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 a b s t r a c t

Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for 
solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows 
the application of methods for accelerating gradient descent. Here, we show that Nesterov accel-
eration is effective in speeding up the reduction of the EKI cost function on a variety of inverse 
problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman in-
version and ensemble transform Kalman inversion. Our specific implementation takes the form 
of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any 
existing EKI variant algorithms, comes with no additional computational expense, and with no 
additional tuning hyperparameters. This work shows a pathway for future research to translate 
advances in gradient-based optimization into advances in gradient-free Kalman optimization.

1.  Introduction

1.1.  Inverse problem

We assume that we have a model  with unknown parameters 𝑢∗ ∈ ℝ𝑑 , and observations 𝑦 ∈ ℝ𝑘 generated as 
𝑦 = (𝑢∗) + 𝜂, (1)

where 𝜂 is measurement noise, assumed to be Gaussian 𝜂 ∼  (0,Γ). The inverse problem is then to estimate 𝑢∗ given 𝑦. We assume 
access to the model . Note that 𝑦 can include multiple independent observations of the same quantities.

We define the cost function
 (𝑢) = − logℙ(𝑦|𝑢) = 1

2
(𝑦 − (𝑢))⊤Γ−1(𝑦 − (𝑢)), (2)

and note that the maximum likelihood estimate (MLE) of 𝑢∗ is given by
𝑢MLE = argmin

𝑢
 (𝑢).

1.2.  Ensemble Kalman inversion

We now turn to the estimation of 𝑢MLE using ensemble Kalman inversion [EKI,1]. While we adopt the notation and terminology 
of [1], this methodology has a long lineage from randomized likelihood optimizers and ensemble smoothers [2–6] as used for state 
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and parameter estimation in weather forecasting, and for oil reservoir history matching. Moreover, the idea of using an ensemble to 
approximate a gradient dates back to the introduction of the ensemble Kalman filter [7]. We note that while variants or extensions 
[8–10] of EKI can also be used to approximate the Bayesian inverse problem of estimating a posterior distribution ℙ(𝑢|𝑦), here we 
restrict ourselves to finding a point estimate.

We begin with the continuous-time version of EKI. We first note that

−∇ (𝑢) = 𝑑
𝑑𝑢

⊤
Γ−1(𝑦 − (𝑢)). (3)

Then, we consider having a probability distribution over values of 𝑢 and define the covariance matrices
𝐶𝑢𝑢 = 𝔼[(𝑢 − 𝔼[𝑢])⊗ (𝑢 − 𝔼[𝑢])],

𝐶𝑢 = 𝔼[(𝑢 − 𝔼[𝑢])⊗ ((𝑢) − 𝔼[(𝑢)])].

We also note that under assumptions that the second derivative of  is small [11],

𝐶𝑢 ≈ 𝐶𝑢𝑢 𝑑
𝑑𝑢

|

|

|

|

|

⊤

𝔼[𝑢]
. (4)

We now consider the covariance-preconditioned gradient flow
𝑢̇ + 𝐶𝑢𝑢∇ (𝑢) = 0. (5)

This differs from a typical gradient flow in the use of the 𝐶𝑢𝑢 as a time-dependent preconditioner. This is, however, a natural choice, 
since this type of gradient flow is affine invariant [11]. Notice that Eq. (5) is a mean-field or McKean–Vlasov equation, in the sense 
that the time evolution of 𝑢 depends on its probability distribution. Given some initial distribution ℙ(𝑢(0)), Eq. (5) defines a Liouville 
equation which propagates this distribution forward in time.

Substituting Eqs. (3) and (4) into Eq. (5), we obtain
𝑢̇ = 𝐶𝑢Γ−1(𝑦 − (𝑢)). (6)

This is the mean-field EKI [11]. Importantly, the derivative of the model 𝑑𝑑𝑢  is replaced with the derivative-free covariance approx-
imation. We now approximate this further, and replace 𝐶𝑢 by its Monte Carlo approximation from a finite ensemble of particles 
{𝑢(𝑛)}𝑁𝑛=1 and discretize in time with an explicit method using a time-step of Δ𝑡, obtaining the usual form of EKI: 

𝐶𝑢
𝑗 = 1

𝑁

𝑁
∑

𝑛=1

[

(𝑢(𝑛)𝑗 − 𝑢𝑗 )⊗ ((𝑢(𝑛)𝑗 ) − (𝑢)𝑗 )
]

, (7a)

𝐶
𝑗 = 1

𝑁

𝑁
∑

𝑛=1

[

((𝑢(𝑛)𝑗 ) − (𝑢)𝑗 )⊗ ((𝑢(𝑛)𝑗 ) − (𝑢)𝑗 )
]

, (7b)

𝑢𝑗 =
1
𝑁

𝑁
∑

𝑛=1
𝑢(𝑛)𝑗 , (𝑢)𝑗 =

1
𝑁

𝑁
∑

𝑛=1
(𝑢(𝑛)𝑗 ), (7c)

𝑢(𝑛)𝑗+1 = 𝑢(𝑛)𝑗 + Δ𝑡𝐶𝑢
𝑗 (Γ + Δ𝑡𝐶

𝑗 )−1(𝑦 − (𝑢(𝑛)𝑗 )). (7d)

Note that this discretization is not quite a forward Euler method, as in Eq. (7d) we have replaced Γ−1 by (Γ + Δ𝑡𝐶
𝑗 )−1. This dis-

cretization, however, is still consistent with the limit of Eq. (6) as Δ𝑡 → 0, and also maintains consistency with a derivation of EKI 
based on the discrete-time ensemble Kalman filter as well as having favorable convergence properties; see [12].

