University of
< Reading

The genomic landscape of 2,023
colorectal cancers

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Cornish, A. J. ORCID: https://orcid.org/0000-0002-3966-3501,
Gruber, A. J. ORCID: https://orcid.org/0000-0001-7664-4257,
Kinnersley, B. ORCID: https://orcid.org/0000-0003-1783-6296,
Chubb, D., Frangou, A. ORCID: https://orcid.org/0000-0001-
6990-2756, Caravagna, G. ORCID: https://orcid.org/0000-
0003-4240-3265, Noyvert, B. ORCID: https://orcid.org/0000-
0002-4455-1205, Lakatos, E. ORCID: https://orcid.org/0000-
0002-7221-6850, Wood, H. M. ORCID: https://orcid.org/0000-
0003-3009-5904, Thorn, S. ORCID: https://orcid.org/0000-
0002-9962-9356, Culliford, R. ORCID: https://orcid.org/0000-
0003-4534-9241, Arnedo-Pac, C. ORCID:
https://orcid.org/0000-0002-2037-8487, Househam, J. ORCID:
https://orcid.org/0000-0003-3199-336X, Cross, W. ORCID:
https://orcid.org/0000-0002-4794-8777, Sud, A. ORCID:
https://orcid.org/0000-0002-6133-0164, Law, P. ORCID:
https://orcid.org/0000-0001-9663-4611, Leathlobhair, M. N.,
Hawari, A. ORCID: https://orcid.org/0000-0001-6154-5686,
Woolley, C. ORCID: https://orcid.org/0000-0002-0770-6968,
Sherwood, K. ORCID: https://orcid.org/0009-0007-4055-607X,
Feeley, N. ORCID: https://orcid.org/0000-0003-0124-6398,
Gul, G., Fernandez-Tajes, J., Zapata, L., Alexandrov, L. B.
ORCID: https://orcid.org/0000-0003-3596-4515, Murugaesu,
N. ORCID: https://orcid.org/0000-0002-5005-7908, Sosinsky,



sos] University of

Reading
A. ORCID: https://orcid.org/0000-0001-9022-7409, Mitchell, J.,
Lopez-Bigas, N. ORCID: https://orcid.org/0000-0003-4925-
8988, Quirke, P. ORCID: https://orcid.org/0000-0002-3597-
5444, Church, D. N. ORCID: https://orcid.org/0000-0002-4617-
962X, Tomlinson, I. P. M. ORCID: https://orcid.org/0000-0003-
3037-1470, Sottoriva, A. ORCID: https://orcid.org/0000-0001-
6709-9533, Graham, T. A. ORCID: https://orcid.org/0000-
0001-9582-1597, Wedge, D. C. ORCID: https://orcid.org/0000-
0002-7572-3196 and Houlston, R. S. ORCID:
https://orcid.org/0000-0002-5268-0242 (2024) The genomic
landscape of 2,023 colorectal cancers. Nature, 633 (8028). pp.
127-136. ISSN 0028-0836 doi: 10.1038/s41586-024-07747-9
Available at https://centaur.reading.ac.uk/122761/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1038/s41586-024-07747-9

Publisher: Nature Publishing Group

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Article

The genomiclandscape of2,023 colorectal

cancers

https://doi.org/10.1038/s41586-024-07747-9

Received: 14 November 2022

Accepted: 24 June 2024

Published online: 7 August 2024

Open access

M Check for updates

Alex J. Cornish"?¢, Andreas J. Gruber?*?5, Ben Kinnersley"*?%, Daniel Chubb"?6,

Anna Frangou®®?, Giulio Caravagna’®?¢, Boris Noyvert®>?, Eszter Lakatos®'°%,

Henry M. Wood"?, Steve Thorn'2%, Richard Culliford"?, Claudia Arnedo-Pac™'*°,

Jacob Househam?, William Cross®'¢, Amit Sud', Philip Law', Maire Ni Leathlobhair”,

Aliah Hawari®, Connor Woolley™, Kitty Sherwood'®, Nathalie Feeley™®, Giiler Giil'®,

Juan Fernandez-Tajes", Luis Zapata®, Ludmil B. Alexandrov'®?°?, Nirupa Murugaesu?,
Alona Sosinsky?, Jonathan Mitchell?2, Nuria Lopez-Bigas''*"®, Philip Quirke™?,

David N. Church?®*2?*7, Jan P. M. Tomlinson'>?™, Andrea Sottoriva®?*?, Trevor A. Graham®?%,
David C. Wedge®*? & Richard S. Houlston"?

Colorectal carcinoma (CRC) is a common cause of mortality’, but acomprehensive
description of its genomic landscape is lacking®®. Here we perform whole-genome
sequencing of 2,023 CRC samples from participants in the UK100,000 Genomes
Project, thereby providing a highly detailed somatic mutational landscape of

this cancer. Integrated analyses identify more than 250 putative CRC driver genes,

many not previously implicated in CRC or other cancers, including several
recurrent changes outside the coding genome. We extend the molecular
pathways involved in CRC development, define four new common subgroups of
microsatellite-stable CRC based on genomic features and show that these groups
have independent prognostic associations. We also characterize several rare
molecular CRC subgroups, some with potential clinical relevance, including
cancers with both microsatellite and chromosomal instability. We demonstrate a
spectrum of mutational profiles across the colorectum, which reflect aetiological
differences. These include the role of Escherichia coli** colibactin in rectal
cancers'®and the importance of the SBS93 signature™**, which suggests that diet
or smoking is arisk factor. Immune-escape driver mutations' are near-ubiquitous
in hypermutant tumours and occur in about half of microsatellite-stable CRCs,
oftenin the form of HLA copy number changes. Many driver mutations are
actionable, including those associated with rare subgroups (for example, BRCAI
and /DHI), highlighting the role of whole-genome sequencing in optimizing

patient care.

CRCis the third most common malignancy worldwide'. CRC sequenc-
ing projects have been limited to a few hundred cases and/or based
on whole exome or gene panel sequencing?’. The full complement
of genomic lesions and associations with clinical features have not
been fully established. Patients with CRC (median age of 69 years at
sampling, range 23-94 years, 59% male) were recruited by the Genom-
ics England 100,000 Genomes Project (100kGP) as detailed in the
Methods. Whole-genome sequencing (WGS) was performed on DNA
from 2,023 flash-frozen tumour samples (100x depth) and paired blood
samples (33x depth) (Methods and Supplementary Tables 1 and 2).
Sequenced cancer samples were primary carcinomas (n =1,898), CRC
metastases (n =122) or recurrences (n = 3). The clinicopathological
and molecular features of each cancer are availablein a Genomic Data
Table accessible in the 100kGP Research Environment (https://www.
genomicsengland.co.uk/research/research-environment).

Mutational processes and driver genes

We initially classified CRCs into the three established subtypes:
MSI (microsatellite instability-positive, mismatch repair deficient;
n=364); POL (DNA polymerase € proofreading-deficient; n =18); and
MSS (microsatellite-stable; n =1,641). All except three of the metas-
tasis samples were MSS (Methods). MSS cancers showed highly vari-
able ploidy, whereas most MSI and POL cancers were near-diploid.
Single-base substitution (SBS), doublet-base substitution (DBS) and
small insertion-deletion (indel) mutational signature activities were
broadly concordant with published work'>**'¢, albeit with some impor-
tant differences (Extended Data Fig.1a,b and Supplementary Table 3).

Weidentified a potentiallyimportant rolein CRC for SBS93 (mostly
TTA>TCA and T>G), the fourth most common SBS signature (around
40% frequency in MSS primary tumours, but almost absent in MSI;

A list of affiliations appears at the end of the paper.

Nature | Vol 633 | 5 September 2024 | 127


https://www.genomicsengland.co.uk/research/research-environment
https://www.genomicsengland.co.uk/research/research-environment
https://doi.org/10.1038/s41586-024-07747-9

Article

mean activity 29%, range 13-82%). SBS93 has been associated with
oesophageal and gastric cancers (https://cancer.sanger.ac.uk/signa-
tures/sbs/sbs93/). Its presence in CRC has previously been noted" ™,
butnotaccorded any significance. SBS93 showed transcriptional strand
bias in our tumour samples (P < 0.001, Wilcoxon test), as it does in
other cancers®, consistent with the action of transcription-coupled
nucleotide excision repair on bulky DNA adducts caused by exogenous
mutagens". In MSS primary tumours, SBS93 co-occurred in a cluster
with the signatures indel 14 (ID14; mostly insT in longer homopoly-
mers and insC; Pyonerron = 1.6 X 10™°°), SBS2 (TCN>TTN, APOBEC), SBS13
(TCN>TGN, APOBEC), SBS18 (C>A, oxidative damage), DBS2 (CC>AA,
tobacco and aldehydes) and DBS4 (GC>AA, TC>AA) (Supplementary
Table 3 and Extended Data Fig. 1c). Co-occurrence relationships for
other signatures are described in Supplementary Result 1.

Driver gene identification at the base-pair level™® was performed
separately in MSS primary, MSI (all primary), POL (all primary) and MSS
metastasis CRCs to account for different background mutation rates
(Methods). Overall, 193 putative CRC driver genes were detected using
thisstrategy (Fig.1a, Extended DataFig.2 and Supplementary Tables 4
and 5), with totals of 89, 96,49 and 39, respectively in the four groups.
Intotal, 57 drivers were identified in more than one group, leaving 136
present in asingle group (44, 57,27 and 8, respectively). Many of the
candidate driver genes had not previously beenreportedinany cancer
and others were new to CRC*”®,

Known CRC driver genes were generally mutated at reported frequen-
cies. As expected given previous exome sequencing studies, all new
MSS-specific coding drivers were low frequency (0.9-3.9%) and often
with hotspot mutations (Supplementary Table 6 and Supplementary
Result 2). By contrast, several of the new MSI drivers were relatively
common, and were detectable in up to 50% of MSI tumours. Theiriden-
tification was probably a reflection, in part, of the large sample size,
but also of improved indel mutation calling compared with previous
studies’. A prime example is the BAX tumour suppressor gene (TSG)
(Supplementary Tables 6 and 7 and Supplementary Result 2).

Biological mechanisms highlighted by new drivers (Supplementary
Table 4) included existing pathways, suchas WNT and TGF3-BMP, and
less expected functions, such as RNA regulation (ZC3H13 and ZC3H4)
and transcriptional control (for example, the transcription factors
GTF2IRD2, MITF, MLF1, NCOA1, OLIG2,PRDM16,RUNX1, RUNXIT1, TCF12
and TCF3). Multiple members of the same family or pathway were fre-
quently mutated. For example, several RAS-RAF-MEK-ERK and other
MAP kinase pathway genes were MSS tumour drivers, including not
only established ‘major drivers’ (KRAS, NRAS or BRAF) but also several
‘minor drivers’, including five MAP2 or MAP3 kinase genes, mostly
involved in JUN kinase activation and signalling to MEK® (Fig. 1a and
Extended Data Fig. 2¢,d). Other minor RAS pathway drivers included
the RAS activator RASGRF1 (RhoGEF domain mutations), RAFI (hotspot
p.Ser257Leu) and the RAS suppressor RASA1, and an exemplar new MSI
driver, the GTPase RGS12 (Supplementary Result 3 and Supplementary
Table 7). None of the minor RAS or MAP kinase drivers (Supplementary
Table 4) was mutually exclusive with an established major RAS driver.
Moreover, there was no association between the presence of major
and minor RAS pathway drivers (odds ratio (OR) =1.07,95% confidence
interval (CI) = 0.79-1.45, P=0.73, two-tailed Fisher’s exact test,n = 1,521
MSS primary tumours). Finally, there was no evidence that minor RAS
drivers could substitute for a major driver (mean minor RAS driver
frequency of 0.12 in tumours with a major RAS driver compared with
0.13 without amajor RAS driver, P= 0.58, two-tailed ¢t-test,n = 1,521 MSS
primary tumours). These data therefore suggest that the minor RAS
and MAP kinase drivers act as modifiers of major RAS drivers and/or
inadifferent branch of the MAP kinase pathway.

MSS tumours typically had four pathogenic driver mutations,
whereas primary MSI and POL tumours had 23 and 30, respectively
(P=2.6 x10™8, two-sided Kruskal-Wallis test; Extended Data Fig. 2a and
Supplementary Table 8). Thirty genes were drivers inboth MSS and MSI
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cancers, whichemphasized the shared roles of WNT, RAS-RAF-MEK-
ERK, PI3K, TGF3-BMP, TP53 and chromatin remodelling across CRC
subtypes (Extended Data Fig. 2d). Other drivers were subtype-specific,
yetindicated functional defects shared between MSS and MSI tumours,
including genes that provided alternative ways of dysregulating the
same pathways (Supplementary Tables 4-7). For example, TGF3-BMP
signalling was mostly inactivated by co-SMAD SMAD4 mutations in
MSS cancers, but by one or more indel receptor mutations (TGFBR2,
ACVR2A, BMPR2 and ACVR1B) in MSI cancers. Similarly, BAX mutations
provided a biological alternative to TP53 mutations in MSI tumours.
Marked functional dissimilarities between MSS and MSItumours were
also found. For example, 12 MSI-specific drivers were annotated to
immune functions compared with just 1 MSS-specific driver (detailed
below). With the caveats of different sample sizes and mutational pro-
cesses, the principal factors that underlie differences between MSS
and MSI drivers were that the latter are subject to stronger selection
for immune escape and can tolerate multiple and/or non-canonical
changes in driver pathways (Supplementary Tables 4-6).

Theidentification of driver mutations remains subject to uncertainty,
especiallyinhypermutant cancers and poor-quality samples. Of nearly
1,000 CRC drivers reported by other studies of primary CRC* %, we
only replicated 68 (7%) (Supplementary Table 9). Careful validation
and functional assessment of our new putative drivers by other studies
are similarly essential.

Structural and copy number variants

Simple structural variants (SVs), inter-chromosomal transloca-
tions and complex SVs were identified using a consensus approach'
(Methods). Nine SV signatures were extracted across the cohort
(Fig. 1b). SV8 (unbalanced inversions) and SV9 (unbalanced translo-
cations) had not previously been identified in CRC.

Using simulation, 45 non-fragile SV hotspots (regarded as candi-
date driver changes) were found in MSS primary tumours and 3 in
MSItumours (Q < 0.05, one-sided permutation test; Fig. 1c, Extended
DataFig.3aand Supplementary Table10). Previously reported SV hot-
spots in MSS primary cancers included deletions (for example, APC,
PTEN, SMAD4 and TP53), amplifications (for example, IGF2, MYC and
RASL11Aregulatory element) and fusions (for example, EIF3E-RSPO2
and PTPRK-RSP03)*"#* Fusions involving the kinase domain of pre-
viously reported partner genes were identified in 0.4% and 4.1% of
MSS and MSI cancers, respectively?? (8 NTRK1, 6 BRAF,2ALK,1NTRK3
and 1RET; Supplementary Table 11). Focal TP53 deletions previously
observed in osteosarcoma and prostate carcinoma'® were found in
2.4% of MSS primary tumours. A region on 17q23.1 containing VMPI,
previously reported in breast cancer and pancreatic cancer®?, was
deleted in1.2% of MSS primary tumours. Recurrent intronic deletions
at19pl13.12 included aregulatory element interacting with the BRD4
promoter®, TET2(0.8%) was a potential target of previously unknown
4q24 rearrangements, given its driver status in our POL cancers and
arolein haematological malignancies®. EZH2was a credible target of
anewly identified 7q31.2 deletion, given that low EZH2 expression is
associated with poor CRC prognosis?. In MSI cancers, we confirmed
recurrent 11p15.1 deletions that encompass the MSI driver CDKNI1C,
and sixnew SV hotspots. In MSS primary cancers, there was enrichment
of complex SVs at locations with arm-level copy number alterations
(CNAs), which indicated a common causal origin (Supplementary
Table12).

Weanalysed extrachromosomal DNA (ecDNA)? to distinguish as far
aspossible truly circularecDNA molecules fromthose characterized by
breakage-fusion-bridge (BFB) cycles.ecDNA content differed by CRC
type, with 28% (380 out of 1,354) of MSS primary tumours containing
>1 predicted circular ecDNA compared with 1.4% (4 out of 292) MSI,
0% (0 out of 10) POL and 36% (38 out of 105) metastatic MSS tumours
(P<0.001, MSS primary compared with MSI, two-sided Kruskal-Wallis
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Fig.1|Driver genesand structural variantsin CRC.a, The most commonly
mutated driver genes based on separate analyses of SNVs, smallindels and
other base-level changesinthe MSS primary, MSI, POL and MSS metastasis
sets. Genes with the highest oncogenic mutation frequencies across the entire
cohortareshowninrank order (most frequent on the right). For driver gene
discovery, CRCdrivers had previously beenidentifiedinany CRC cohort

(or cohorts)', whereas other cancer drivers had previously beenidentified only
innon-CRC or multicancer cancer cohorts*'8. The remaining drivers were
considered new. Mutationrole (loss of function (LOF), activating, unknown or
ambiguous) was assigned considering previous curation®and predictions by
this study. Conflicts or uncertainty were termed ambiguous. The percentage
of tumours with a pathogenic mutationin the MSS primary (n=1,521), MSI
(n=360) and POL (n=16) cohorts are shown. Drivers identified in aspecific
cohortareincellswithablack border. Number mutated represents all tumours

test; Extended Data Fig. 3d and Supplementary Table 13). MSS pri-
mary tumours with ecDNA were more likely to exhibit chromothrip-
sis (P=1.09 x107%, OR = 2.43, two-sided Fisher’s exact test), a result
consistent with previous reports®. In MSS primary tumours, only 5%
(34 out of 665) of oncogene amplifications (total copy number >5in

lanananantenanaant m
6 7 8 11 13 14 15 16 17 18 19 20 21 22

withapathogenic mutationacross all three cohorts. Alsoshown are: the
percentage of tumours with biallelic mutations including LOH; status as a
putative SVand/or focal CNA driver; and discriminant genes in the MSS primary
cluster analysis. See also Extended DataFig.2.b, Nine SV signatures by
underlying SV type in MSS primary, MSIand POL CRCs (n=1,898). Horizontal
colouredbarsrepresent the contribution ofeachSVtypeto each signature.

¢, Significantsimple SV hotspotsidentified in MSS primary CRCs (n=1,354).
Numbers of tumours witha SV at each genomiclocation (1Mbregions) are
coloured by the underlying type. Hotspots (excluding fragile sites) identified
at Q< 0.05 (one-sided permutation test) are annotated with cytoband, the
number of genes contained (in parentheses) and any candidate gene
(Supplementary Table 10). Simple SVs comprise <2 individual rearrangements.
Unclassified SVs could notbe identified clearly asadeletion, tandem duplication,
inversionor translocation.

diploid tumours, >10 in tetraploid tumours) mappedto circular ecDNA.
However, circular DNA was implicated in 14 out of 74 amplifications
at MYC and 8 out of 15 at ERBB2. Our findings suggest that oncogene
amplification through circularized ecDNA in CRC has only a modest
role compared with other cancer types.
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Overall, 1,765 (87%) CRC samples passed quality control filters for
CNA analysis (Methods and Extended Data Fig. 4a-d). The median CNA
burden was 36 (range of 0-378) and the median estimated ploidy was
2.26 (range of 1.43-6.41). CNAs were uncommon in MSI and POL can-
cers, as expected. Whole-genome duplication (WGD)* was identified
in45.0%,5.8% and 10.0% of MSS primary, MSland POL cancers, respec-
tively. Within the MSS primary group, WGD most strongly co-occurred
with TP53mutation® and chromosome 13q gain, and with the absence
of KRAS and PIK3CA mutations (P< 0.001, Fisher’s exact test). We found
six CNA signatures (Supplementary Table 14), of which CN17 (n =260,
tandem duplication and HRD))* had not previously been reported in
CRC. Alltheidentified signatures, except CN1 (diploidy), were enriched
inMSS tumours. We found all previously reported, recurrent arm-level
CNAs and whole chromosome changes (that is, events >50% of the
total armsize)”* (Supplementary Table 15). Arm-level increased copy
number typically involved single-copy or double-copy gains, with the
exception of 20q, which gained four or more copies in 18% of MSS pri-
mary cancers (Extended Data Fig. 4d).

