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Abstract 
Mechanical ventilation is an effective measure to control indoor long-range airborne transmission 
of COVID-19, but it often leads to substantial energy expenditure. This study introduces a novel 
exposure-based smart ventilation and occupancy control strategy to reduce infection risk and 
save energy in school environments that are typically characterized by fixed occupants and long 
exposure time. This exposure-based approach allows the quanta concentration to vary over time 
rather than keeping it constantly below certain thresholds. This enables us to: (1) adjust 
ventilation and occupant schedule to facilitate passive cooling/heating potential in response to 
outdoor weather conditions; (2) consider the interaction between ventilation and occupant 
schedule to maximize their benefits in reducing infection risk and energy consumption. Taking a 
typical classroom as a base case, ventilation and occupant schedule are optimized individually 
and jointly through Genetic Algorithm, to control infection risk, minimize energy consumption, 
maintain thermal comfort, and promise sufficient schooling time. Our results show that the most 
energy-efficient strategy is the concurrent optimization of both occupant schedule and ventilation, 
achieving an energy reduction of up to ~60% compared to traditional constant ventilation methods. 
Solely optimizing occupant schedule is the least energy-efficient strategy, yielding an energy 
reduction ratio (over base case) of only half of the most efficient strategy. Our study reveals the 
possibility of optimizing occupant schedule and ventilation to balance building energy consumption 
and transmission control. The viability of these control strategies has been proven across various 
climate zones and seasons in China, highlighting their broad applicability. 
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1 Introduction 

Long-range airborne transmission specifically refers to the 
inhalation of infectious aerosols from room air at a distance 
of larger than ~1–2 m from the infector (Wei and Li 2016; 
Li 2021). Numerous outbreaks of severe respiratory diseases, 
such as COVID-19, have been proven to be induced by this 
transmission route in poorly ventilated spaces (Buonanno 
et al. 2020a; Li et al. 2021; Miller et al. 2021). Controlling 
long-range airborne transmission in school-like environments 
is critical, as students typically remain in the same 

environment for extended periods. Moreover, maintaining 
proper masking and distancing measures can be challenging 
for young children, thus increasing the long-range airborne 
transmission risk compared to other indoor settings. 

Increasing outdoor ventilation is a recommended strategy 
to reduce long-range airborne transmission indoors 
(Buonomano et al. 2023; Pang et al. 2023; Morawska et al. 
2024), but it can also substantially increase building energy 
consumption (Zheng et al. 2021; Pang et al. 2023). Developing 
ventilation strategies that effectively balance transmission 
control with energy efficiency in school-like environments 
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is crucial. In fact, various energy-efficient ventilation 
strategies have been proposed to control long-range 
airborne transmission by dynamically adjusting ventilation. 
However, these ventilation control strategies are not well-suited 
for school-like environments. First, current dynamic 
ventilation schemes typically adjust ventilation rates based 
on varying occupancy levels (Sha et al. 2021; Zhuang et al. 
2022; Wei et al. 2023; Li et al. 2024) or the corresponding 
CO2 concentration, which is primarily influenced by 
occupancy levels (Li and Cai 2022; Risbeck et al. 2023). This 
approach is ineffective for spaces with fixed occupancy, such 
as schools, where the required ventilation remains constant. 
Second, most of these ventilation strategies aim to constrain 
quanta concentration consistently below a predefined 
threshold (corresponding to a risk limit) for transmission 
control (Sha et al. 2021; Li and Cai 2022; Zhuang et al. 2022; 
Wei et al. 2023), clarifying them as concentration-based 
control strategies. However, in school-like environments, 
concentration-based ventilation control can lead to both a 
constant (due to the fixed occupancy) and high (due to 
the extended exposure time) ventilation demand, leading 
to substantial increase of building energy consumption 
(Melikov et al. 2020; Zhang et al. 2021). Consequently, new 
ventilation strategies are required to control transmission 
effectively in school settings while maintaining energy 
efficiency. 

Some studies have proposed implementing intermittent 
occupancy to address the challenge of high ventilation 
demand in school-like environments for infection risk 
control (Melikov et al. 2020; Zhang et al. 2021, 2023c). By 
leveraging the natural decay of quanta concentrations during 
unoccupied periods, intermittent occupancy strategies can 
reduce the need for continuous outdoor air ventilation while 
mitigating transmission risk (Zhang et al. 2021, 2023c). 
However, existing intermittent occupancy strategies have 
been developed based on constant ventilation schemes, and 
their energy-saving potential remains largely unexplored. 
Given that ventilation and occupancy are two key factors 
influencing both transmission risk and energy consumption 
(Zhang et al. 2023b), optimizing them either individually or 
jointly could help minimize energy use while maintaining 
effective transmission control. Further research is needed 
to explore this potential. 

This study aims to develop an exposure-based control 
theory to regulate both ventilation and occupancy for 
efficiently managing airborne transmission while minimizing 
energy consumption in school-like environments. Unlike 
traditional concentration-based control strategies, which 
constrain instantaneous quanta concentrations below a 
fixed threshold, our exposure-based approach regulates 
time-integrated quanta concentration (quanta exposure) 
for transmission control, allowing quanta concentrations to 

fluctuate dynamically over time. This flexibility enables 
ventilation and occupant schedules to be adjusted in 
response to outdoor weather conditions to enhance energy 
efficiency. For example, during periods of high heating or 
cooling demands due to outdoor ventilation, ventilation 
rates can be strategically decreased to permit higher quanta 
concentration, and conversely increased during periods of 
lower demand, ensuring that the overall virus exposure 
remains within controlled limits. Compared to conventional 
dynamic ventilation strategies, which adjust ventilation 
based on occupancy variations, our exposure-based control 
strategy enables ventilation adjustments based on outdoor 
weather conditions, making it more suitable for exploring 
energy-saving opportunities in spaces with fixed occupancy. 
By leveraging this approach, the energy-saving potential of 
both occupancy adjustments and ventilation strategies can 
be further explored. 