Sometimes, the initial ensemble {𝑢(𝑛)0 }𝑁𝑛=1 is drawn from a prior distribution over 𝑢. Since we are here interested in the MLE, 
and due to the invariant subspace property of EKI [1,13], the choice of initial ensemble can be considered a regularization for the 
maximum likelihood problem; that is, EKI approximates the MLE but with regularization coming from the fact that the solution must 
be in the span of the initial ensemble. The recursion Eq. (7d) is repeated until some 𝑗 = 𝐽 , and the ensemble mean 𝑢𝐽  taken as an 
approximation of 𝑢MLE. The convergence of the particle approximation to the mean-field limit is proved in [14].

We also note that EKI is often derived from the ensemble Kalman filter or from connection with the Bayesian solution of a 
linear inverse problem, wherein observations are perturbed for each ensemble member [1]. However, in this paper, since we use the 
formulation of EKI based on MLE, perturbed observations do not arise.

Several variants of EKI exist. Unscented Kalman inversion [UKI,15] chooses the ensemble using quadrature points at every iteration 
and has favorable performance for some problems. Ensemble transform Kalman inversion (ETKI), based on the ensemble transform 
Kalman filter [16], avoids building covariance matrices in the parameter and observation spaces, and has favorable computational 
complexity if 𝑁 ≪ 𝑑, 𝑘.

1.3.  Nesterov acceleration

Nesterov acceleration, sometimes referred to as momentum, is a method to accelerate gradient descent [17,18]. This was extended 
to continuous-time gradient flows in [19]. Namely, continuous-time Nesterov acceleration transforms a gradient flow

𝑢̇ + ∇ (𝑢) = 0
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to

𝑢̈ + 𝜆(𝑡)𝑢̇ + ∇ (𝑢) = 0. (8)

Here, 𝜆(𝑡) is the momentum coefficient, which is taken in [19] to be 𝜆(𝑡) = 3
𝑡 . In this paper, we will apply this Nesterov acceleration 

approach to EKI, as well as its variants UKI and ETKI.

1.4.  Motivation and related work

Each iteration of Eq. (7d) requires evaluating the forward model (⋅) 𝑁 times. This is often computationally expensive, as in the 
case of climate models [9]. Thus, we would like 𝐽 to be as small as possible, which motivates the need for acceleration.

Nesterov acceleration for EKI was first suggested by [20]; however, detailed numerical tests were not conducted in that work, 
nor was Nesterov applied to EKI variants. Another method for accelerating convergence of EKI was considered in [21]. A related 
implementation was also considered for the ensemble Kalman updates with a different objective [22]. There momentum was applied 
to the ensemble mean and covariance, and with constant momentum parameter. By contrast, we will showcase a simpler particle-wise 
update, and one with a momentum parameter that changes with iteration in a manner consistent with the gradient-based theory. 
Momentum has also been considered for particle-based sampling methods in [23].

2.  Nesterov acceleration for EKI

We now add Nesterov acceleration to EKI. We begin by considering a covariance-preconditioned Nesterov gradient flow obtained 
by formally replacing the gradient in Eq. (8) with the covariance-preconditioned gradient as in Eq. (5),

𝑢̈ + 𝜆(𝑡)𝑢̇ + 𝐶𝑢𝑢∇ (𝑢) = 0.

We note that although improved rates of convergence have previously been proved for continuous-time Nesterov, it remains to 
be proved that the covariance-preconditioned Nesterov will also have this improvement; however, our numerical results suggest this 
to be the case.

Now, employing Eqs. (3) and (4), we obtain the mean-field Nesterov-accelerated EKI
𝑢̈ + 𝜆(𝑡)𝑢̇ = 𝐶𝑢Γ−1(𝑦 − (𝑢)). (9)

Due to the non-uniqueness of discretization of Eq. (9), it is difficult to proceed directly with the derivation from these mean-
field equations. Instead, we next write our proposed discrete algorithm, and then motivate its consistency with Eq. (9) by taking 
small-timestep and large-particle limits.