Intotal, 16 arm-level gains and 13 deletions were above background
frequencies in MSS primary cancers, and we regarded these as candi-
datedriver changes (Supplementary Table 15). Although MSland POL
cancers were mostly near-diploid, 17 arm-level CNAs (for example,
gainsof 7,9,12q and 14q and losses of 21q) were present in MSI cancers
at levels above background. We identified a set of focal CNAs <3 Mb
(Supplementary Table 16), and mapped minimal common regions
shared between larger CNAs*, Previously reported focal CNAs in MSS
primary cancersincluded single-copy and double-copy gains involving
CCND1, ERBB2, MYC and KLFS, and deletions of ARIDIA, SMAD4 and
APC" (Supplementary Table17). Although 5p15.33 (TERT) amplification
was detected in 13 MSS cancers, we found no association with telomere
length (TelomereHunter P=0.78, Telomerecat P=0.51, two-sided
Kruskal-Wallis test)*. The following new focal CNAs were identified:
5q13.1deletions (29%; PIK3R1);15q11.2 deletions (42%; containing the
IncRNA PWRN1, atumour suppressor in gastric cancer?); and amplifi-
cation at 6p21.1(28%) and 6p25.3 (25%), which may target CCND3 and
NEDD9, respectively, genes that we also identified as putative drivers
(Supplementary Table 4). There was shared causal overlap between
CNAs and SVs, especially on chromosomes 8,17, 18 and 20 (Extended
DataFig. 3b,c and Supplementary Result 4).

Combined analysis of putative drivers

By combining small substitutions and indels, SVs and focal CNAs, we
identified 201 putative driver genes (Extended Data Fig. 4e). Most
candidate SV target genes were annotated to the locations of drivers
found in the small-scale mutation analysis. About 7% of driver genes
principally affected by indels and single nucleotide variants (SNVs)
were also mutated by SVs, the latter typically constituting 1-4% of all
mutations. The overlap between the sets of drivers affected by both
small-scale mutations and CNAs was also strong, in part owing to second
hits at TSGs. Evidence of two hits (Supplementary Table 18) was found
forup to 90% of ‘classical’ tumour suppressor mutations (for example,
APC,SMAD4 and TP53), 75% of immune-escape drivers and 50% of the
new RAS-RAF-MEK-ERK-MAP kinase drivers. However, the median
second-hit rate across drivers was only 10%, and most new drivers did
not adhere to a classical two-hit TSG model (albeit some were prob-
ably oncogenes). Almost no known or putative oncogenes showed
clear evidence of second hits by amplification.

Pathway analysis of the putative CRC drivers using EnrichR* identi-
fied many gene sets strongly associated with tumorigenesis and/or CRC
pathogenesis (Supplementary Table 19). Almost all CRCs had changes
in WNT, and most had changes in TGF3-BMP, ERRB-RAS-RAF-MEK~-
ERK and p53 (Extended Data Figs. 2 and 4f). Other pathways involved
lesscommondrivers, including wider MAP kinase, NOTCH, chromatin
regulation and transcriptional control (Supplementary Table 19).
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We found only limited evidence of new driver genes directly involved
in DNArepair or hypermutation. Many tumour drivers or other molec-
ular features were potentially clinically actionable (Supplementary
Result 5 and Supplementary Tables 20-22).

Several signatures co-occurred with specific driver mutations
(Extended Data Fig. 2b). In some cases, shared over-representation
in MSS, MSl or POL cancers was the probable cause. Other pairwise
relationships probably causally linked to each other included those
between TP53 and multiple copy number signatures, and between
ATM and SV1.

Finding common and rare CRC subgroups

Tosearch formolecular subgroups of CRC based on genomic features,
hierarchical clustering was performed using 304 molecular and clini-
calvariables (Methods). Based on cancers with available CNA data, we
found six stable clusters of 1,000 primary, treatment-naive tumours:
MSI; POL; and four MSS clusters. We denoted the MSS clusters as WGD-A
(24% of primary treatment-naive MSS), WGD-B (40%), genome sta-
ble (GS; 21%) and loss of heterozygosity (LOH; 15%). WGD frequencies
in the MSS clusters were 97%, 99%, 14% and 0%, respectively (Figs. 1a
and 2, Extended DataFig.5and Supplementary Table 23). SNV andindel
burdens of all MSS clusters were distinct from MSIand POL tumours.
Both WGD clusters showed hallmarks of chromosomalinstability (CIN).
Specifically, they showed higher numbers of SVand CNA events, higher
LOH and increased numbers of events attributed to copy number
signatures CN6 (chromothripsis) and CN17 (arm-level LOH followed
by two genome doubling events). Large fractions of these tumours
had whole chromosome or arm-level losses (mean number of arms
lost per tumour of 9.8).

MSS-WGD-A tumours had higher SNV and indel burdens and mark-
edly higher numbers of events attributed to SBS93, ID14, DBS7 and SV
signatures1, 2,3, 6,7 and 9 (Supplementary Table 23). They also had
increased frequencies of BRAF mutations, which were also strongly
associated with MSI cancers. The second WGD cluster (MSS-WGD-B)
was the largest, and might be regarded as ‘canonical’ MSS cancers. It
was enriched relative to other cancers for distal location, SBS18 and
the E. coliP*** signatures SBS88 and ID18, although not for any specific
driver mutation (except the rare driver MITF).

MSS-GS cancers showed few events associated with CIN (that s,
predicted near-diploid karyotype, low levels of LOH, SVs, CNAs and
arm-level losses (mean number of arms lost per tumour of 2.3). This
cluster had the fewest TP53 mutations (6%), a result consistent with a
role for p53 in preventing multiple types of CIN, but the largest frac-
tions of KRAS mutations (83%) and SBS18 activity (97%). The remaining
cluster, MSS-LOH, showed an unusual form of CIN characterized by
focal and arm-level LOH (and hence high CN9 activity), with interme-
diate SV, CNA and LOH burdens, and low SNV and indel burdens. In
some respects, MSS-GS cancers resembled MSI cancers with respect to
proximallocation, near-diploid genomes and shared driver genes such
as TGFBR2, ACVR2A and ARID1A (Fig. 2a), but there was no increased
mutation burden (Extended DataFig. 5). Patients with MSS-GS cancer
had longer overall survival than other MSS cancers, and this cluster was
anindependent better prognostic factor, alongside worse prognosis
associated with higher stage, greater age and proximal location in
multivariable survival analysis of the entire patient set (Extended Data
Fig. 5e and Supplementary Result 6).

Rare cancer subgroups can also provide important insights into
tumorigenesis, as exemplified by POLE driver mutations’. These
occur in only 1-2% of CRCs but are associated with an exceptionally
high mutational burden and good prognosis®. Our patient sample
size provided an opportunity to identify or characterize other less
common molecular subgroups of CRC (Extended Data Fig. 6 and
Supplementary Result 7). We focused on five such rare subgroups:
(1) subclonal driver mutations, notably parallel evolution of SMAD4
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Fig.2|Identification of MSS primary CRC molecular subgroups by cluster
analysis. a, Heatmap of the six clusters identified by consensus clustering for
asubset of variables that showed asignificant difference (false discovery rate
(FDR) <0.05) between the MSS clusters. The single cluster analysis is splitinto
two parts for better visualization. Top, subtype (MSS primary, MSland POL),
WGD status, age at sampling, sex, Dukes stage, site,immune-escape status,
genes, mutation burdens and signatures. Bottom, subtype, WGD status, purity,
ploidy, fraction LOH and copy number states. Values for mutation burdens
(SNV, indel, SV, CNA) and signatures (SBS, DBS, ID, SV and CN) are ranked and
scaledtoliebetween 0 and 1. Driver gene mutations are shown by gene name.
Chromosome arm-level changes are shown by 1-22 and X. b, Summary of
significantand other selected associations between molecular features and

mutations and18q deletions (Extended Data Fig. 6aand Supplementary
Table 24); (2) activating CTNNBI driver mutations that show complex
co-occurrence relationships with other WNT drivers and almost all
undergo loss of the wild-type allele, despite being dominant oncogenec
alleles (Extended Data Fig. 6b and Supplementary Table 18); (3) MSI
cancerswith highly chromosomally unstable genomes (Extended Data
Fig. 6¢); (4) BRCAI and BRCA2 mutant cancers and their associated,
potentially targetable HRD (Extended DataFig. 6d); and (5) patients who
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showninSupplementary Table 23. No significant difference between clusters
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in MSS primary tumours. Notable moderate-frequency molecular variables
withoutasignificant association with cluster group included signatures DBS6
and SV5and driver mutations in FBXW7, SMAD4 and PTEN. There was also no
significant association with microbiome diversity or prevalence of the top 20
bacterial genera.

had received previous radiotherapy for prostate cancer, arisk factor for
CRC?®, showing the absence in most cases of radiotherapy-associated
signature ID8 (Extended Data Fig. 6e).

Immune editing and escape

Predicted tumour neoantigen burden, summarized in Fig. 3a, was cor-
related with tumour mutationburden (TMB) (PearsonR=0.89,P<107%,
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Fig.3 |Immunelandscape of CRC. a, Neoantigen burdens and immune-
escape mutations. Bars show antigen-presenting or antigen-processing

gene (APG) and HLA alterationsin each cancer. FS, frameshift; unspec.,
unspecified; unc, unclassified. b, PHBR of all non-observed mutationsin all
cancers (n =478,106 mutations) compared with observed mutations (n = 3,211
mutations). P=6 x107. ¢, Median PHBR of driver mutations (n = 80) shared
between CRC subtypes, computed separately for cancers of each subtype.
Lines connect PHBR values of the same mutation across subtypes. d, Median
PHBR of driver mutations across the entire CRC cohort by mutation count.
Grey dotsrepresentindividual mutations, red dots show the median for
mutations at the same frequency. e, The influence of HLA alterations on
PHBR. Values for each driverin each patient with a HLA mutation using

the full set of patient-specific HLA alleles (red) are compared with values
computed fromareduced, non-mutated set (blue). P=2 x10™". f, Median
PHBR difference of non-mutated and mutated driver gene changes within
two-sided test)*. Antigenicity of selected common driver mutations
is shown in Extended Data Fig. 7a. To examine the immunogenicity
of all common driver mutations, we derived patient harmonic-mean
best rank (PHBR) scores*®, which quantify the potential of a mutation
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patients. Eachdot denotes adriver. Genes with significant difference
(Pgonterroni < 0.1) are highlighted inred. g, Top, somatic mutationsin
componentsofthe APG pathway by CRC subtype. Bottom, frequencies of
cancers with mutationsin specific APGs or HLA. A total of 140 cancers were
excluded from the analysis owing toincompatible HLA types. h, Associations
betweenimmune-escape-associated somatic mutations and neoantigen
burden. Multivariable regression analysis was performed in 1,412 MSS
primary and 309 MSl cancers, usingno HLA or APG alteration as the baseline.
Circles orsquares show odds ratio (OR) point estimates and whiskers show
95% Cls. Numbers of cancers with each type of alteration are shown (tumours
canbe presentin more than one alteration group). Throughout, unless
otherwise stated, two-sided Wilcoxon tests were used, and for box plots, the
centre line shows the median, the box limits show upper and lower quartiles,
and the whiskers show 1.5x inter-quartile range.

to generate a new human leukocyte antigen (HLA)-binding epitope
depending on the HLA haplotype of the patient (Methods). We con-
firmed previous observations that the most commonly detected
CRC driver mutations tended to have low immunogenic potential



(Fig.3b-d).Indeed, driver mutations were enriched in patientsinwhom
they had alow immunogenic potential. Moreover, loss of HLA allele
function through mutation or LOH reduced the immunogenicity of
driver mutations (Fig. 3e). Differentialimmunogenicity analysis (that
is, comparing the predictedimmunogenicity of driver gene mutations
in cancers with those mutations versus those without those mutations)
identified five driver genes (BRAF, TP53, SMAD4, PIK3CA and KRAS) that
had ssignificantly higher mutation frequencies (Pgongerroni < 0-1; Wilcoxon
rank-sumtest) in patients in whom theirimmunogenicity was predicted
to be lower (Fig. 3f). Collectively, these observations are consistent
with the idea that immune editing influences the driver landscape.
However, the finding that the most common KRAS mutations are also
more antigenic (Extended Data Fig. 7a) suggests that in some cases,
direct positive selection can outweigh immunogenicity.

Several driver genes, especially in MSland POL tumours, had a puta-
tive role inimmunity and inflammation (Supplementary Table 4), spe-
cificallyimmune escape. As per other studies, patterns and prevalence
ofimmune escape differed by CRC subtype*'**'*? (Fig. 3g). We sepa-
rately evaluated allelicimbalance, LOH and protein-altering mutations
inthe HLA-A, HLA-B and HLA-C (MHC type I) genes and somatic muta-
tionsinacore set of other antigen-presenting or antigen-processing
genes (APGs: PSME3, PSME1, ERAP2, TAP2, ERAP1, HSPBP1, PDIA3,
CALR, B2M, PSME2, PSMA?7, IRF1, CANX, TAPI and CI/ITA). Of these
genes, TAP2, B2M, IRF1, TAP1, HLA-A, HLA-B and HLA-C were formally
and independently classed as CRC drivers, with strongest signals in
MSI cancers, but also discovered in MSS cancers (for example, HLA-A
and B2M) (Fig.3g and Supplementary Table 4). Multivariate regression
analysis that accounted for clinical characteristics and TMB revealed
thatin MSS cancers, tumours withimmune-escape mutations had a
higher predicted neoantigen burden (P < 0.001; Fig. 3h). This associa-
tion was present across all mechanisms of immune escape, but the
HLA (type I) mutation had the strongest effect (associated with 21%
increase in burden compared with HLA wild-type; P=0.001). Con-
versely, in MSI cancers, only protein-altering mutations of HLA and
other APGs were associated with higher neoantigen burden (P=0.002
and P=1x 107 respectively, Wilcoxon test), with an APG mutation
corresponding toa35% increase in the neoantigen burden. Immune
escape from any mechanism remained significantly associated with
neoantigen burden in multivariate regression (P=0.012; Extended
Data Fig. 7b). In MSI cancers, previous treatment (n = 34) was asso-
ciated with anincreased neoantigen burdenindependent of overall
TMB (P=0.006), afinding potentially linked to the geneticimmune
escape detected in 33 out of 34 treated MSI cancers.

Beyond the coding nuclear genome

Toillustrate the utility of WGS in analysing features outside coding
regions of the cancer genome, we performed five exemplar studies
(detailsin Supplementary Result 8): (1) an exploration of driver muta-
tions in regulatory noncoding elements (Supplementary Table 25);
(2) recurrent, focal copy number changes and SVs outside fragile sites
and genebodies (Extended Data Fig. 6f and Supplementary Tables 12
and 16); (3) splice site driver mutations in APC and SMAD4 (Supple-
mentary Table 26); (4) the mitochondrial genome (Supplementary
Table 27); and (5) the CRC-associated microbiome (Extended Data
Fig. 8, Supplementary Tables 28-30 and Supplementary Result 9).
A particularly promising finding in the noncoding human genome
comprisedrecurrent, focal copy number deletions (chromosome 17:
72429007-72450223) in MSI tumours, involving the lincRNA
LINC00673 (also known as LINCOO0S511), a transcript that interacts
with the CRCdriver genes EZH2 and PTPNI1I (Supplementary Table 16).
Thisregion overlapped with aSV deletion hotspot (chromosome 17:
72228421-72770582) in MSS primary tumours thatincludes anoncod-
ingregulatory element thatinteracts with the promoter of the nearby
CRCdriver SOX9 (Extended Data Fig. 6f and Supplementary Table 10).

MSS CRC genomes by anatomical location

CRC s often said to comprise several different diseases depending
on the tumour location*. As location co-varies with MSl status, we
assessed the genomic features of MSS primary CRCs from different
sites in the bowel. Tumours from distal locations had greater num-
bers of SVs and CNAs but fewer SNVs and indels (Fig. 4 and Supple-
mentary Tables 31and 32). Higher SBS8 and lower SBS1, SBS5, SBS18,
ID1and ID2 activities were also observed in cancers from distal sites**
(Pgonterroni < 0.05, linear regression; Fig. 4, Extended Data Fig. 9a,c and
Supplementary Table 32). The burden of E. coli”** and colibactin sig-
nature ID18 (but not SBS88) was higher in distal CRCs (P=4 x107,
two-sided Wilcoxon test), a result consistent with healthy colon™
(Methods).

Distal MSS cancers were typified by higher frequencies of TP53 muta-
tions and lower frequencies of AMERI, BRAF, KRAS and PIK3CA muta-
tions’® (Fig. 4 and Supplementary Table 33). Arm-level deletions of 14q,
18p and18qalso occurred more frequently in distal cancers (Fig. 4 and
Supplementary Table 34), as did focal deletions of 1p36.11,18q21.2,
18g22.3 and 20q13.33 gain. In part reflecting these specific changes,
MSS cluster subgroups also showed associations with anatomical loca-
tion (Fig. 2c, Extended Data Fig. 5a and Supplementary Table 23). The
overall proportions of MSS-WGD-A, MSS-WGD-B and MSS-LOH tumours
increased from the caecum to the rectum, whereas MSS-GS tumours
were relatively common in the proximal colon.

Alongsidethetrendinindels, there was adecreasing trend in neoan-
tigen burden fromthe caecumto the rectum (Extended Data Fig. 7b-e).
There was no significant site-specific difference in the overall preva-
lence ofimmune-escape mutations (43% rectum, 39% distal colon, 38%
proximal colon, P=0.20, two-sided Kruskal-Wallis test, n =1,019 MSS
primary tumours). However, inrectal cancers, there was a higher preva-
lence of HLA LOH (P=0.04, x»). In a multivariate regression analysis
including TMB and other patient co-variables, the distal colorectum
wasindependently associated with lower neoantigen burden (Extended
Data Fig. 7b), which suggested a higher level of immunoediting
(Paistatcoion =9 X 107, Proceum = 2 X 107*; two-sided test).

Driver gene discovery in CRC subgroups

Asdriver mutation frequencies varied along the bowel, we searched for
location-specific driver genesbased onaset of developmentally or clini-
cally based anatomical subdivisions of the large bowel. We identified
48drivers not found by our mainanalysis, most of which were detected
in only a single location (Extended Data Fig. 2c and Supplementary
Table 35). Nine of these drivers were previously unknown to any cancer
and 35 were new driversin CRC. These genesincluded £ETV1, detected
in the distal colon and previously proposed as a target of enhancer
mutations in CRC®; the WNT transcription factor LEFI (proximal colon);
NOTCH2, long proposed to have a role in CRC pathogenesis (distal
colorectum)*®; the oncogene SRC (distal colorectum); the PI3K-mTOR
signalling molecule TFEB (rectum); and the EGFR signalling component
DDR2 (proximal colon).

Because the frequencies of some driver genes varied significantly
among MSS clusters, we reasoned that cluster-specific drivers might
exist. Exploratory driver discovery in each of the 4 cluster subgroups
identified 35 additional candidate drivers (Supplementary Table 36).
Theseincluded four genes detected intwo subgroups (BRCA2, COL1AI,
PTPRT and SMARCA4) and other strong candidates such as ACVRI,
NOTCHI1 and POTI.

