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Abstract

Understanding the structures of protein complexes is pivotal for breakthroughs in health, agriculture, bioengineering, and beyond. MultiFOLD2
and ModFOLDdock?2 are leading servers for protein quaternary structure prediction and model quality assessment, respectively. MultiFOLD2

includes integrated stoichiometry prediction for quaternary structures and improved sampling and scoring, leading to high performance in con-

tinuous independent benchmarks such as CAMEO. ModFOLDdock2 uses a hybrid consensus approach to generate global and local quality
scores for predicted quaternary structures. ModFOLDdock?2 is integrated with MultiFOLD2 while also being available as a stand-alone server,

enabling the independent evaluation of quaternary structure models from any source. Both servers have been independently rigorously evalu-

ated, demonstrating high performance and ranking among the top servers in their respective categories in the recent CASP16 experiment. The
MultiFOLD2 and ModFOLDdock2 servers are freely accessible through userfriendly web interfaces at https://www.reading.ac.uk/bioinf /.
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Introduction

Following the success of AlphaFold2 in the CASP14 exper-
iment [1], protein tertiary structures can be modelled with
near-experimental accuracy. Therefore, since the CASP15 ex-
periment, the prominent focus has been on developing meth-
ods for modelling protein quaternary structures and assess-
ing their quality. For CASP135, we developed two complemen-
tary servers, MultiFOLD (https://www.reading.ac.uk/bioinf/
MultiFOLD/) for tertiary and quaternary structure predic-

tion, and ModFOLDdock (https://www.reading.ac.uk/bioinf/
ModFOLDdock/) for estimating the accuracy of multimeric
models [2-4]. In this paper, we outline the major updates to
the MultiFOLD and ModFOLDdock servers, describe their
functionality, and report on their performance in the most re-
cent major independent international benchmarks, CASP16
and CAMEO.

MultiFOLD2 and ModFOLDdock2 were both indepen-
dently benchmarked by the CASP16 assessors. MultiFOLD2
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is also continuously evaluated by the CAMEO resource [5]. In
CASP16, one of the major changes to the experiment was the
phased release of multimer targets. In Phase 0, servers were
required to predict the stoichiometry of targets, as this infor-
mation was not initially provided. In addition, the CAMEO
resource does not provide stoichiometry information when
submitting targets to the participating servers. Therefore, for
MultiFOLD2, one of our major developments was to provide
the server with more robust stoichiometry prediction. Further-
more, the MultiFOLD2 server includes improved sampling,
with the addition of models from AlphaFold2-Multimer, in-
cluding dropout [6], RoseTTAFold2 [7], and RoseTTAFold-
All-Atom [8], as well as improved model scoring using Mod-
FOLDdock2.

MultiFOLD2 outperforms AlphaFold3 [9] (AF3) overall
in the continuous CAMEO benchmark. In CASP16, Mul-
tiFOLD2 was ranked sixth among all server methods on
medium and hard targets and was the top-ranked server
method on the very hardest domain targets according to
GDT_TS. MultiFOLD2 surpassed the AlphaFold2 (Colab-
Fold) baseline server in the multimer category. Additionally,
MultiFOLD2 outperformed AF3 on Phase 0 multimer targets
based on official IDDT scores.

The ModFOLDdock2 server uses a hybrid consensus ap-
proach for producing both global and local (interface residue)
quality scores for predicted quaternary structures. Mod-
FOLDdock2 is integrated with MultiFOLD2, but we also
make it available as a stand-alone server to allow for inde-
pendent evaluation of user models from any source. In brief,
the main differences from the original ModFOLDdock server
were the addition of new scores and a neural network to pre-
dict local scores.

ModFOLDdock2 achieved first place in CASP16 for scor-
ing the global and local interfaces of quaternary structure
models, and its variants performed well across the board. As a
result, we were invited to present our methods at the CASP16
conference in December 2024.

Following rigorous independent evaluation of Multi-
FOLD2 and ModFOLDdock2 in CASP16 and CAMEO, we
have provided intuitive web interfaces for them and made
them freely available to all, for the benefit of non-expert pre-
dictors in the worldwide life science community.