In Section 2, four different optimization strategies are 
detailed, i.e., optimizing ventilation only, optimizing occupant 
density only, optimizing both ventilation and occupant 
schedule consistently and dynamically. In Section 3, we 
demonstrated the effectiveness of these strategies using a 
typical classroom scenario. The mechanisms of how each 
strategy reduces energy consumption while managing  
the risk of airborne infection have also been analyzed in 
this section. Our research highlights the potential of these 
optimized strategies to revolutionize indoor air management, 
balancing the imperative concern of health safety with the 
need for environmental sustainability. 

2 Methodology 

Our control strategy is specifically designed for school 
environments that rely solely on mechanical ventilation 
systems all the time, excluding natural ventilation (Sha et al. 
2021; Guo et al. 2022). It operates on the premise that 
classroom occupancy corresponds with the school schedule, 
including both class and break segments. We assume that 
classrooms will be completely unoccupied during break 
segments, thereby establishing an intermittent occupant 
schedule. 

2.1 School environment base case study 

A typical classroom is adopted for our case study (Peng 
and Jimenez 2021), with specific parameter to be found in 
Table 1. Given that occupants—including students and 
teachers—are typically seated or standing during class 
periods, we assume they engage primarily in sedentary 
activities, corresponding to a breathing rate of 0.54 m3/h 
(Adams 1993). Additionally, we adopted a worst-case 
scenario by assuming the indoor infectious individual is the 
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teacher, who typically speaks during classes, thereby 
generating a higher quanta emission rate compared to 
quiet breathing (Peng and Jimenez 2021). Consequently, 
the quanta emission rate was estimated to be 1.7 quanta/h, 
calculated by multiplying the baseline emission rate for 
sedentary breathing (0.37 quanta/h) (Buonanno et al. 2020a) 
by a relative quanta emission factor of 4.7. This factor 
captures the combined effects of increased respiratory 
activity and vocalization associated with teaching activities 
(Peng et al. 2022).  

Figure 1 explains the base case scenario. It features  
red columns representing occupancy segments and green 
columns for break segments (including lunch break at 
11:45–13:00). The width of these columns indicates the 
duration of each segment, while their height reflects the 
air change rate (ACH) during those segments. The total 
occupancy period spans from 9:00 to 16:00, adhering to a 
standard classroom schedule that includes 0.75 h class time 
and 0.25 h break time, along with a 1.25 h lunch break 
commencing at 11:45. The ACH is maintained constant 
throughout the occupant schedule at approximately 2 ACH. 
Notably, this ventilation rate is determined for controlling 
the infection risk below 1%, by limiting the time-integrated 
quanta exposure during all the occupancy segments (refers 
to Section 2.4). In accordance with the occupant schedule 
and ventilation of the base case, the quanta concentration— 
depicted by the blue line in the figure—changes between 
rising during occupancy segments and falling during break 
segments (the calculation of quanta concentration can be 
found in Section 2.3). 

2.2 Optimization strategies 

The exposure-based infection risk control theory focuses 
on limiting total virus exposure rather than just the quanta  

 
Fig. 1 Quanta concentration variation in the base case scenario 
based on constant ACH and fixed occupant schedule 

concentration to manage infection risks, which allows for 
adjustments in the timing of occupant schedules as well  
as the value of air change rate (ACH) during each time 
segment. This offers a practical method to balance   
the reduction of infection risks with energy savings by (1) 
adapting ventilation and occupant schedule to external 
weather conditions for maximizing passive heating/cooling 
potential; and (2) considering the interaction between 
ventilation and occupant schedule, thereby maximizing 
their benefits in lowering both energy consumption and 
infection risk. 

Building upon the exposure-based control principles, 
our research introduces four distinct optimization strategies 
in response to different levels of system complexity. These 
strategies employ different approaches to manage ventilation 
systems and occupant schedules, either individually or in 
combination, to explore energy conservation potentials in 
controlling airborne transmission. 

Strategy 1 - Ventilation only: This strategy focuses solely 
on optimizing the ACH during each time segment, while the 
occupant schedule (including occupancy and break segments) 
remains unchanged from the baseline.  

Strategy 2 - Occupant schedule only: Contrary to 
Strategy 1, this approach optimizes only the occupant 
schedule. The optimal duration of occupancy segments and 
break segments vary over time, but the total accumulated 
occupancy time remains equal to the base case. The ACH is 
kept constant across all segments as in the baseline scenario.  

Strategy 3 - Consistent ventilation and occupant 
schedule: This strategy focuses on optimizing both the 
occupant schedule and the ACH at the same time. However, 
it optimizes the occupant schedule in a consistent manner 
across all the segments to minimize the disruption to the 
learning, meaning all optimal occupancy segments have the 
same duration, and all break segments (except lunch break) 
also have a uniform length (easy to be implemented in the 
timetable). Similarly, the ACH are set to be consistent within 
their respective segments; the rate is the same during all 
occupancy segments and uniform across all break segments 
(except lunch break). the total cumulative occupancy time 
is consistent with the base case. 

