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Realistic projections of future wildfires need to account for both the stochastic
nature of climate and the randomness of individual fire events. Here we adopt a
probabilistic approach to predict current and future fire probabilities using a large
ensemble of 1,600 modelled years representing different stochastic realisations of the
climate during a modern reference period (2000-2009) and a future characterised
by an additional 2°C global warming. This allows us to characterise the distribution
of fire years for the contiguous United States, including extreme years when the
number of fires or the length of the fire season exceeded those seen in the short
observational record. We show that spread in the distribution of fire years in the
reference period is higher in areas with a high mean number of fires, but that there
is variation in this relationship with regions of proportionally higher variability in the
Great Plains and southwestern United States. The principal drivers of variability in
simulated fire years are related either to interannual variability in fuel production
or atmospheric moisture controls on fuel drying, but there are distinct geographic
patterns in which each of these is the dominant control. The ensemble also shows
considerable spread in fire season length, with regions such as the southwestern
United States being vulnerable to very long fire seasons in extreme fire years. The
mean number of fires increases with an additional 2°C warming, but the spread
of the distribution increases even more across three quarters of the contiguous
United States. Warming has a strong effect on the likelihood of less fire-prone
regions of the northern United States to experience extreme fire years. It also
has a strong amplifying effect on annual fire occurrence and fire season length
in already fire-prone regions of the western United States. The area in which fuel
availability is the dominant control on fire occurrence increases substantially
with warming. These analyses demonstrate the importance of taking account of
the stochasticity of both climate and fire in characterising wildfire regimes, and
the utility of large climate ensembles for making projections of the likelihood of
extreme years or extreme fire seasons under future climate change.
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wildfire, wildfire risk, wildfire occurrence, climate variability, large ensembles, LES,
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1 Introduction

Recent wildfire events have prompted concern about future
changes in wildfire regimes. Analyses of remotely sensed burned area
show significant declines since 2001 in Europe, sub-Saharan Africa,
southern Africa and Central Asia, but no significant trends in other
regions of the world (Zubkova et al., 2023). However, there has been
an overall increase in burned area as a result of wildfires in the
United States between 1983 and 2022 (EPA, 2024). Other aspects of
the fire regime are also changing. Extreme wildfire events have become
more frequent and intense globally (Cunningham et al., 2024) and the
fire season has lengthened significantly in many regions over the past
four decades (Smith et al., 2020). There has been a strong response of
fire regimes to warming and land-use change during past centuries
(Sayedietal, 2024). A similar response is expected with future global
warming, with fire risk projected to increase over the 21st century as
a result of changes in meteorological conditions (Arias et al., 2021).
Fuel accumulation is also projected to increase with warming (Lu
etal,, 2024), and fuel moisture is projected to decrease across the plant
productivity gradient (Ellis et al., 2022).

A recent UNEP report (Sullivan et al., 2022), using outputs from
four climate models under the RCP2.6 and RCP6.0 scenarios,
predicted a significant increase in burned area globally in the 21st
century and an increasing trend in the likelihood of extreme wildfire
events from 2020 to 2100. That study reflects the spread of burned area
outcomes given modelled conditions - based on the distribution of
possible model parameters from the training data (Kelley et al., 2019) -
but does not reflect the full spread due to the chance of different
realisations of weather that affect the likelihood of wildfire occurrence.
This second component of the uncertainty can be addressed by using
a large ensemble (LE) of climate simulations. As the drivers of wildfire
likelihood (such as temperature, moisture, and vegetation
productivity) vary between years in a given climate, considering a
large distribution of simulated years for a given global mean
temperature, or climate state, allows the full variability in potential fire
years to be defined (Van der Wiel et al., 2021). Modelling this aleatoric
component of the uncertainty allows us to characterise the otherwise
unknown spread of the annual wildfire distribution that arises from
the limited length of the recent wildfire record, and to understand the
possible extremes of the modern fire regime through better resolution
of the tails of the distribution.

LEs are a standard method in climate and climate impact science
where ensemble runs are used to represent the distribution of possible
outcomes and extremes. LEs have been widely adopted in flood
modelling (Cloke and Pappenberger, 2009) and have been used to
predict extremes for heavy snowfall (Sasai et al., 2019), drought (Van
der Wiel et al., 2021), extreme heat (Suarez-Gutierrez et al., 2020), and
fire weather (Squire et al., 2021). This approach is very applicable in
the context of fire, which is sensitive to meteorological variability
between years (Chuvieco et al., 2021) and to changes in vegetation
properties caused by this variability. LE methods have been adopted
for projection or attribution of extreme fire weather events (Touma
et al,, 2022; Squire et al., 2021), but have not been applied to other
factors influencing fire regimes. Significant spread has been shown
between General Circulation Model (GCM) predictions of wildfire in
California (Dye et al, 2023; Yue et al, 2014) and the northern
United States (Kerr et al., 2018). These studies represent a combination
of aleatoric and systematic uncertainty, and hence cannot
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be interpreted probabilistically (Shepherd, 2019). It is important to
understand how this uncertainty impacts projections, particularly
given the rapidly moving target due to climate and land-use change.