Algorithm 1 Nesterov-accelerated ensemble Kalman inversion.
Require: {𝑢(𝑛)0 }𝑁𝑛=1, 𝐽 ∈ ℕ, 𝑦, Γ, 
1: Compute 𝐶𝑢

1 , 𝐶
1

2: 𝑢(𝑛)1 ← 𝑢(𝑛)0 + Δ𝑡𝐶𝑢
1 (Γ + Δ𝑡𝐶

1 )−1(𝑦 − (𝑢(𝑛)1 )), ∀𝑛 = 1,… , 𝑁
3: for 𝑗 = 1,… , 𝐽 do
4:  𝜆𝑗 ←

𝑗−1
𝑗+2 ,

5:  𝑣(𝑛)𝑗 ← 𝑢(𝑛)𝑗 + 𝜆𝑗 (𝑢
(𝑛)
𝑗 − 𝑢(𝑛)𝑗−1),∀𝑛 = 1,… , 𝑁

6:  Compute 𝐶𝑣
𝑗 , 𝐶

𝑗

7:  𝑢(𝑛)𝑗+1 ← 𝑣(𝑛)𝑗 + Δ𝑡𝐶𝑣
𝑗 (Γ + Δ𝑡𝐶

𝑗 )−1(𝑦 − (𝑣(𝑛)𝑗 )),∀𝑛 = 1,… , 𝑁
8: end for
9: return {𝑢(𝑛)𝐽+1}

𝑁
𝑛=1

We write out the Nesterov-accelerated EKI as Algorithm 1. One can view this implementation of Nesterov acceleration as perform-
ing a particle-wise “nudge” based on each particle’s history, and then carrying out the regular EKI update Eq. (7d) with the nudged 
ensemble.

In Algorithm 1 we define 𝜆𝑗 in line with the Nesterov acceleration literature; however, this choice is not unique. We explore other 
choices and their effect on the convergence in Appendix B.

With any choice of 𝜆𝑗 , the accelerated algorithm retains the subspace property of EKI, that particles will always remain in the 
span of the initial ensemble [1]. This can be seen inductively, from the steps of Algorithm 1. Firstly, {𝑢(⋅)0 } and {𝑢(⋅)1 } are by definition 
in this span; then, if {𝑢(⋅)𝑘−1}, {𝑢

(⋅)
𝑘 } are in the span, {𝑣(⋅)𝑘 } is too, as each member update is a linear combination of elements in the span. 

Then by the original argument [1], {𝑢(⋅)𝑘+1} is also in the span, as a classical EKI update of {𝑣
(⋅)
𝑘 }.

In Appendix A we use a formal argument to find the continuous-time limit of Algorithm 1, but highlight a need for stronger 
rigorous arguments to show convergence to Eq. (9) in the limit of infinite ensemble size.

Applying the same idea to the UKI and ETKI algorithms, we obtain Nesterov-accelerated versions of these two algorithms in 
Appendix C.
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3.  Numerical experiments

We conduct numerical experiments on the impact of Nesterov acceleration on three different inverse problems. Data is generated 
from equation Eq. (1), so we must define the forward map , noise covariance Γ, and select a ground-truth parameter 𝑢∗. We must 
additionally pick a probability distribution on 𝑢0, from which the initial ensemble is drawn. We present results of experiments over 
fifty trials, each with different random draws of the initial ensemble and different noise realizations 𝜂 in Eq. (1). When reporting the 
cost function values in the experiments that follow, we use the ensemble mean over the forward map evaluations (𝑢)𝑗 in expression 
Eq. (2).

3.1.  Example inverse problems

In the exponential sine problem (Exp Sin), we consider:
𝑢 = [𝑢1, 𝑢2]⊤,

𝑓 (𝑡, 𝑢) = exp
(

𝑢1 sin(𝑡) + 𝑢2
)

,

(𝑢) =
[

mean𝑡∈[0,2𝜋](𝑓 (𝑡, 𝑢))
max𝑡∈[0,2𝜋](𝑓 (𝑡, 𝑢)) − min𝑡∈[0,2𝜋](𝑓 (𝑡, 𝑢))

]

.

That is, we look to estimate the amplitude and vertical shift parameters 𝑢 =
[

𝑢1, 𝑢2
]⊤ of function 𝑓 , using the observations given by 

. We define the true parameters to be 𝑢∗ = [1, 0.8]⊤. We take a Lognormal(−1.38, 0.06) initial distribution for 𝑢1 and  (0, 0.5) for 𝑢2, 
and assume these are independent.

In the Lorenz ’96 problem (Lorenz96), we solve for the initial conditions of the 𝐷-dimensional Lorenz ’96 dynamical system [24] 
given a state some time after that is integrated from those initial conditions, following a problem used by [13]. Here, we have

𝑢 = 𝑥(𝑡0) ∈ ℝ𝐷, (𝑢) = 𝑥(𝑡𝐾 ) ∈ ℝ𝐷,
𝑑𝑥𝑘
𝑑𝑡

= −𝑥𝑘 − 𝑥𝑘−1(𝑥𝑘−2 − 𝑥𝑘+1) + 𝐹 ,

where the indices are cyclical and 𝑥(𝑡) = [𝑥1(𝑡),… , 𝑥𝐷(𝑡)]⊤. We use the fourth-order Runge–Kutta method with timestep 0.05, and 
𝑡𝐾 = 0.4. The dimension is set to 𝐷 = 20 and the forcing parameter to 𝐹 = 8, for which the Lorenz ’96 model is chaotic. We draw the 
truth 𝑢∗ from the 𝐷-dimensional standard normal distribution. Taking 𝑢∗ to be the true state at time 𝑡0, we run through the dynamics 
until time 𝑡𝑘 = 𝑡0 + 1000. The initial ensemble members for 𝑢 are each drawn from the 𝐷-dimensional standard normal distribution 
as well.