Molecular correlates of early-onset CRC

Recent reports of an increase in early-onset CRCs*** are currently
unexplained. We found that individuals with Mendelian syndromes
or somatic POLE mutations presented earlier in life (median age of

46,47
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Fig.4|Variation of molecular features with MSS CRCanatomicallocation
inthelarge bowel and with patient age at presentation.a-d, Mean number
ofvariants (N) based on bowel location (a-c) and age (d). a, Decreasing SNV
burden from proximal to distal colorectum. b, Decreasing indel burden from
proximal to distal colorectum. ¢, Increasing indel burden from proximal to
distal colorectum.d, Increasingindel burden with age. e-h, Mean number of
variants per signature based onbowellocation (e,f) and age (g,h). e, Decreasing
mutation burdens ascribed to SBS5, SBS18 and SBS1, and increasing SBS8
burden, from proximal to distal colorectum. f, Decreasing mutation burdens
ascribedtoIDlandID2, and increasing ID18 burden, from proximal to distal
colorectum. g, Decreasing mutation burdens ascribed to SBS93 and SBS89, and
increasing SBS5, SBS18 and SBS1burdens, with age. h, Decreasing mutation
burdensascribed toID14, and increasing ID1burden, with age. i, Decreasing
frequencies of KRAS, PIK3CA and AMER1 driver mutations, and increasing
frequency of TP53 mutations, from proximal to distal colorectum, with

60 years at sampling, range 34-79 years, P = 0.0015, Wilcoxon test),
as expected®. SNV and SV burden were not correlated with age, but
in MSS cancers, indel burden was highest in the youngest and oldest
patients (<45 years old, mean =13,428; 45-75 years old, mean =12,328;
>75 years old, mean =13,906; P < 0.05, pair-wise Wilcoxon tests against
the 45-75-year-old group) (Fig. 4, Extended Data Fig. 9b,c and Sup-
plementary Table 32). Younger patient age was associated with lower
activities of SBS1, SBS5 and ID1 (clock-like signatures) and SBS18
(reactive oxygen species)™*8, By contrast, SBS89, SBS93 and 1D14
activities were higher in younger patients. The association between
SBS93 and earlier age was strong (multiple regression, P=3.3x107,
two-sided test), and accounted for a younger presentation of about
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decreasing frequency of BRAFin MSItumours shown for comparison.
j,Increasing frequencies of arm-level CNAs involving chromosomes 18p, 18q
and 14q from proximal to distal colorectum. k, Increasing frequencies of SOX9
and AMERI driver mutations with age in MSS primary tumours compared with
increasing frequencies of RNF43and BRAF, yet decreasing APC, with age in MSI
tumours. I, Proportions of tumours in four MSS cluster groups, unclustered
MSS and MSIshowing increased MSS-GS (and MSI) in proximal locations and
increased WGD-Bin distal locations.m, As per | but by age, showing relatively
early presentation of WGD-A cancers. Selected MSI data are shown by way of
comparisoniniandkusing dashedlines.Errorbarsina-drepresentstandard
deviations. The bottom-left panel shows the nine anatomical sub-divisions
ofthe colorectum, from caecum (most proximal) to rectum (most distal).

RS, recto-sigmoid. Full datain these panels and additional dataare provided
inSupplementary Table 37, with further detailsin Extended Data Fig. 9 and
Supplementary Tables 23 and 32-34.

5 years. Similar to SBS93, SBS89 has unknown aetiology, although it
hasbeenreportedto occurinhealthy colontissue during the first dec-
ade of life**. Younger age also correlated with lower SOX9 pathogenic
mutation frequency in MSS primary cancers. In primary MSl cancers,
frequencies of BRAF and RNF43 mutations were lower in younger
patients, with correspondingly higher APC frequency (P < 0.05,
two-sided Wilcoxon test; Fig. 4 and Supplementary Table 33).

Concluding remarks

Here we provided alarge and comprehensive analyses of the genomic
landscape of more than 2,000 patients with CRC. In addition to



providing a comprehensive set of mutations of all types, a principal
strength of our study is the ability to detect uncommon features, as
evidenced by the discovery of many new driver genes, including SNVs,
smallindels, SVsand CNAs. Although some rare driver mutations might
have uncertaindriver status or weakly promote tumorigenesis, others
may have considerable relevance, especially if they are known driversin
other cancer types or overlap functionally with other rare drivers that
collectively form a higher frequency group.

Inadditiontothe discovery of driver genes, several new insightsinto
CRCgenomics and biology were obtained (Supplementary Note). We
showed that the large MSS group of CRCs is not ahomogenous entity
by clustering it into four common subgroups with distinct molecu-
lar and clinicopathological features. We also discovered and better
characterized rare CRC subgroups, including MSI CIN CRCs, cancers
with parallel evolution of copy number and SNV driver mutations,
and tumours with putative noncoding driver mutations. We found
new mutational signatures in CRC and molecular features associated
with early-onset disease or tumour location in the large bowel, the
latter showing that proximal MSS CRCs share some features with MSI
tumours. We showed evidence ofimmune editing of driver mutations
and frequent immune-escape mutations, especially in MSl and POL
hypermutant cancers. All these results have potential clinical impli-
cations or utility. We anticipate that our work will fuel future studies,
including efforts to characterize putative driver genes, translational
analyses and multidisciplinary experiments to address specific ques-
tionsin afocused fashion.
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Methods

Sample collection

The following steps were taken for sample collection. (1) Ethics
approval was provided to the 100kGP by the HRA Committee East of
England-Cambridge South research ethics committee (REC refer-
ence14/EE/1112). Samples were obtained as part of the 100kGP cancer
programme, aninitiative for high-throughput tumour sequencing for
NHS patients with cancer**°. (2) Thirteen Genomic Medicine Centres
(GMCs) were established by the NHS and 100kGP, each with multiple
affiliated hospitals across in the same region of the UK. (3) Patients
undergoing resection for CRC were identified by specialist nurses
and other staff. (4) All patients provided written informed consent,
and blood samples were taken. (5) Tumour samples were assessed in
histopathology cut-ups. Associated clinicopathological data were
obtained from health records. (7) Frozen tumour sub-samples were
taken and frozen. Haematoxylin and eosin sections were assessed for
purity and other histological features of note. (8) Blood and tumour
samples that passed quality control were sent for DNA extractionin
regional genetics laboratories. (9) DNAwas transferred to the 100kGP
central national biorepositry. (10) WGS of paired tumour-constitutional
(wholeblood-derived) DNA was performed by lllumina. (11) Processed
BAM files were transferred to Genomics England for additional pro-
cessing, quality checking and data storage. (12) All sequencing and
clinicopathological datawere transferred to Colorectal Cancer Domain
(GECIP) for further quality control and data analysis.

WGS and SV calling

Sequencing, mapping and variant calling were generally performed as
previously described®, although we used aless stringent variant allele
frequency (VAF) to enable analyses of subclonal mutations.

Sequencing and alignment. Samples were prepared using an Illu-
mina TruSeq DNA PCR-free library preparation kit and sequenced on
aHiSeq X, generating 150 bp paired-end reads. Tumour and consti-
tutional DNAs were sequenced to average depths of 100x and 33x,
respectively. Poor sequencing quality outliers were identified using
principal component analysis and removed on the basis of the following
quality metrics: percentage of mapped reads; percentage of chimeric
DNA fragments; average insert size; AT/CG dropout; and unevenness
oflocal coverage. lllumina’s North Star pipeline (v.2.6.53.23) was used
forthe primary WGS analysis. Sequence reads were aligned to the Homo
sapiens GRCh38Decoy assembly using Isaac (v.03.16.02.19)%. Overall,
PCR-free tumour and germline sequencing datafor 2,492 fresh-frozen
CRC samples were obtained from the 100kGP main program (v.8)
release and used in our analysis.

Single-nucleotide variant and indel calling. Single-nucleotide variant

and small indel calling was performed using Strelka (v2.4.7). In addi-

tion to the default Strelka filters, we applied the following exclusion
filters:

« Variants with a germline allele frequency > 1% in the full Genomics
England dataset.

- Variants with a population germline allele frequency >1% in the
gnomAD database®.

- Somatic variants with frequency > 5% inthe Genomics England cancer
dataset. A 5% cut-off was chosen based on the frequency of recurrent
non-synonymous variants in Cancer Gene Census genes>*.

- Variants overlapping simple repeats as defined by Tandem Repeats
Finder®.

« Indels in regions with high levels of sequencing noise where >10%
of the base calls in awindow extending 50 bp either side of the indel
were filtered out by Strelka owing to the poor quality.

« Indels within 10 bp of 100kGP or gnomAD (v.3) germline indel with
allele frequency >1%.

« Variants in regions of poor mappability where the majority of over-
lapping 150 bp reads do not map uniquely to the variant position.

« SNVs resulting from systematic mapping and calling artefacts pre-
sent in both tumour and control 100kGP sample sets. We tested
whether the ratio of tumour allele depths at each somatic SNV site
was significantly different to the ratio of allele depths at this site
ina panel of control samples using Fisher’s exact test. The panel of
control was composed of a cohort of 7,000 non-tumour genomes
fromthe Genomics England dataset. At each genomic site, only indi-
viduals not carrying the relevant alternative allele were includedin
the count of allele depths. The mpileup function in bcftools (v.1.9)
was used to count allele depths in the PoN. To replicate Strelka fil-
ters, duplicate reads were removed and quality thresholds set at
mapping quality > 5 and base quality > 5. All somatic SNVs with a
Fisher’s exact test phred score < 80 werefiltered, with the threshold
determined by optimizing precision and recall calculated from a
TRACERx truth set®.

Removing alignment bias introduced by soft clipping of semi-
aligned reads. The Isaac --clip-semialigned parameter invokes the
soft clipping of read ends until five consecutive bases are matched
with the reference genome. This soft clipping therefore resultsin the
loss of support for alternative alleles occurring within 5 bp of each
read end, whichleads to artefactually low VAFs. To address allelic bias
introduced by this clipping, we introduced FixVAF to soft clip all reads
by5bpateachend, regardless of whether any of the bases are variant
sites or whether the reads support reference or alternate alleles®.
Reads containing smallindels at variant positions wereignored (Sup-
plementary Fig.1).

Identifying MSI. Tumours with MSI were identified using MSINGS*®
followingthe previously described procedure for background model
generation (https://github.com/sheenamt/msings/blob/master/
Recommendations_for_custom_assays). A set of 132 tumours with
known MSI status (106 MSS, 26 MSI) was randomized into test and
training sets of 53 MSS and 13 MSI cases (that is, 2 sets of 66 cases).
Microsatellite sites were generated using MISA%. Only sites overlap-
ping regions of good mappability were considered. Sites measured as
unstable in >5 MSS test tumours and sites not unstable in >1 test MSI
tumours were removed. The background model produced using the
training set was able to perfectly distinguish between MSI and MSS
samplesin the test set using default MSINGs settings and was then
applied to the full CRC cohort.

Identifying pathogenic POL variants. Tumours with pathogenic
somatic or germline variants in POLE or POLD1 were identified con-
sidering the 22 known pathogenic variants a previously reported®.
Intotal, 18 tumours (17 MSS, 1 MSI) had a pathogenic germline (n=1) or
somatic (n=17) POLE variant and these were considered as a separate
POL group in all subsequent analyses. All of the highest mutational
burden tumours were either MSI or had a known pathogenic POLE
variant, which indicated that no pathogenic polymerase proofread-
ing domain mutations were missed. Tumours with pathogenic POLE
variants also exhibited high SBS10a and SBS10b activity, which are
established indicators of POLE exonuclease domain mutations".

CNA calling. Somatic CNAs were called using aframework implement-
edin the R package CleanCNA (Supplementary Fig. 2). Genome-wide
subclonal CNAs were first called using Battenberg (v.2.2.8)%". To check
the quality of these CNA calls, we applied DPClust® and CNAqc®2to the
CNA profiles and SNV VAFs. DPClust clusters variants by their cancer
cell fraction (CCF), whereas CNAqc compares observed and expected
peaksin SNV VAF distributions to assess CNA calling accuracy. Asample
was classified as ‘pass’if it met both of the following criteria, and ‘fail’
otherwise as follows:
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1. Aclonal cluster of SNVs (0.95 < CCF <1.05) was identified by DPClust.
This clonal cluster was required to have either the highest CCF of all
SNV clusters or contain the largest number of SNVs. SNV clusters
containing <1% of all sample SNVs were removed before assessment.

2. The differencein purity estimates from Battenberg and CNAqc was
<5%. CNAqc estimates sample purity considering peaks in SNV VAF
distributions in genome regions with one of five copy number states
(1:0,1:1, 2:0, 2:1, 2:2).

CNAs were profiled a maximum of four times per sample and the
procedure was stopped if both criteria were met. After a failure, CNA
were re-called using Battenberg with re-estimated sample purity and
tumour ploidy. After the first fail, purity and ploidy were re-estimated
using information from DPClust, where CCF,,, is the CCF of the SNV
cluster with the greatest CCF:

pnew :pold CCFtOp
w"ew = ((pold lpold) + 2(pnew _pold))/pnew

After the second fail, purity and ploidy were re-estimated using
Ccube®, and after the third and fourth fails, purity and ploidy were
re-estimated using CNAqc. If a sample failed after four re-runs, then
it was removed from downstream analyses reliant on CNAs. Pass CNA
profiles were produced for 1,765 out of 2,023 samples.

SV calling. SVs (also referred to as chromosomal rearrangements)
representtwo reference positions (referred to as rearrangement break-
points) that arenon-adjacentinthereference genome and juxtaposed
inaspecificorientation. Weidentified somatic rearrangements using
agraph-based consensus approach comprising Delly®, Lumpy® and
Manta®® while also considering support from CNAs (Supplementary
Fig. 3). Rearrangements were first called using the three individual
callers with default parameters. Delly was run with post-filtering of
somatic SVs using all normal samples, as described in the Delly docu-
mentation. Rearrangements from the three individual callers were
further filtered if any reads supporting the variant were identified in
the matched normal, if <2% of tumour reads supported the variant or
if either variant breakpoint was in a telomeric or centromeric region
oronanon-standard reference contig (thatis, not chromosomes1-22,
XorY).Remaining rearrangements were merged with amodified ver-
sionof PCAWG Merge SV, which uses agraph-based approach toidentify
and merge rearrangements identified by multiple callers, allowing a
maximum 400 bp difference in breakpoint position to account for
variant callingambiguity'®. Rearrangements were included in the final
dataset ifthey were identified by at least two callers, or by a single caller
but with abreakpoint within3 kb of a CNA segmentboundary. SVs were
only calledinthe1,765 out 0of 2,023 samples with CNA profiles passing
quality control criteria.

Retrotransposition events are mechanistically distinct from other
SV-generating events. We searched for retrotransposition events using
xTea for LINE-1 elements®®, as other retrotransposition categories
(Aluelements, SINE-VNTR-Alu elements and processed pseudogenes,
among others) collectively constitute <3% of retrotransposition events
across human cancers®. We subsequently decided to exclude retro-
transpositions from our current SV analysis report, to await later sepa-
rate publication.

Putative kinase gene fusions were identified considering the follow-
inggenes: ALK, BRAF, EGFR, ERBB2, ERBB4, FGFR1, FGFR2, FGFR3,KIT,
MET, NTRK1, NTRK2, NTRK3, ROSI and RET?. Fusions were required
toinvolve the kinase domain of the 3’ gene and to have correct strand
orientation.

Clinical data
Clinical data were obtained from the GMCs, NHS Digital (NHSD) and
Public Health England’s National Cancer Registration and Analysis

Service (PHE-NCRAS) through the Genomics England Research Envi-
ronment as part the 100kGP main program v.10 release. Survival data
were obtained from the 100kGP main program v.13 release. Tumour
samples sequenced by Genomics England were matched to their respec-
tive PHE-NCRAS records using the date of tumour sampling reported
by Genomics England and dates of biopsy or treatment reported by
PHE-NCRAS, allowing a maximum discrepancy of 7 days.

Clinical data included sex, age at tumour sampling, date of cancer
diagnosis, date of last reported follow-up and date of death, tumour
histology, tumour type (primary, recurrence of primary or metastases),
anatomical site sampled, anatomical site of primary tumour, Dukes
stage, and tumour grade (differentiation). For some variables, datawere
obtained from multiple sources (GMC, NHSD, PHE-NCRAS), and any
conflicts between these sources were resolved by individual inspection.
If Dukes staging was not available, it was inferred from TNM staging if
reported. Anatomical site of primary tumour was reported at different
resolutions by the different data sources (for example, one source may
report site as proximal colon, whereas another may report it as cae-
cum). Toresolve and standardize the site, we therefore constructed an
anatomical ontology based on ICD-10-CM codes and assigned sample
terms to this ontology. This enabled us to consider anatomical site at
two main levels of resolution: less specific (proximal colon, distal colon
and rectum) and more specific (caecum, ascending colon, hepatic
flexure, transverse colon, splenic flexure, descending colon, sigmoid
colon, rectosigmoid colon and rectum). Certain analyses were also
performed on the basis of a combined analysis of proximal and distal
colon (colon). The proximal colon comprised the caecum, ascending
colon, hepatic flexure and transverse colon, whereas the distal colon
comprised the splenic flexure, descending colon and sigmoid colon.
Therectosigmoid junction was considered part of the rectum. All asso-
ciations between clinical and molecular data, and between different
molecular data, are reported based on tests unless otherwise stated.

Germlinemutationsinthe Mendelian CRC predispositiongenes (APC,
MSH2, MLH1, MSH6, MUTYH, SMAD4, BMPR1A, GREM1, STK11, NTHL1,
MBD4, POLE and POLDI) were explored in the sequenced constitu-
tional DNA. Disease-causing changes were identified based on ClinVar
annotation as ‘pathogenic’ or ‘likely pathogenic’, with the exception
of POLE and POLDI, which used the method described in the section
‘Identifying pathogenic POL variants’. Evidence of pathogenic biallelic
changes was required to diagnose the recessive conditions (MUTYH,
NTHL1and MBD4) and no such cases were found. Twenty patients (aged
30-79 years) were identified as having a previously unreported CRC
predisposition caused by germline mutations in Lynch syndrome or
polymerase proofreading polyposis genes (seven MSH2, five MLH1,
six MSH6, one POLE, one POLD]I).

Based on principal component analysis of germline genotypes,
90.2% (n=1,819) patients were of European ancestry, with 2.6% (n = 52)
African, 0.7 (n=15) East Asian, 3.2% (n = 64) South Asian and 3.3% (n = 67)
mixed ancestry (Supplementary Fig. 4). There was strong agreement
between 16 self-reported ancestry groups and principal component
analysis classification.

Sampleselection

Because tumour sample purity and sequencing data quality affect the

sensitivity and precision of variant calling”, we excluded samples using

the following quality control procedures (Supplementary Table 2).

« Tumour samples were excluded if cross-contamination of the tumour
sample was >1%, as estimated by VerifyBamID.

» Tumoursamples were excluded if cross-contamination of the matched
germline sample was >1%, as estimated by VerifyBamID.

« Estimating tumour sample purity is particularly difficult when purity
islow. We therefore used the distribution of single-nucleotide variant
VAFstoidentify low purity samples, as alow average SNV VAF can be
indicative of low sample purity’?. Tumour samples with amedian SNV
VAF < 0.1 were excluded, with this threshold chosen based on the



smaller numbers of potential driver variants observed in MSS CRC
samples when compared with all MSS CRC samples (Supplementary
Fig.5). Here driver mutations were defined as any potentially patho-
genic coding variant called in 63 driver genes previously identified
in MSS CRC*>*75,

» Tumour samples were excluded if <100 SNVs were called, as this num-
ber is below the smallest number of SNVs previously reported in CRC
whole genomes? ™ and therefore suggestive of low sample purity or
sequencing data quality.