Accounting for interannual stochasticity in modelling wildfire
under present-day and future conditions is important in model
products designed for the wider fire community. Fire management is
often based on the extrapolation of observed incidence, meaning that
the effect of future environmental change on the fire regime is viewed
in terms of increasing risk relative to local operational experience.
However, this approach ignores the possibility that the observed
occurrence of fires does not provide a full representation of the
potential fire regime - including unseen extremes. The modern
observational record does not necessarily reflect the mean response to
climate since it is strongly influenced by variability due to the small
sample of years considered. Adopting an LE allows a characterisation
of the distribution of possible events, meaning that the likelihood of
extremes can be more robustly determined. Additionally, climate
change can have a different effect on average versus extreme fire years.
LEs allow a robust characterisation of the full distribution of fire years
to define vulnerability to extremes as well as changes to the landscape’s
expected average susceptibility to wildfire.

Here, we apply a previously established modelling methodology
for the likelihood of wildfire occurrence using an LE to assess the
distribution of the expected number of fires per year for the contiguous
United States. We then assess the regional drivers of fire variability and
variability in the length of the fire season across North American
ecological regions, or ecoregions (Commission for Environmental
Cooperation (Montréal, Québec) and Secretariat, 1997). Finally,
we consider how these distributions change when subject to an
additional 2°C of warming, identifying regionally distinct effects of
climate change on both the mean and spread of fire year outcomes.

2 Methods

We use a model that predicts the daily likelihood of fire as a
function of meteorological, vegetation, and human-activity variables.
We take bias-corrected meteorological variables from the Royal
Netherlands Meteorological Institute Large Ensemble Time Slice
(KNMI-LENTIS) ensemble for a “modern” period (2000-2009) and
a hypothetical future (+2°C global warming relative to the modern
ensemble). We also use these bias-corrected variables as input to a
light-use efficiency model to derive gross primary production (GPP).
Factors related to land cover and human activities are held constant.
We then analyse the ensemble distribution of fire years under modern
and future conditions, using a climate reanalysis-driven model as a
baseline, focusing on how the variability between years varies spatially;
extreme fire years; and variation in the length of the fire season.

2.1 Fire modelling approach

We use an existing model for the daily probability of fire
occurrence at 0.1° spatial resolution for the contiguous United States
(Keeping et al., 2024), trained on occurrence data from the Fire
Programme Analysis fire-occurrence database (Short, 2022). The
original model selects 12 variables from a suite of 47 candidate
variables associated with the likelihood of wildfire occurrence,
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including instantaneous and antecedent predictors of weather
conditions, plant productivity, plant type, population, and landscape
development. The selected variables are then used to predict the daily
likelihood of a wildfire occurrence using a power-law rescaled
generalized linear model. Here, a reduced set of 31 candidate predictors
(Supplementary Table 1) are used because some of the original
variables could not be obtained from the KNMI-LENTIS ensemble,
and some were eliminated because they were not selected across 1,000
randomly sampled training datasets. The selected ensemble-derived
variables were GPP, precipitation, vapour pressure deficit (VPD), snow
cover, diurnal temperature range (DTR), and windspeed across a range
of antecedences. Inputs derived from KNMI-LENTIS were downscaled
to the resolution of the fire model since the effect of wildfire drivers
varies across spatial scales (Parisien and Moritz, 2009) and the
modelled relationships and the thresholds used for these relationships
would therefore not necessarily be appropriate at coarser scale.

The reanalysis model based on the reduced set of variables performs
as well as the original model. It shows good separability for fire
occurrence, with an area under the receiver operating characteristic
curve (AUC) statistic of 0.89. It also performs well spatially, with a
geospatial normalised mean error (NME) of 0.46, in predicting both
how concentrated the fire season is (seasonal concentration NME = 0.78)
and when the peak of the fire season occurs (mean seasonal phase
difference = 0.13), and in predicting interannual variability (interannual
NME = 0.67). The model driven by reanalysis data provides a point of
comparison for the realised likelihood of wildfire given the weather that
occurred. However, as a reanalysis derived product, it cannot include the
full stochasticity of the actual weather.

