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Exposure-based smart ventilation and occupancy control for optimizing
ventilation energy consumption and long-range airborne transmission
of COVID-19 in school environments
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Abstract
Mechanical ventilation is an effective measure to control indoor long-range airborne transmission

Keywords
airborne transmission
of COVID-19, but it often leads to substantial energy expenditure. This study introduces a novel  building control

exposure-based smart ventilation and occupancy control strategy to reduce infection risk and smart ventilation

save energy in school environments that are typically characterized by fixed occupants and long intermittent occupancy

exposure time. This exposure-based approach allows the quanta concentration to vary over time
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rather than keeping it constantly below certain thresholds. This enables us to: (1) adjust
ventilation and occupant schedule to facilitate passive cooling/heating potential in response to
outdoor weather conditions; (2) consider the interaction between ventilation and occupant
schedule to maximize their benefits in reducing infection risk and energy consumption. Taking a
typical classroom as a base case, ventilation and occupant schedule are optimized individually
. . . . . . R . © The Author(s) 2025
and jointly through Genetic Algorithm, to control infection risk, minimize energy consumption,

maintain thermal comfort, and promise sufficient schooling time. Our results show that the most

energy-efficient strategy is the concurrent optimization of both occupant schedule and ventilation,

achieving an energy reduction of up to ~60% compared to traditional constant ventilation methods.

Solely optimizing occupant schedule is the least energy-efficient strategy, yielding an energy

reduction ratio (over base case) of only half of the most efficient strategy. Our study reveals the

possibility of optimizing occupant schedule and ventilation to balance building energy consumption

and transmission control. The viability of these control strategies has been proven across various

climate zones and seasons in China, highlighting their broad applicability.

environment for extended periods. Moreover, maintaining
proper masking and distancing measures can be challenging

1 Introduction

Long-range airborne transmission specifically refers to the
inhalation of infectious aerosols from room air at a distance
of larger than ~1-2 m from the infector (Wei and Li 2016;
Li 2021). Numerous outbreaks of severe respiratory diseases,
such as COVID-19, have been proven to be induced by this
transmission route in poorly ventilated spaces (Buonanno
et al. 2020a; Li et al. 2021; Miller et al. 2021). Controlling
long-range airborne transmission in school-like environments
is critical, as students typically remain in the same

E-mail: LuoZ18@Cardiff.ac.uk

for young children, thus increasing the long-range airborne
transmission risk compared to other indoor settings.
Increasing outdoor ventilation is a recommended strategy
to reduce long-range airborne transmission indoors
(Buonomano et al. 2023; Pang et al. 2023; Morawska et al.
2024), but it can also substantially increase building energy
consumption (Zheng et al. 2021; Pang et al. 2023). Developing
ventilation strategies that effectively balance transmission
control with energy efficiency in school-like environments
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is crucial. In fact, various energy-efficient ventilation
strategies have been proposed to control long-range
airborne transmission by dynamically adjusting ventilation.
However, these ventilation control strategies are not well-suited
for school-like environments. First, current dynamic
ventilation schemes typically adjust ventilation rates based
on varying occupancy levels (Sha et al. 2021; Zhuang et al.
2022; Wei et al. 2023; Li et al. 2024) or the corresponding
CO; concentration, which is primarily influenced by
occupancy levels (Li and Cai 2022; Risbeck et al. 2023). This
approach is ineffective for spaces with fixed occupancy, such
as schools, where the required ventilation remains constant.
Second, most of these ventilation strategies aim to constrain
quanta concentration consistently below a predefined
threshold (corresponding to a risk limit) for transmission
control (Sha et al. 2021; Li and Cai 2022; Zhuang et al. 2022;
Wei et al. 2023), clarifying them as concentration-based
control strategies. However, in school-like environments,
concentration-based ventilation control can lead to both a
constant (due to the fixed occupancy) and high (due to
the extended exposure time) ventilation demand, leading
to substantial increase of building energy consumption
(Melikov et al. 2020; Zhang et al. 2021). Consequently, new
ventilation strategies are required to control transmission
effectively in school settings while maintaining energy
efficiency.