» Tumour samples were excluded if many mutations were associated
with a probable artefactual mutational signature®.

Intotal 286 out 0f 2,492 (11.5%) tumour samples were excluded based
onthe above criteria.

Tumour samples were also excluded if essential clinical data were
missing or there were unresolvable conflicts between the sources
from which clinical data were obtained (GMCs, NHSD, PHE-NCRAS)
(Supplementary Table 2). In total, 183 out 0of 2,206 (8.3%) of tumour
samples that passed tumour sample purity and sequencing data qual-
ity control were excluded based on clinical data, using the following
criteria:

« GMC, NHSD and PHE-NCRAS reported conflicting years of birth.

« Sex reported by GMC, NHSD and/or PHE-NCRAS did not match the
sex inferred from sequencing data.

* GMC, NHSD and PHE-NCRAS did not report tumour histology or
reported conflicting histology.

» Tumour was not classified as a colorectal adenocarcinoma.

« Missing or conflicting data meantit was unclear whether the primary
tumour or a metastasis was sampled.

« If multiple primary tumours or multiple metastases from a single
individual were sequenced, the primary tumour or metastasis
sample with the highest purity was included, and all other primary
tumour or metastasis samples were excluded. This procedure was
completed after all other exclusion criteria had been applied. Pri-
mary tumours and metastases were considered separately for this
procedure.

Based on these criteria, 2,023 colorectal adenocarcinoma samples
were suitable for analysis (Supplementary Table 2). This cohort com-
prised 1,898 primary tumours, 122 metastases and 3 recurrences of
primary tumours from 2,017 patients. Six patients (allMSS) had botha
primary tumour and a metastasis sample sequenced and each tumour
was included. One hundred and nineteen metastases were MSS, the
other three comprising two MSland one POL cancer. Some subsequent
analyses excluded the MSland POL metastases (details in Supplemen-
tary Tables). The threerecurrences were MSS (n =1) and MSI (n=2),and
these wereincludedinthe appropriate primary cancer group for further
analyses. A single cancer was POL and MSI, and this was includedin the
POL group for further analyses. Clinical datacompletenessis detailed
inSupplementary Table 31.

Single-nucleotide variant and indel drivers

Mutation annotation. Somatic mutations were annotated to Ensembl
(v.101, GRCh38) using Variant Effect Predictor (VEP)”. The following
parameters were used: vep -i <input_vcf>--assembly GRCh38 -no_stats
-cache -offline -symbol -protein -0 <output> --vcf —~canonical -dir
<ref_dir>--hgvs -hgvsg -fasta<GRCh38_fasta>--plugin CADD,<CADD_
score_file>--plugin UTRannotator,<GRCh38_uORF _reference>.

The CADD score file was obtained using CADD (v.1.6)™ 7, with scores
attained for all SNV and indel mutations using the CADD software avail-
able from GitHub (https://github.com/kircherlab/CADD-scripts) before
being utilized by the VEP CADD plugin.

Protein-coding driver identification. Protein-coding driver genes
were identified using the IntOGen pipeline (v.2020, downloaded

February 2021)*®, Identification was performed separately in MSS pri-
mary, MSI (all primary), POL (all primary) and MSS metastasis sample
sets, with the aim of optimizing correction for varying background
mutation rates and spectra among these four groups. Subsequent
analysesrestricted discovery to specificanatomical locations or cluster
groups in MSS primary tumours.

Pre-processing of input mutations. Somatic mutations passing the
filtering criteria described above were subject to initial sample and
mutation pre-processing. In the case of multiple tumours from the
same patient, the primary tumour was used. Within each cohort (that
is, MSS primary, primary MSI, primary POL, MSS metastasis), tumours
were flagged for exclusion from downstream driver gene identifica-
tionifthey contained >10,000 mutations and had an outlier mutation
count, defined as upper quartile + (1.5 x interquartile range). Muta-
tions present in a Hartwig Consortium panel of control set were also
excluded”. Unless otherwise specified, mutations were mapped to
canonical protein-coding transcripts from Ensembl (v.101, GRCh38).

Driver identification methods. Seven driver gene identification
methods were run through the IntOGen pipeline (Supplementary
Fig. 6):

1. dNASCV (v.0.1.0)¢is designed to detect genes under positive selec-
tion that show an excess of non-synonymous (missense, nonsense,
essential splice) mutations after correction for local trinucleotide
context. In the primary POL cohort the parameter ‘max_coding_
muts_per_sample =Inf” was used because of the high proportion of
hypermutated tumours.

2. OncodriveFML (v.2.4.0)” aims to detect driver genes that show an
enrichment of mutations with high functionalimpact. CADD scores
were used as measure of functional impact™ 7,

3. OncodriveCLUSTL (v.1.1.3)”” is a method designed to detect driver
genes that are enriched for linear mutation clusters. In the primary
POL cohort, pentamer signatures were used rather than trinu-
cleotide signatures because of the improved performance of the
pentanucleotide-based background models compared with that of
trinucleotides in these tumours.

4. cBaSE (v.1.1.3)"®%° aims to detect driver genes under positive selec-
tion that exhibit a significant mutation count bias after correction
by trinucleotide context.

5. MutPanning (v.2)%' is designed to detect driver genes that exhibit
enrichment of mutations with unusual nucleotide contexts com-
pared with abackground model.

6. HotMaps3D (v.1.1.3)"®# detects driver genes containing missense
mutations that are spatially clustered together in the three-
dimensional structure of the protein. Protein structures were down-
loaded from The Protein Data Bank® in March 2020.

7. smRegions (v.1)% detects genes containing an enrichment of
non-synonymous mutations in regions of interest, such as protein
domains, after correcting for trinucleotide context. This analysis
utilized information from protein family (Pfam) domains that were
mapped to Ensembl (v.101) canonical transcripts.

Combination of driver identification methods. The results of the
sevendriveridentification methods were combined in similar manner
as previously described™. In brief, the driver combination procedure
considered the top 100 ranked genes and their associated Pand Q val-
ues in each of the seven driver identification methods. Somatically
mutated genes assigned as tier 1 or tier 2 in the COSMIC Cancer Gene
Census (CGC;v.92)>* were designated as the truth set of known drivers.
Through comparison of therelative enrichment of CGC genesin the top
ranked gene lists, a per-method weighting was obtained. Per-method
ranked lists were combined using Schulze’s voting method to generate a
consensus ranking, with combined P values estimated using a weighted
Stouffer Zscore method.
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Driver candidates were then classified into the following tiers:

- Tier 1: candidates for which the consensus ranking was higher than
the ranking of the first gene with Stouffer Q < 0.05. These represent
high-confidence drivers.

« Tier 2: candidates not meeting the criteriafor tier 1, but which are CGC
genes and showed a combined Stouffer Q. < 0.25. These represent
aset of ‘rescued’ known cancer drivers.

« Tier 3: candidates not meeting the criteria for tier 1 or tier 2but with
Stouffer Q < 0.05. These represent lower confidence drivers.

« Tier 4: candidates not meeting criteria for tier 1 or tier 2 and with
Stouffer Q > 0.05. These genes are not likely to be drivers.

Post-processing of candidate drivers. Candidate driver genes were

filtered based on the following annotations:

1. Automatic fail: a candidate driver gene would be excluded from
further considerationif annotated with at least one of the following:

a. Tier 4: categorized as tier 4 by the combination procedure.

b. Single method: only significant (Q < 0.1) in one of the seven meth-
ods (non-CGC genes).

c. Expression: gene has very low or no expressioninarelevant tumour
type based on data from The Cancer Genome Atlas (TCGA).

d. Olfactory receptor: geneisin list of olfactory receptor genes.

e. Known artefact: gene is in a list of known artefacts or long genes
(forexample, TTN).

2. Manualreview:if agene is not excluded based onany automatic fail
filters, itis retained as a candidate driver:

a. Germline: non-tier 1-CGC gene has >1 mutations per sample and
oe_syn/ms/lof >1.5 based on gnomAD (v.2.1) constraint metric
estimates.

b. Sample 3 Muts: non-CGC gene for which there are >3 mutations
in>1tumour.

c. Literature: non-CGC gene for which there are no literature annota-
tions according to CancerMine®.

3. Automatic pass: is not flagged by any automatic fail or manual review
filters.

Candidate driver roles were assigned on the basis of dN/dS ratios for
missense (wmis) and nonsense (wnon) mutations for the given gene
derived from dNdSCV (https://bitbucket.org/intogen/intogen-plus/
src/master/core/intogen_core/postprocess/drivers/role.py):

« Adistance metric was calculated by distance = ((wmis - wnon))/v2

« Candidate drivers with distance >0.1 represent those with an excess
of missense to nonsense mutations and are therefore considered
oncogenes.

 Candidate drivers with distance <0.1represent those with an excess
of nonsense to missense mutations and are therefore considered
TSGs.

« Otherwise, therole of the candidate driveris unclear and considered
ambiguous.

In the case of multiple cohorts being run representing subsets of
agiven tumour type, a consensus role was designated comparing
between each subtyperole:

» Oncogeneifassigned as oncogenein>1cohortand as TSGinno other
cohort.

« TSGifassigned as TSGin>1cohortand asoncogeneinno other cohort.

« Ambiguous otherwise.

Gene candidates were annotated by their overlap with any IntOGen
cohortsfromaprevious IntOGen pan-cancer analysis (1 February 2020)
as well as from a pan-cancer TCGA analysis®.

Noncodingdriver identification
Defining sets of noncoding regions. Regions from candidate non-
coding elements overlapping coding sequence (CDS) or exon regions

from canonical protein-coding transcripts were removed using bedops
(v.2.4.39)%¢,
The following sets of noncoding regions were defined:

1. Core promoters (n =19,283). Defined based on the transcription
start site (TSS) of canonical protein-coding transcripts: 200 bp <
TSS <50 bp. CDS regions were removed.

2. Distal promoters (n =19,296). Defined based on the TSS of canonical
protein-codingtranscripts: 2 kb < TSS. CDS regions were removed.

3. 5 untranslated regions (UTRs; n =18,613). Defined based on canoni-
cal protein-coding transcripts. CDS regions were removed.

4.3’ UTRs (n=18,806). Defined based on canonical protein-coding
transcripts. CDS regions were removed.

5. lincRNAs (n =16,510). Based on exon regions from transcripts an-
notated aslincRNAs in Ensembl (v.101). Exon regions from canonical
protein-coding transcripts were removed.

6. miRNAs (n=1,793). Based on regions from transcripts annotat-
ed as miRNAs in Ensembl (v.101). Exon regions from canonical
protein-coding transcripts were removed.

7. Non-canonical splice regions (n =18,163). Defined from regions
extending 30 bp into the intron from essential splice donor or
acceptor sitesin canonical protein-coding transcripts. Exon regions
from canonical protein-coding transcripts were removed.

8. Enhancers (n=130,996). Defined from Ensembl (v.101) regulatory
elements annotated as ‘enhancer’. Exon regions from canonical
protein-coding transcripts were removed.

9. Open chromatin regions (n =95,344). Defined from Ensemb]
(v.101) regulatory elements annotated as ‘open chromatin’.
Exon regions from canonical protein-coding transcripts were
removed.

10. CTCF sites (n =173,711). Defined from Ensembl (v.101) regulatory
elements annotated as ‘CTCF sites’. Exon regions from canonical
protein-coding transcripts were removed.

11. Transcription factor-binding sites (n =29,259). Defined from
Ensembl (v.101) regulatory elements annotated as ‘TF binding
sites’. Exon regions from canonical protein-coding transcripts were
removed.

Detecting noncoding drivers. Potential noncoding driver muta-
tions were identified in non-hypermutated MSS primary tumours
(n=1,442). OncodriveFML (v.2.4.0) was run on sets of noncoding
regions according to the following amended parameters from the
protein-coding analysis: indel-max indels are treated as a set of sub-
stitutions, with the functional impact of the indel mutation being
the maximum of all the substitutions, and the background simulated
as substitutions. A Q < 0.01 threshold was considered as significant
(Supplementary Fig. 7).

SNV mutations exhibiting extreme strand bias

SNV mutations that otherwise passed filtering criteria as previously
detailed were further scrutinized for excessive strand bias (Strelka
INFO field SNVSB >10). This highlighted many missense mutations
that cause a recurrent missense change in CACNAIE (p.lle95Leu);
these exhibited excessive strand bias and were therefore deemed
false calls.

Driver mutation annotation

Non-synonymous mutations in the 682 gene transcripts considered
by OncoKB (v.3.3) were annotated using the OncoKB API¥. In the first
instance, the HGVSgidentifier was used; in the rareinstances that this
failed, a combination of gene symbol, consequence and HGVSp were
used to map mutations to OncokB annotations.

Annotation of oncogenic mutations
Non-synonymous mutations in candidate driver genes were annotated
as pathogenic if any of the following criteria were met:
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1. The mutation is annotated by OncoKB as ‘oncogenic, ‘likely onco-
genic’ or ‘predicted oncogenic’.

2. Thedriver is classified as an oncogene, the mutation consequence
is missense, and the mutation is recurrent (seen in >3 tumoursin
cohort).

3. Thedriveris classified as a TSG or ambiguous and either:

a. Consequence is protein-truncating (splice acceptor, splice donor,
frameshift, stop lost, stop gained or start lost).

b. Consequence is missense and mutation is recurrent (seenin >3
tumours in cohort).

For POLE, oncogenic annotations were restricted to missense muta-
tions in the exonuclease domain (amino acid residues 268-471).

Non-synonymous mutations not meeting these criteria were
considered as variants of uncertain significance.

Lollipop plots of driver gene mutations. Lollipop plots of driver
gene mutations (Supplementary Result 2) were generated using
the Rpackage trackViewer”. Pfam protein domains mapping to the
Ensembl (v.101) canonical transcripts were plotted. The protein position
was taken from the first position inthe HGVSp annotation, apart from
splice donor and acceptor mutations, for which the codon nearest to
the HGVSc transcript position was assigned as the protein position.

Timing driver mutations. The relative evolutionary timings of can-
didate driver mutations were obtained using MutationTimeR®. Copy
number input for MutationTimeR was prepared from Battenberg seg-
mentation files, with the clonal frequency of each segment taken as
the tumour purity. In the case of subclonal calls, the clonal frequency
was calculated by multiplying the tumour purity by the clonal fraction.
The clusters input for MutationTimeR was prepared from DPClust
cluster estimates. The VAF proportion was calculated by multiplying
the estimated cluster CCF by the tumour purity. Superclonal clusters
(CCF >1.1) wereremoved. VCF input for MutationTimeR was obtained
from the small somatic SNV/indel variant VCFs, which had been filtered
as previously described. For SNVs, alt and ref depths were obtained
using FixVAF. For indels, ref and alt depths were obtained from tier 2
Strelka TAR and TIR fields, respectively. Only mutations within Bat-
tenberg copy-number segments were retained (note that for male XY
tumours with only 1copy of the X chromosome, copy number informa-
tionis restricted to the pseudoautosomal region and Battenberg was
not runontheY chromosome).

MutationTimeR was run with 1,000 bootstraps. For tumours previ-
ously defined as having undergone WGD, the parameter isWgd was set
to true. Mutations were then classified into estimated simple clonal
states (as per figure 1a of ref. 31): clonal (early), mutation on >2 copies
per cell; clonal (Iate), mutation on 1 copy per cell, no retained allele;
clonal (NA), mutation on1copy per cell, either on amplified or retained
allele; subclonal, mutation on <1 copy per cell.

Mutational signature attribution. Seqinfo VCFs produced as part of
SigProfilerMatrixGenerator” were used to map somatic mutations
from input VCFs to their SBS96, DBS78 or ID83 contexts and then to
the final SigProfilerExtractor COSMIC (v.3.2) decomposed signature
probabilities. For different purposes, mutational signatures were
variously measured as follows: presence-absence, for example, when
assessing shared aetiology; proportional activity (essentially propor-
tion of mutations fitted to any signature in that tumour), useful for
comparing between signatures in the same sample; and number of
mutations ascribed, estimated as (activity x burden of mutations of
SBS, DBS or ID type fitted to any signature), approximating to burden
of mutations from that signature in that tumour.

Annotation of DBS mutations. Per-tumour VCFs containing DBS
mutations, either directly called originally by Strelka or originally called

by Strelka as two adjacent SNVs and reconstructed as DBS mutations,
were created and mutation consequences were re-calculated using
VEP as above.

Patterns of somatic CNA
WGD classification. Tumours were classified as WGD considering the
average genome copy number state (¢,,.) as follows:

S S
wm{z L,»<c,-mj+c,-wn>} / [Z Li]
i=1 i=1

Where Sisthe number of copy number genome segments, C,-szand (o
are the major and minor allele copy numbers, respectively, for genome
segment i, and L;is the base pair length of genome segment i. If there
was evidence of subclonal alteration, then the copy number states
corresponding to the largest tumour cell fraction were considered.
Tumours were classified as WGD if 2.9-2H < ¢,,. and non-WGD other-
wise, where His the fraction of the genome with a minor allele copy

number of O (ref. 32).

Classification of CNAs. Individual CNAs were grouped into six cat-

egories: homozygous deletion (HD), LOH, including copy-neutral LOH,

other loss (OLOSS), no change (NOC), gain (Gain) and amplification

(AMP). The classification considers whether atumour has undergone

WGD (Supplementary Table 38).

For cases in which subclonal CNAs existed, the copy number state
corresponding tothe largest cell fraction was used. Classificationinto
one of the six categories overlaps significantly between non-WGD and
WGD tumours, with differences relating to total copy number. Differ-
ences include the following:

« Innon-WGD tumours, segments were classified as LOH if 1allele had
acopy number state of 0 and the total copy number (¢\) <2. InWGD
tumours, segments were classified as LOHif 1allele had a copy number
state of 0 and ¢ <4.

« Non-WGD tumours do not have an OLOSS category.

» NOCwasdefined as1+1innon-WGD tumours and 2+2in WGD tumours.

« In non-WGD tumours, segments were classified as Gainif 2 < gy <S5.
In WGD tumours, segments were classified as Gainif 4 < ¢, <10.

« In non-WGD tumours, segments were classified as AMP if ¢ > 5.
In WGD tumours, segments were classified as AMP if ¢ > 10.

Positional enrichment of CNAs

Preparing GISTIC input. Recurrent arm-level copy number events,
as well as focal amplifications and deletions, were identified using
GISTIC (v2.0.2.3)**. For all samples with CNA profiles passing qual-
ity criteria, a copy number segmentation file suitable for GISTIC
input was generated using Battenberg output. Chromosomal
coordinates and major (n,) and minor (ny;,) copy number states
were obtained for each copy number segment identified by Bat-
tenberg. In the case of subclonal copy number segments, ny,; and
nyin Values corresponding to the largest tumour cell fraction were
considered.

Per-segment normalized copy number (SegCN) values were calcu-
lated differently for tumours with WGD (for which ploidy was assumed
to be four) and without WGD (for which ploidy was assumed to be two).
SegCN was thresholded to a minimum of -2 and maximum of 2.

For non-WGD tumours, SegCN was calculated as follows:

SegCN = (1 + Ny) =2
For non-WGD tumours from males, X chromosome SegCN was cal-
culated as follows:

SegCN = (nMaj + Nyin) — 1
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For WGD tumours, SegCN was calculated as follows:

SegCN = ((nyg5+ Myin) —4)/2

For WGD tumours from males, X chromosome SegCN was calculated
as follows:

SegCN= (nMaj + ”Min) -2

Running GISTIC. GISTIC was run using the following parameters:
-conf 0.99 -broad 1-qvt 0.25 -genegistic 1-gcm extreme -brlen 0.5 -rx
0 -twoside 1-scent median -armpeel1-arb1-refgene hg38.UCSC.add_
miR.160920.refgene.mat.