2.2 KNMI-LENTIS ensemble

KNMI-LENTIS (Muntjewerf et al, 2023) provides a large
ensemble run of EC-Earth3 (Doscher et al,, 2021) for two climate
periods, 2000-2009 and +2°C warming from this “modern” period
(2075-2084 under SSP2-4.5 in EC-Earth3). Each ensemble consists of
160 simulations of 10 years. These 160 ensemble members are created
combining “macro” initialization and “micro” perturbations, with 16
different starting conditions created by starting the model at 25-year
intervals in the pre-industrial spin-up, and running long transient
(historical and SSP2-4.5) simulations. Each of these 16 runs is then
subject to nine very small perturbations to the atmospheric
temperature field at the start of the modern and modern + 2°C decades
to produce two ensembles of 160 members each. These 160 members
yield 1,600 years of data for two climates that are considered relatively
stable (the 2000s and that climate subject to +2°C warming) since any
climate trend will be limited in a 10-year period. Antecedent GPP over
the preceding year was selected as a predictor, although none of the
longer antecedent GPP predictors was found to be important in the
model training. Antecedent 1-year GPP was calculated by repeating
the first year of the ensemble following Van der Wiel et al. (2019).

2.3 Bias correction and generation of input
data

The KNMI-LENTIS outputs were bias-corrected and downscaled
by the climate imprint (CI) method (Hunter and Meentemeyer, 2005)
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using ERA5-Land data (Munoz-Sabater et al., 2021) for the period
1990-2019 at 0.1° (~10 km resolution). Bias-correction of the
meteorological and plant growth predictors reduces the general
overestimation of GPP and the under/over-estimation of windspeed
and snow cover in some regions (Supplementary Figure 6) which,
because of the threshold relationships inherent in the fire probability
model, would result in the prediction of unrealistically high
likelihoods of fire occurrence (Supplementary Figure 7).

Although KNMI-LENTIS and ERA5-Land are both ECMWF
products, the core atmospheric modules are different (IFS Cy36r4 and
Cy45r1 respectively), IFS Cy45r1 performs better then IFS Cy36r4
(ECMWE, 2025), and ERA5-Land also uses observational data
assimilation. Thus, the modelling schemes and implementation are
sufficiently different for ERA5-Land to be considered as an
independent source for bias-correction and downscaling of
EC-Earth3. Whilst reanalysis products are an imperfect representation
of reality and can be subject to bias, assessments of ERA5-Land show
that it performs better than other products in reproducing
extratropical northern hemisphere land temperatures (Munoz-Sabater
et al., 2021), United States temperature extremes (Ibebuchi et al,
2024), precipitation in the northeastern United States (Crossett et al.,
2020) and extratropical precipitation patterns more generally (Lavers
et al., 2022). The representation of precipitation extremes is not as
good (Lavers et al., 2022) but this is not important since the wildfire
model is not sensitive to precipitation exceeding 13 mm/day (Keeping
et al., 2024).

The reanalysis data were averaged by the day-of-year and
smoothed by a 31-day centred window, thus preserving the seasonality
but eliminating error introduced by limited sampling of stochastically
varying years (on leap-years, day 366 was grouped with day 365 for
this reason). Modern ensemble data was converted into single delta
values relative to the ensemble day-of-year mean. Zero-bounded
variables, such as precipitation, were treated multiplicatively whilst
non-bounded variables, such as temperature, were treated additively.
This delta version of the ensemble was then bilinearly downscaled and
applied to the day-of-year averaged and smoothed reanalysis data. The
bias correction was applied to all variables separately. The same
procedure was followed for the +2°C ensemble data, but the difference
was between the future ensemble data and the modern ensemble
day-of-year mean. As some ensemble variables have a 3-h resolution,
times of day were bias-corrected separately to respect potentially
different distributions in different parts of the diurnal cycle.

The 0.1°, 3-hourly or daily bias corrected data were used to
generate climate predictors for the fire model. Diurnal temperature
range was derived from the difference between the daily minimum
and maximum temperature. Daily and 5-daily precipitation were
derived from daily precipitation data. Windspeed was derived from
the daytime mean of 3-hourly windspeed data, which in turn had been
calculated from westerly and northerly components prior to the bias
correction. Snow cover was derived from daily data. Vapour pressure
deficit was calculated according to the Buck formula (Buck, 1981)
from 3-hourly temperature and dewpoint data, which was then used
to derive the daytime mean value.

The top four moments (mean, variance, skewness and kurtosis)
were calculated for the reanalysis and bias-corrected ensemble data
aggregated by time of day; month; and 2z the ensemble resolution.
The mean and variance showed good agreement for all the bias-
corrected variables except windspeed (Supplementary Table 2a). A
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single-value variance rescaling was thus applied to further correct
windspeed (Supplementary Table 2b).