Materials and methods

The core methodological aspects of the MultiFOLD2 and
ModFOLDdock2 servers are summarized below. For fur-
ther details and specific parameters, please refer to our pre-
vious papers, CASP16 abstracts and presentations (https:/
predictioncenter.org/casp16/). Supplementary Fig. S1 shows a
flowchart of the data and process in MultiFOLD2 and its in-
tegration with ModFOLDdock?2.

MultiFOLD2

The three primary stages of the MultiFOLD2 protocol are
sampling, scoring, and refinement. In the absence of user-
provided stoichiometry information for multimer predic-
tions, MultiFOLD2 will compute the stoichiometry prior
to sampling. First, initial 3D models are generated us-
ing LocalColabFold [10] (https://github.com/YoshitakaMo/
localcolabfold) with templates. If templates cannot be found
from the target sequences, then Foldseek [11] is used with each

chain of the top initial 3D model to find templates for each
subunit and the stoichiometry for each template is determined.
If templates are found for all subunits, then the most frequent
stoichiometries from all templates are assigned to the target
sequences and then used in subsequent modelling. If templates
are still not found for a sequence, then QUEEN [12] is used
to assign stoichiometry directly from the target sequences.

Following stoichiometry prediction, model sampling is
then carried out using two different versions of LocalColab-
Fold and RoseTTAFold2 (with and without dropout), and
RoseTTAFold-All-Atom, generating up to 45 initial 3D mod-
els. In the second step of the process, the models are scored and
ranked using ModFOLDdock2S (see below), which produces
the global quality scores for ranking models. In the final step,
the top 5 ModFOLDdock2S selected models are used as in-
put templates for our AlphaFold2-Multimer_Refine [13] pro-
tocol, generating up to 55 models. For each model, the rank-
ings and predicted per-residue quality scores (pIDDT*100)
from LocalColabFold are added to the B-factor column for
each set of atom records. The MultiFOLD2 server is avail-
able at https://www.reading.ac.uk/bioinf/MultiFOLD/. Multi-
FOLD?2 is also available as a docker image: https://hub.docker.
com/r/mcguffin/multifold2.

ModFOLDdock2

Using a hybrid consensus approach, the ModFOLDdock2
server produces global and local (interface residue) quality
scores for predicted quaternary structures. Like the origi-
nal version of the server, there are three variants to choose
from: ModFOLDdock2, ModFOLDdock2R, and ModFOLD-
dock2S. Each of the ModFOLDdock2 variants uses specific
combinations of global and local scores, which are calcu-
lated using the output from 12 individual scoring methods, in-
cluding QS-bestJury, DockQ-wave]Jury, TM-score]Jury, Oligo-
GDT]Jury, IDDT]Jury, CAD]Jury, PatchQSJury, and PatchDock-
QJury, which use scores from OpenStructure [14] version 2.7,
and VoroMQA [15], VorolF [16], CDA [17-19], and Mod-
FOLDIA [2].

The ModFOLDdock?2 variant requires multiple input mod-
els and is optimized to generate quality estimates that corre-
late linearly with observed quality scores. The ModFOLD-
dock2R variant also needs multiple input models, but it is
optimized to produce predicted scores for ranking, where
the highest-ranked models (top 1) should have higher ob-
served overall accuracy. The ModFOLDdock2S variant is de-
signed to work with a single input model, using sets of ref-
erence multimer models generated using our MultiFOLD2
method (see above). Each input model is then compared in-
dividually against the reference set using the individual scor-
ing methods described above. In addition, the ModFOLD-
dock2S interface residue scoring uses a Neural Network (NN)
to predict the mean of the local IDDT, CAD, PatchQS, and
PatchDockQ scores. The ModFOLDdock2 server is available
at https://www.reading.ac.uk/bioinf/ModFOLDdock/. Mod-
FOLDdock?2 is also available via the MultiFOLD2 docker im-
age: https://hub.docker.com/r/mcguffin/multifold2.