Prioritizing probable gene targets of focal amplifications and
deletions. Candidate target genes at focal amplifications and dele-
tions were annotated using the following criteria:

1. Overlap with genes at focal amplifications and deletions reported
in a previous pan-cancer study that used GISTIC®, Comparisons
were made both with the overall pan-cancer GISTIC analysis, and
GISTIC analysis was restricted to the given tumour type. Special
consideration was given to genes specifically highlighted by the
previous study®® as being candidates.

2. Overlap with Cosmic Cancer Gene Census genes and whether their
annotated role (oncogene (OG), TSG or ambiguous) is consistent
with the copy number change (OG with amplifications and TSG with
deletions)®.

3. Overlap with driver genesidentified in this study and whether their
probable role (OG, TSG or ambiguous) is consistent with the copy
number change (OG with amplifications and TSG with deletions).

Based on the above criteria, consensus driver genes were manually
assigned to peaks. Comparisons were made with all potential gene
synonyms as available from the HUGO gene nomenclature name com-
mittee (https:/www.genenames.org/).

Defining copy number segments overlapping recurrent CNAs.
Alterations from the broad analysis with Q < 0.05 were taken to indi-
caterecurrent arm-level events. Copy number segments constitut-
ing greater than half of the total chromosome arm size were taken to
indicate arm-level events.

In the case of focal events identified by GISTIC, the ‘wide region’
was used to compare potential extent of overlap with copy number
segments. Segments were defined as overlapping focal eventsif either
the segmentinterval constituted greater than half of the focal region,
or vice versa, using pybedtools and bedtools (v.2.3.0)%%°°,

Tumours were considered to have specific arm-level or focal dele-
tions if an overlapping copy number segment was annotated as HD
or LOH (as described above). Similarly, tumours were considered to
have specific arm-level or focal amplifications if an overlapping copy
number segment was annotated as Gain or AMP. In the case of subclonal
CNAs, ny,; and ny;, values corresponding to the largest cell fractions
were considered.

ecDNA detection. With the caveat that that thereis no definitive way to
distinguish ecDNA and intrachromosomal amplificationin heterogene-
ously staining regions, potential eccDNA molecules were detected from
tumour bam files using AmpliconArchitect (v.1.2)*. Inbrief, per-tumour
seed regions were prepared from Battenberg copy number segmenta-
tion output if a segment was >100 kb and the total copy number was
>5. AmpliconArchitect was then run using these seed regions to extract
overlappingsequence reads from the tumour BAM file and to construct
candidate amplicons.

Candidate amplicons were classified using AmpliconClassifier
(v.0.4.6) into the following categories: (1) cyclic (truly circularized

ecDNA); (2) complex non-cyclic; (3) linear amplification; and (4) no
amplification or invalid. Amplicons were highlighted if containing a
known highly amplified oncogene (MDM2, MYC, EGFR, CDK4, ERBB2,
SOX2, TERT, CCND1, E2F3, CCNE1, CDK6, MDM4, NEDD9, MCL1,AKT3,
BCL2L1,ZNF217,KRAS, PDGFRA, AKT1, MYCL, NKX2-1,IGFIR and PAXS,
as previously reported*?).

Estimation of telomere content. Telomere content was estimated
from tumour and germline BAM files using TelomereHunter (v.1.1.0)*!
and Telomerecat (v.3.3.0)*? with default parameters.

Telomere content was normalized by log,(tumour content/normal
content).

Patterns of somatic structural variation

Classification of simple and complex SVs. Rearrangementsidentified

by the graph-based consensus approach were grouped into footprints

and clusters based on their proximity within the genome, the overall
number of events in the genome and the size of these events using

ClusterSV*. Rearrangement footprints represent sets of rearrangement

breakpoints thatare positionally associated, whereas rearrangement

clusters represent sets of rearrangements that are mechanistically
associated. Rearrangement footprints were described using the string
approach as previously proposed®. Simple and complex events were
defined as clusters comprising <2 or >3 individual rearrangements,
respectively. Simple events were classified as deletions, tandem dupli-
cations, balanced inversions, balanced translocations or unbalanced
translocations, whereas complex events were classified as chromo-
plexy or chromothripsis (detailed further below). Simple and complex
eventsthatdid not meet the criteria of any of these classifications were
described as simple unclassified or complex unclassified, respectively.

Chromothripsis events were inferred using established criteria®®*,

A rearrangement cluster was defined as chromothripsis if it met all

the following criteria:

« Acontiguousseries of four genome segments oscillating between two
copy number states, or five genome segments oscillating between
three copy number states.

« Atleast six interleaved intrachromosomal rearrangements, as per a
previous study®.

» No evidence (FDR > 0.2) that the distribution of intrachromosomal
fragment join orientations diverge from a multinomial distribution
with equal probabilities for each of the four orientation categories
(duplication-like, deletion-like, head-to-head inversion and tail-to-tail
inversion).

Arearrangement cluster was defined as chromoplexy if it met all
the following criteria:

- Containsachainofrearrangements spanning at least three chromo-
somes®. SV chains were identified using a graph-based approach, in
which nodes represent breakpoints, and are connected by an edge if
they are notinvolved in the same rearrangement and fall within1 Mb
of each other. The graph-based approach was implemented using
theR package igraph®®.

« Atleast 50% of rearrangement footprintsin the cluster represent bal-
anced translocations, either with no observed copy number change
or adeletion bridge between the break ends.

« Consists of between 3 and 30 rearrangements.

Identification of simple structural variation hotspots. Rates of
somatic structural variation differ throughout the genome and are
influenced by local genomic features®”. Genome regions enriched for
simple SVs (Supplementary Table 10) were therefore identified using
apermutation-based approach considering genomic features associ-
ated with structural variation occurrence. Deletions, tandem duplica-
tions, balanced inversions, balanced interchromosomal translocations
and unclassified simple SVs were considered separately. Individual
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rearrangements forming parts of complex SVs were excluded from this
analysis. MSS primary and MSI tumours were also analysed separately,
whereas primary POL tumours and metastases were not considered
owingtolow sample numbers.

Evaluating relationships between genomic features and SV
frequencies. Negative binomial regression was used to test associa-
tions between genomic features and numbers of SVs of each simple
class”. The following features were included in the models: average
total copy number across the bin in the CRC sample set, GC content,
the presence of genes highly or lowly expressed in CRC, ALU repeats,
other genomic repeats, segmental duplications, fragile sites, replica-
tion timing, and DNase, H3K36me3 and H3K9me3 peaks. Highly and
lowly expressed genes were defined as those with mean RSEM value
in the top 25% and bottom 75% of protein-coding genes in TCGA CRC
samples with RNA sequencing’. ALU and other genomic repeats were
obtained from the UCSC Genome Browser®s. Segmental duplications
were obtained for GRCh38 from the Segmental Duplication Database®”.
Fragilessites were obtained froma previous study®. Replication timing
data from CRC epithelial cells (HCT116) were obtained from Replica-
tionDomain'®, DNase-seq data (ENCFF443KCU) and ChIP-seq datafor
histones H3K36me3 (ENCFF553QXG) and H3K9me3 (ENCFF482DLD)
were obtained for the large intestine from ENCODE™",

Permuting SVs. SVs were simulated to test whether the number of
SVs observed in a region was greater than expected by chance given
the local genomic features'®2 SVs were simulated for each simple SV
class, preserving the number and length (distance between intra-
chromosomal SV break ends) of SVs observed in the CRC sample sets.
To simulate SVs, the genome was divided into non-overlapping 1 Mb
bins and the genomic features (listed above) of each bin summarized.
All genomic features were normalized to a mean of O and standard
deviation of 1to aid comparisons. The number of break ends expected
in each bin was then estimated using the effect estimates from the
previously generated negative binomial regression model. For each
observed SV, aSVwas simulated by sampling abin under probabilities
proportional to the expected numbers of break ends in each bin. For
intrachromosomal SVs, a partner break end was then simulated by
selecting the position either upstream or downstream (with equal
probability) equal in distance to the distance between the two break
ends in the observed SV. For interchromosomal SVs, a partner break
end was simulated by sampling abin under probabilities proportional
to the expected numbers of break ends in each bin, excluding bins
on the same chromosome. SVs were re-simulated if either break end
fell within an uncallable region (a telomere or centromere). SVs were
simulated 1,000 times to generate a null distribution of expected SV
numbers for the 1-Mb bins.

Identifying SV hotspots. Piece-wise constant fitting (PCF) was used
to identify regions of the genome containing greater numbers of SV
break ends than expected'®. SV break ends were first sorted by position
and the distance between successive break ends calculated. PCF was
then applied to the log,, of these inter-mutational distances (IMDs).
SV hotspots were identified by first computing the observed (d°*,)
and expected (d";) number of breakends per base pair for each PCF
segment (i):

Where g, is the number of break ends in the segment, s; is the length
of the segment in base pairs, n is the number of bins overlapping the

segment, b;is the expected number of SVsinbinj,and s®"is the bin size

(1Mb). Asimple SV enrichment factor 8™ is then computed for each
PCF segment as follows:

simple _ jobs, jexp
B = dP/d

The PCF algorithm requires parameters y (that controls the smooth-
ness of the segmentation) and k,;, (the minimum number of mutations
in a segment). FDRs at each f5™'° value were estimated by applying
PCFtoboththe observed and simulated SV setsand dividing the mean
number of segments with a 8™ value at least as great in the simu-
lated SV sets by the number of segments with a 5™ value at least as
great in the observed SV set. A maximum FDR of one was set and FDR
values equal to zero were changed to the lowest non-zero FDR value
observed. Optimal y and k,,,;, values were chosen by repeating this
process for values of y between 1and 20, and values of k,,,;, between 2
and 20, and selecting values that maximized the number of hotspots
identified while minimizing the FDR. In the final analysis, y =10 was
used throughout, whereas k,;,, = 2 was used for translocations in MSS
primary samples, k.., =4 was used for unclassified simple variants in
primary MSI samples, and k,;, = 10 was used otherwise. SV hotspots
for which no SVs were supported by CNAs were considered potential
artefactsand removed. Overlapping SV hotspotsidentified inthe same
sample sets were collapsed.

Classification of SV hotspots as fragile sites. SV hotspots were clas-

sified as fragile sites if they satisfied at least three of the following six

criteria (this threshold was chosen by assessing the co-occurrence of
these criteria):

» Were late replicating'®. Replication timing data from CRC epi-
thelial cells (HCT116) were obtained from ReplicationDomain.
Late-replicating regions were defined as those with mean Repli-Seq
values < 0.

« Had low gene density
used.

« Overlapped a gene greater than 300 kb in size. This threshold was
chosen as fragile sites generally occur in chromosome regions con-
taining genes at least 300 kb in size'®.

« Theoverlapping gene of greatest size was the focus of the SV enrich-
ment. This was assessed by computing the ratio between SV break
pointdensitiesin the overlapping gene of greatest size and intergenic
regions flanking 1 Mb upstream and downstream. A threshold of five
was used.

« Overlapped afragile site as previously reported®. These fragile sites
were originally obtained from either the NCBI or literature cura-
tion and were mapped from NCRI36 to GRCh38 co-ordinates using
LiftOver®,

« Overlapped a fragile site identified in a pan-cancer analysis of
whole-genome-sequenced tumours'® and mapped from GRCh37
to GRCh38 co-ordinates using LiftOver®.

104 A threshold of five genes per megabase was

SV hotspots were not considered as potential fragile sites if they
contained anidentified CRC driver gene. SV hotspots at potential fragile
sites likely occur for mechanistic rather than selective reasons and were
therefore not considered further®.

Identification of candidate gene targets of recurrent SVs. Genes
were reported as candidate targets of recurrent SVs if they had been
identified as targetsin previously analyses*”#'°2, were known CRC driver
genesoverlappingan SV hotspot or were the sole expressed gene inthe
hotspotregion. Numbers of samples with afocal change at a candidate
gene were computed considering SVs <3 Mbinsize'® at least partially
overlapping the gene coding sequence.

Enrichment of complex structural variation. Genome regions
enriched for complex SVs were identified using a permutation-based
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approach, considering chromothripsis, chromoplexy and unclassified
complex SVs separately. MSS primary and MSI tumours were also ana-
lysed separately, whereas POL tumours and were not considered owing
tolowsample numbers. The genome was first split into non-overlapping
1Mbbinsand the observed number of tumour samples with complex SV
footprints (g**) overlapping eachbin (j) counted. Complex SV footprint
positions were next permuted 100,000 times by randomly sampling
genomeregions equalinsize to the footprints. The expected number
of tumour samples with complex SV footprints (g°?;) overlapping each
100-kb binwas then estimated as the mean number of tumour samples
with SV footprints overlapping the binacross all permutations. A com-
plex SV enrichment factor ;™" was calculated for bin (j) as follows:
ﬁicomplex =g;)b5/g;=.xp

FDRs at each ™" value were estimated by computing ™' for
each bininboth the observed and permuted SV sets and dividing the
mean number of bins with a f<°™'* value at least as great in the per-
muted SV sets by the number of bins with a ™' value at least as great
in the observed SV set. A maximum FDR of 1 was set and FDR values
equal to zero were changed to the lowest non-zero FDR value.

Mutational processes

Characterizing SBS, DBS and indel signatures. SBS, DBS and indel
signatures were extracted de novo and related to known COSMIC sig-
natures (v.3.2) using SigProfilerExtractor™. SBS, DBS and indel signa-
tures were extracted using random initialization, 500 NMF replicates,
and between 10,000 and 1,000,000 NMF iterations. We assumed the
presence of between 1 and 30 SBS signatures (minimum signatures
and maximum signatures parameters, respectively), 1and 15 DBS sig-
natures, and 1and 10 indel signatures. Default settings were used for
all other parameters. Investigation of the new DBS-A signature (Sup-
plementary Table 3) hinted towards the signature being a technical
artefact of the high number of short indels at homopolymer regions
occurring in MSl samples.

Characterizing SV signatures. SV signatures were extracted consid-
ering only simple SVs, specifically deletions, tandem duplications,
balanced and unbalanced inversions, and balanced and unbalanced
interchromosomal translocations. Deletion and tandem duplication
size distributions are multimodal, and we therefore classified these
variants as <10 kb, 10 kb to 1 Mb, and > 1Mb. Variant site replication
timing is also multimodal and we therefore classified variants as late,
mid or early replicating considering mean Repli-Seq thresholds of <-2,
-2t02,and >2 using CRC epithelial cell data from ReplicationDomain
(Supplementary Fig. 8).

Mechanisms of fragile site instability differ from other SVs, and
deletions and tandem duplications at fragile sites were therefore con-
sidered separately®. Signatures were extracted using a hierarchical
Dirichlet process (HDP) implemented in the R package hdp (v.0.1.5)°%.
The hierarchical Dirichlet process structure was initialized with one
commongrandparent node, a parent node for each of the MSS, MSland
POL tumour subtypes, and a child node for each of the 1,765 tumour
samples in which SVs were called. Four separate Markov chain Monte
Carlo posterior sampling chains were run with 5,000 burn-in itera-
tions, extracting 12 SV signatures. Extraction stability was assessed
by splitting the cohort into halves, maintaining proportions of MSS,
MSI and POL tumours, and re-extracting signatures from each half.
Nine signatures extracted from the cohort halves showed high simi-
larity between halves (cosine similarity > 0.9) and high similarity with
signatures extracted from the full cohort. These nine signatures were
named SV1-SV9 and considered in subsequent analyses.

Toinvestigate DNA repair mechanism perturbation, we correlated
driver gene mutation with SV signature activity. A gene was considered
mutated if it harboured a likely pathogenic germline SNP or indel

(variants annotated as ‘pathogenic’ or ‘likely pathogenic’in Clinvar'?’),
alikely oncogenic somatic SNV or indel, or a homozygous deletion
atageneexon. Pairwise associations between gene mutationand SV
signature activity were tested for using multiple linear regression,
including gene mutation status, age at sampling, primary tumour site
and tumour sample purity asindependent variables. Genes were con-
sideredifthey were mutatedin atleast1% of tumours. TP53 mutation
isassociated with increased CIN, and TP53 was therefore includedin
allmodels. The Yeo-Johnson extension to the Box-Cox transforma-
tion was applied to mutation numbers to reduce heteroscedacity
and to ensure distributions were approximately normal'®®, Samples
with missing independent variable values were excluded. Owing to
mutational burden heterogeneity, only MSS primary tumours were
consideredin this analysis. P values were adjusted for multiple testing
using Bonferroni correction and a threshold of P=0.05 considered
significant.

Characterizing copy number signatures. SigProfilerExtractor was
used to extract copy number (CN) signaturesin the 1,765 tumours with
profiled CNAs™. Where Battenberg identified a subclonal CNA, the
copy number states corresponding to the largest tumour cell fraction
were used, as SigProfilerExtractor cannot consider subclonal copy
number states. Each copy number segment was assigned to 1 of 48
categories using SigProfilerMatrixGenerator, considering heterozy-
gous or homozygous state, total copy number and segment length'>",
Combinations of1-30 de novo signatures were extracted and the rec-
ommended solution was accepted, balancing cosine distance with aver-
age stability (Supplementary Fig. 9), with the selection plot showing
the mean sample cosine difference and average stability for de novo
extraction of 1-30 CN signature. The accepted solution contained
four de novo signatures.

Denovo CNsignatures were then deconvolved into their matching
component COSMIC CN signatures from COSMIC (v.3) to identify six
contributing COSMIC signatures, as shown below (CN1 (near-diploid
state); CN2 (genome doubling); CN6 (chromothripsis/amplification
with WGD); CN9 (CIN without WGD); CN17 (chromosomal-scale LOH);
and CN20 (unknown aetiology)). CNV48A is a heterogeneous sig-
nature, dominated by heterozygous segments of 3-8 copies. It is
decomposed into three COSMIC signatures: CN17, associated with
HRD and TD (42.18%); CN6, associated with chromothripsis (29/72%);
and CN20, which has a currently unexplained aetiology (28.1%).
CNV48B is comprised primarily of heterozygous segments of 3-4
copieswithalength of >40 Mbitis deconvoluted into a single cosmic
signature CN2, associated with tetraploidy. CNV48Cis dominated by
heterozygous segments with a copy number of 2 and is decomposed
to CN1, indicative of a diploid state. CNV48D is dominated by LOH
segments with a copy number of 1and heterozygous segments witha
copy number of 2and to alesser extent 34, it deconvoluted into CN9,
which has previously been associated with chromosomally unstable
diploid tumours.

Each CN signature was assigned as being active or inactive in each
sample. Associations with MSl status, ploidy and HRD status were cal-
culated using Fisher’s exact test, comparing samples with and without
the phenotype with those that had or did not have the active signature.

Predicting HRD. Evidence of HRD was assessed using HRDetect'*’,
HRDetect considers six genomic features predictive of HRD: (1) pro-
portion of deletions with microhomology, (2) SBS3 contribution,
(3) SBS8 contribution, (4) rearrangement signature RS3 contribution,
(5) rearrangement signature RS5 contribution and (6) HRD index.
HRDetect requires CNA data and was therefore run only onthe 1,765
out of 2,023 tumours passing CNA calling. SBS3 and SBS8 contribu-
tion estimates were obtained from SigProfiler. Rearrangement signa-
tures RS3 and RS5 were computed using HRDetect, using a previously
reported rearrangement signature’. Although HRDetect was trained



on breast cancers, it has demonstrated high efficacy when applied
to other cancer types'®. It was not possible to retrain HRDetect using
our CRC samples, as few tumours exhibited a pathogenic germline
BRCA1 or BRCA2 variant with somatic loss of heterozygosity of the
wild-type allele.