Finally, the Darcy problem (Darcy) describes subsurface flow over the domain  = [0, 1]2. We observe pointwise measurements 
from a pressure field 𝑝(𝑥). We seek to optimize parameter 𝜅 to define a discretized permeability field 𝑎(𝑥, 𝜅). Due to the high dimen-
sionality of the discretized field when spatial resolution is high, we choose to represent it efficiently with a Gaussian random field 
(GRF) of a given covariance structure (e.g., see the literature review of [25]). We choose a Matérn covariance of smoothness 1 and 
correlation length 0.25. This covariance is expanded as a Karhunen–Loève eigenfunction expansion, and truncated to 𝑑 terms (degrees 
of freedom); the learned 𝑢 are then coefficients of the truncated expansion. Our forward map then becomes:

𝑢 ∈ ℝ𝑑 , (𝑢) = vec
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑝(𝑥1,1) ⋯ 𝑝(𝑥1,𝑁 )
⋮ ⋱ ⋮

𝑝(𝑥𝑁,1) ⋯ 𝑝(𝑥𝑁,𝑁 )

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

,

where 𝑝(𝑥) is obtained by solving Darcy’s law with a finite-difference scheme. Darcy’s law is given by:
−∇(𝑎(𝑥, 𝜅(𝑢))𝑝(𝑥)) = 𝑓 (𝑥),

where 𝑓 (𝑥) is a given velocity field (flow) and 𝑝(𝑥) is set to 0 at the boundary. We set 𝑑 = 50 and 𝑁 = 80, and 𝑢∗ = [−1.5,… ,−1.5]⊤. 
The distribution of the initial ensemble for 𝑢 is taken to be independent  (0, 1) for each degree of freedom.

3.2.  Implementation

We conduct experiments using the open-source Julia package EnsembleKalmanProcesses.jl [26]. This package has implemen-
tations of EKI, UKI, and ETKI algorithms, and we have added Nesterov acceleration implementations for these variants as well as the 
different choices of 𝜆𝑗 .

3.3.  Results

Fig. 1 shows the results of applying Nesterov acceleration to the three algorithms EKI, ETKI, and UKI on the three inverse problems. 
For the first and second row, EKI and ETKI, the ensemble size is taken to be 10, 20, and 52, respectively, for the three inverse problems, 
weakly related to the increasing problem dimension (Appendix D shows that acceleration occurs regardless of ensemble size). The 
results are summarized over random trials where the data realization 𝑦 and the initial ensemble {𝑢𝑛0}𝑁𝑛=1 are both redrawn. In all 
three cases, and for all three algorithms, Nesterov acceleration results in faster reduction of the cost function, as well as appearing to 
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Fig. 1. Comparison of EKI, ETKI, and UKI convergence with and without acceleration, over the three inverse problems of Section 3.1, as measured 
by the logarithm of the cost function Eq. (2). The results were averaged over 50 trials for exponential sine and Lorenz ’96, and 10 trials for Darcy. 
Ribbons denote one standard error from the mean.

converge to better optima. This suggests that Nesterov acceleration can successfully be applied to EKI variants, such as those described 
in [15].

For additional verification of the robustness of the method, we conducted three other experiments; the results are shown in 
Appendix D. Namely, we test the performance of Nesterov-accelerated EKI with a variety of ensemble sizes, with different timesteps Δ𝑡, 
and with different expressions for the momentum coefficient. In all cases, Nesterov-accelerated EKI exhibits improvement compared 
to non-accelerated EKI.

In all the experiments, Nesterov-accelerated EKI performed at least as well as non-accelerated EKI, and often significantly better, 
across problems with varying dimensionality of the input space and nonlinearity of the forward model. Despite some variance over 
different random trials, the improvements are robust also when looking at individual trials. In all the cases tested, the improvement in 
the decrease of the cost function was observed over the first few iterations in addition to performing better in the long run, indicating 
that Nesterov acceleration can be useful even in settings where only a small number of iterations 𝐽 can be afforded.

In some of the cases, such as the UKI experiment (bottom row of Fig. 1), temporary “bumps” where the cost function increases 
with Nesterov-accelerated EKI can be observed. This may be because Nesterov-accelerated gradient descent, unlike gradient descent, 
is not strictly a descent method, in the sense that the objective function Eq. (2) is not guaranteed to be monotonically non-increasing 
with iterations. This behavior is also observed when accelerating gradient descent [19].

4.  Conclusions

We have demonstrated that Nesterov acceleration improves performance of EKI on a variety of inverse problems. The form of 
update we used here is written as a parameter-wise nudging that is simple to implement, non-intrusive to the EKI update, and instantly 
adaptable to other algorithm variants. There is no additional computational cost, nor are there additional algorithm hyperparameters 
to tune. We demonstrated this with algorithms for accelerated UKI and ETKI, and also observed improved convergence.
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5.  Future work

On a theoretical level, it remains to be proven that the Nesterov acceleration in fact improves the convergence rate of covariance-
preconditioned gradient flows, as has previously been done for regular gradient flows. Adaptive timestepping through modification of 
Δ𝑡 has been explored for EKI [10], and it remains for future work to apply acceleration in such settings. The motivation of Appendix A 
also still requires rigorous justification to show whether Eq. (9) is the mean-field limit of Eq. (A.6).