Some studies have proposed implementing intermittent
occupancy to address the challenge of high ventilation
demand in school-like environments for infection risk
control (Melikov et al. 2020; Zhang et al. 2021, 2023c). By
leveraging the natural decay of quanta concentrations during
unoccupied periods, intermittent occupancy strategies can
reduce the need for continuous outdoor air ventilation while
mitigating transmission risk (Zhang et al. 2021, 2023c).
However, existing intermittent occupancy strategies have
been developed based on constant ventilation schemes, and
their energy-saving potential remains largely unexplored.
Given that ventilation and occupancy are two key factors
influencing both transmission risk and energy consumption
(Zhang et al. 2023b), optimizing them either individually or
jointly could help minimize energy use while maintaining
effective transmission control. Further research is needed
to explore this potential.

This study aims to develop an exposure-based control
theory to regulate both ventilation and occupancy for
efficiently managing airborne transmission while minimizing
energy consumption in school-like environments. Unlike
traditional concentration-based control strategies, which
constrain instantaneous quanta concentrations below a
fixed threshold, our exposure-based approach regulates
time-integrated quanta concentration (quanta exposure)
for transmission control, allowing quanta concentrations to

fluctuate dynamically over time. This flexibility enables
ventilation and occupant schedules to be adjusted in
response to outdoor weather conditions to enhance energy
efficiency. For example, during periods of high heating or
cooling demands due to outdoor ventilation, ventilation
rates can be strategically decreased to permit higher quanta
concentration, and conversely increased during periods of
lower demand, ensuring that the overall virus exposure
remains within controlled limits. Compared to conventional
dynamic ventilation strategies, which adjust ventilation
based on occupancy variations, our exposure-based control
strategy enables ventilation adjustments based on outdoor
weather conditions, making it more suitable for exploring
energy-saving opportunities in spaces with fixed occupancy.
By leveraging this approach, the energy-saving potential of
both occupancy adjustments and ventilation strategies can
be further explored.

In Section 2, four different optimization strategies are
detailed, i.e., optimizing ventilation only, optimizing occupant
density only, optimizing both ventilation and occupant
schedule consistently and dynamically. In Section 3, we
demonstrated the effectiveness of these strategies using a
typical classroom scenario. The mechanisms of how each
strategy reduces energy consumption while managing
the risk of airborne infection have also been analyzed in
this section. Our research highlights the potential of these
optimized strategies to revolutionize indoor air management,
balancing the imperative concern of health safety with the
need for environmental sustainability.

2 Methodology

Our control strategy is specifically designed for school
environments that rely solely on mechanical ventilation
systems all the time, excluding natural ventilation (Sha et al.
2021; Guo et al. 2022). It operates on the premise that
classroom occupancy corresponds with the school schedule,
including both class and break segments. We assume that
classrooms will be completely unoccupied during break

segments, thereby establishing an intermittent occupant
schedule.

2.1 School environment base case study

A typical classroom is adopted for our case study (Peng
and Jimenez 2021), with specific parameter to be found in
Table 1. Given that occupants—including students and
teachers—are typically seated or standing during class
periods, we assume they engage primarily in sedentary
activities, corresponding to a breathing rate of 0.54 m*h
(Adams 1993). Additionally, we adopted a worst-case
scenario by assuming the indoor infectious individual is the
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Table 1 Basic parameters for case study

Parameters Volume [m’] Occupants Infectors Activity-respiratory

Quanta emission rate [quanta/h] Breathing rate [m*/h] Schedule duration

Values 142 10 1 Sedentary-speaking

1.7 0.54 9:00-16:00

teacher, who typically speaks during classes, thereby
generating a higher quanta emission rate compared to
quiet breathing (Peng and Jimenez 2021). Consequently,
the quanta emission rate was estimated to be 1.7 quanta/h,
calculated by multiplying the baseline emission rate for
sedentary breathing (0.37 quanta/h) (Buonanno et al. 2020a)
by a relative quanta emission factor of 4.7. This factor
captures the combined effects of increased respiratory
activity and vocalization associated with teaching activities
(Peng et al. 2022).