Results and discussion

Both servers integrate aspects of each other and present
their output consistently to users (Fig. 1 and Supplementary
Fig. S2). The resulting models of protein complexes can be
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Figure 1. MultiFOLD2 server results pages for CASP16 target T0240 with correctly predicted stoichiometry A3, viewed using mobile and desktop
browsers. (A) Screenshot from an Android phone browser in portrait orientation. The top model is coloured by chain identifier, which can be selected
using the ‘Show Chains’ button. (B) Screenshot from an Ubuntu laptop browser. The top model is rotated and coloured by predicted local model quality

(the perresidue pIDDT scores) using the ‘Show Quality’ button.

viewed interactively in 3D directly within the web browser.
Machine-readable data files are also provided by each server,
which comply with the CASP data standards for TS and
QA formats.

MultiFOLD2 server inputs and outputs

MultiFOLD2 users are required to input the sequence or
multiple sequences for their target complex in FASTA for-
mat. Optionally, they can include their name and email ad-
dress to receive a notification of their job completion, or
they may simply bookmark the results page link provided af-
ter submission. Providing stoichiometry information for the
complex, if known, is recommended. In cases where stoi-
chiometry is unknown, MultiFOLD2 will predict this using
known template structures if available or directly from the
sequences.

The MultiFOLD?2 results pages show the top 5 predicted
3D models, ranked by decreasing predicted global model qual-
ity scores, which can be viewed interactively in any standard
desktop or mobile web browser (Fig. 1). The results page
also includes buttons for each model, allowing users to colour
models by chain identifier or predicted local quality, and to
download models in PDB format. Machine-readable model
files are also provided in CASP TS format.

ModFOLDdock?2 server inputs and outputs

ModFOLDdock2 users must input the target protein se-
quences in FASTA format, the stoichiometry of the target com-
plex, and a single 3D model for evaluation. Alternatively, users
may upload a tarball containing multiple alternative models,
and optionally, they may provide a name for their protein se-
quence and an email address. The server form offers three vari-
ants with different component scoring methods: ModFOLD-
dock2, with predicted global scores optimized for positive

linear correlations with observed scores; ModFOLDdock2R,
with global scores optimized for ranking the best models; and
ModFOLDdock2S, for scoring single models.

The ModFOLDdock2 results pages rank models based
on predicted global assembly and interface quality scores
(Supplementary Fig. S2). Ranked protein complex models can
be viewed interactively in 3D within a standard desktop or
mobile web browser, similar to MultiFOLD2. The table also
provides buttons for colouring models by chain identifier or
predicted local interface quality. Users can download mod-
els as PDB files with predicted local interface scores in the
B-factor column. Machine-readable model files that comply
with the latest CASP QA (QMODE2) format are also avail-
able.

Independent benchmarking

Both MultiFOLD2 and ModFOLDdock2 were independently
assessed in the recent blind CASP16 experiment. Both servers
ranked among the top servers in their respective categories.
Additionally, MultiFOLD2 is continuously independently
benchmarked by the CAMEO resource, although there is cur-
rently no similar CAMEO facility for evaluating quality as-
sessment methods like ModFOLDdock2. A summary of the
results from CAMEO and CASP16 follows.

CAMEOQO results summary. Figure 2 shows that Multi-
FOLD?2 significantly outperforms all servers currently partici-
pating in CAMEO BETA according to the IDDT official score
data. This includes our previous version of MultiFOLD, the
anonymous Server 76, and AF3 based on common target sub-
set analyses of the IDDT scores for models for all target types.