Another avenue of future work is the extension of the current work to the ensemble Kalman sampler [EKS,8]. Although there has 
been previous work on acceleration of continuous-time EKS [23,27], the discrete-time versions of the algorithms are complex and 
depend in detail on the form of the EKS update. Our approach may offer simple implementations of such updates, and more broadly, 
application to other empirically approximated non-Bayesian objective functions.

This work demonstrates that improvements of gradient descent algorithms can be transferred to EKI and its variants, by using the 
EKI’s continuous-time gradient flow limit as a bridge. This paves the way for other gradient-based optimizer advancements popular 
with the machine learning community to be transferred into the EKI framework. Examples of recently developed methods that could 
be implemented for EKI acceleration are the Information Theoretic Exact Method (ITEM) [28] or its cousin, triple momentum [29,30] 
(corresponding to ITEM with constant momentum parameters); these methods have provable optimality. Additionally, there is the 
popular family of adaptive methods (namely, Adam, Nadam, Adan, Adamax, and Adagrad [31–33]) that lack in theoretical guarantees 
and continuum limits, but are used commonly in the machine learning community.
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Appendix A.  Continuous-time limit for Nesterov-accelerated EKI

This analysis closely follows the limit of [19]. First, for brevity define
𝑛({𝑤

(⋅)
𝑗 }) = 𝐶𝑢

𝑗 ({𝑤(⋅)
𝑗 })(Γ + Δ𝑡𝐶({𝑤(⋅)

𝑗 }))−1(𝑦 − (𝑤(𝑛)
𝑗 )),

𝑛({𝑊 (⋅)(𝑡)}) = 𝐶𝑢({𝑊 (⋅)(𝑡)})Γ−1(𝑦 − (𝑊 (𝑛)(𝑡))).

These are the discrete- and continuous-time expressions for the ensemble update, respectively. We use the notation {𝑥(⋅)} to denote 
the full ensemble {𝑥(𝑛)}𝑁𝑛=1. We also assume that  is a continuous function of its argument. 𝐶

𝑢
𝑗 ({𝑤(⋅)

𝑗 }) and 𝐶({𝑤(⋅)
𝑗 }) indicate 

the respective empirical covariances computed using the ensemble. We can express the discrete Nesterov update of Algorithm 1 as 
follows:

𝑣(𝑛)𝑗 = 𝑢(𝑛)𝑗 + 𝜆𝑗 (𝑢
(𝑛)
𝑗 − 𝑢(𝑛)𝑗−1),

𝑢(𝑛)𝑗+1 = 𝑣(𝑛)𝑗 − Δ𝑡𝑛({𝑣
(⋅)
𝑗 }). (A.1)

Rewriting and using 𝜆𝑗 = 𝑗−1
𝑗+2 , this becomes 

𝑢(𝑛)𝑗+1 − 𝑢(𝑛)𝑗
√

Δ𝑡
=

𝑗 − 1
𝑗 + 2

⎛

⎜

⎜

⎝

𝑢(𝑛)𝑗 − 𝑢(𝑛)𝑗−1
√

Δ𝑡

⎞

⎟

⎟

⎠

−
√

Δ𝑡𝑛({𝑣
(⋅)
𝑗 }). (A.2)
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We associate a continuous-time trajectory 𝑈 (𝑛)(𝑡) with the discrete trajectories 𝑢(𝑛)𝑗  via the ansatz 𝑢(𝑛)𝑗 = 𝑈 (𝑛)(𝑡) = 𝑈 (𝑛)((𝑗 − 2)
√

Δ𝑡), 
that is, set 𝑗 = 𝑡∕

√

Δ𝑡 − 2. We assume that 𝑈 (𝑛)(𝑡) is twice-differentiable with respect to 𝑡. Then, one can Taylor expand 𝑈 (𝑡 +
√

Δ𝑡)
and 𝑈 (𝑡 −

√

Δ𝑡) about 𝑡 to derive the expressions:

𝑢(𝑛)𝑗+1 − 𝑢(𝑛)𝑗
√

Δ𝑡
= 𝑈̇ (𝑛)(𝑡) + 1

2

√

Δ𝑡𝑈̈ (𝑛)(𝑡) + 𝑜(
√

Δ𝑡),

𝑢(𝑛)𝑗 − 𝑢(𝑛)𝑗−1
√

Δ𝑡
= 𝑈̇ (𝑛)(𝑡) − 1

2

√

Δ𝑡𝑈̈ (𝑛)(𝑡) + 𝑜(
√

Δ𝑡).

