the device without the need to transfer sensitive data, thus 
improving performance while maintaining data privacy.

Furthermore, we will continue to incorporate research on model deployment into our long-term plans, 
consistently monitoring and exploring innovative technologies in this field to drive further advancements in 
related research.

The focus of this study was to explore the feasibility of using TinyML devices in the recognition of upper 
limb rehabilitation movements. Our methodology is based on a minimal sensor setup, employing an embedded 
microcontroller unit to execute the TinyML model for precise motion classification. We have adopted a single 
accelerometer approach, which, despite its limitations in detecting rotational movements, offers significant 
advantages due to its lightweight and low-cost attributes. Additionally, its low power consumption provides 
a crucial benefit for home rehabilitation devices, especially under the demands of long-term continuous 
monitoring. The low power design of the accelerometer allows the device to operate for extended periods on 
battery power, which is vital for practical applications in home rehabilitation settings. Through meticulous 
preprocessing and feature extraction of the accelerometer data, our system demonstrates robust performance in 
classifying rehabilitation movements that primarily occur in the sagittal and coronal planes. This characteristic 
enables effective recognition of common rehabilitation movements without reliance on complex sensors. 
Nonetheless, given the current hardware configuration, we recognize that there is room for improvement in 
the recognition capabilities for more complex movements, particularly those involving rotational motions. 
Especially when compared to high-end robotic neurorehabilitation equipment used in clinical environments, 
our device may have limitations in functionality and precision. However, we acknowledge that compared with 
high-end robotic neural rehabilitation devices used in clinical settings, our device may have limitations in terms 
of functionality and precision. This study aimed to complement traditional clinical rehabilitation methods by 
providing patients with more home rehabilitation options rather than completely replacing professional clinical 
rehabilitation services. Robotic rehabilitation devices can offer fine motion assistance and feedback, but their 
cost and operational complexity limit their widespread application in home rehabilitation. We emphasize that 
the research and the application recommendations for the methodology and devices described are primarily 
suitable for the later stages of patient rehabilitation. At this stage, patients have transitioned from initial clinical 
rehabilitation to home-based rehabilitation (with a Fugl-Meyer assessment score ≥ 20), possessing sufficient 
autonomous movement ability to engage in active exercise training. Their range of movement and complexity 
are relatively limited. Therefore, the system can provide adequate precision for handling these patients’ common 
rehabilitation movements. At this time, our study offers an affordable, lightweight home rehabilitation movement 
monitoring system. However, for patients with severe motor disabilities (Fugl-Meyer assessment score < 10), 
their movement patterns may include more compensatory rotational actions, which would require more precise 
sensor support. In such cases, activating the full 9-axis IMU functionality becomes necessary to ensure accurate 
monitoring, enabling the system to meet the rehabilitation needs of patients at different stages of recovery.

Certainly, the primary objective of this study remains the feasibility validation of TinyML technology. The 
above discussion primarily explores the future potential of this technology in home rehabilitation scenarios. 
Consequently, to increase the rigor and practicality of future research, we plan to conduct an in-depth 
investigation into the perspectives of actual stroke patients regarding our designed wearable system and to 
evaluate the system’s usability. In future work, we will focus on how methodological innovations can improve 
the service experience for the target population. Specifically, we intend to explore the deep integration of 
TinyML technology with smart product service systems, aiming to develop a new ecosystem for wearable device 
services and extend the application of our research findings to real home environments. In response to the 
limitations previously mentioned, we will continue to work on improving computational efficiency, optimizing 
model architecture, enhancing model adaptability and precision, and facilitating the effective application and 
dissemination of the technology.

Conclusion
Drawing from the training and outcomes illustrated within this paper, the TinyML-based home upper limb 
rehabilitation system proposed herein is capable of effectively classifying eight distinct upper limb rehabilitation 
movements with a minimal sensor setup on a device constrained by significantly limited resources. In 
contrast to extant research findings, this methodology circumvents the laborious cloud computing workflow, 
thereby furnishing a more economical, compact, and energy-efficient solution for domiciliary rehabilitation, 
concurrently mitigating the risk of privacy intrusions within domestic settings. The principal conduit for data 
acquisition, preprocessing, model training, evaluation, and deployment is facilitated through the edge impulse 
platform.
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In this investigation, we crafted and realized the comprehensive architecture of the IoT solution, wherein 
the concept of an embedded system is employed for data gathering, action classification, and rendering both 
visual and haptic feedback to the user, which collectively form the physical layer of the system. Concurrently, a 
corresponding application was developed to facilitate information interchange with hardware units leveraging the 
BLE wireless communication protocol, aiming to provide users with a visualization of the imparted and logged 
rehabilitation training. This solution integrates an innovative approach that combines an MLP and the anomaly 
detection K-means algorithm for precise classification, enhancing the ability to differentiate similar motions and 
exhibiting significant advantages in terms of accuracy and robustness. Moreover, the model delineated in this 
study is deployed on devices with exceedingly constrained computational resources via TinyML technology, 
catering to the requisites of wearable apparatuses characterized by minimal power consumption, affordability, 
and portability.

In conclusion, the domiciliary upper limb rehabilitation system delineated in this investigation provides an 
efficacious novel methodology for the precise classification of upper limb rehabilitation movements and has 
promising application prospects for wearable technologies in the forthcoming era.

Data availability
The dataset from the current analysis is not public but is available from the corresponding author upon reason-
able request.
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