Strategy 4 - Flexible ventilation and occupant schedule: 
This strategy offers the most comprehensive approach  
to optimize both the occupant schedule and ventilation.  
It stands out from Strategy 3 by allowing the duration of 
occupancy and break segments, as well as the ACH during 
each segment, to vary throughout the designated time 

Table 1 Basic parameters for case study 

Parameters Volume [m3] Occupants Infectors Activity-respiratory Quanta emission rate [quanta/h] Breathing rate [m3/h] Schedule duration

Values 142 10 1 Sedentary-speaking 1.7 0.54 9:00–16:00 
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zone (9:00–16:00). Likewise, the total cumulative occupancy 
duration is identical to the baseline scenario. 

The four optimal strategies are implemented in four 
representative cities located in different climate zones: 
Harbin from the very cold climate zone, Beijing from the 
cold zone, Shanghai from cold winter and hot summer zone, 
and Guangzhou from the warm winter and hot summer 
zone. The outdoor weather conditions for these cities, 
such as temperature and relative humidity, come from  
the Typical Meteorological Year (TMY) dataset found in 
EnergyPlus weather data (https://energyplus.net/weather).  

Ventilation and occupant schedules are optimized on a 
daily basis, but our analysis encompasses all four seasons, 
with five consecutive days selected to represent 5 schooling 
days: March 20–24 for spring, June 21–25 for summer, 
September 23–27 for autumn, and December 21–25 for 
winter. The optimization mechanisms of each strategy are 
illustrated using the results from a typical winter day in 
Harbin (see Section 3.1). Then, the total energy consumption 
over five school days is also analyzed to assess the 
energy-saving potential of the strategies across various 
climates (see Section 3.2). 

2.3 Modelling 

2.3.1 Long-range airborne transmission model 

Indoor long-range airborne transmission risk P is modelled 
through the Wells–Riley equation (Riley et al. 1978): 

q1 e nP -= -                                     (1) 

where nq is the total inhaled quanta quantity. 
According to the study of Lyu et al. (2023), for spaces 

with fixed occupants, the total inhaled quanta quantity nq 
can be expressed as: 
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The occupant schedule encompasses both occupancy 
and break segments. In this context, i only represents the 
ith occupancy segment, while no represents the number of 
total occupancy segments. Ti and Cq,i are the occupancy 
time duration, h, and instant quanta concentration, 
quanta/m3, corresponding to the ith occupancy segment, 
respectively. B is the breathing rate, m3/h. 

The variations of quanta concentration during segment 
i (either occupancy or break segment) is modelled by mass 
balance equation based on well mixed assumption and can 
be expressed as: 
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where V is the space volume, m3; λi is outdoor air change 
rate during segment i, h–1; Eq is quanta emission of infector, 
quanta/h; Cqin,i is initial quanta concentration for segment i, 
quanta/m3; Ii is infector number, and it is equal to 1 for 
occupancy segment and 0 for break segment. 

Notably, our study considered only long-range airborne 
transmission. However, recent studies have introduced a 
new modelling approach that links short- and long-range 
airborne transmission (Feng et al. 2024; Henriques et al. 
2025). This approach could be integrated into our 
exposure-based control theory in future research to 
develop more effective occupancy and ventilation control 
strategies, accounting for the continuity of airborne 
transmission. 

2.3.2 Ventilation energy consumption model 

Given that long-range airborne transmission is notably 
influenced by outdoor ventilation, it is crucial to quantify 
the relationship between infection risk and energy 
consumption attributed to outdoor ventilation. Outdoor 
ventilation energy consumption mainly includes two parts, 
the energy consumption of ventilation fan (Efan), and the 
heating/cooling load due to outdoor ventilation (EAC-load). 

The heating/cooling load due to outdoor ventilation in 
stage i, EAC,i, can be expressed as Equation (5) (Guo et al. 
2022): 

h c

AC-load, a
0 h c

Δ Δ d
COP COP

iT

i i
h hE ρ λ V t

æ ö÷ç= - ÷ç ÷÷çè øò               (5) 

where aρ  is the density of air, 1.293 kg/m3; COPh (3.5) and 
COPc (3.0) are coefficient of heating and cooling performance, 
respectively (Guo et al. 2022); hΔh  and cΔh  refer to the 
indoor-outdoor enthalpy difference in heating and cooling 
mode, respectively. 

The enthalpy (h) can be calculated using Equation (6) 
(Guo et al. 2022): 

( )e e1.005 2500 1.84h T w T= + +                    (6) 

where Te is the dry-bulb temperature, °C, and w is air 
moisture, g/kg; w is calculated as (Nie et al. 2018): 

( )
( )

( )

e

e

23.58 4043/ 273.15 37.58

e 23.58 4043/ 273.15 37.58
0

0.01RH e0.622 2500 1.84
0.01RH e

T

Tw T
P

- + -

- + -

 
= +

-   
(7) 

where RH is relative humidity, %; P0 is the barometric 
pressure of the air, Pa. 

A simplified fan power energy consumption is expressed 



Lyu et al. / Building Simulation 

 

5

as below based on an assumption of 1 kW/(m3·s) specific fan 
power (SFP) for ventilation system without heat recovery 
(Guo et al. 2022): 

fan,i
0
SFP d

iT

iE λ V t= ⋅ò                             (8) 

The total energy consumption of the interesting time 
duration can then be expressed as: 

( )
o b

total fan, AC-load,
1

n n

i i
i

E E E
+

=

= +å                       (9) 

here nb refers to total number of break segments. 