Taylor expansion of 𝑈 (𝑡 −
√

Δ𝑡) in 𝑣(𝑛)𝑗  about 𝑡 gives:

𝑣(𝑛)𝑗 = 𝑈 (𝑛)(𝑡) +
𝑗 − 1
𝑗 + 2

(

𝑈 (𝑛)(𝑡) − 𝑈 (𝑛)(𝑡 −
√

Δ𝑡)
)

,

= 𝑈 (𝑛)(𝑡) +
√

Δ𝑡
𝑗 − 1
𝑗 + 2

𝑈̇ (𝑡) + 𝑜(
√

Δ𝑡). (A.3)

We would now like to show that we can write 

𝑛({𝑣
(⋅)
𝑗 }) = 𝑛({𝑈 (⋅)(𝑡)}) + 𝑜(1). (A.4)

To do so, we first note that for matrices 𝐴 = Γ and Δ𝑡𝐵 = −Δ𝑡𝐶(𝑈 (⋅)(𝑡)), and taking Δ𝑡 small enough so that Δ𝑡‖𝐴−1𝐵‖ < 1, where 
‖ ⋅ ‖ is the operator norm, it follows from Neumann series expansion that

(𝐴 − Δ𝑡𝐵)−1 = 𝐴−1 +
∞
∑

𝑘=0
(Δ𝑡)𝑘(𝐴−1𝐵)𝑘𝐴−1 = 𝑜(Δ𝑡).

We then substitute Eq. (A.3) into 𝑛({𝑣
(⋅)
𝑗 }) and Taylor expand to first order:

(

𝐶𝑢
𝑗 ({𝑈 (⋅)(𝑡)}) +

√

Δ𝑡𝑐1 + 𝑜(
√

Δ𝑡)
)

(A.5)

×
(

Γ + Δ𝑡𝐶({𝑈 (⋅)(𝑡)}) + (Δ𝑡)3∕2𝑐2 + 𝑜((Δ𝑡)3∕2)
)−1

×
(

𝑦 − (𝑈 (𝑛)(𝑡)) +
√

Δ𝑡𝑐3 + 𝑜(
√

Δ𝑡)
)

,

where 𝑐1, 𝑐2, and 𝑐3 are not functions of Δ𝑡. Then, defining 𝐷 = Γ + Δ𝑡𝐶({𝑈 (⋅)(𝑡)}), we have for sufficiently small Δ𝑡 the Neumann 
series expansion

(𝐷 + (Δ𝑡)3∕2𝑐2 + 𝑜((Δ𝑡)3∕2))−1

=
(

𝐼 +𝐷−1(Δ𝑡)3∕2𝑐2 + 𝑜((Δ𝑡)3∕2)
)−1𝐷−1,

= (𝐼 −𝐷−1(Δ𝑡)3∕2𝑐2 + 𝑜((Δ𝑡)3∕2))𝐷−1,

where we have used the fact that 𝐷−1 is of order Δ𝑡 for sufficiently small Δ𝑡. Substituting back into Eq. (A.5) and expanding, we find 
the desired result Eq. (A.4).

Using again the fact that 𝐷−1 is 𝑜(Δ𝑡) for Δ𝑡 sufficiently small, we deduce
√

Δ𝑡𝑛({𝑈 (⋅)(𝑡)}) =
√

Δ𝑡𝑛({𝑈 (⋅)(𝑡)}) + 𝑜(
√

Δ𝑡).

Substitution into Eq. (A.2) results in

𝑈̇ (𝑡) + 1
2

√

Δ𝑡𝑈̈ (𝑡) + 𝑜(
√

Δ𝑡) =

(

1 −
3
√

Δ𝑡
𝑡

)

(

𝑈̇ (𝑡) − 1
2

√

Δ𝑡𝑈̈ (𝑡)
)

+
√

Δ𝑡𝑛({𝑈 (⋅)(𝑡)}) + 𝑜(
√

Δ𝑡).

By asymptotic matching on the order 
√

Δ𝑡, one derives an informal relationship: 

𝑈̈ (𝑡) + 3
𝑡
𝑈̇ (𝑡) = −𝑛({𝑈 (⋅)(𝑡)}). (A.6)

From here, one would like to take the large-particle limit 𝑁 → ∞ and show that the mean-field equation is of the form Eq. (9). 
As seen in [14], where this is carried out for the standard EKI algorithm, this ends up being a technical argument for even linear 
or mildly nonlinear , and theory involves jointly taking limits Δ𝑡 → 0 and while fixing 𝑁Δ𝑡 = 1. Here we have taken Δ𝑡 → 0 before 
𝑁 → ∞ as a motivation, but these limits may not commute.
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Fig. B.2. The effect of different choices of the 𝜆𝑗 coefficient for EKI acceleration on the Exp Sin inverse problem of Section 3.1. Left: convergence 
as measured with the logarithm of the cost function Eq. (2) Ribbons denote one standard error from the mean. Right: values of the 𝜆𝑗 over the first 
40 iterations.

Appendix B.  Choice of 𝝀𝒋

Different choices of 𝜆𝑗 (respectively 𝜆(𝑡)) are made in the literature. In this work we considered three options:

• Original [18]: 𝜆𝑗 = 𝑗−1
𝑗+2 .

• Recursive [19]: 𝜆𝑗 = 𝜃𝑗 (𝜃−1𝑗−1 − 1), where 𝜃0 = 1,

𝜃𝑗+1 =
1
2

(√

𝜃4𝑗 + 4𝜃2𝑗 − 𝜃2𝑗
)

.
• Constant: 𝜆𝑗 ≡ 𝑐, with 𝑐 a tuning parameter.