Supplementary Figs S3 and S4 show the relative perfor-
mance according to the multimer targets (homomers and het-
eromers). MultiFOLD2 significantly outperforms all other
servers on all multimer targets according to the IDDT and
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Figure 2. Performance comparison of MultiFOLD2 versus the other servers participating in the independent blind CAMEO BETA benchmark according
to the IDDT score. Common subset comparisons for all target types (monomers, homomers, and heteromers) were made between servers using n
targets. (A) MultiFOLD2 versus MultiFOLD1 with n = 536 targets. (B) MultiFOLD2 versus Server76 with n = 544 targets. (C) MultiFOLD2 versus AF3
with n = 596 targets. The P-values are for the Wilcoxon signed-rank test. Data collection was from 11 May 2024 (except for AF3, which was from 18
May 2024) until 18 January 2025. Data are from https://beta.cameo3d.org/complete-modeling/.

the QS official score data (Supplementary Fig. S3). The data
for heteromers show that MultiFOLD2 performance is sig-
nificantly better than the original version of MultiFOLD
and Server 76, and similar to AF3 according to the IDDT
scores. For homomer targets, MultiFOLD?2 significantly out-
performs all three methods—MultiFOLD, Server 76, and AF3
(Supplementary Fig. S4).

CASP16 results summary. MultiFOLD2 was the top-
ranked server group in CASP16 according to the assessment
of the hardest domain targets by GDT_TS (Supplementary
Table S1). Furthermore, MultiFOLD2 ranked as the sixth
best server on both the medium and hard domains, outper-
forming the AF2 (ColabFold) and AF3 baselines by GDT_TS
(Supplementary Table S2).

In CASP16, many server groups used manually predicted
AF3 models for their multimer predictions in all target phases,
due to the lack of AF3 code and the ability to automate it at
the time. However, MultiFOLD?2 ran as a pure server method
throughout the CASP16 prediction season for Phase 0 (where
no stoichiometry information was provided), with no integra-
tion of AF3 models. Supplementary Fig. S5 shows that Multi-
FOLD?2 outperforms the AF3-server group method according
to IDDT scores for the CASP16 Phase 0 multimer targets and
performs similarly according to the QS score. The effect of
target size on performance depends on the metric used. Mul-
tiFOLD2 performance is best on the smaller targets according
to the QS-best and DockQ scores. However, the performance
is best on medium-sized targets according to the IDDT score
and TM score and on large targets according to the ICS score
(Supplementary Fig. S6).

ModFOLDdock2 was the best method in CASP16 for
predicting both the global interface score (QSCORE) and
the local (per-residue) interface accuracy of modelled pro-
tein complexes (Fig. 3). Furthermore, at least one of the
ModFOLDdock2 server variants ranked within the top
5 groups across all metrics, including the global fold
(SCORE) (Supplementary Table S3). ModFOLDdock2 lo-
cal (QMODE2) score performance decreases as the target
size increases and there are more interface residues to score
(Supplementary Fig. S7). However, in terms of the global
(QMODE1) scores, while the performance is better on small

targets, there is less of an association between target size and
performance according to the official metrics (Supplementary
Fig. S8).

Figure 4 shows examples of MultiFOLD2 predictions
(Fig. 4B-D) and ModFOLDdock2 quality assessment of
models (Fig. 4E-H) for the CASP16 target H0225 (Phase
0)/H1225 (Phase 1). MultiFOLD2 correctly predicted the
stoichiometry and overall assembly of the H0225 complex
(IDDT = 0.852, TM score = 0.927) apart from the posi-
tion of the interacting peptide (shown in green, Fig. 4B).
Figure 4C shows the MultiFOLD2 model coloured by local
pIDDT scores, indicating that MultiFOLD2 correctly iden-
tified the inaccurate position of the peptide, but was cor-
rectly confident about the overall assembly of the main chains.
Figure 4E and F shows the top-ranked model (1/377) by
ModFOLDdock2 for H1225, which has the correct over-
all assembly. ModFOLDdock2 confidently and accurately
predicted the interacting main chain residues for the top
model (Fig. 4F), while the server was appropriately less
certain about the interacting residues for the peptide. Fig-
ure 4G and H shows the bottom-ranked model (377/377) by
ModFOLDdock2 for H1122, which has the incorrect over-
all assembly and few correctly interacting residues, indicat-
ing that the server was appropriately less certain about this
model.