2.4 The GPP model

Predictions of GPP were made using a light-use efficiency model
(the P model) that combines the Farquhar-von Caemmerer-Berry
photosynthesis model for instantaneous biochemical processes with
two eco-evolutionary hypotheses to account for the spatial and
temporal acclimation of carboxylation and stomatal conductance to
environmental variations at weekly to monthly time scales (Wang
etal, 2017; Stocker et al., 2020). The model uses an empirical function
to take account of the effect of soil moisture stress on photosynthesis,
as defined in Stocker et al. (2020). The inputs to the P model are air
temperature (°C), VPD (Pa), air pressure (Pa), incident photosynthetic
photon flux density (PPFD, pmol m~2s™"), the fraction of absorbed
photosynthetically active radiation (fAPAR), and ambient CO,
concentration. The meteorological inputs to drive the P model were
the bias-corrected and downscaled variables from the KNMI-LENTIS
ensemble, with the +2°C scenario using CO, concentrations
corresponding to the SSP2-4.5 scenario for 2075-2084. fAPAR was
derived from a prognostic model of the seasonal cycle of the leaf area
index (LAI) (Zhou et al., 2025), since fAPAR can be derived from LAI
using Beer’s law. This model derived the steady-state LAI timeseries
from the GPP time course based on a general linear relationship
between “steady-state” LAI, the LAI when environmental conditions
remain unchanging, and GPP. The actual estimated LAI is then
calculated as the time-lagged average of the steady-state LAL. A
seasonal maximum fAPAR model was embedded in this model to
limit seasonal LAI predictions (Zhu et al., 2023; Cai et al., 2025).

2.5 Ecoregions

To conduct regional analyses of wildfire patterns, we aggregated
data using the Level I Ecological Regions of North America
(Commission for Environmental Cooperation (Montréal, Québec)
and Secretariat, 1997). Two ecoregions that occupy relatively small
areas in the contiguous United States were merged with a closely
related ecoregion, following Balik et al. (2024). Specifically Tropical
Wet Forests (in southern Florida) were merged with Eastern
Temperate Forests, and Southern Semi-arid Highlands (in
southeastern Arizona) were merged with Temperate Sierras. The eight
ecoregions used here are: Eastern Temperate Forests; Great Plains;
Marine West Coast Forest; Mediterranean California; North American
Deserts; Northern Forests; Northwestern Forested Mountains; and
Temperate Sierras (Supplementary Figure la). When describing more
specific geographical regions, we followed the naming convention of
the United States Census Bureau (Supplementary Figure 1b).

2.6 Fire year metrics

The ensemble-driven fire model is compared to the reanalysis-
driven fire model rather than to the observations to provide a like-for-
like comparison of the contemporary probability of wildfire, because
of the stochasticity of the realised wildfire record. The fire occurrence
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model is daily, accounting for the daily extremes that drive the annual
likelihood of fire, but the analysis here is annual to focus on variability
between fire seasons and not on daily scale variability in weather. The
spread of the ensemble is defined as the 1st to 99th percentile of the
ensemble fire years by grid cell since this is more robust than the
maximum and minimum of the distribution (Supplementary Figure 2).
A leave-one-out (LOO) approach was used to identify the predictor
that contributes most to interannual variability in fire occurrence. A
version of the ensemble was generated for each of the eight climate
predictors by taking the average for each day of the year across the full
ensemble to eliminate interannual variability of that predictor. This
approach preserves seasonality but means that all years are identical
for that predictor across ensemble members. The mean absolute
difference between the original and LOO annual number of fires was
used to measure the contribution of that predictor to variability. The
length of the fire season was defined as the number of days exceeding
a threshold of 50% of the average of the week with the most fires at
each location in the reanalysis model. We also compared the reanalysis
maximum fire years (from the 1990s, 2000s and 2010s) to the 160
ensemble decades by ecoregion to determine whether the observed
decadal maximum falls in the distribution of possible decadal maxima
for a similar environment. This also allows us to examine if there was
a trend in the reanalysis period that could affect the comparison with
the ensemble model.

3 Results
3.1 Modern day fire regimes

The spatial pattern of number of fires in the reanalysis-based
model is broadly consistent with the observational record (Short,
2022), although as expected the observed map is less smooth
(Figure 1). Despite the good overall agreement with observations,
there are some differences - for example the greater extent of wildfires
in northern parts of the Mountain West and East North Central, and
the sharper boundaries of regions where wildfire does not occur in
heavily farmed regions of the East North Central (the Corn Belt) and
East South Central (the Mississippi Valley). The model is a reliable
predictor for the probability of wildfire occurrence, and the reanalysis-
based model mean shows good agreement (R* = 0.96) with the KNMI-
LENTIS modern ensemble mean, indicating that the bias-corrected
ensemble data is also reliable. Without bias-correction and
downscaling, the fire model shows the correct geographic patterns but
seriously overestimates the probability of fire in high-likelihood
regions (Supplementary Figure 7).