2.4 Optimization algorithm 

Our study includes four primary objectives: maintaining 
indoor thermal comfort, limiting infection risk, ensuring 
sufficient schooling time, and minimizing energy 
consumption. The main objective functions are shown in 
Equations (10)–(14). To ensure satisfied indoor thermal 
environment, the indoor temperature and relative humidity 
(RH) are set to be between 20–25 °C and 40%–50% 
(Equations (10) and (11)), respectively (Guo et al. 2022). 
The determination of indoor infection risk threshold is 
important for both infection risk control and energy 
consumption reduction, considering that a high-risk 
threshold (Pt) may not ensure a safe indoor environment, 
while setting it too low could lead to excessive energy 
consumption due to the increased required ventilation. 
However, it is not a trivial task to identify a one-size-fit-all 
threshold. While previous studies have adopted different 
risk thresholds, ranging from 0.01% to 1% (Dai and Zhao 
2020; Peng and Jimenez 2021), we set the infection risk 
threshold at 1% in this study because this level is sufficiently 
low to keep the event reproduction number (Revent) below 1 
for the classroom with 10 occupants while being high  

enough to prevent unnecessary energy use (Bazant and 
Bush 2021). However, it should be noted that a 1% risk 
threshold may be unsafe in classrooms with more than 100 
occupants. Based on this threshold, we can then determine 
the appropriate quanta exposure limit for the entire 
occupancy period (Equation (12)). To guarantee adequate 
study time, the total occupancy duration in the optimization 
is set to match the total class time in the base case, equaling 
to 0.75 × 6 h per day (Equation (13)). The overall schedule 
duration is strictly constrained to match the base case 
schedule, which is from 9:00 to 16:00. 

In order to generate viable solutions for the optimization 
problem, establishing search ranges for the key decision 
variables is essential. To derive practical durations for the 
occupant schedule, specified search ranges for class time, 
break time, and lunch break have been determined. 
Specifically, class time is set to range from 0.5 to 1.5 h, 
break time (except lunch break) from 0.1 to 0.5 h, and the 
minimum duration for lunch break is established at 0.70 h. 
This ensures class periods are not too long, and breaks are 
not too short.  

20 °C ≤ Te ≤ 25 °C                                 (10) 

40% ≤ RH ≤ 50%                                 (11) 

( )q tln 1n P£ - -                               (12) 

o

1
4.5

n

i
i

T
=

³å                                    (13) 

totalMin E                                      (14) 

Genetic Algorithm (GA) is employed to address the 
optimization problem, which is a heuristic search that 
emulates Charles Darwin’s theory of natural selection, 
incorporating processes such as crossover, mutation, and 
selection. Figure 2 shows the whole optimization process in 
detail, using Strategy 4 as an example. In Strategy 4, the key 

 
Fig. 2 Overall optimization process (taking Strategy 4 for example) 
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decision variables include the occupant schedule (covering 
all occupancy and break segments including lunch break) 
and the ACH for each segment. In summary, the 
optimization process can be broken down into generation, 
evaluation, selection, crossover, and mutation phases. For 
each iteration of the algorithm, we generate a population 
of 2000 solutions within the defined search ranges for the 
decision variables. These solutions are then evaluated against 
our main objectives. The best performing solutions are 
selected and undergo crossover and mutation, creating 
another 2000 solutions for the next cycle. Over time, the 
solutions improve, shown by smaller increases in the 
evaluation scores. If there is less than a 0.1 improvement 
over 100 consecutive cycles, we consider the best current 
solution as the optimal one. 

Critical parameters in GA, such as crossover probability, 
mutation probability, population size, generation numbers 
(or stopping criteria), and the selection method, require 
precise tuning for efficient and accurate problem-solving. 
The optimal values for these parameters or the most 
appropriate selection method depend significantly on  
the specific nature of the optimization problem and the 
characteristics of the decision variables (Mokhtari and 
Jahangir 2021). In our study, we started with empirical 
defaults based on a literature review of similar research 
questions (Mokhtari and Jahangir 2021; Zhang et al. 2021) 
and then conducted a sensitivity analysis to identify the 
suitable hyperparameters that balance exploration and 
exploitation. Specifically, we investigated how the different 
hyperparameter settings impact the simulation accuracy 
and computation efficiency by running multiple simulations. 
The sensitivity analysis for Strategy 4 is demonstrated in 
the Supplementary Material. The final hyperparameters 
were selected based on achieving high simulation efficiency 
while maintaining acceptable accuracy, as was shown in 
Table 2.  

Table 2 Parameters for the optimization algorithm 

Parameter Value 

Crossover probability 20% 

Mutation probability 70% 

Population size 2000 

Stopping criteria Improvement less than 0.1 for 100 generations

Selection method Tournament with tour size = 2 

3 Results and discussion 

3.1 Comparing different strategies  

In this section, we compare the four proposed strategies, 
using a specific day for example. Given our optimization is 

based on daily data, it is important to note that the optimal 
solutions can vary from day to day, influenced by the 
changing patterns of outdoor weather conditions across 
different days, seasons, and cities. We chose December 21st 
in Harbin during winter as a case to illustrate the results of 
different strategies. This selection is mainly due to the 
significant variations in outdoor weather conditions on that 
day, which highlights the energy-saving potential of our 
optimization strategies.  

Figure 3 displays the outdoor weather conditions, including 
temperature and relative humidity, for the selected day 
during the schooling period, while Figure 4 presents the 

 
Fig. 3 Outdoor weather conditions, including temperature and 
relative humidity on a specific day (December 21st) during the 
winter in Harbin 

 
(a) 

 
(b) 

Fig. 4 The (a) energy consumption and (b) energy reduction ratio 
compared to the base case for various strategies on a specific day 
(December 21st) during the winter in Harbin 
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energy consumption and the energy reduction ratio compared 
to the base case for the evaluated strategies. Notably, all four 
strategies in Figure 4 result in the same virus exposure for 
occupants that corresponds to an infection risk of 1%. The 
findings reveal that Strategy 4 emerges as the most energy- 
efficient strategy, realizing an estimated energy reduction 
of approximately 16%, more than twice as high as Strategy 2 
(7%). Strategy 1 (12%) and Strategy 3 (10%) are the second 
and third most energy-efficient strategies, respectively. The 
subsequent sections will delve into the detailed outcomes 
and further explore the potential mechanisms behind the 
energy savings achieved by these strategies. 