Figure 1 explains the base case scenario. It features
red columns representing occupancy segments and green
columns for break segments (including lunch break at
11:45-13:00). The width of these columns indicates the
duration of each segment, while their height reflects the
air change rate (ACH) during those segments. The total
occupancy period spans from 9:00 to 16:00, adhering to a
standard classroom schedule that includes 0.75 h class time
and 0.25 h break time, along with a 1.25 h lunch break
commencing at 11:45. The ACH is maintained constant
throughout the occupant schedule at approximately 2 ACH.
Notably, this ventilation rate is determined for controlling
the infection risk below 1%, by limiting the time-integrated
quanta exposure during all the occupancy segments (refers
to Section 2.4). In accordance with the occupant schedule
and ventilation of the base case, the quanta concentration—
depicted by the blue line in the figure—changes between
rising during occupancy segments and falling during break
segments (the calculation of quanta concentration can be
found in Section 2.3).

2.2 Optimization strategies

The exposure-based infection risk control theory focuses
on limiting total virus exposure rather than just the quanta
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Fig. 1 Quanta concentration variation in the base case scenario
based on constant ACH and fixed occupant schedule

concentration to manage infection risks, which allows for
adjustments in the timing of occupant schedules as well
as the value of air change rate (ACH) during each time
segment. This offers a practical method to balance
the reduction of infection risks with energy savings by (1)
adapting ventilation and occupant schedule to external
weather conditions for maximizing passive heating/cooling
potential; and (2) considering the interaction between
ventilation and occupant schedule, thereby maximizing
their benefits in lowering both energy consumption and
infection risk.

Building upon the exposure-based control principles,
our research introduces four distinct optimization strategies
in response to different levels of system complexity. These
strategies employ different approaches to manage ventilation
systems and occupant schedules, either individually or in
combination, to explore energy conservation potentials in
controlling airborne transmission.

Strategy 1 - Ventilation only: This strategy focuses solely
on optimizing the ACH during each time segment, while the
occupant schedule (including occupancy and break segments)
remains unchanged from the baseline.

Strategy 2 - Occupant schedule only: Contrary to
Strategy 1, this approach optimizes only the occupant
schedule. The optimal duration of occupancy segments and
break segments vary over time, but the total accumulated
occupancy time remains equal to the base case. The ACH is
kept constant across all segments as in the baseline scenario.

Strategy 3 - Consistent ventilation and occupant
schedule: This strategy focuses on optimizing both the
occupant schedule and the ACH at the same time. However,
it optimizes the occupant schedule in a consistent manner
across all the segments to minimize the disruption to the
learning, meaning all optimal occupancy segments have the
same duration, and all break segments (except lunch break)
also have a uniform length (easy to be implemented in the
timetable). Similarly, the ACH are set to be consistent within
their respective segments; the rate is the same during all
occupancy segments and uniform across all break segments
(except lunch break). the total cumulative occupancy time
is consistent with the base case.

Strategy 4 - Flexible ventilation and occupant schedule:
This strategy offers the most comprehensive approach
to optimize both the occupant schedule and ventilation.
It stands out from Strategy 3 by allowing the duration of
occupancy and break segments, as well as the ACH during
each segment, to vary throughout the designated time
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zone (9:00-16:00). Likewise, the total cumulative occupancy
duration is identical to the baseline scenario.

The four optimal strategies are implemented in four
representative cities located in different climate zones:
Harbin from the very cold climate zone, Beijing from the
cold zone, Shanghai from cold winter and hot summer zone,
and Guangzhou from the warm winter and hot summer
zone. The outdoor weather conditions for these cities,
such as temperature and relative humidity, come from
the Typical Meteorological Year (TMY) dataset found in
EnergyPlus weather data (https://energyplus.net/weather).