The absolute spread of the 1,600-year ensemble for the expected
annual number of fires (Figure 1d) is largest in regions with a high
mean number of fires. The regions most susceptible to wildfire
occurrence over a long period also show the highest absolute spread
in fire occurrence on a year-to-year basis, with extreme years
contributing substantially to the higher-than-average rate of wildfire.
As the mean and spread of the ensemble distribution are strongly
associated spatially, the ratio between them (the relative spread)
indicates  where the skewed fire year distribution
(Supplementary Figure 2) is longer tailed, and where there is a
different response in the spread and mean of the distribution to

warming. The relative spread (Figure 1¢) is highest in the Great Plains,
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Observational Record

Ensemble Modern

Ensemble +2°C
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FIGURE 1

and (h) the ratio of model spread and mean for the +2°C ensemble.

Modelled and observed patterns in the annual number of wildfires greater than 0.1 hectares, with both the mean and 1st-99th percentile spread
shown. The plots show (a) the observed annual mean of the wildfire occurrence record for 1992-2020; (b) the modelled reanalysis mean for 1990—
2019; (c) the modelled ensemble mean for the modern (2000-2009 climate); (d) the modelled ensemble spread for the modern; (e) the ratio of model
spread and mean for the ensemble modern; (f) the +2°C ensemble mean (2000-2009 climate plus 2°C of warming); (g) the +2°C ensemble spread;

the Warm Deserts, the coast and hills of Mediterranean California,
and southern Florida. In contrast, a large region of the eastern
United States has a high mean number of expected fire events but low
relative spread. The relative spread identifies regions where previously
unseen extremes could be substantially above the recent mean, with
Mediterranean California and the southern Great Plains being
characterised by particularly high mean annual fires and
relative spread.

The model predictors can be categorised into static variables
(rural population density, shrubland cover, needleleaf cover, cropland
cover) and dynamic variables that vary with time, including
meteorological (mean daytime VPD, DTR, mean daytime windspeed,
snow cover, precipitation in the prior 5-days, and daily precipitation)
and vegetation (GPP in the prior year and GPP in the prior 50-days)
variables. The four most influential variables in the model
(Supplementary Table 1) were annual GPP, VPD, rural population
density and 50-day GPP, respectively.

Comparison of the original fire year ensemble and the ensemble
with the interannual variability of individual variables fixed showed
that the primary driver of interannual fire variability reflects two sets
of controls: atmospheric drying (VPD, DTR) and fuel availability
(GPP) (Figures 2a, 3a). Fuel availability is the most important control
on interannual variability in the eastern Great Plains, Eastern
Temperate Forests, Mediterranean California, Temperate Sierras, and
the southern North American Deserts. Atmospheric drying is most
important in the lower fire-occurrence areas of the Mountain West
and northern Pacific West. VPD and annual GPP control fire year
variability across most of the United States, but DTR is more
important in the Marine West Coast Forest, the northeastern Northern
Forest, and a small area west of the Great Lakes. These three regions
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have the lowest interannual variability in VPD, whilst DTR variability
is more homogeneous in the surrounding areas. GPP in the prior
50 days is also an important control in much of the Northwestern
Forested Mountains. Interannual variability in VPD is the most
important control of variability in severe fire years, as indexed by the
top 1% of fire years (Figure 2c), except in the southwestern
United States (Figure 3¢) where fuel availability is the main control.
The mean fire season length is < 30 days over much of the
United States (reanalysis-model, Supplementary Figure 4a; modern
ensemble, Figure 4a), except for the southwestern North American
Deserts where the season can be up to 4 months long. There is
considerable variation in the extremes of the distribution in fire season
length (Figure 4c) and this can be significantly higher than the
maximum registered in the 30-year reanalysis period
(Supplementary Figure 4b). The East South Central and southern
South Atlantic regions can experience long fire seasons of up to
120 days. However, most of the region with long fire seasons in severe
years — often multiple times longer than the mean fire season - lies
west of the 100th meridian: the Warm Deserts and southern
Mediterranean California see increases from 10-120 to 120-240 days
in extreme years. Although these regions are characterised by a long
fire season, they are also the most exposed to unseen extremes.
There are large differences in the spread of the distribution of the
decadal maximum fire year across the 160 ensemble-based simulations
(Figure 5), with Mediterranean California, the Temperate Sierras, and
the Great Plains showing the largest spread and Marine West Coast
Forest, Northwestern Forested Mountains, Northern Forests, and
Eastern Temperate Forests showing a relatively confined distribution.
The distribution of the decadal maximum fire year in the simulations
is congruent with the maximum for each decade in the
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of wildfires per year as shown by the leave-one-out analysis. The top plots show the drivers in the modern (2000-2009) ensemble for (a) all fires and
(c) the top 1% of fire years. The bottom plots show the drivers in the +2°C ensembile, for (b) all fires and (d) the top 1% of fire years. DTR is the diurnal
temperature range, VPD is vapour pressure deficit, GPP is gross primary production.
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Maps showing the areas where each variable is the dominant driver of interannual variability between fire years. The top plots show the drivers in the
modern (2000-2009) ensemble for (a) all fires and (c) the top 1% of fire years. The bottom plots show the drivers in the +2°C ensembile, for (b) all fires
and (d) the top 1% of fire years. DTR is the diurnal temperature range, VPD is vapour pressure deficit, GPP is gross primary production.