Both the Original and Recursive definitions asymptotically behave as 1 − 3
𝑗 + 𝑂

(

1
𝑗2

)

, a property needed for acceleration of Eq. (8); 
see [19]. The Constant definition, on the other hand, has been shown not to improve asymptotic convergence rates for Eq. (8); see 
[34]. It is, however, a common practice in the literature. In the numerical experiments that follow in Section 3, we used the Recursive 
definition unless otherwise stated.

The difference in coefficients, and their effect on performance, is illustrated in a numerical example below.
Fig. B.2 shows the results of applying the two different expressions for the momentum coefficient on the exponential sine problem, 

as well as a fixed momentum coefficient 𝜆𝑗 = 0.9 that was tuned for good performance on this problem. We observe both the Original 
and Recursive give consistently better performance than without acceleration, and moreover appear to attain a higher rate of con-
vergence. In this experiment we see that the Recursive slightly outperforms the Original, though this is likely experiment dependent. 
The Constant coefficient actually performs worse than without acceleration for the first 10 iterations, then achieves fast convergence 
for 100 or so iterations, before its convergence stagnates and eventually the dynamic coefficients overtake it.

Appendix C.  Ensemble transform Kalman inversion and unscented Kalman inversion

We present the algorithms for accelerated ensemble transform Kalman inversion (ETKI) in Algorithm 2 and accelerated unscented 
Kalman inversion (UKI) in Algorithm 3. In both cases, the only difference in the accelerated versions of the algorithms is the in-
troduction of the “nudged” ensembles {𝑣(𝑛)𝑗 }𝑛,𝑗 over which we evaluate the model . We still write out the full algorithms in easily 
implementable forms, as they often look significantly different from other forms written in the existing literature (e.g., [15]). These 
forms also highlights the simplicity of the proposed accelerations.

We do not provide derivations of the new methods here but offer some motivation and interpretation. To motivate ETKI, we recall 
that one can derive the EKI from the stochastic ensemble Kalman filter (EnKF) [1]. ETKI is found by applying a similar derivation 
to the class of square-root filters known as ensemble transform Kalman filter (ETKF); the power of this update differs from EKI, in 
that one computes all matrices in the ensemble space, allowing for preferential scaling to EKI in the output dimensions, assuming Γ
is easily invertible [16]. It also does not accumulate errors due to stochastic perturbations.

UKI is obtained, in its basic form, by replacing EKI’s Monte Carlo approximation of a Gaussian with a known quadrature rule. It 
also contains additional regularization, typically by the prior. In lower dimensions this can lead to significant efficiency increases, 
and very fast convergence on some problems. There are a number of free parameters and matrices in this algorithm, and for our 
experiments we select these based on the work of [15]: we take the prior to be 𝑁(𝑚,𝐶) and take 𝑟 = 𝑚, Σ𝜈 = 2Γ, and Σ𝜔 = (2 − 𝛼2)𝐶. 
We therefore need only to choose 𝛼 ∈ (0, 1] in experiments. UKI picks the initial ensemble deterministically; therefore, the different 
trials in the numerical experiments vary only due to using different data realizations.
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Algorithm 2 Nesterov-accelerated ensemble transform Kalman inversion.
function compute_increment(𝑢, 𝑢, {(𝑢(𝑛))}𝑛,Γ)

2:  Compute (𝑢) ← 1
𝑁

∑

𝑛 (𝑢(𝑛))
 col𝑛(Δ𝑢) ←

1
√

𝑁−1
(𝑢(𝑛) − 𝑢)

4:  col𝑛(Δ(𝑢)) ←
1

√

𝑁−1
((𝑢(𝑛)) − (𝑢))

 Ω(𝑢) ← (𝐼 + Δ(𝑢)⊤Γ−1Δ(𝑢))−1
6:  𝑤(𝑢) ← ΩΔ(𝑢)⊤Γ−1(𝑦 − (𝑢))

 𝛿𝑢 ← 𝑢 + Δ𝑢(𝑤(𝑢) +
√

𝑁 − 1
√

Ω(𝑢))
8:  return 𝛿𝑢
end function

10:
Require: 𝑢0 = {𝑢(𝑛)0 }𝑁𝑛=1, 𝐽 ∈ ℕ, 𝑦, Γ, 

Compute 𝑢0 ← 1
𝑁

∑

𝑛 𝑢
(𝑛)
0

12: 𝛿𝑢0 ← compute_increment(𝑢0, 𝑢0, {(𝑢(𝑛))}𝑛,Γ)
𝑢1 ← 𝑢0 + 𝛿𝑢0

14: for 𝑗 = 1,… , 𝐽 do
 𝜆𝑗 ←

𝑗−1
𝑗+2 ,

16:  𝑣(𝑛)𝑗 ← 𝑢(𝑛)𝑗 + 𝜆𝑗 (𝑢
(𝑛)
𝑗 − 𝑢(𝑛)𝑗−1),∀𝑛 = 1,… , 𝑁

 Compute 𝑣𝑗 ← 1
𝑁

∑

𝑛 𝑣
(𝑛)
𝑗

18:  𝛿𝑣𝑗 ← compute_increment(𝑣𝑗 , 𝑣𝑗 , {(𝑣(𝑛))}𝑛,Γ)
 𝑢𝑗+1 ← 𝑣𝑗 + 𝛿𝑣𝑗

20: end for
return 𝑢𝐽+1 = {𝑢(𝑛)𝐽+1}

𝑁
𝑛=1

Appendix D.  Additional experiments

We briefly present three additional experiments in support of the above results.
We test the performance of Nesterov-accelerated EKI on the Darcy problem with two different ensemble sizes, 𝑁 = 10 and 𝑁 = 200, 