Ventilation and occupant schedules are optimized on a
daily basis, but our analysis encompasses all four seasons,
with five consecutive days selected to represent 5 schooling
days: March 20-24 for spring, June 21-25 for summer,
September 23-27 for autumn, and December 21-25 for
winter. The optimization mechanisms of each strategy are
illustrated using the results from a typical winter day in
Harbin (see Section 3.1). Then, the total energy consumption
over five school days is also analyzed to assess the
energy-saving potential of the strategies across various
climates (see Section 3.2).

2.3 Modelling

2.3.1 Long-range airborne transmission model

Indoor long-range airborne transmission risk P is modelled
through the Wells-Riley equation (Riley et al. 1978):

P=1-—¢ (1)

where n4 is the total inhaled quanta quantity.

According to the study of Lyu et al. (2023), for spaces
with fixed occupants, the total inhaled quanta quantity s,
can be expressed as:

n, = Z | OT’BCq,,.(t)dt )

The occupant schedule encompasses both occupancy
and break segments. In this context, i only represents the
ith occupancy segment, while 7, represents the number of
total occupancy segments. T; and C,; are the occupancy
time duration, h, and instant quanta concentration,
quanta/m?, corresponding to the ith occupancy segment,
respectively. B is the breathing rate, m*/h.

The variations of quanta concentration during segment
i (either occupancy or break segment) is modelled by mass
balance equation based on well mixed assumption and can
be expressed as:

dC,, LE, T )
dt Vv e

LE LE
Cq,i (t) = [qun,i - /U; ]e_/\’t +/1._Vq (4)

where V is the space volume, m? A; is outdoor air change
rate during segment i, h™'; E, is quanta emission of infector,

quanta/h; Cgn, is initial quanta concentration for segment i,
quanta/m’; I; is infector number, and it is equal to 1 for
occupancy segment and 0 for break segment.

Notably, our study considered only long-range airborne
transmission. However, recent studies have introduced a
new modelling approach that links short- and long-range
airborne transmission (Feng et al. 2024; Henriques et al.
2025). This approach could be integrated into our
exposure-based control theory in future research to
develop more effective occupancy and ventilation control
strategies, accounting for the continuity of airborne
transmission.

2.3.2 Ventilation energy consumption model

Given that long-range airborne transmission is notably
influenced by outdoor ventilation, it is crucial to quantify
the relationship between infection risk and energy
consumption attributed to outdoor ventilation. Outdoor
ventilation energy consumption mainly includes two parts,
the energy consumption of ventilation fan (Ef,), and the
heating/cooling load due to outdoor ventilation (Eac.ioad)-

The heating/cooling load due to outdoor ventilation in
stage i, Exc, can be expressed as Equation (5) (Guo et al.
2022):

(5)

I ARD Ah*
EAC-load»f - fopaAiV[ COPh B COPC ]dt

where p, is the density of air, 1.293 kg/m* COP;, (3.5) and
COP. (3.0) are coefficient of heating and cooling performance,
respectively (Guo et al. 2022); Ah" and Ah° refer to the
indoor-outdoor enthalpy difference in heating and cooling
mode, respectively.

The enthalpy (/) can be calculated using Equation (6)
(Guo et al. 2022):

h =1.005T, +w(2500 + 1.84T, ) (6)
where T. is the dry-bulb temperature, °C, and w is air
moisture, g/kg; w is calculated as (Nie et al. 2018):

0.01RH 623,58—4043/(n +273.15-37.58)
Po —0.01RH 823458—4043/(Te+273.15—37.58)

7)

w = 0.622(2500 + 1.84T, )

where RH is relative humidity, %; P, is the barometric
pressure of the air, Pa.
A simplified fan power energy consumption is expressed
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as below based on an assumption of 1 kW/(m?:s) specific fan
power (SFP) for ventilation system without heat recovery
(Guo et al. 2022):

1
E,., = f [SFP-A,vdt (8)

The total energy consumption of the interesting time
duration can then be expressed as:

Ny +my,

Etotal = Z (Efan,i + EAC—load,i ) (9)

i=1

here ny refers to total number of break segments.