3.1.1 Strategy 1 - constant occupant schedule but varying 
ventilation rates 

The optimization results of Strategy 1 are illustrated in 
Figure 5. The mechanisms behind the optimal ventilation 
strategy are clarified as follows. Firstly, the air change rate 
(ACH) in the first occupancy segment is reduced relative to 
the baseline scenario. This reduction may be attributed to 
the absence of initial airborne quanta, which slows the 
increase in quanta concentration, therefore allowing for 
reductions in ventilation and enhanced energy conservation. 
Secondly, the ACH in the final occupancy segments is 
lowered, which may be due to the higher quanta concentrations 
towards the end, hence does not substantially elevate  
the risk of infection, therefore allowing for decreased 
ventilation. Additionally, the ACH for the middle segments 
is optimized to maintain a relatively stable quanta concentration. 
Specifically, ACH in the middle break segments is greatly 
reduced, whereas ACH in the middle occupancy segments 
is increased compared to the baseline. Overall, the above 
adjustment strategically maximizes the combined benefits 
of break periods and outdoor ventilation to minimize 
quanta exposure and energy usage effectively. Increasing 
ACH during occupancy segments could compromise the 
effectiveness of breaks in reducing quanta levels, leading to 
unnecessary energy usage. Conversely, low ACH during 
occupancy segments could result in high initial quanta 
levels during break segments, necessitating increased ACH  

 
Fig. 5 Optimized ACH, fixed occupant schedule, and corresponding 
quanta concentration for Strategy 1 

during break segments and thus leading to elevated energy 
consumption. 

Furthermore, the optimized ventilation schedule adapts 
to outdoor weather conditions. Ventilation during the 
afternoon segments (post-lunch break) is slightly higher 
than during the morning segments (pre-lunch break). This 
discrepancy becomes more pronounced when comparing 
the last occupancy segment with the first one. This 
variation is due to more favorable outdoor conditions in 
the afternoon than in the morning for heating, with higher 
temperatures and lower relative humidity (RH), as shown 
in Figure 3, which contributes to reduced ventilation energy 
consumption. 

3.1.2 Strategy 2 - constant ventilation rate but varying 
occupant schedules 

Figure 6 presents the optimization results for Strategy 2, in 
which the durations of both occupancy and break segments 
vary within their predefined ranges. Significant changes 
compared to the base case can be observed in the optimal 
occupant schedule. Firstly, while the accumulated occupancy 
time remains equal to the base case, the total duration of 
the whole occupant schedule is notably shortened. This 
reduction primarily results from the strategic minimization 
of break periods. By carefully managing the lengths of each 
segment, the efficacy of break periods in reducing quanta 
concentration is enhanced, thereby allowing for a reduction 
in break time. Secondly, the occupant schedule is noticeably 
shifted later within the designated time zone (9:00–16:00). 
This adjustment is a strategic response to outdoor weather 
conditions, aiming to optimize energy conservation. The 
shortened schedule also increases the flexibility to modify 
the temporal distribution of the occupancy periods within 
this time zone. 

Following this optimized schedule, the pattern of 
quanta concentration variation aligns with that observed 
in the base case, as depicted in Figure 1. This pattern is 
characterized by an increase in quanta concentration during 
occupancy segments and a decrease during break segments,  

 
Fig. 6 Constant ACH, optimized occupant schedule, and 
corresponding quanta concentration for Strategy 2 
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demonstrating the effectiveness of the strategic adjustments 
made in Strategy 2. 

3.1.3 Strategy 3 - varying ventilation rate and occupant 
schedule (consistent among segments) 

The optimization results for Strategy 3 are illustrated in 
Figure 7. This strategy exhibits a pattern of quanta 
concentration variation similar to that in both the base case 
and Strategy 2, with quanta concentration increasing 
during occupancy segments and decreasing during break 
segments. The energy-saving mechanisms of Strategy 3 are 
consistent with those in Strategies 1 and 2 to a certain 
extent. Firstly, mirroring Strategy 1, Strategy 3 substantially 
reduces outdoor ventilation during the lunch break segment 
as an energy-saving measure. Secondly, akin to Strategy 2, 
Strategy 3 adjusts the time distribution of the entire occupant 
schedule with a rightward shift within the time zone 
(9:00–16:00) to take advantage of more favorable weather 
conditions in the afternoon. Additionally, following the 
approach of Strategy 2, Strategy 3 shortens the total duration 
of the occupant schedule by minimizing the cumulative 
break times. With the integrated approach of combining 
ventilation strategies, Strategy 3 is likely to accomplish a 
more substantial reduction in the accumulated break time 
compared to Strategy 2. 