Pathway analysis

Analysis of disrupted pathways. Altered pathways were identified by
integrating coding and noncoding mutations using ActivePathways"°.
MSS, MSI and POL cancers were considered separately. Six mutation
features were used: coding driver Pvalues from IntOGen'and 3’ UTR,
5 UTR, core promoter, distal promoter and non-canonical splice site
Pvalues from OncodriveFML’, We tested Reactome pathways obtained
from MSigDB™. All protein-coding genes included in at least one Reac-
tome pathway were considered as the background gene set.

Driver mutation co-occurrence. Simple methods such as Fisher’s exact
testand multiple regression were used to assess pairwise co-occurrence
of driver genes. As these methods assume anullin which the probability
ofagenealterationisindependent of another gene, we alsoinvestigated
use of the DISCOVER algorithm™2, which accounts for mutational het-
erogeneity atboth the gene and tumour level. In practice, we reported
simple association statistics, as we wished to include positively or nega-
tively co-occurring driver genes or mutations, irrespective of ashared
aetiology (for example, both genes containing short repeats prone to
smallindels in MSI tumours).

Cluster analysis. To search for groups of tumours with similar fea-
tures, we used consensus clustering™"*, We clustered 1,471 primary,
treatment-naive tumours with CNA data using the following 304 clinical
and molecular features: SNV, indel, SVand CNA burdens; all SBS, DBS,
ID, SV and CN signature burdens; binary presence of mutationsin 196
driver genes; ploidy; WGD status; fraction of the genome with LOH;
mean ploidy across each chromosome arm divided by total ploidy
(excluding the short arms of acrocentric chromosomes); age at sam-
pling; sex; and subtype.

The features were ranked and normalized such that the resulting val-
ueswere between zero and one. Hierarchical agglomerative clustering
was run on these features using the diceR R package with the following
distance metrics and linkage criteria:

« Distance metrics: Euclidean, Manhattan, cosine, correlation, Jaccard,
eJaccard and fJaccard (from the R package proxy).

« Linkage criteria: average, complete, median, mcquitty, ward.D and
ward.D2 (from R’s hclust function).

Each combination of distance metric and linkage criterion was run
10 times on random samples of 80% of the tumours. The number of
clusters was varied from two to ten. We looked for robust clustering
using the following criteria:

« The clustering must closely recapitulate the MSS, MSI, and POL sub-
types

« High average clustering consensus™*

« Absence of tiny clusters (<5 samples)

The ward.D2 linkage™" consistently performed better than the
other linkage criteria. With this linkage, Euclidean and Manhattan
distances gave good clustering, but we chose Euclidean because the
Manhattan distance failed to reproduce the POL subtype when the
number of clusters was greater than six.

To increase the robustness of the clustering, we removed tumours
that had anitem consensus <0.7 and re-clustered using the resulting
consensus matrix. This step removed 471 tumours that were difficult
to cluster consistently and led to anincrease in mean cluster consensus
from 0.77t0 0.91. Following these steps, all samples had their subtype
correctly classified, except for two MSIsamples misclassified as MSS.

Immune profiling

HLA haplotyping. HLA typing of blood-derived normal samples was
conducted using HLATyper, whichiis part of the lllumina Whole Genome
Sequencing Service Informatic pipeline. The highest-ranking allele pair
prediction for each type-lHLA allele (A, Band C) was taken to definea
six-allele HLA set for each case.

Immune-escape prediction. We predicted three separate mecha-
nisms ofimmune escape: (1) HLA gene mutation; (2) HLA gene LOH; and
(3) mutation and LOH of other APGs.

Somatic mutations in the HLA locus were predicted using POLY-
SOLVER" First, alleles were converted to a POLYSOLVER-compatible
format (lower case, digits separated by underscore) and outputted
into a patient-specific winners.hla.txt file. Next, the POLYSOLVER
mutation-detectionscript (shell_call_hla_mutations_from_type) was run
on matched tumour-normal pairs to call tumour-specific alterations
in HLA-aligned sequencing reads using MuTect"®. Strelka (v.2.9.9)”°
was also run to detect short insertions and deletions in HLA-aligned
reads, asit offersincreased sensitivity over POLYSOLVER’s default caller.
Finally, both SNVs and indels passing quality control were annotated
with POLYSOLVER’s annotation script (shell_annotate_hla_mutations).

LOH at the HLA locus was predicted using LOHHLA", The same win-
ners.hla.txt files were used as input, with POLYSOLVER’s comprehen-
sive deduplicated FASTA of HLA haplotype sequences as reference.
Atype-lallele of a patient was annotated as allelicimbalance (Al) if the
Pvalue corresponding to the differencein evidence for the two alleles
was <0.01. Alleles with Alwere further labelled as LOH if the following
criteriaheld: (1) the predicted copy number of the lost allele was <0.50
with CI < 0.70; (2) the copy number of the kept allele was >0.75; and
(3) the number of mismatched sites between alleles was >10.

We also evaluated somatic mutations and copy number status of the
following APGs™’: B2M, CALR, CANX, CIITA, ERAP1, ERAP2, HSPBPI1, IRF1,
PDIA3, PSMA7, PSME1, PSME2, PSME3, TAPI and TAP2. First, somatic
mutations were annotated using ANNOVAR'?, An APG was deemed
mutated if it contained any non-synonymous, frameshift, stop-loss,
or stop-gain mutation in its exons. The copy number status of each
gene was evaluated using Battenberg output.

Asamplewas defined asimmune escaped if it showed atleast one of
the following: (1) HLA mutation; (2) HLA LOH; or (3) APG mutation. HLA
Alwas not considered to provide immune escape as Al can arise from
multiple sources (including subclonal LOH and unequal focal gains
of the locus) and therefore the effect of Al on antigen presentation is
uncertain. For cases when HLA alterations could not be fully evaluated
(see ‘Sample subsetting and statistical analysis’ below), but noHLA or
APG alteration was detected, theimmune escape status was considered
unknown as we could not eliminate the possibility of immune escape.

Neoantigen prediction. We predicted neoantigens using NeoPred-
Pipe, a Python-based pipeline combining ANNOVAR and netMHCpan
(v.4.0)>2* Inbrief, all somatic SNVs and indels were annotated using
ANNOVAR and for all non-synonymous exonic mutations the mutated
peptide sequence was predicted. We took any 9-and 10-mer spanning
the mutated amino acid (or acids), resulting in either (1) a19-amino acid
window for SNVs or (2) a peptide until the next predicted stop codon
for frameshift mutations. These peptides were evaluated according to
their novelty and predicted binding strength to the patient’s six-allele
HLA set comprised of the HLA-A, HLA-B and HLA-Cgenes. Peptides that
were new compared with the healthy human proteome with binding
rank of two or below (among the best 2% of binders compared with aset
ofrandom peptides) were reported as neoantigens. All patient-specific
HLA alleles were used for neoantigen prediction, regardless of mutation
or LOH status of the HLA locus.

We considered a mutation neoantigenic if at least one of its down-
stream mutated peptides was a neoantigen with respect to any of the
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patient’s six HLA alleles. We defined neoantigen burden as the total
number of neoantigenic mutations in the sample. We also evaluated
the following alternative measures: (1) number of peptide-HLA binding
pairs; (2) number of strong binder (best 0.5% of peptides) peptide-HLA
binding pairs; (3) number of neoantigenic mutations in genes expressed
in CRC (expression 210 TPM in >10% of TCGA CRCs)”. We found that
all these measures were highly correlated with our definition of neo-
antigen burden: (1) R=0.993, (2) R=0.989, (3) 0.983; P< 10 for all
(Supplementary Fig.10).

Sample subsetting and statistical analysis. Eighty-five samples were
excluded from neoantigen calling because netMHCpan was unable
to predict at least one of their HLA haplotypes. Overall, 217 samples
had1ormore haplotypesincompatible with POLYSOLVER, for which
HLA mutation and LOH calling was restricted to the compatible hap-
lotypes (1,2 and 3 haplotypes were excludedin171,37 and 9 samples,
respectively). In addition, LOH was not considered for 15 patients
because they were homozygous for all type-lHLA genes. Intotal, 1,744
out of 2,023 samples had complete neoantigen and HLA alteration
information available.

As CRC subtypes (MSS, MSI and POL) have substantially different
mutation and immune properties, all analyses were completed sepa-
rately for each subtype. Pairwise comparisons were conducted using
Wilcoxon tests. Analysis ofimmune differences associated with tumour
site was restricted to MSS primary samples, with samples that lacked
specific information (site information missing or only specified as
‘colon’) excluded, leaving n=1,100 samples.

Multivariate regression betweenimmune escape types and neoanti-
genburden was performed using the Im function against the logarithm
of neoantigen burden and therefore defined the fold change in burden
associated with each escape type. Multivariate regression, including
clinical characteristics, was carried out similarly, using the logarithm
of total mutation burden as an additional independent variable. The
number of POL samples was insufficient for statistical analysis and
the regression analyses were therefore only conducted for MSS and
MSItumours.

PHBR analysis. We computed theimmunogenicity of agiven mutation
in a given patient using PPHBR*®, which takes into account all novel
peptides produced by that mutation and all HLA alleles presentin the
patient. Low PHBR values correspond to mutations that are likely to
be presented on the cell surface and hence with a high immunogenic
potential, whereas high PHBR mutations are less immunogenic. The
overallimmunogenic potential of amutation withina cohortis defined
asthe median of PHBR values within that cohort. For each mutation and
HLA haplotype pair considered, we generated all 8-11-mers overlapping
the mutationand evaluated their binding affinity to the HLA allele using
theall-predictions’mode of NeoPredPipe. The best (lowest) rank was
recorded. For a given patient, PHBR were computed as the harmonic
mean of six best rank values corresponding to the patient’s six HLA
haplotypes (homozygous alleles were counted twice). We computed
PHBR values for all single nucleotide mutations located in driver genes
thatwere presentin atleast four cancersinthe cohort. The 85 samples
withincompatible HLA alleles were excluded.

Toevaluate the effect of HLA alterations on PHBR values, we repeated
the same analysis for affected patients with a reduced set (<6) of HLA
alleles that were unaltered. To measure the level of patient- (HLA-)
dependent selection on driver genes, we compared PHBR values for
mutations in these genes between patients that did not carry the muta-
tion and patients that did. Negative values indicate that mutations of
the gene are enriched in patients for whom they have lower immuno-
genic potential. PHBR values between patients with no mutations and
patients with mutations were compared using Wilcoxon rank-test, and
Pvalues were adjusted for multiple testing using Benjamini-Hochberg
correction.

For comparisons such as those shown in Extended Data Fig. 7,
the immunogenic potential of individual mutations was quantified
using the median of PHBR values associated with that single nucleo-
tide change for each patient belonging to a specific cohort or sub-
cohort. Immunogenicity of groups of driver genes (for example,
metastasis-specific drivers) was evaluated by considering all muta-
tions observed in the genes and median PHBR computed across the
entire cohort of CRCs or MSS primary CRCs, as indicated. Values for
anindividual mutation across different cohorts were compared using
paired Wilcoxon rank-tests.

Mitochondrial genome characterization

Calling mitochondrial somatic SNVs and indels. Somatic mitochon-

drial SNVs and indels were called using Mutect2 (v.4.1.4.1)', with the

light strand as reference based on the human mtDNA revised Cam-

bridge reference sequence (rCRS). Somatic mitochondrial variants were

excluded ifthey had the following:

- Low mapping quality score (<20).

« Low base quality score (<20).

« Analternative allele frequency <1%.

* Missing alternative reads in any stand direction.

« Location within hypermutated regions (302-316, 514-525 or
3106-3109).

Mutational distributions of SNVs, categorized by the six possible
pyrimidine substitution classes, were constructed to analyse muta-
tional processes. Distributions of substitutions on the D-loop, includ-
ing and excluding variants between the two origins of replication
(Oyand Ori-b, between sites 16,197 and 191) were also analysed by sub-
stitution class®. Pathogenic variants were identified using Clinvar'?’,
considering annotations where at least one submitter provided an

‘interpretation with assertion criteria and evidence’.

Mitochondrial copy number estimation. Autosomal and mitochon-
drial genome coverage was computed using fastMitoCalc'?. Using
estimated sample purity (p), tumour ploidy (¢) and mean coverage
depth, tumour sample mitochondrial DNA copy number was esti-
mated as previously described™:

Tumour sample mtDNA copy number
= (mtDNA mean coverage)/(autosomal DNA mean coverage)
(pp+2(1-p))

Mitochondrial copy number was estimated for only the 1,765 out of
2,023 tumours that passed CNA calling and therefore had purity and
tumour ploidy estimates.

Linear regression was used to correlate mtDNA copy number with
age at sampling, tumour stage, site of primary tumour, sex and tumour
purity. The Yeo—Johnson extension of the Box—-Cox transformation
was applied to mtDNA copy number. Linear regression was applied
consideringalltumours and segregating MSS and MSItumours. Regres-
sion results were adjusted for multiple testing using the Benjamini-
Hochberg procedure.

Selection of mitochondrial mutation and POLG correlation. For
the 13 mitochondrial protein-coding genes, selective pressure was
quantified by calculating the respective dN/dS values using the R pack-
age dNdScv, with non-mtDNA chromosomes removed from the refer-
ence genome®. A global mitochondrial dN/dS value was also estimated,
excluding MT-NDé6 due to a suspected replication bias. Results were
adjusted for multiple testing using the Benjamini-Hochberg procedure.
In addition, it was investigated whether POLG mutations resulted in
altered mitochondria mutational burden compared to other tumours.
Only the primary MSI cohort was analysed for this trait, as other sub-
cohorts had too few tumours with non-synonymous POLG mutations.



Genomicimpact of previous treatments

Whether individuals had received systemic treatment or colorectum-
targeting radiotherapy before sampling was based on datafrom NHSD
and PHE-NCRAS. For NHSD, records related to systematic treatment
were obtained from the Admitted Patient Care and Outpatients tables
using associated Office of Population Censuses and Surveys (OPCS)-4
codes. For PHE-NCRAS, records related to systemic treatment were
obtained from the AV_TREATMENT table using the event description
codes, and from the Systemic Anti-Cancer Therapy (SACT) table. For
PHE-NCRAS, records related to radiotherapy were obtained from the
AV_TREATMENT table using the event description codes, and from
the National Radiotherapy Dataset (RTDS) table considering records
associated with a CRC diagnosis.

Intotal, 315 participants received systemic treatment or radiotherapy
before tumour sampling. A total of 278 participants received systemic
therapy before CRC sampling for sequencing, and informationonthe
drugs administered was available for 182 of these participants. For 253
participants, the systemic treatment was used to treat CRC, whereas
for 25 participants, it was used previously to treat another cancer.
Overall, 94 participants received capecitabine, 23 received cetuxi-
mab, 93 received fluorouracil, 39 received irinotecan, 109 received
oxaliplatin, 46 received steroids and 28 received other drugs. Intotal,
118 participants received colorectum-targeted radiotherapy before
tumour sampling.

Associations between systemic treatment and colorectum-targeting
radiotherapy before sampling with mutational signature activity were
tested using multiple logistic regression. Previous treatment with radio-
therapy, capecitabine, cetuximab, fluorouracil, irinotecan, oxaliplatin
and steroids was included in the models as binary independent variants.
Other treatments administered before sampling occurredin fewer than
five individuals and were therefore not included in the models. One
modelwas created for each of the identified SBS, ID, DBS and SV signa-
tures, with signature presence encoded as abinary dependent variable
based onwhether any evidence of the signature was identified in each
sample.Intotal, 96 samples thatreceived treatment before sampling,
but for which the specificadministered drugs were unknown, were not
included. Both primary tumours and metastases were considered in
these analyses. Treatment coefficient P values were adjusted for mul-
tiple testing using Bonferroni correction and a threshold of P=0.05,
considered significant. Treatment duration was measured as the time
between the first and last treatment administration.

Metastasis-specific analyses

Tumours were splitbetween primary (n =1,354) and metastatic (n =105)
MSS samples. Only MSS samples were included as there was just one
MSI metastasis and no POL metastasis. Five primary tumours were
matched to metastasis samples in this cohort, but for the purposes
of the analysis all samples were treated as unmatched. To determine
mutational burden, VCF files were filtered for PASS variants and
the number of SNVs and indels summed. These were then divided by
the total genome length (3,088.27 Mb). For the binned copy number
analysis, the genome was first partitioned into 2,766 1 Mb windows. For
eachsample, the absolute allele-specific copy number within each bin
wasrecorded. If two copy number segments overlapped abin, the copy
number of the segment with the larger overlap was recorded. Copy
numbers were then classified according to the section ‘Classification
of CNAs'. For each aberration type (gain or deletion/LOH) the propor-
tion of primary tumours with that aberration was compared to the
proportion of metastatic samples with two-sided Fisher’s exact tests.
The difference between the proportions was then plotted as a trace
along the genome with stars indicating significantly different bins.
Pvalues were corrected for multiple testing (FDR < 0.05). Absolute
copy number calls were divided by mean integer ploidy to account
for differences in ploidy between the two groups. The adjusted copy

numbers for each bin were then compared between primaries and
metastases using Wilcoxonsigned-rank tests while correcting for mul-
tiple testing (FDR < 0.05). The difference in the mean (ploidy-adjusted)
copy number was then plotted asatrace along the genome, with stars
indicating significant bins.

Microbiome

Microbial identification. Microbial sequences'*° were identified using
GATK PathSeq'” aligned against the default PathSeq microbial genome
bundles. A minimum clipped read length of 60 bp was used with all
other parameters set to their defaults. Unambiguously assigned reads
were used for the decontamination steps. Thereafter the adjusted
score output was used, sharing ambiguous reads between species.
Score output for each sample was converted to microbial cells per hu-
man cell for each taxon by adjusting for microbialand human average
genome size (average human genome calculated from copy number
and tumour cell percentage data).
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Microbial cells per human cell
_ (Microbial reads)/(Average microbial genome size)
(Human reads)/(Average human genome size)

This analysis showed that metastases had extremely low microbial
contentand therefore subsequentstepsincluded only primary tumours
unless otherwise stated. Reads passing PathSeq filters were realigned
against the E. coli colibactin gene cluster’®® using bwa'®, and matching
reads counted.

Contaminants. Potential contaminant species were identified using
methods developed by The Cancer Microbiome Atlas'®. In brief, the
prevalence of species found in primary tumours and matched blood
was compared (Extended Data Fig. 8a). Samples were called as positive
for a species if two or more unambiguously aligned reads from the
species was found. Species were deemed as probable tumour sample
originifaFisher one-sided exact test found them tobe more prevalent
in the tumour sample than the blood sample (FDR < 0.05) and blood
sample prevalence was <20% of samples. Genus level scores were recal-
culated from species scores by only including the species scores that
survived this decontamination step. To mitigate the effects of species
with mixed biological and contaminant components®°, downstream
steps were adjusted for NHS Hospital Trust where possible (see below)
asthe processinglaboratory was a plausible source of contamination.

Identifying taxa associated with CRC. CRC-associated taxa were
identified by pooling all species level read numbers from eight pub-
lished stool metagenomic studies*"***, Application of LEfSe to these
dataidentified 73 species and 37 generaassociated with CRC*, Bacte-
rial species were classified as oral microbes if they were identified as
‘oral taxon’ or ‘oral species’ by PathSeq or if they were present in the
expanded Human Oral Microbe Database®®.