2.4 Optimization algorithm

Our study includes four primary objectives: maintaining
indoor thermal comfort, limiting infection risk, ensuring
sufficient schooling time, and minimizing energy
consumption. The main objective functions are shown in
Equations (10)-(14). To ensure satisfied indoor thermal
environment, the indoor temperature and relative humidity
(RH) are set to be between 20-25 °C and 40%-50%
(Equations (10) and (11)), respectively (Guo et al. 2022).
The determination of indoor infection risk threshold is
important for both infection risk control and energy
consumption reduction, considering that a high-risk
threshold (P,) may not ensure a safe indoor environment,
while setting it too low could lead to excessive energy
consumption due to the increased required ventilation.
However, it is not a trivial task to identify a one-size-fit-all
threshold. While previous studies have adopted different
risk thresholds, ranging from 0.01% to 1% (Dai and Zhao
2020; Peng and Jimenez 2021), we set the infection risk
threshold at 1% in this study because this level is sufficiently
low to keep the event reproduction number (Reven) below 1
for the classroom with 10 occupants while being high

enough to prevent unnecessary energy use (Bazant and
Bush 2021). However, it should be noted that a 1% risk
threshold may be unsafe in classrooms with more than 100
occupants. Based on this threshold, we can then determine
the appropriate quanta exposure limit for the entire
occupancy period (Equation (12)). To guarantee adequate
study time, the total occupancy duration in the optimization
is set to match the total class time in the base case, equaling
to 0.75 x 6 h per day (Equation (13)). The overall schedule
duration is strictly constrained to match the base case
schedule, which is from 9:00 to 16:00.

In order to generate viable solutions for the optimization
problem, establishing search ranges for the key decision
variables is essential. To derive practical durations for the
occupant schedule, specified search ranges for class time,
break time, and lunch break have been determined.
Specifically, class time is set to range from 0.5 to 1.5 h,
break time (except lunch break) from 0.1 to 0.5 h, and the
minimum duration for lunch break is established at 0.70 h.
This ensures class periods are not too long, and breaks are
not too short.

20°C < T.<25°C (10)
40% < RH < 50% (11)
n, <-In(1-P,) (12)

ZT > 45 (13)
i=1

Min E (14)

total

Genetic Algorithm (GA) is employed to address the
optimization problem, which is a heuristic search that
emulates Charles Darwin’s theory of natural selection,
incorporating processes such as crossover, mutation, and
selection. Figure 2 shows the whole optimization process in
detail, using Strategy 4 as an example. In Strategy 4, the key

Optimizer
(Genetic algorithm)
Inputs
* Weather data Generation
* Space volume (Potential solutions within
+ Infector number search ranges) l

* Quanta generation rate

Evaluation

* maintaining thermal

solutions)

Crossover and mutation
(Generate new potential

comfort

T
U/

* limiting infection risk

Outputs

* promising sufficient
study time

* Occupant schedule

* Ventilation rates

solutions)

Selection
(Select best potential

* minimizing energy
consumption

Fig. 2 Overall optimization process (taking Strategy 4 for example)
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decision variables include the occupant schedule (covering
all occupancy and break segments including lunch break)
and the ACH for each segment. In summary, the
optimization process can be broken down into generation,
evaluation, selection, crossover, and mutation phases. For
each iteration of the algorithm, we generate a population
of 2000 solutions within the defined search ranges for the
decision variables. These solutions are then evaluated against
our main objectives. The best performing solutions are
selected and undergo crossover and mutation, creating
another 2000 solutions for the next cycle. Over time, the
solutions improve, shown by smaller increases in the
evaluation scores. If there is less than a 0.1 improvement
over 100 consecutive cycles, we consider the best current
solution as the optimal one.