3.1.4 Strategy 4 - varying ventilation rate and occupant 
schedule 

Figure 8 illustrates that Strategy 4 adopts a ventilation 
pattern similar to that of Strategy 1. Specifically, the strategy 
notably reduces outdoor ventilation during the first and 
last occupancy segments as well as the lunch break segment, 
while enhancing it during other occupancy segments to limit 
the accumulated quanta exposure. This similar ventilation 
schedule pattern leads to a similar trend in quanta 
concentration variations as Strategy 1, characterized by a 
significant increase in quanta concentration during the first 
and last occupancy segments, a notable decrease during  
the first and last break segments, and relative stability in  

 
Fig. 7 Optimized ACH, optimized occupant schedule, and 
corresponding quanta concentration for Strategy 3 

 
Fig. 8 Optimized ACH, optimized occupant schedule, and 
corresponding quanta concentration for Strategy 4 

the other intermediate segments. Moreover, the optimized 
occupant schedule in Strategy 4 aligns with the energy-saving 
principles of Strategy 2, presenting a minimized and 
strategically time-shifted schedule. Importantly, the integration 
of occupant schedule management can enable Strategy 4 to 
attain a more substantial reduction in outdoor ventilation 
for the start, last, and lunch break segments compared to 
Strategy 1, resulting in further energy conservation. 

3.1.5 Application potentials in real world scenarios 

The selection of suitable control variables (i.e., ventilation 
and/or occupant schedule) in practice should consider a 
balance between energy-saving potential and practical 
applicability. More flexible adjustments of variables may offer 
greater energy savings but could also present challenges in 
application. Dynamically adjusting ventilation requires 
precise control, which could impact system longevity and 
reliability (Liu et al. 2022; Niu and Zhang 2023). Similarly, 
dynamic changes in occupancy durations could complicate 
scheduling and affect productivity, challenging the stability 
of a predictable occupancy pattern (Melikov et al. 2020; 
Zhang et al. 2023c). Strategy 4 offers the highest energy- 
saving potential due to its flexibility in adjusting both ACH 
and occupant schedules, maximizing the benefits of both 
factors in minimizing energy consumption while reducing 
infection risk. However, it is the least practical. In contrast, 
although Strategy 3 also optimizes both ACH and occupant 
schedules, it is less energy-efficient than Strategy 4 due to 
its consistent optimization pattern. But with steady occupancy 
and ventilation patterns, Strategy 3 is more applicable than 
Strategy 4. Strategy 1, which optimizes ventilation only, is 
the second energy efficient strategy, suitable when the 
change of the occupant schedule is prohibited. On the 
other hand, although it is the least energy-efficient option, 
Strategy 2 is particularly suitable for scenarios where 
adjusting the building’s occupant schedule is feasible, but 
modifying the ventilation system’s operation is not. However, 
it should be noted that while periodically vacating the 
classroom effectively reduces airborne transmission, it may 
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also disrupt normal classroom activities, as students typically 
remain in the classroom during breaks. Nevertheless, 
during a pandemic, controlling transmission risk may take 
precedence over maintaining regular classroom routines. 
In future research, it would be valuable to further explore 
the energy-saving potential of our exposure-based ventilation 
control strategy while accommodating typical classroom 
usage patterns. 

3.2 Energy saving potential in different climates 

In this section, we ran the simulations for a full matrix  
of the four proposed strategies across four representative 
cities, each located in a different climate zone in China. 
The energy-saving potential is illustrated in Figures 9 and 
10. Figure 9 displays the total energy consumption over five 
school days in one week in different seasons, while Figure 
10 depicts the total energy reduction relative to the base 
case. Overall, the four strategies achieve effective energy 
reduction ratios, with the most efficient strategy exceeding 
30% reduction compared to the base case. The performance 
of different strategies remains relatively stable across various 
climate zones and seasons, indicating the effectiveness of 
these strategies in different environmental settings. Notably, 
Strategy 4 emerges as the most energy-efficient approach 
across these conditions, followed by Strategy 1, Strategy 3, 
and Strategy 2.  

Figure 9 illustrates that the absolute energy savings 
from various strategies are proportional to the base case 

energy consumption, which is primarily influenced by the 
difference between indoor and outdoor thermal conditions. 
For instance, Strategy 4 in Harbin, with a higher base  
case energy consumption in winter than in summer, saves 
~27,000 kJ in winter and ~2800 kJ in summer over five 
school days. This difference occurs because changes in 
ventilation or occupant schedules, such as reducing ventilation 
by 0.5 ACH, can result in greater absolute energy savings 
when the indoor-outdoor thermal condition difference is 
larger. This highlights the critical role of indoor-outdoor 
thermal condition difference in determining potential 
energy savings. 

Figure 10 further shows that the energy reduction ratio 
of different strategies typically inversely correlates with the 
base case energy consumption. Lower base case energy 
consumption typically results in a higher energy reduction 
ratio, as seen in Guangzhou during winter with a 33% 
reduction using Strategy 4, compared to only 15% in Harbin 
(see Figure 9(d) with Figure 10(d)). This inverse relationship 
arises from the calculating method of energy reduction 
ratio, where the reduced energy is divided by the base case 
energy consumption, emphasizing the influence of the 
energy consumption of the base case. However, deviations 
exist, such as in Beijing during autumn, where despite a 
lower energy consumption of the base case compared to 
Guangzhou in winter (see Figure 9(b) and 9(d)), the 
reduction ratio is less than in Guangzhou (see Figure 10(b) 
and 10(d)). This can be attributed to a more significant 
variation in Guangzhou’s winter outdoor thermal conditions,  

 
Fig. 9 Total energy consumption for schooling days in a week using different strategies across various cities and seasons: (a) spring, 
(b) autumn, (c) summer, and (d) winter 
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as detailed in the Supplementary Material. Such variability 
can enhance energy savings by leveraging more favorable 
weather conditions, underscoring the importance of both 
indoor-outdoor thermal differences and outdoor thermal 
condition variations in energy savings.  