shown in Fig. D.3. In the case of 𝑁 = 10, both algorithms can explore only the nine-dimensional subspace spanned by the initial 
ensemble, while the true parameters are in a fifty-dimensional space; this leads to higher costs and large spread across trials due to 
sampling error. For 𝑁 = 200 case there is no restriction as the ensemble subspace contains the true parameters, and the cost is greatly 
reduced. In both cases, we again observe clearly that the Nesterov acceleration is beneficial for convergence, though the spread due 
to sampling error in the small-ensemble regime causes some overlapping performance in the first few iterations.

Fig. D.4 shows the results of applying EKI and Nesterov-accelerated EKI on the exponential sine problem with varying Δ𝑡. Although 
the timestep has an influence on the performance, the Nesterov-accelerated EKI with the worst choice of timestep still outperforms 

Fig. D.3. The effect of ensemble size on EKI convergence with and without acceleration, on the Darcy inverse problem of Section 3.1, as measured 
by the logarithm of the cost function Eq. (2). Nesterov-accelerated EKI applied to the Darcy problem, with ensemble sizes 10 and 200. An experiment 
with ensemble size 52 is given in Fig. 1.
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Algorithm 3 Nesterov-accelerated unscented Kalman inversion.
function generate_ensemble(𝑚,𝐶, 𝑟, 𝛼,Σ𝜔)
 𝑚̂ ← 𝑟 + 𝛼(𝑚 − 𝑟), 𝐶̂ ← 𝛼2𝐶 + Σ𝜔

3:  𝐿 ← Cholesky(𝐶̂)

 𝑁 ← dim(𝑚̂), 𝛾 ←
√

𝑁 min{
√

4
𝑁 , 1}

 
⎧

⎪

⎨

⎪

⎩

𝑢(0) ← 𝑚̂
𝑢(𝑛) ← 𝑚̂ + 𝛾col𝑛(𝐿) 𝑛 = 1,… , 𝑁
𝑢(𝑁+𝑛) ← 𝑚̂ − 𝛾col𝑛(𝐿) 𝑛 = 1,… , 𝑁

6:  return 𝑢
end function

9: function update_mean_cov(𝑢, {(𝑢(𝑛))}𝑛, 𝑦,Σ𝜈)
 Compute 𝑚̂ and 𝐶̂ from 𝑢,
 𝑁 ← dim(𝑚̂) 𝛾 ←

√

𝑁 min
{

√

4
𝑁 , 1

}

12:  𝐶̂𝑢 ←
∑

𝑛
1

2𝛾2 (𝑢
(𝑛) − 𝑚̂)((𝑢(𝑛)) − (𝑚̂))⊤

 𝐶̂ ←
∑

𝑛
1

2𝛾2 ((𝑢
(𝑛)) − (𝑚̂))((𝑢(𝑛)) − (𝑚̂))⊤ + Σ𝜈

 𝑚 ← 𝑚̂ + 𝐶𝑢(𝐶)−1(𝑦 − (𝑚̂))
15:  𝐶 ← 𝐶̂ − 𝐶𝑢(𝐶)−1(𝐶𝑢)⊤

 return 𝑚,𝐶
end function

18:
Require: 𝑚0, 𝐶0, 𝑦,, 𝑟, 𝛼,Σ𝜔,Σ𝜈

𝑢0 ← generate_ensemble(𝑚0, 𝐶0, 𝑟, 𝛼,Σ𝜔)
𝑚1, 𝐶1 ← update_mean_cov(𝑢0, {(𝑢

(𝑛)
0 )}𝑛, 𝑦,Σ𝜈 )

21: for 𝑗 = 1,… , 𝐽 do
 𝑢𝑗 ← generate_ensemble(𝑚𝑗 , 𝐶𝑗 , 𝑟, 𝛼,Σ𝜔)
 𝜆𝑗 ←

𝑗−1
𝑗+2

24:  𝑣(𝑛)𝑗 ← 𝑢(𝑛)𝑗 + 𝜆𝑗 (𝑢
(𝑛)
𝑗 − 𝑢(𝑛)𝑗−1)

 𝑚𝑗+1, 𝐶𝑗+1 ← update_mean_cov(𝑣𝑗 , {(𝑣
(𝑛)
𝑗 )}𝑛, 𝑦,Σ𝜈)

end for
27: return 𝑚𝐽+1, 𝐶𝐽+1

Fig. D.4. The effect of taking different Δ𝑡 on EKI convergence with and without acceleration on the Exp Sin inverse problem of Section 3.1, as 
measured by the logarithm of the cost function Eq. (2).
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(after 10 iterations) the non-accelerated EKI with the best choice of timestep. This suggests that the Nesterov acceleration can com-
pensate for a poorly chosen timestep.
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