Critical parameters in GA, such as crossover probability,
mutation probability, population size, generation numbers
(or stopping criteria), and the selection method, require
precise tuning for efficient and accurate problem-solving.
The optimal values for these parameters or the most
appropriate selection method depend significantly on
the specific nature of the optimization problem and the
characteristics of the decision variables (Mokhtari and
Jahangir 2021). In our study, we started with empirical
defaults based on a literature review of similar research
questions (Mokhtari and Jahangir 2021; Zhang et al. 2021)
and then conducted a sensitivity analysis to identify the
suitable hyperparameters that balance exploration and
exploitation. Specifically, we investigated how the different
hyperparameter settings impact the simulation accuracy
and computation efficiency by running multiple simulations.
The sensitivity analysis for Strategy 4 is demonstrated in
the Supplementary Material. The final hyperparameters
were selected based on achieving high simulation efficiency
while maintaining acceptable accuracy, as was shown in
Table 2.

Table 2 Parameters for the optimization algorithm

Parameter Value
Crossover probability 20%
Mutation probability 70%

Population size 2000

Stopping criteria Improvement less than 0.1 for 100 generations

Selection method Tournament with tour size = 2

3 Results and discussion

3.1 Comparing different strategies

In this section, we compare the four proposed strategies,
using a specific day for example. Given our optimization is

based on daily data, it is important to note that the optimal
solutions can vary from day to day, influenced by the
changing patterns of outdoor weather conditions across
different days, seasons, and cities. We chose December 21st
in Harbin during winter as a case to illustrate the results of
different strategies. This selection is mainly due to the
significant variations in outdoor weather conditions on that
day, which highlights the energy-saving potential of our
optimization strategies.

Figure 3 displays the outdoor weather conditions, including
temperature and relative humidity, for the selected day
during the schooling period, while Figure 4 presents the
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Fig. 3 Outdoor weather conditions, including temperature and
relative humidity on a specific day (December 21st) during the
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(December 21st) during the winter in Harbin
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energy consumption and the energy reduction ratio compared
to the base case for the evaluated strategies. Notably, all four
strategies in Figure 4 result in the same virus exposure for
occupants that corresponds to an infection risk of 1%. The
findings reveal that Strategy 4 emerges as the most energy-
efficient strategy, realizing an estimated energy reduction
of approximately 16%, more than twice as high as Strategy 2
(7%). Strategy 1 (12%) and Strategy 3 (10%) are the second
and third most energy-efficient strategies, respectively. The
subsequent sections will delve into the detailed outcomes
and further explore the potential mechanisms behind the
energy savings achieved by these strategies.

3.1.1 Strategy 1 - constant occupant schedule but varying
ventilation rates

The optimization results of Strategy 1 are illustrated in
Figure 5. The mechanisms behind the optimal ventilation
strategy are clarified as follows. Firstly, the air change rate
(ACH) in the first occupancy segment is reduced relative to
the baseline scenario. This reduction may be attributed to
the absence of initial airborne quanta, which slows the
increase in quanta concentration, therefore allowing for
reductions in ventilation and enhanced energy conservation.
Secondly, the ACH in the final occupancy segments is
lowered, which may be due to the higher quanta concentrations
towards the end, hence does not substantially elevate
the risk of infection, therefore allowing for decreased
ventilation. Additionally, the ACH for the middle segments
is optimized to maintain a relatively stable quanta concentration.
Specifically, ACH in the middle break segments is greatly
reduced, whereas ACH in the middle occupancy segments
is increased compared to the baseline. Overall, the above
adjustment strategically maximizes the combined benefits
of break periods and outdoor ventilation to minimize
quanta exposure and energy usage effectively. Increasing
ACH during occupancy segments could compromise the
effectiveness of breaks in reducing quanta levels, leading to
unnecessary energy usage. Conversely, low ACH during
occupancy segments could result in high initial quanta
levels during break segments, necessitating increased ACH
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Fig. 5 Optimized ACH, fixed occupant schedule, and corresponding
quanta concentration for Strategy 1

during break segments and thus leading to elevated energy
consumption.