3.3 The impact of indoor thermal setpoints 

The setpoints for maintaining indoor thermal conditions, 
including temperature and relative humidity, can significantly 
influence the base case energy consumption. Specifically, 
setting indoor thermal conditions vastly different from the 
outdoor conditions substantially increases the ventilation 
heating/cooling load. As established, for the proposed 
strategies, the quantity of reduced energy is proportional to 
the base case energy consumption level, indicating that 
varying indoor thermal condition setpoints can affect the 
energy reduction achieved. 

Using Strategy 4 as an example, Figure 11 highlights 
how different indoor thermal condition setpoints affect (a) 
reduced energy consumption and (b) energy reduction ratio, 
compared to energy consumption at the same setpoint  
but without optimization, in Harbin during winter. Given 
Harbin’s low temperature and relative humidity in winter, 
setpoints with higher temperature and relative humidity 
usually indicate a larger indoor-outdoor thermal condition 
difference, resulting in a higher heating load. The results in 
Figure 11 indicate that while increasing indoor temperature 
and relative humidity setpoints can enhance the quantity  

 
(a) 

 
(b) 

Fig. 11 (a) Energy reduced quantity and (b) energy reduction ratio 
achieved by Strategy 4 with different indoor thermal condition 
setpoints for Harbin in winter 

 
Fig. 10 Total energy reduction relative to the base case, measured over five consecutive school days and compared across different
strategies, cities, and seasons: (a) spring, (b) autumn, (c) summer, and (d) winter 
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of energy reduced, it only slightly improves the energy 
reduction ratio. Consequently, the total energy consumption 
at higher temperature and RH setpoints remains greater than 
at lower setpoints. This finding suggests that the reduced 
energy consumption achieved through the improved energy 
efficiency of the optimization strategy cannot compensate for 
the increased energy consumption due to the adjustment 
of indoor thermal condition setpoints. Therefore, indoor 
thermal condition setpoints should be carefully selected for 
energy conservation. Setpoints closer to outdoor thermal 
conditions are more effective in conserving energy. 

3.4 Comparing with standard practice 

Taking Strategy 4 as an example, Figure 12 further compares 
the energy efficiency of the proposed strategy with a standard 
practice (i.e., baseline occupant schedule and a ventilation 
rate of 10 L/s per person), which is widely recommended 
during the COVID-19 pandemic to ensure air quality and 
reduce the risk of virus transmission (EMG-SPI-B 2021; 
ASHRAE 2022; Li et al. 2022). The energy reduction ratio 
here refers to the total energy reduction (over five school days 
in one week) relative to the standard practice, with a higher 
reduction ratio indicating a higher energy efficiency. 

Figure 12 shows that Strategy 4 achieves an energy 
reduction ratio of over 30% compared to the standard practice 
in all studied cases, with the maximum reduction reaching 
about 66% in Guangzhou during winter. These findings 
suggest that the standard ventilation rate of 10 L/s per person, 
while effective for minimizing transmission risks, can lead 
to excessive energy use. Rather than simply adopting a 
constant ventilation rate, new ventilation design methods and 
control strategies should be developed to not only maintain 
health and safety standards, but also optimize energy efficiency. 
Recent studies have proposed new ventilation design 
methods, which recommend deriving infection risk-based 
target ventilation rates for specific indoor spaces to save 
energy (Buonomano et al. 2023; Kurnitski et al. 2021, 2023). 

 
Fig. 12 Energy reduction ratio relative to the standard over five 
school days for Strategy 4, compared across various cities and seasons 

 Based on the exposure-based control theory we proposed, 
our results offer novel method to further enhance the energy 
efficiency of these infection risk-based ventilation design 
methods in school-like environments. This involves adjusting 
ventilation in response to outdoor weather conditions and 
incorporating suitable occupancy strategies, providing new 
perspectives for ventilation system design and operation. 

4 Limitations and future work 

Our study encompasses several limitations. First, the 
accuracy of our optimization algorithm requires further 
refinement. Given the large solution spaces, especially in 
Strategy 4 with over 20 decision variables, achieving precise 
analytical optimal solutions is computationally intensive 
and time-consuming. We use a metaheuristic approach, 
specifically the Genetic Algorithm (GA), to approximate the 
best solutions (Schmitt 2001; Lambora et al. 2019). However, 
the ‘optimal’ solutions from GA are approximations and 
not exact optima. The accuracy of these solutions heavily 
depends on the tuning of hyperparameters like population 
size, and the algorithm may converge on local optima. 
Adapting GA for specific scenarios such as varying classroom 
sizes and occupant capacities might require recalibration of 
these hyperparameters to enhance solution precision. In 
the future, more advanced methods, such as integrating GA 
with an Artificial Neural Network (ANN), can be further 
developed to efficiently predict and guide hyperparameter 
selection of GA. 

Second, our optimization process only considers the 
heating/cooling load due to outdoor ventilation (Guo et al. 
2022). However, a building’s heating/cooling load is 
influenced by many factors, including internal loads and 
the building’s thermal mass (Yang and Li 2008; Zeng et al. 
2011; Hu and Karava 2014; Wang et al. 2014; Risbeck et al. 
2021; Wu et al. 2023), which can be used with night 
ventilation to reduce cooling loads (Yang and Li 2008). 
Considering our main aim is to propose a novel ventilation 
and occupant control strategy for energy-efficient infection 
risk management, we have not included factors other than 
outdoor ventilation for simplicity and to reduce computational 
demands. Future studies can include a more comprehensive 
consideration of building energy consumption in the 
optimization process. In addition, our study primarily 
demonstrated the energy-saving potential of optimizing 
ventilation and occupant schedules for controlling long-range 
airborne transmission. However, other control measures, 
such as filtration, can also lower quanta concentrations in 
indoor air and should be considered as additional control 
variables in future investigations (Azimi and Stephens 2013; 
Fazli et al. 2019; Risbeck et al. 2021; Chang et al. 2023; Lyu 
et al. 2024; Yang et al. 2024; Yao et al. 2024).  