reanalysis-based model for some ecoregions (Figure 5), most notably
in the Great Plains and the Eastern Temperate Forests. However, the
tail of the simulated decadal maximum fire year in Mediterranean
California, the North American Deserts, and the Temperate Sierras
greatly exceeds the maximum in the reanalysis-based model. There is
only one region, Northern Forests, where the maximum in the
reanalysis-based model lies outside the ensemble-based distribution.
The extremes from each of the three reanalysis decades differ
(Figure 5), reflecting the observed warming trend since the 1990.
This highlights the unreliability of estimating extremes from the
reanalysis model rather than the ensemble-based model.

Frontiers in Forests and Global Change

3.2 Future fire

There is an increase in both the mean and spread of total annual
wildfires across all regions of the United States in the +2°C ensemble-
based simulations (Figure 1, Supplementary Figure 5). The mean
annual number of fires is more than double in the Midwest and
Northeast. However, the greatest changes are in the West
(Supplementary Figure 5) and most pronounced in the higher fuel-
load environments of the Northwestern Forested Mountains. The
increase in the spread is generally greater than the increase to the
mean (Figure 1h): 78% of the contiguous United States shows an
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fires at each location. This number of locally relatively fire-prone days is considered as the effective fire season length.
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increase in spread greater than that of the mean in the +2°C
ensemble, and the spread increases by > 1.2 times the mean over 34%
of the region (Supplementary Figure 3). Fire years are consistently
most variable relative to the mean annual number of fires in the
Great Plains, Warm Deserts, and Mediterranean California. There is
also a marked increase in relative spread in the southern Great Plains
and Warm Deserts. The southeastern United States has the most
limited increase in both mean annual number of fires and
interannual spread.
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GPP and atmospheric drying (VPD and DTR) are the most
important drivers of interannual variability in the +2°C ensemble-
based simulations (Figure 2). However, GPP is the predominant
control on fire year variability over 71% of the contiguous United States
in the +2°C ensemble compared to 60% in the modern ensemble.
Much of the expansion of the region where GPP is the primary control
is in the West. In the +2°C ensemble scenario, the modelled average
annual GPP increases across the contiguous United States, with a
mean increase of 41% compared to a 49% increase in the average CO,
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concentration, and with 99% of the contiguous United States showing
an increase in GPP relative to the modern ensemble. The +2°C
scenario also shows a GPP response of greater variance between years
relative to the modern ensemble scenario across 99% of the contiguous
United States, with 66% of the area of the contiguous United States
showing an increase in the variability relative to the mean as shown
by coefficients of variation of the modern and +2°C ensembles.
Variables related to atmospheric drying become more important in
the southeastern United States, where interannual variability is almost
entirely controlled by GPP in the modern ensemble (Figure 3). DTR
emerges as a more significant effect than in the modern ensemble. The
area where it is the most important factor doubles. The region where
VPD is the primary control decreases to one third of its extent in the
modern ensemble. GPP over the prior 50 days becomes a more
important driver of interannual variability than annual GPP in much
of the South. GPP in the prior 50 days also replaces VPD as the
dominant driver for the top 1% of fire years in parts of the same
region - indicating an increase in the importance of low-productivity
intervals (for example drought) for driving interannual variability.

The length of the fire season is increased in the 2°C ensemble
compared to the modern ensemble (Figure 4), with increases to the
mean fire season in the West and East South Central regions. There
are regions of the southwestern North American Deserts and
southern Mediterranean California where the top percentile of the
distribution of fire season length is > 300 days. More northerly
regions, such as the Northwestern Forested Mountains, are projected
to experience fire seasons that would be normally associated with
more southerly fire regimes. All ecoregions show a strong increase
in the distribution of decadal extreme fire years (Figure 5). The
Northern Forests ecoregion shows the greatest change: there is
virtually no overlap between the 2000-2009 and the +2°C extreme
distributions. A similar but less extreme difference occurs in the
Northwestern Forested Mountains.