Furthermore, the optimized ventilation schedule adapts
to outdoor weather conditions. Ventilation during the
afternoon segments (post-lunch break) is slightly higher
than during the morning segments (pre-lunch break). This
discrepancy becomes more pronounced when comparing
the last occupancy segment with the first one. This
variation is due to more favorable outdoor conditions in
the afternoon than in the morning for heating, with higher
temperatures and lower relative humidity (RH), as shown
in Figure 3, which contributes to reduced ventilation energy
consumption.

3.1.2 Strategy 2 - constant ventilation rate but varying
occupant schedules

Figure 6 presents the optimization results for Strategy 2, in
which the durations of both occupancy and break segments
vary within their predefined ranges. Significant changes
compared to the base case can be observed in the optimal
occupant schedule. Firstly, while the accumulated occupancy
time remains equal to the base case, the total duration of
the whole occupant schedule is notably shortened. This
reduction primarily results from the strategic minimization
of break periods. By carefully managing the lengths of each
segment, the efficacy of break periods in reducing quanta
concentration is enhanced, thereby allowing for a reduction
in break time. Secondly, the occupant schedule is noticeably
shifted later within the designated time zone (9:00-16:00).
This adjustment is a strategic response to outdoor weather
conditions, aiming to optimize energy conservation. The
shortened schedule also increases the flexibility to modify
the temporal distribution of the occupancy periods within
this time zone.

Following this optimized schedule, the pattern of
quanta concentration variation aligns with that observed
in the base case, as depicted in Figure 1. This pattern is
characterized by an increase in quanta concentration during
occupancy segments and a decrease during break segments,
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Fig. 6 Constant ACH, optimized occupant schedule, and
corresponding quanta concentration for Strategy 2
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demonstrating the effectiveness of the strategic adjustments
made in Strategy 2.

3.1.3 Strategy 3 - varying ventilation rate and occupant
schedule (consistent among segments)

The optimization results for Strategy 3 are illustrated in
Figure 7. This strategy exhibits a pattern of quanta
concentration variation similar to that in both the base case
and Strategy 2, with quanta concentration increasing
during occupancy segments and decreasing during break
segments. The energy-saving mechanisms of Strategy 3 are
consistent with those in Strategies 1 and 2 to a certain
extent. Firstly, mirroring Strategy 1, Strategy 3 substantially
reduces outdoor ventilation during the lunch break segment
as an energy-saving measure. Secondly, akin to Strategy 2,
Strategy 3 adjusts the time distribution of the entire occupant
schedule with a rightward shift within the time zone
(9:00-16:00) to take advantage of more favorable weather
conditions in the afternoon. Additionally, following the
approach of Strategy 2, Strategy 3 shortens the total duration
of the occupant schedule by minimizing the cumulative
break times. With the integrated approach of combining
ventilation strategies, Strategy 3 is likely to accomplish a
more substantial reduction in the accumulated break time
compared to Strategy 2.

3.1.4 Strategy 4 - varying ventilation rate and occupant
schedule

Figure 8 illustrates that Strategy 4 adopts a ventilation
pattern similar to that of Strategy 1. Specifically, the strategy
notably reduces outdoor ventilation during the first and
last occupancy segments as well as the lunch break segment,
while enhancing it during other occupancy segments to limit
the accumulated quanta exposure. This similar ventilation
schedule pattern leads to a similar trend in quanta
concentration variations as Strategy 1, characterized by a
significant increase in quanta concentration during the first
and last occupancy segments, a notable decrease during
the first and last break segments, and relative stability in
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the other intermediate segments. Moreover, the optimized
occupant schedule in Strategy 4 aligns with the energy-saving
principles of Strategy 2, presenting a minimized and
strategically time-shifted schedule. Importantly, the integration
of occupant schedule management can enable Strategy 4 to
attain a more substantial reduction in outdoor ventilation
for the start, last, and lunch break segments compared to
Strategy 1, resulting in further energy conservation.