Lyu et al. / Building Simulation 

 

12 

Our results contain uncertainties associated with 
factors such as the estimation of quanta emission rates and 
the determination of risk thresholds. This study assumed a 
constant quanta emission rate; however, in reality, quanta 
emission rates can vary significantly due to factors such  
as individual differences and environmental conditions 
(Buonanno et al. 2020a, 2020b; Jones et al. 2021; Lyu et al. 
2023; Lavor et al. 2025). The literature reports a wide range 
of quanta emission rates for classroom settings, from 0.37 
quanta/h to 100 quanta/h (Buonanno et al. 2020a; Bazant 
and Bush 2021; Peng and Jimenez 2021). Such variability 
may influence optimization outcomes. Additionally, the 
selected risk threshold may jointly impact the energy-saving 
potential of the proposed strategies. For instance, a lower 
risk threshold and a higher quanta emission rate can lead 
to a lower limit for quanta exposure, necessitating higher 
outdoor ventilation. Consequently, the energy-saving 
potential from the dynamic adjustment of ventilation may 
be reduced, as a higher required average outdoor ventilation 
limits the feasibility of adjusting the ventilation rate in 
response to outdoor weather conditions. However, at the 
same time, the energy-saving potential from adjusting  
the occupant schedule may be enhanced, particularly since 
reducing energy consumption for the same duration is 
more effective at higher outdoor ventilation rates. 

Moreover, in our study, both the occupant schedule 
and ventilation are optimized daily. However, frequently 
adjusting occupant schedules can be difficult in certain 
contexts. Instead, optimizing it based on averaged weather 
data over longer periods, such as seasonally, might be more 
feasible. In contrast, ventilation adjustments are generally 
more flexible. Optimizing ventilation based on daily weather 
predictions, rather than relying on averaged data over fixed 
periods, allows for greater adaptability to outdoor weather 
variations. Future studies could further enhance this 
adaptability by employing Rolling (Receding) Horizon Control 
methods. Such approaches would repeatedly optimize 
ventilation using real-time updated weather data, therefore 
improving responsiveness and overall performance (Kopanos 
and Pistikopoulos 2014; Ryzhov et al. 2019; Tabares-Velasco 
et al. 2019). 

Finally, the energy-saving potential of the proposed 
optimization strategies depends heavily on the accuracy of 
outdoor weather predictions (Gholamzadehmir et al. 2020; 
Zhang et al. 2023a). This study utilized Typical Meteorological 
Years (TMY) weather files, representing averaged data 
predicting long-term climate variations. Future work could 
consider more accurate and detailed weather profiles, 
including localized or extreme weather predictions, to 
further explore the strategies’ energy-saving potential (Han 
et al. 2021; Moazami et al. 2019). Additionally, this study 
considered climate data from only four climate zones, which 

may not fully capture global variations. Different weather 
conditions can lead to varying results, necessitating further 
investigation. 

5 Conclusions 

This study introduces innovative optimization strategies 
for controlling indoor long-range airborne transmission, 
by constraining total virus exposure rather than just 
concentration levels. Unlike traditional approaches that 
maintain quanta concentration below a fixed safe limit, our 
exposure-based control strategies allow quanta concentration 
to vary with time, enhancing flexibility in modifying 
occupant schedules and outdoor ventilation to optimize 
energy use. Based on it, we propose four distinct strategies 
to manage occupant schedule and ventilation within school 
environments, either individually or in combination, to 
balance infection risk with energy conservation. 

The energy-saving potential of these strategies is 
two-fold. First, they allow for the adaptation of ventilation 
and occupant schedules to external weather conditions  
to maximize passive heating/cooling potential, thereby 
enhancing energy efficiency. For example, Strategy 1 adjusts 
air changes per hour (ACH) based on outdoor weather 
conditions, increasing ventilation during favorable weather 
conditions and reducing it when less favorable. Strategy 2 
aligns the occupant schedule with optimal outdoor weather 
conditions, shifting occupancy to more favorable time. 
Second, the strategies permit adjustments in ACH or 
occupant schedules by considering their interaction, thus 
maximizing the combined benefits for reducing infection 
risks and conserving energy. An example of this is seen in 
Strategy 1, where ACH adjustments help maintain a stable 
quanta concentration across different segments, leveraging 
both break time and outdoor ventilation to reduce quanta 
levels efficiently and minimize overall energy usage. 

Our results indicate that Strategy 4, which optimizes 
both the occupant schedule and ACH flexibly (with varying 
time durations for optimal segments and different ACH 
levels for each segment), is the most energy-efficient strategy, 
achieving energy reductions exceeding 30% compared to 
the baseline and over 60% relative to the standard ventilation 
scheme. This is followed by Strategy 1, which focuses solely 
on ACH, and Strategy 3, which optimizes both factors but 
in a stable manner (with uniform time durations and ACH 
levels for different types of segments). Strategy 2, focusing 
on optimizing only occupant schedule, is the least energy 
efficient, achieving only half the energy reduction of 
Strategy 1. The viability of these strategies has been proven 
across various climate zones and seasons, highlighting their 
broad applicability. Additionally, the significance of accurately 
establishing setpoints for indoor thermal conditions in the 
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formulation of these optimization strategies has been affirmed, 
emphasizing the importance of a tailored approach.  
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1. Outdoor thermal conditions of studied cases

Fig. S1 Average values of the 5 consecutive days for Harbin during winter 
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