Conclusions

MultiFOLD2 and ModFOLDdock2 are state-of-the-art
servers for protein complex prediction and quality assess-
ment. MultiFOLD2 integrates stoichiometry prediction and
improved sampling and scoring, leading to high performance.
ModFOLDdock?2 is integrated with MultiFOLD2 and can
be used as a stand-alone server providing global and local
quality scores for predicted quaternary structures using a
hybrid consensus approach. Both servers have been rigorously
evaluated and independently benchmarked, demonstrating
their high performance and ranking among the top servers
in their respective categories of CASP16 and CAMEO. These
user-friendly servers are proven leading tools for the predic-
tion and quality assessment of protein quaternary structure
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Figure 3. The performance of the ModFOLDdock2 server methods in CASP16 versus other participating predictor groups according to the official
scores. (A) Performance of servers in the prediction of local interface residue accuracy. The local score total is calculated using an assessorlike formula
but for total average local scores [0.5*Pearson(PatchDockQ) + 0.5*Spearman(PatchDockQ) +

AUC(PatchDockQ) + 0.5*Pearson(PatchQS) + 0.5*Spearman(PatchQS) + AUC(PatchQS) + 0.5*Pearson(CAD) + 0.5*Spearman(CAD) +

AUC(CAD) + 0.5*Pearson(IDDT) + 0.5*Spearman(IDDT) + AUC(IDDT)]. Ranks are tied for ModFOLDdock2 and ModFOLDdock2R because they use the
same code for local scores. (B) Global interface (QSCORE) prediction performance. The QSCORE score total is calculated using
[0.5*Pearson(DockQ-wave) + 0.5*Spearman(DockQ-wave) + AUC(DockQ-wave) + 1-Loss(DockQ-wave) + 0.5*Pearson(QS) + 0.5*Spearman(QS) +
AUC(QS) + 1-Loss(QS)]. (C) Global fold (SCORE) prediction performance. The SCORE score total is calculated using

[0.5*Pearson(GDT_TS) + 0.5*Spearman(GDT_TS) + AUC(GDT_TS) + 1-Loss(GDT_TS) + 0.5*Pearson(TM) + 0.5*Spearman(TM) +

AUC(TM) + 1-Loss(QTM)]. Data are from https://predictioncenter.org/casp16/results.cgi?tr_type=accuracy.

Figure 4. Examples of MultiFOLD2 and ModFOLDdock?2 predictions for a heteromultimeric CASP16 target H0225 (Phase 0)/H1225 (Phase 1) with the
stoichiometry A1B1C1. (A) The native structure of H0225/H1225 is coloured by chain identifiers. (B) The MultiFOLD2 top predicted model for H0225
(Phase 0) is also coloured by chain and shows the correct stoichiometry. (C) The MultiFOLD2 model is coloured by predicted local accuracy (pIDDT)
ranging in a spectrum from blue (high accuracy) to red (low accuracy). (D) Superposition of the MultiFOLD2 model (cyan) with the native structure for
H0225/H1225 (green). (E) Top-ranked model by ModFOLDdock2 for H1225 coloured by chain identifier. Loss (the difference in quality between the best
and selected models) according to each global score: GDT-TS = 0.051, TM score = 0.022, DockQ-Wave = 0.058, and QS score = 0.131. AUC (area
under receiver operating characteristic curves) scores measuring the accuracy of local interface scoring: PatchDockQ = 0.829, PatchQS = 0.803,

CAD = 0.855, and IDDT = 0.818. (F) Top-ranked model by ModFOLDdock2 for H1225 coloured by predicted interface residue accuracy from blue (high
confidence of interface residue) to red (very low confidence, or non-interface residue). (G) Bottom-ranked model by ModFOLDdock2 for H1225 coloured
by chain identifier. (H) Bottom-ranked model by ModFOLDdock?2 for H1225 coloured by predicted interface residue accuracy ranging in a spectrum from
blue (high confidence of interface residue) to red (very low confidence, or non-interface residue). Data are

from https://predictioncenter.org/download_area/CASP16/.
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models and are freely available to the global life science
community.
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