Comparing microbiome and clinicopathological data. Microbial
relative abundances were compared to clinicopathological data using
decontaminated PathSeq output. Only tumours with complete data for
therelevant categories were included in each comparison. Genus and
species level alpha diversity was measured using the Shannon index
and beta diversity using Bray-Curtis dissimilarity of relative abun-
dance. Differences in beta diversity were measured by PERMANOVA
using the adonis function™ in Vegan using default settings, with per-
mutations confined to within NHS Trusts using the ‘strata’ setting to
minimize cross-site contamination differences. Taxa differing between
clinicopathological categories were measured using MaAsLin2",
with minimum abundance of O, minimum prevalence of 0.1, and NHS
Trust added as a random effect to minimize cross-site contamination
differences.
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Statistical analysis and clinicopathological correlates
Statistical tests were two-sided and unpaired unless otherwise stated.
Fisher’sexactand x’tests were used for categorical variables. Wilcoxon
(rank-sum) tests, ¢-tests and Kruskal-Wallis tests were used for quantita-
tive variables. Multivariable analyses are described below.

Correlating variables. Multiple linear regression was used to in-
vestigate the relationship between clinicopathological features and
numbers of SNVs, indels, CNAs and SVs, and numbers of mutations
attributed to SBS, ID, DBS and SV signatures. Number of CNAs was
defined as the number of genome segments for which the clonal or
subclonal copy number state was not 1:1in non-WGD tumours or was
not 2:2in WGD tumours.

Multiple logistic regression was used to investigate the relation-
ship between the presence or absence of clinicopathological features
and driver gene mutation, recurrent arm-level CNAs, recurrent focal
CNAs, WGD and evidence of CN signatures. Unlike SBS, ID, DBS and SV
signatures, the activities of CN signatures do not represent numbers of
mutations attributed to the signature'>. We primarily considered the
presence or absence of CN signatures, but also assessed measures of
activity or burdens where stated.

MSS primary and primary MSItumours were considered separately.
Signatures were tested if they were identified in atleast 1% of the tumour
set, driver genes were considered if they were mutated in at least 5%
of the tumour set, and arm-level and focal copy number alterations
were considered if identified as recurrent by GISTIC. TP53 mutation s
associated withincreased CIN, and TP53 somatic mutation status was
therefore included in mutation number models. Considering multi-
ple variables together in a single model is essential given that many
of these variables are correlated, including age, primary tumour site
and stage. The Yeo-Johnson extension to the Box-Cox transforma-
tion was applied to mutation numbers to reduce heteroscedacity and
to ensure distributions were approximately normal'®®, Samples with
missing independent variable values were excluded. Primary tumour
site and tumour stage were considered as ordinal variables. Primary
tumour site was encoded as asingle ordinal variable with the following
values: caecum =1; ascending colon = 2; hepatic flexure = 3; transverse
colon = 4;splenicflexure = 5; descending colon = 6; sigmoid colon =7,
rectosigmoidjunction = 8; rectum = 9. Exploratory analyses with loca-
tionasabinary variable (proximal versus distal colorectum) or ternary
variable (proximal colon, distal colon, rectum) were also performedin
some cases (Extended Data Fig. 9b). Tumour stage was also encoded
asingle ordinal variable with values corresponding to the four Dukes
stages. Unless otherwise stated, for each individual variable, P values
were adjusted for multiple testing using Bonferroni correction and a
threshold of P=0.05 considered significant.

Survival analysis. Correlation of clinicopathological and genomic
variables with all-cause mortality (overall survival) was assessed
using Cox proportional hazards models. Follow-up time was meas-
ured from the date that the tumour was sampled (as a proxy for date
of presentation or diagnosis) to the corresponding patient’s most
recent time of contact. The median follow-up time was 1,075 days.
Only individuals for whom the primary tumour was sequenced were
included. To avoid proportional hazards assumption violation, indi-
viduals with MSS and MSItumours were considered separately. Indi-
viduals were excluded if tumour sampling occurred before1January
2015 or the time between CRC diagnosis and tumour sampling was
greater than1year. Hazard ratios were adjusted for sex, patient age at
sampling, primary tumour location and Dukes stage. Owing to small
numbers of deaths, Dukes stages A and B were combined. Analyses
were performed regarding location as a binary variable (proximal
versus distal colorectum) and as an ordinal variable (locations 1-9
from caecum to rectum).

After excluding individuals with missing covariate data, the MSS and
MSI cohorts comprised 836 (144 deaths) and 272 (48 deaths) individu-
als. The following variables were analysed:

« Total mutational burden (SNVs and indels).

« SBS, DBS and ID mutational signature activity as binary indicators.
Signatures were analysed if they were identified in <50% of tumours
inthe respective cohort.

« Immune escape status.

Foranalyses that required CNA profiles, smaller MSS and MSI cohorts
comprising 810 (141 deaths) and 222 (40 deaths) individuals were used.
The following variables were analysed using these smaller cohorts:

« Driver gene mutation status. Driver genes were considered mutated
inatumour if: (1) they contained an oncogenic mutation as defined
by OncoKB and dNdScv annotation, (2) were homozygously deleted,
or (3) were affected by alarge copy number gain (total copy number
state >5for non-WGD tumours and total copy number state >10 cop-
ies for WGD tumours).

* WGD status.

» Chromosome-arm-level gains and deletions.

* Total SV number.

For each cohort, variables were only tested if at least 5% of deaths
were present in each category. A variable was considered correlated
with survival if it improved model fit using ANOVA and the z-test pro-
vided association evidence. The Benjamini-Hochberg procedure was
used to determine FDR to adjust for multiple testing. Proportional
hazards assumptionviolations were analysed for each test. Inmultiple
Cox regression analysis, P= 0.05 was considered significant.

Normal colorectal epithelial cell signatures. Numbers and propor-
tions of SNVs associated with each SBS signature were obtained from
aprevious study**. For cases in which multiple crypts from the same
colonregion were sampled in asingle individual, the median number
and proportion of SNVs associated with each SBS signature was com-
puted across these samples. For cases in which multiple crypts from
the same colon region had been sampled in a single participant, the
median number and proportion of variants attributed to each signature
was considered. Supplementary Fig. 11 shows data from ref. 44. IDA
closely resembles ID18. P values were computed using Wilcoxon tests.

Software used

Supplementary Table 1lists software versions used in this study and
their URLs.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Genomics England permits access to data used for this study subject
to the following conditions. Research on the de-identified patient
data used in this publication can be carried out in the Genomics Eng-
land Research Environment subject to a collaborative agreement that
adheres to patient-led governance. All interested readers will be able
to access the data in the same manner that the authors accessed the
data. For moreinformation aboutaccessing the data, interested readers
may contact research-network@genomicsengland.co.uk or access the
relevantinformation onthe Genomics England website (https://www.
genomicsengland.co.uk/research). To expedite follow-on analyses, we
have made availablein the Genomics England Research Environmenta
Genomic Data Table that provides for each patient and their tumour, all
the individual clinical and molecular variable data used in this article
(Supplementary Information Guide).
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Extended DataFig.1|SBS, DBS and ID mutational signaturesineach
tumour. (a) top-to-bottom: tumour mutation burden (TMB) per megabase (Mb)
and mutational signature activity (% of mutations assigned) for SBS, DBS and ID
mutations. Tumour subtypes are: MSS primary (n =1641, orange), MSI (n =364,
green)and POL (n =17, blue). Tumours are first grouped according to their
subtype and thenordered withineach group fromthe lowest to the highest
TMB. Commonssignaturesincluded clock-like processes (e.g. SBS1, SBS5) and
effects of specificunderlying aetiologies (e.g. oxidative damage, SBS18).
Signatures previously unreported in CRCincluded SBS89 and SBS94 (29 and
35cancers, respectively; both unknown aetiology). Previously reported

SBS30 (base excision repair), SBS40 (unknown aetiology) and ID7 (defective
mismatch repair) were not found. (b) Ascribed mutation burdens for each
detected signature in all CRCs. (c) Pairwise associations between mutational
signatures. Clusters of co-occurrence, based on binary presence/absence, are
highlighted by coloured triangles. Positive values (ochre) represent significant
co-occurrence, whereas negative values (cyan) indicate relative exclusivity,
with stronger associationsin deeper shading (Bonferroni-corrected P values,
Fisher’s exact test). Non-significant results arein white. Putative artefact
signatures and signatures with no significant result (Pg,, > 0.05) are not shown.
Hierarchical clustering (Ward.D2, Euclidean distances) was performed on the
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rows and columns of the results matrix. Note negative associations between
MSS-and MSI-specific signatures and positive associations between signatures
with other likely shared aetiology (e.g. SBS17a/b). There were several novel
associations ofunknown origin. Notable relationships additional to those
reported inthe mainarticleincluded aninverse associationacrossall cancers
between SBS44 (often MSI, dominated by C > T) and DBS2 (smoking, CC > NN)
(Ppont=1.4X1077%), DBS4 (GC > AA, TC > AA) (Pyne = 5.8 X107%7) and SBS18 (C > A)
(Pgone=6.5x107%%). A further cluster involved SBS10a/b, SBS28, DBS3 and
DBS10 (driven by POLE).SBS3 tended to co-occur withID6,ID8 and SBS88.

(d) Selected signatures showing significant differences among MSS primary,
MSIand POL cancers (upper) oranatomical locations (lower). Associations are
assessed asin (c), although co-occurrenceis shown by green hues and mutual
exclusivity inblue. MSItumours were principally characterised by SBS44, and
POL by SBS10a/b and SBS28. MSS cancers were enriched for SBS2, SBS8, SBS13,
SBS18 and SBS93. SBS88, pks+ pathogenicE. coliexposure, was presentin
115(6%) cancers and ID18 (colibactin-derived) in 255 (13%). Note that these
associations are uncorrected for covariables; multivariable analysis is shownin
Supplementary Table 32. Further informationis provided in Supplementary
Result1.
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Extended DataFig.2 | Driver mutations. (a) Distribution of per-tumour driver
mutation counts by CRCtype.Predicted pathogenic mutations from193 driver
genes (Supplementary Table 4) were included in the analysis which showed
ahighly significant difference (P =2.6 x107'%, two-sided Kruskal-Wallis).

n, numbers of tumoursin each of the four groups. (b) Significant pairwise
associations between the most frequently mutated driver genes and indel
hotspot mutations, wholegenome duplication, age, anatomical location and
mutational signatures (Q<0.05). (c) Frequencies of 241 CRC SNV/indel driver gene
mutations across all samples (including analysis of MSS primary cancers by
anatomicallocation, Supplementary Table 35). The plot shows the sample sets
inwhichthe driver was discovered (colour of bar) and previous reports of the
geneasadriverin CRC or other cancers (colour of gene name). The y-axis shows
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the proportionof cancerswith apredicted pathogenic SNV or smallindel
mutation across the whole tumourset. Inaddition to these drivers, eight SV
hotspots were denoted as likely drivers, involving genes CDKAL1, BRD4, EZH2,
IGF2, KCNQI, MYC, UBE3A and VMPI (Supplementary Table 35). (d) Frequencies
of putativedriver mutations in four major signaling pathways, Wnt, Ras-Raf-
Mek-Erk/MAP-kinase, Pi3 kinase and TGF3/BMP. Pathway information obtained
from KEGG and TCGA. Key pathway genes not identified as CRCdrivers by
IntOGen areincludedingrey. Colour code for driver statusis as per Fig.1.
Numbersrefer to mutation frequency in that CRC subgroup (left-right: MSS,
MSI, POL), withincreasingly red shading for higher frequencies). Subgroups
inwhich the gene was identified as adriver are shown with bold outline as
perFig.1.
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insizeare shaded. SVs at fragile sites are notincluded. (d) Extrachromosomal
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DNA (ecDNA) across CRC subtypes and its contribution to common oncogene
amplification. The smaller chart shows the counts of tumours carrying at
least one ecDNA ampliconacross tumour subtypes (e.g. tumour counted as
“Circular”if>1circularised amplicon detected, otherwise “BFB” if >1BFB
amplicon detected until “No amp” where no valid amplicon detected). The
larger chart shows ecDNA classification of commonly amplified oncogenesin
MSS primary tumours. Classification was restricted to gene amplifications
with atotal copy number >5indiploid tumoursor >10intetraploid tumours
(i.e.amplifications or “big gains”). See Supplementary Table 13.
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Extended DataFig.4|CNAs, SVs, WGD and pathways of tumorigenesis.

(@) CNAsummary in MSS primary and MSI tumours. Genome-wide frequencies
of CNAin MSS primary (n=1,354) and MSI (n =292) tumours are shown. Focal
amplifications and deletions reported by GISTIC analysis are shown as grey
bars, and annotated with a cytoband and likely candidate gene where identified.
Black dashed lines represent chromosome boundaries. (b) Classification of all
tumoursinto diploid and tetraploid (genome-doubled). (c) Hierarchical clustering
of alltumours based only on copy number states identifies WGD/non-WGD split
(column2). CNA-based clustering identified a division based on WGD, with
features highly reminiscent of the iCMS2/3 division identified by Joanitoeta
using single cell transcriptomics. (d) Frequency of copy number gain in MSS
primary tumours by chromosome arm. (e) Numbers of driver genes identified in
thethree main classes (SNV/indel, SV andfocal CNA). Putative SV and focal CNA
drivers must be (i) atasite significantly over-represented above background
levels, and (ii) annotated to either aknown SNV/indel driver or asingle gene
(i.e.thereisonly asingle coding genein the SV hotspot or focal CNA region).
SNV/indel driversidentified in MSS cancers in a specific anatomical region of
the colorectumare not shown (see Supplementary Tables 35 & 36).SVand CNA
changes at fragile sites are excluded. CNAs in particular and SVs are likely to
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include some second hits at tumour suppressor genes (Supplementary

Table 18). The following genes are annotated as putative CNA drivers based
onfocal changes, including focal or minimal overlapping regions of change:
ACVRIB,ACVR2A,AKT1, ANK1, APC, ARIDIA, ARIDIB, ARID2, ASXL1, ATM, AXINI,
B2M, BCL9, BCL9L, BMPR2, CASP8, CCND3, CDS8, CDK12, CDKN1B, CHD2,
CREBBP, CUL4A, DUSP16, EIF2B3, ELF3, EPHA3, ERBB2, ERBB4, FHIT, FKBP9,
FOXPI, FSIP2, FUS, GNAS, GOLGAS, GPNMB, IDH1, IL7R, IRF1, KLF5, LCP1, MGA,
MITF, MLF1, MTOR, MYH11, NBEA, NEDD9, NF1, NRAS, PAN3, PDE4DIP, PIK3CA,
PIK3R1, PLK1, PLXNB2, POLE, POLG, POPDC3, PRDM2, PRKAGI1, PRKCB, PTEN,
PTPNI11, PWWP2A, RASGRF1, RB1, ROBO2, SAP130, SETDIB, SIN3A, SMAD4, TBX3,
TCF3, TFRC, THEMIS, TPTE, USP36, ZBTB7A and ZC3H13. The following genes are
annotated as putative SV drivers based on hotspots: ACVR2A, ANK1, ANKRD11,
APC,AXIN2, B2M, BRD4, CD58, CDKALI1, CDKNIC, CTNNBIL, EZH2, IGF2, KCNQI,
KLFS5, MAP2K4, MMP16, MYC, PTEN, RNF43, SMAD2, SMAD3, SMAD4, STAGI,
TCF7L2, TET2, TP53, UBE3A and VMPI. (f) Molecular and functional connections
between CRCdrivergenesfrom (e). Connections are derived from STRING. Gene
annotation to the six pathways or “other pathway” was performed manually.
Note that this analysis weights all driver genes equally.
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Extended DataFig. 5| Clinicopathological and molecular features of the
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sub-divisions of the colorectum (see Fig.4). Note that numbers of CRCs in the
splenic flexure and descending colon are generally relatively low compared
with otherregions. (b) Copy number changes and LOH. (c) Ploidy. (d) SNV and
indel burdens. Note the lack of obvious structure within the MSS sub-group
centroid. (e) Survival. Left, Kaplan-Meier plot showing overall survival of patients
with tumoursin the four MSS clusters with unclustered MSS, MSland POL also
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Extended DataFig. 6 | Rare molecular sub-groups and non-codingdriver
SVs. (a) Representative copy number analysis of a cancer with sub-clonal SMAD4
(chr18q21.2) mutation. The Battenberg output shows copy number along the
genome from chromosome1to22. Red barsindicate total copy number, orange
barssub-clonal copy number states and blue bars minor allele copy number.
Integrating these data with SNV data shows the most parsimonious explanation
to be that chromosome 18 has sub-clonal (average copy number ~0.5) loss, by
clonaldeletion of one homologue and the co-existence of two sub-clones of
similar prevalence, one with deletion of the other homologue and the other with
aloss of function SMAD4 mutation. The presence of multiple other sub-clonal
copy number changes in this tumour supports this view. (b) Co-occurrence of
Wntpathway driver mutationsin MSS primary tumours. Pairwise comparisonis
by logistic regression, using co-variables of TMB, age, sex and location. The
pairwise effect size 3 (co-occurrence >1(blue), exclusivity <1 (red)) isshown
ineachsquare.Uncorrected two-sided P-values for the pairwise association
areindicated as *<0.05, **<0.01, ***<0.001. Note the co-occurrence of
CTNNBI and TCF7L2, whichis also presentin MSItumours (f = 0.26, P<0.001).
(c) Representative copy number analysis of an MSI cancer with WGD and
chromosomal instability (CIN). The Battenberg output shows a grossly
rearranged, polyploid genome, placing this cancer amongst the most altered

ofthe MSS group. It contrasts sharply with the near-unaltered karyotypes of
most other MSI cancers. (d) Mutation status of BRCA1/2in tumours with and
without predicted homologous recombination deficiency (HRD) based on
HRDetect (probability threshold 0.7). Germline or somatic BRCA1/2 variants
defined as moderate or highimpact by Variant Effect Predictor (VEP) and/or
reported as pathogenic or likely pathogenic by ClinVar (v1.20) were included in
the analysis, together with CNAs. (e) Proportion of cancers showing ID8 activity
inpatients who hadreceived radiotherapy for treatment of their CRC or a different
cancer priorto the CRC. (f) Multiple simple structuralvariants (SVs) identified at
17g24.3 overlapping [ncRNAs and a regulatory element that interacts with the
SOX9promoter.Datafrom MSS primary cancers (n=1,354) are shown. Top
trackarcsrepresent simple SVs; second track shows mean GC-corrected log
ratiobetween tumour and normal read coverage (logRR) as computed by
Battenberg - higher and lower valuesindicate tendencies for copy number
gainsand losses respectively amongst theincluded tumours; third track shows
chromosomalinteractionsidentified in HT29 cells using promoter capture
Hi-C; fourth track shows histone mark signals; and bottom track shows the
locations of coding genesin theregionand IncRNALINCO0673/LINCO0511.
Verticallinesrepresent hotspot start and end positions.
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Extended DataFig.7|Driver mutationimmunogenicity andimmune
escape. (a) Heatmap and frequency chart of the 20 most common antigenic

SNV and frameshift mutations. Mutations are shown in order of decreasing
frequency across the CRC set. Colours show antigenic mutations (dark blue),
escaped antigenicity through HLA alteration (purple), or non-antigenic
mutations (light blue). The molecular subtype of each canceris shown above
the heatmap (green: MSS, red: MSI, yellow: POL). Among recurrent
non-synonymous mutations, KRAS G12V was most antigenic, predicted tobind
patient-specific HLA moleculesin 80% (146/181) of cancers. KRAS G12D and
G13D werealso frequently predicted to be antigenic, whereas the rarer KRAS
mutations G12C,A146T and G12A were less so. BRAFV60OE was predicted
tobeantigenicinonly 36% (98/272) of cancers, as the HLA alleles binding the
resulting epitope were either uncommon or, in 20% of cancers with predicted
binding, underwent somaticloss. The most common peptide-changing
frameshift mutations were principally found in MSI cancers, atafrequency of
>40% (and are shownin these cancers only). Frameshift mutations produced a
neoantigenin >95% of cases, although the most frequent frameshiftin MSS
cancers, APCE1309fs, had low predicted antigenicity (30%, 14/47 cases). For the
20 most frequent non-synonymous changes, the observed mutation frequency
and predicted antigenic frequency were inversely related (P = 0.042, two-sided
Pearson correlation test). There was no equivalent association for the 20 most
frequent frameshift changes (P=0.32), plausibly reflecting their almost
universally highimmunogenicity. (b) Dependency of neoantigen burden on
immuneescape, TMB and other clincopathological and molecularvariables
separatelyin1,450 MSS and 350 MSI cancers in multivariable regression models.
Greencircles and red squares represent odds ratios for each variable
respectively, with whiskers showing 95% confidence intervals. Escape is defined
ashavingHLA LOH or amutationin HLA, B2M or other antigen presenting gene.