4 Discussion

The interannual spread of number of fires is greater than the mean
expected number in the modern ensemble, meaning that the annual
wildfire occurrence distribution can be described as highly variable
and sensitive to interannual climate variability. Areas with a higher
mean expected number of fires are likely to have a correspondingly
higher spread in the distribution of annual number of fires, however
there are geospatially distinct patterns in the spread of the distribution
relative to the mean. There is an apparent effect of warming on the
most extreme fire year per decade (across all eight ecoregions) over
the past 30 years. The distribution of modelled decadal maxima in the
modern climate consistently exceeds the reanalysis decadal maxima
in all ecoregions. Drier ecoregions show higher spread between
decadal maxima relative to the median decadal maximum of the
ensemble. This effect could arise from the widespread variability in
aggregated fire risk that can occur due to widespread drought affecting
a large portion of an ecoregion, an established amplifier of wildfire risk
in the West (Richardson et al., 2022). Whilst wildfire occurrence is
high in the South and in highly populated areas, the southern West
and southern Great Plains are the regions where relatively extreme
years and extreme fire seasons are most likely under both the modern
ensemble and +2°C ensemble scenarios.
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The interannual variability in fire is largely controlled by the
interannual variability in daily VPD or annual GPP, which
correspond to variability in fuel moisture content and fuel
availability, respectively. In the modern ensemble, fuel availability
is consistently the most important driver in the southwestern
United States, even for the top 1% of fire years which are primarily
controlled by VPD in other regions. The response of GPP to climate
change in the future scenario shows that the generally positive
effects of CO, on average outweigh the negative effect of increasing
incidence of soil moisture stress on net primary production. This is
consistent with the findings of Cai and Prentice (2020) that in the
United States the predominant controls on GPP are plant cover
(fAPAR) and CO,, as well as matching recent (Jeong et al., 2024)
and projected (Knauer et al., 2023) trends in GPP. GPP becomes
more variable in the +2°C ensemble scenario, even relative to the
increase in the mean. The overall effect of this is to increase fuel
production, increasing fire likelihood given equivalent weather
conditions, and to increase the variability in fuel production
between years, enhancing the impact of GPP variability in driving
variability between fire years. This is seen in the increasing area of
the West in the +2°C ensemble scenario for which GPP is the
primary control of interannual wildfire variability — consistent with
the findings of Abatzoglou et al. (2021) that the fires in the western
United States are increasingly constrained by increasing fuel
availability with near-term future warming, despite increases in fire
likelihood. Fuel limitation is also characteristic of the Great Plains,
where annual GPP is the dominant control of interannual variability
in fire occurrence in both the modern and the +2°C ensembles. The
herbaceous fuels in this region have a shorter lifespan and are more
sensitive to aridity (McGranahan and Wonkka, 2024), meaning that
years of low productivity associated with lower moisture strongly
reduce fire likelihood (Guyette et al., 2015; Knapp, 1998). VPD is a
well-established control on the daily likelihood of wildfire (Mueller
et al., 2020) but even in fuel-availability controlled regions, the
top 1% of fire years in both the modern ensemble and +2°C
scenarios are often controlled by VPD. Even though annual GPP is
the chief control of interannual variability, the interannual variation
in VPD controls whether an extreme fire year occurs, consistent
with its influence on extreme burned area in the West (Williams
etal., 2019).

We identified DTR as the primary driver of interannual variability
in the Northeast in the modern ensemble and in the Northeast and
Appalachia (the mountainous inland region that extends parallel to
the coast down from the Northeast) in the +2°C ensemble. Seager
etal. (2015) showed there is strong interannual variability in summer
VPD in all of the United States except for Florida and the Northeast,
and that VPD does not exert a strong effect on soil dryness in the
Northeast and Appalachia. Physically, DTR and mean daily VPD are
strongly linked, with VPD having an exponential response to
temperature (through saturation vapour pressure, SVP) modulated by
relative humidity; VPD =SVP (1 - RH/100). The exponential
response of SVP to temperature means that, physically, DTR
corresponds to the daytime increase in SVP whilst VPD corresponds
directly to the rate of vegetation drying by diffusive evaporation,
separate from thermal or photomolecular vaporisation (Tu et al.,
2023). Thus, one explanation for the emergence of DTR as a more
important contributor to interannual wildfire variability in regions
where VPD is less variable could be related to increased atmospheric
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instability and increased cloud-free days, which result in greater night-
time cooling and daytime warming: both of which are associated with
elevated wildfire risk (Haines, 1988; Williams et al., 2018). Increases
in the expected area per year of the Northern Hemisphere affected by
atmospheric blocking (Nabizadeh et al., 2019) could also contribute
to this. Atmospheric blocking is associated with long-term cloud-free
conditions (Lupo, 2021), which are in turn associated with periods of
higher-than-average DTR (Dai et al., 2001), so an increase in blocking
events with climate change could explain greater interannual variation
in DTR. The fact that DTR becomes a more widespread control after
warming shows that despite VPD being an effective predictor of
wildfire risk (Sedano and Randerson, 2014) and widely used in
empirical fire models (Haas et al., 2024), other metrics for atmospheric
drying are more appropriate regionally.

Cumulated GPP over the 50 prior days is the primary control in
the more fire-prone regions of the Northwest Forested Mountains, and
it is also important over much of the South in the +2°C ensemble.
Extreme fires have been linked to short-term acute drought in the
South (Barbero et al., 2014), which may explain why variability in
short-term vegetation productivity influences fire year variability in
such relatively high productivity regions. The increase in importance
of this control in the +2°C ensemble, particularly in the top 1% of fire
years for occurrences, may reflect the increasing vulnerability to
severe drought in some regions with warmer climates.

It was necessary to ensure that the ensemble climate data was
directly comparable to the reanalysis data in order to compare the
ensemble and reanalysis wildfire models. We bias-corrected and
downscaled the climate ensembles to map the climate ensemble onto
the local reanalysis distribution using a relatively simple approach. The
analyses show that this reduces but does not eliminate bias in the
ensemble. The CI downscaling method used in this study can result in
some distortion of the spatial covariance of climate variables, but
preserves the temporal dynamics and representation of extremes
(Maraun, 2013; Hnilica et al., 2017; Sobie and Murdock, 2017). More
complex methods of bias correction (e.g., quantile mapping, Grillakis
et al., 2017; or multivariate techniques, Francois et al., 2020) can
produce a more precise correspondence but they impose a greater
change on the climate-model distribution. The method used here is
intended to be more robust by not making extreme - and thus more
likely unphysical - alterations to the underlying distribution of the
original climate ensemble (see Karger et al., 2023; Tefera et al., 2024;
Mosier et al., 2014).

The moments of the ensemble GPP distribution correlate less well
than for
(Supplementary Tables 2a,b), and this may help to explain why the

to the reanalysis other bias-corrected variables
reanalysis decadal maxima is consistently lower than the median in
more arid ecosystems such as Mediterranean California, the North
American Deserts, and the Temperate Sierras. This effect could
be because GPP variability is not well reflected in the ensemble,
possibly because the simulated fAPAR is based on an optimal response
to environmental conditions during a given year and does not take
account of prior disturbances or multi-annual changes in soil
moisture. Therefore, whilst the ensemble GPP serves as a best estimate
for an undisturbed vegetation regime, environments identified as
primarily driven by variability in dryness-related predictors would
naturally still be controlled by vegetation abundance or productivity
in the case of high levels of disturbance, such as deforestation or
prior wildfires.
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The stochastic realisation of individual fire year conditions
drives differences in potential outcomes from an impacts and
management perspective. LE approaches have been adopted by the
climate impacts community (e.g., Cloke and Pappenberger, 2009;
Bevacqua et al., 2023; Van der Wiel et al., 2020), and bring benefits
for wildfire modelling, both in gauging the likelihood of fire
extremes and in contextualising the observational record. However,
there are two difficulties that may limit the use of LEs for wildfire.
Firstly, wildfire is influenced by vegetation properties and human-
activities more than many other climate-related hazards. The
impact of human activities in particular is difficult to simulate
reliably. Secondly, as in the case of the renewable energy community
(Craig et al,, 2022), there is often a need in wildfire studies to look
at spatial resolutions finer than available from accessible climate
datasets. Despite these difficulties, there are clear benefits to
employing LE methods in wildfire modelling - allowing for the
better estimation of resource demand in possible extreme years,
and characterisation of the interannual variability inherent to a
fire regime.

From a fire management perspective, the LE provides information
about potential extremes that are not captured in the relatively short
observational record and which might therefore pose a challenge for
existing wildfire management resources. The approach can
be employed to define regions susceptible to very long fire seasons, of
use for planning suppression capacity in extreme years. In the
southwestern United States, for example, the existing trend of a
lengthening fire-season (Jain et al, 2017) continues with future
warming. LEs can also be used to understand emerging issues in
vulnerability and exposure to wildfire. The proneness of the southern
West and southern Great Plains to extreme fire years corresponds to
areas of shrubland and grassland, where the development of the
wildland urban interface has been greatest (Radeloff et al., 2023).
Given the increasing concern about the increasing costs of changing
fire regimes in the United States and the likelihood that these will
continue to worsen in coming years (Lee et al., 2015; Melvin et al.,
2017; Schoennagel et al., 2017; Murphy et al., 2018; Iglesias et al,,
2022), the LE approach provides a more robust management
framework for assessing fire occurrence and extremes than
currently available.

5 Conclusion

The application of an LE approach to wildfire occurrence
modelling provides a more robust characterisation of fire regime
properties than provided by the observational record. This makes it
possible to estimate the likelihood of extreme fire years — as seen both
in the probability of fire occurrence and the length of the fire season.
Climate warming extends the area that experiences wildfires. More
importantly, climate warming affects the average probability of fire
occurrence in fire-prone regions and can cause even larger shifts in
extremes in some regions. Interannual variability in fire occurrence is
largely controlled by factors affecting fuel availability or fuel drying.
The relative importance of these controls varies between regions in the
present-day climate. However, fuel availability becomes an even more
important control on fire probability under climate warming.
Application of an LE approach provides a useful tool for characterising
fire regimes and how they might change in the future, and thus a
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stronger basis for designing mitigation and adaptation

management strategies.
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