Note thattoo few MSI metastases were present for associations to be calculated.

Thevariableslisted are tested relative to reference variables, which are
(top-bottom, excluding quantitative and categorical variables): non-escaped;
males; stage A/B; non-metastasis; and no prior non-surgical therapy. Purity,
ploidy, age and TMB are quantitative variables; location (distal colon or

rectum) is compared against proximal colon. (c)Immunefeatures of tumours
and driver genes from different anatomical locations. Top left: PHBR
immunogenicity scores for 29 location-specificdriver genes (11,8and 10 in
proximal colon, distal colon and rectum respectively) in 1,049 MSS primary
cancers. Topright: PHBR scores for subtype-specific driver genes (21MSS
primary, 5SMSS metastasis, 37 MSI,16 POL) in1,933 CRCs. Bottom left:
frequencies of mutationsin 18 driver genes common to differentlocations.
Bottomright: PHBR of mutationsinthe 18 location-common driver mutations
ineachlocation. Forbox plots, centre line shows median, box limits show upper
and lower quartiles, and whiskers show1.5x inter-quartile range. Drivers specific
to the distal colon had low overallimmunogenic potential (median PHBR > 1)
and lowerimmunogenicity (higher median PHBR) than proximal colon-and
rectum-specific drivers (P oximatv distat = 0-051; Precrumy distar = 0.043). This also
suggests thatthereisastrongerimmuneselectionactingondriversin the distal
colon. Recurrent mutations in MSS driver genes were less frequent in distal
than proximal CRCs (P = 0.012). However, theimmunogenic potential of these
mutations was near-identical between locations, suggesting that the observed
depletion was not aconsequence of site-specific driverimmunogenicity. For
example, KRAS G12D was detected in 18%, 7% and 12% of proximal colonic, distal
colonicandrectal tumours, respectively (median PHBRs of 3.7,3.9 and 3.6).
Overall, the data are consistent with strongerimmune surveillance in the distal
colorectum, which lowers the threshold for tolerated immunogenicity, so that
mutations that would be tolerated in the proximal colonare prunedin the
distal colorectum. (d) Immune escape mutations in MSS primary tumours from
proximal colon, distal colon and rectum. Cause ofimmune escapeis colour
coded. (e) Neoantigen burdens in MSS primary tumours from proximal colon,
distal colon and rectum.n,numbers of cancersin eachlocation. (f) Neoantigen
burdens in MSS primary tumours in regions 1-9 from caecum to rectum. P value
(two-sided) and correlation Rare from Spearman’s rank correlation analysis.

n, numbers of cancersin each location. For all panels, box plots are drawn as
per panel (c) and statistical analyses used two-sided Wilcoxon tests, unless
otherwise stated.
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Extended DataFig. 8| The CRC microbiome. (@) Microbiome decontamination
process. Tumour and blood prevalence of all species are shown, according to
methods based on The Cancer Microbiome Atlas. Orange pointsindicate
taxathought to be contaminants due to presence in both blood and tumour
samples. Outlined pointsindicate species previously associated with CRC.
(b) Mean relative abundance of microbial genera for the four main CRC subtypes.
The mostabundant 20 genera are shown. Other taxaare summed as “Others”
forease of visualisation. (c) Bacterial load and (d) Shannon diversity index for
different CRCgroupings. The 33 distal and rectal MSI cancers are notincluded,
asthe small cohortsizes do not allow meaningful comparisons. P-values for
pairwise comparisons are displayed. () Adonis PERMANOVA results comparing
Bray-Curtisdistances againstvarious clinical and genomic factors. R-squared is
the percentage of diversity linked to each factor. Adonis P-value (two-sided) is
indicated by symbol:*P<0.05.**P<0.01.***P< 0.001. (f, g) Examples of two
taxa distributions significantly associated with anatomical location for
Akkermansia and Fusobacterium respectively. Multivariate MaAslin2 P-values

1x10* 1x102 K
Fusobacterium proportion

x104 1x102
E. coli proportion

hadbeen calculated fromall samples and associations identified at P<0.05
(two-sided). Univariable P-values are shown in the panel, as these plots do not
include distal or rectal MSI tumours. (h) E. coli anatomicalssite distribution for
pks-positive and -negative MSS CRCs. E.coli proportions in tumours with either
ID18 or SBS88 contributing to 5% or more of the mutational burden, compared
to tumours with no pks contribution, are shown by anatomical location.

No MSI tumours were pks-positive by these thresholds. P-values comparing
pks-positive and -negative tumours for each location are shown. For panels
(b-g), numbers of cancers were: rectum MSS 350; distal colon MSS 382; proximal
colonMSS 454; and proximal colon MSI282. Wherereported, 1,898 primary
tumours and 122 metastases were analysed. For panel (h), numbers of cancers
were: rectum pks+101; rectum pks-249; distal colon pks+ 51; distal colon pks-
331; proximal colon pks+28; and proximal colon pks-426. For all box plots, the
boxis25thto 75th percentile, the central bar is the median, and the whiskers are
thelargest/smallest values within1.5x interquartile range beyond the box. All
Pvalues are unadjusted from two-sided Wilcoxon tests unless otherwise stated.
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Extended DataFig. 9 |Further details of analyses by anatomical location two-sided P-value of 0.05 using multiple linear regression considering sex,
and age. (a) Location of primary tumour and number of variants attributed to primary tumour location, stage, grade and sample purity. The Yeo-Johnson
mutational signaturesin microsatellite stable (MSS) primary tumours. Shown extension to the Box-Cox-transformation was applied to variant numbers.
aremutational signatures associated with tumour location at aBonferroni- (c) Numbers of patients included in anatomical location or age analyses. Counts
corrected two-sided P-value of 0.05 using multiple linear regression considering  <5are masked to prevent patient re-identification. In all panels, boxplots show
age atsampling, sex, stage, grade and sample purity. n: number of tumour themedian value (thick blackline), interquartile range (IQR; box bounds), and

samples fromlocation. (b) Age at sampling and number of variants attributed to all outlying values (circles). Boxplot whiskers extend to the most extreme data
mutational signatures in primary MSS tumours. Shown are mutational signatures ~ pointwhichare nomore than1.5times the IQR from the box.
associated with age at sampling (10 year bins) at a Bonferroni-corrected
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Software and code

Policy information about availability of computer code

Data collection The standard lllumina sequencing pipeline (NorthStar v2.6.53.23) implemented in the 100,000 Genomes Project was used. Poor quality

sequenced samples were identified based on % mapped reads, % chimaeric DNA fragments, averae insert size, AT/CG dropout, and evenness
of local coverage.

Other data accessed comprises

CADD 1.6 https://cadd.gs.washington.edu

CancerMine February 2021 http://bionlp.bcgsc.ca/cancermine/

COSMIC Cancer Gene Census 92 https://cancer.sanger.ac.uk/census

COSMIC Reference Mutational Signatures 3.2 https://cancer.sanger.ac.uk/signatures/

eHOMD - http://www.homd.org/

ENCODE - https://www.encodeproject.org

Ensembl 101 https://www.ensembl.org/index.html

GATK pathseq resource bundle - ftp://ftp.broadinstitute.org/bundle/beta/PathSeq/

GnomAD 2. | https ://gnomad.broadi nstitute.org/downloads#v2-constraint

Homo sapiens GRCh38Decoy reference assembly - http://emea.support.illumina.com/sequencing/sequencing_software/igenome.html
IntOGen Gene Annotations 1 February 2020 https://www.intogen.org/download?file=Int0Gen-Cohorts-2020020l.zip

OncoKB 3.3 https://www.oncokb.org/

Protein Data Bank March 2020 https://www.rcsb.org/#Category-download ReplicationDomain - https://www2.replicationdomain.com
Segmental Duplication Database - https://humanparalogy.gs.washington.edu
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Data analysis

UCSC Genome Browser - https://hgdownload.soe.ucsc.edu/downloads.html

Comparisons with previous larger-scale cancer sequencing utilised data from the following sources that contain accessible data or instructions
for access to that data.
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Software Version (where applicable) URL

ActivePathways 1.1.0 https://cran.r-project.org/web/packages/ActivePathways/index.html
alleleCount-FixVAF - https://github.com/danchubb/alleleCount-FixVAF

AmpliconArchitect 1.2 https://github.com/virajbdeshpande/AmpliconArchitect

AmpliconClassifier 0.4.6 https://github.com/jluebeck/AmpliconClassifier

ANNOVAR 2018v16 https://annovar.openbioinformatics.org/en/latest/user-guide/download/

ape 5.5 https://cran.r-project.org/web/packages/ape/index.html

Battenberg 2.2.8 https://github.com/Wedge-Oxford/battenberg

bcftools 1.9 http://www.htslib.org/download/

bedops 2.4.39 https://github.com/bedops/bedops

bedtools 2.3.0 https://github.com/arg5x/bedtools2

bwa 0.7.17 https://github.com/Ih3/bwa

cBase 1.0 http://genetics.bwh.harvard.edu/wiki/sunyaevlab/cbase

Ccube 1.0 https://github.com/keyuan/ccube

CleanCNA 0.1.0 https://github.com/afrangou/CleanCNA

ClusterSV February 2019 https://github.com/cancerit/ClusterSV

CNAqgc 1.0.0 https://github.com/caravagnalab/CNAqc

COSMIC June 2022 https://cancer.sanger.ac.uk/signatures/

Delly 0.7.8 https://github.com/dellytools/delly/releases/download/v0.7.9/delly_v0.7.9_linux_x86_64bit
DISCOVER 0.9 https://github.com/NKI-CCB/DISCOVER

dNdSCV 0.1.0 https://github.com/im3sanger/dndscv

DPClust 2.2.8 https://github.com/Wedge-Oxford/dpclust

fastMitoCalc 1 https://Igsun.irp.nia.nih.gov/hsgu/software/mitoAnalyzer/index.html

GISTIC 2.0.2.3 https://github.com/broadinstitute/gistic2

GTAK Pathseq 4.0.4.0 https://github.com/broadinstitute/gatk/releases

hdp 0.1.5 https://github.com/nicolaroberts/hdp

HotMaps3D 1.1.3 https://github.com/KarchinLab/HotMAPS

HRDetect (from signature.tools.lib) 0.0.0.9000 https://github.com/Nik-Zainal-Group/signature.tools.lib
igraph 1.2.4.2 https://igraph.org/r/

IntOGen February 2021 https://bitbucket.org/intogen/intogen-plus/src/master

Isaac 03.16.02.19 https://github.com/Illumina/Isaac3/releases/tag/iSAAC-03.16.02.19

LEfSe Galaxy version 1.0 https://huttenhower.sph.harvard.edu/galaxy/

LOHHLA 1.0 https://bitbucket.org/mcgranahanlab/lohhla/src/master/

Lumpy 0.2.13 https://github.com/arg5x/lumpy-sv/releases/download/0.2.13/lumpy-sv-v0.2.13.tar.gz
Manta 0.28.0 https://github.com/Illumina/manta/releases/download/v0.28.0/manta-0.28.0.release_src.tar.bz2
MaAsLin2 0.99.2 https://huttenhower.sph.harvard.edu/maaslin
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Mitoseek 1.3 https://github.com/riverlee/MitoSeek

MSINGS 1.0 https://bitbucket.org/uwlabmed/msings/src/master/

MutationTimeR 0.99.2 https://github.com/gerstung-lab/MutationTimeR

MuTect 1.16 https://software.broadinstitute.org/cancer/cga/mutect_download

MuTect2 (for mitochondrial analysis) 4.1.4.1 https://software.broadinstitute.org/cancer/cga/mutect_download
MutPanning 2 https://github.com/vanallenlab/MutPanningV2

NeoPredPipe 1.1 https://github.com/MathOnco/NeoPredPipe

NorthStar 2.6.53.23

OncodriveCLUSTL 1.1.3 https://bitbucket.org/bbglab/oncodriveclustl/src/master/

OncodriveFML 2.4.0 https://bitbucket.org/bbglab/oncodrivefml/src/master

PathSeq 2018 http://software.broadinstitute.org/pathseq/Downloads.html

PCAWG SV merge 2020 https://hub.docker.com/r/weischenfeldt/pcawg_sv_merge

POLYSOLVER 1.0 https://software.broadinstitute.org/cancer/cga/polysolver_download

R 3.4.0and 4.0.3 https://cran.ma.imperial.ac.uk/

SHAPEIT2 2.r904 https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.ntml#download
SigProfilerExtractor 1.1.3 https://github.com/AlexandrovLab/SigProfilerExtractor/releases/tag/v1.1.3
SigProfilerMatrixGenerator 1.2 https://github.com/AlexandrovLab/SigProfilerMatrixGenerator
smRegions 1 https://bitbucket.org/bbglab/smregions/src/master/

Strelka 2.4.7 https://github.com/lllumina/strelka/releases/tag/v2.4.7

Strelka (for immune escape prediction) 2.9.9 https://github.com/Illumina/strelka/releases/tag/v2.9.9
TelomereCat 3.3.0 https://github.com/cancerit/telomerecat

TelomereHunter 1.1.0 https://pypi.org/project/telomerehunter/

trackViewer 3.19 https://github.com/jianhong/trackViewer

UTRannotator 2020 https://github.com/ImperialCardioGenetics/UTRannotator

VEP 108.1 https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html

Vegan 2.5-7 https://CRAN.R-project.org/package=vegan

xTea 1.1 https://github.com/parklab/xTea

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

This is stated in the manuscript. Genomics England permits access to data used for this study subject to the following conditions. Research on the de-identified
patient data used in this publication can be carried out in the Genomics England Research Environment subject to a collaborative agreement that adheres to patient
led governance. All interested readers will be able to access the data in the same manner that the authors accessed the data. For more information about accessing
the data, interested readers may contact research-network@genomicsengland.co.uk or access the relevant information on the Genomics England website: https://
www.genomicsengland.co.uk/research. In order to expedite follow-on analyses, we have made available in the Genomics England Research Environment a
‘Genomic Data Table’ that provides for each patient and their tumour, all the individual clinical and molecular variable data used in this manuscript (see
Supplementary Information Guide). It is recommended that those planning to access data consult the latest Genomics England regulations.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Patients were not recruited to the study according to any sex- or gender-based criteria. Since colorectal cancer is more
common in males, exploratory sex-specific analyses, or analyses using sex as a covariable, were performed throughout the
study. Very few differences between the sexes were found as regards molecular variables and most results were therefore
reported without respect to sex or gender. Some colorectal cancer driver genes are on the X chromosome and may in theory
act differently in male and female patients.

Reporting on race, ethnicity, or We report the proportions of individuals of different self-reported and genetic ancestries in the study. A detailed analysis of
other socially relevant groupings differences with respect to ancestry is planned for a follow-up manuscript, but a preliminary assessment shows very few
major differences.

Population characteristics Any patient presenting with colorectal carcinoma to one of 13 Genomic Medicine Centres and their affiliated hospitals
throughout England with was eligible for the study, subject to tumour sampling for molecular analysis being possible. Data
are not available on the entire set of individuals invited to participate in the study. Participant characteristics are described in
the manuscript. Median age at cancer sampling was 69 (range 23-94). 41% participants were female. Samples comprised
1898 primary carcinomas, 122 metastases from primary colorectal cancers, and 3 recurrences. Nineteen individuals had an
unreported Mendelian cancer syndrome. We estimated that 90.2% patients were of European ancestry, 2.6%" African, 0.7%
East Asian, 3.2% South Asian and 3.3% mixed. Age, sex, treatment, germline genetics and the presence of co-morbidities or
family history were not factors listed as relevant in patient recruitment. Cancer patients treated successfully with
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neoadjuvant therapy may be under-represented owing to a very small cancer or impure sample following that therapy.

Recruitment Participant recruitment was by NHS staff. Recruitment was open to all patients with colorectal carcinoma who were able to
provide informed consent. Small biases are likely based on patient willingness to take part in research, and also clinical
features (e.g. patients presenting as emergencies were likely to be under-recruited).

Ethics oversight Ethical approval was provided to the 100,000 Genomes Project by the HRA Committee East of England — Cambridge South
research ethics committee (REC Ref 14/EE/1112). Samples were obtained as part of the 100kGP cancer programme, an
initiative for high throughput tumour sequencing for NHS cancer patients. Patient recruitment was organised by 13 Genomic
Medicine Centres (GMCs) and their affiliated hospitals across England. All patients provided written informed consent. Study
oversight was subsequently undertaken by Genomics England through regular reporting updates to the GeCIP steering
committee and data Airlock committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

E] Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by the recruitment achieved by NHS staff, by availability of tumour and matched normal samples for DNA
extraction, and by quality control thereafter in terms of DNA extraction. In addition, some samples were excluded from copy number analysis
owing to failure to establish a fit to reported purity metrics.

Data exclusions Exclusions were based on low sample purity, standard sequencing quality metrics, and availability of clinicopathological data (for sub-studies).
Specific sequence data were excluded from regions of duplications or repeats, low mappability, or seuencing chemistry errors (e.g. strand
bias). All criteria were based on standards or norms in the field, although some additional exclusions were made ad hoc based on our own
findings.

Replication Comparisons with previous work in the field were performed wherever possible. Almost all the common colorectal cancer driver mutations
and copy number alterations found by other studies were also found by us, and there was overlap with previously reported
mutational signatures. However, we only replicated ~7% of previously reported drivers and some signatures were present at much higher
frequencies or absent in our data compared with other data sets. We make relevant comparisons with previous data at various points in the
manuscript. Since some of our discoveries were of uncommon mutations or cancer sub-groups, we did not sub-divide our study into test and
validation patient sets. We did, however, test the stability of mutational signatures and derived clusters by analyses of random sub-sets of the

data.
Randomization This was not an intervention-based study and hence randomisation is inappropriate.
Blinding N/A. The study has no assessments or procedures that are appropriate for blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies [ ] chiP-seq
Eukaryotic cell lines D Flow cytometry
Palaeontology and archaeology D MRI-based neuroimaging

Animals and other organisms
Clinical data
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJEguidelines for publication of clinical research and a completedCONSORT checklist must be included with all submissions.

Clinical trial registration N/A

Study protocol This is described in https://www.bmj.com/content/361/bmj.k1687

Data collection Within Genomics England Genomic Medicine Centres and their satellite hospitals, with central data collection by Genomics ENgland
core team.

Outcomes Certain studies have utilised overall survival as an outcome. Other outcomes include fundamental measures found on the

histopathological reporting proforma for colorectal malignancy, e.g. stage.
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