3.1.5 Application potentials in real world scenarios

The selection of suitable control variables (i.e., ventilation
and/or occupant schedule) in practice should consider a
balance between energy-saving potential and practical
applicability. More flexible adjustments of variables may offer
greater energy savings but could also present challenges in
application. Dynamically adjusting ventilation requires
precise control, which could impact system longevity and
reliability (Liu et al. 2022; Niu and Zhang 2023). Similarly,
dynamic changes in occupancy durations could complicate
scheduling and affect productivity, challenging the stability
of a predictable occupancy pattern (Melikov et al. 2020;
Zhang et al. 2023c). Strategy 4 offers the highest energy-
saving potential due to its flexibility in adjusting both ACH
and occupant schedules, maximizing the benefits of both
factors in minimizing energy consumption while reducing
infection risk. However, it is the least practical. In contrast,
although Strategy 3 also optimizes both ACH and occupant
schedules, it is less energy-efficient than Strategy 4 due to
its consistent optimization pattern. But with steady occupancy
and ventilation patterns, Strategy 3 is more applicable than
Strategy 4. Strategy 1, which optimizes ventilation only, is
the second energy efficient strategy, suitable when the
change of the occupant schedule is prohibited. On the
other hand, although it is the least energy-efficient option,
Strategy 2 is particularly suitable for scenarios where
adjusting the building’s occupant schedule is feasible, but
modifying the ventilation system’s operation is not. However,
it should be noted that while periodically vacating the
classroom effectively reduces airborne transmission, it may



Lyu et al. / Building Simulation

also disrupt normal classroom activities, as students typically
remain in the classroom during breaks. Nevertheless,
during a pandemic, controlling transmission risk may take
precedence over maintaining regular classroom routines.
In future research, it would be valuable to further explore
the energy-saving potential of our exposure-based ventilation
control strategy while accommodating typical classroom
usage patterns.

3.2 Energy saving potential in different climates

In this section, we ran the simulations for a full matrix
of the four proposed strategies across four representative
cities, each located in a different climate zone in China.
The energy-saving potential is illustrated in Figures 9 and
10. Figure 9 displays the total energy consumption over five
school days in one week in different seasons, while Figure
10 depicts the total energy reduction relative to the base
case. Overall, the four strategies achieve effective energy
reduction ratios, with the most efficient strategy exceeding
30% reduction compared to the base case. The performance
of different strategies remains relatively stable across various
climate zones and seasons, indicating the effectiveness of
these strategies in different environmental settings. Notably,
Strategy 4 emerges as the most energy-efficient approach
across these conditions, followed by Strategy 1, Strategy 3,
and Strategy 2.

Figure 9 illustrates that the absolute energy savings
from various strategies are proportional to the base case
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energy consumption, which is primarily influenced by the
difference between indoor and outdoor thermal conditions.
For instance, Strategy 4 in Harbin, with a higher base
case energy consumption in winter than in summer, saves
~27,000 KkJ in winter and ~2800 kJ in summer over five
school days. This difference occurs because changes in
ventilation or occupant schedules, such as reducing ventilation
by 0.5 ACH, can result in greater absolute energy savings
when the indoor-outdoor thermal condition difference is
larger. This highlights the critical role of indoor-outdoor
thermal condition difference in determining potential
energy savings.

Figure 10 further shows that the energy reduction ratio
of different strategies typically inversely correlates with the
base case energy consumption. Lower base case energy
consumption typically results in a higher energy reduction
ratio, as seen in Guangzhou during winter with a 33%
reduction using Strategy 4, compared to only 15% in Harbin
(see Figure 9(d) with Figure 10(d)). This inverse relationship
arises from the calculating method of energy reduction
ratio, where the reduced energy is divided by the base case
energy consumption, emphasizing the influence of the
energy consumption of the base case. However, deviations
exist, such as in Beijing during autumn, where despite a
lower energy consumption of the base case compared to
Guangzhou in winter (see Figure 9(b) and 9(d)), the
reduction ratio is less than in Guangzhou (see Figure 10(b)
and 10(d)). This can be attributed to a more significant
variation in Guangzhou’s winter outdoor thermal conditions,
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Fig. 9 Total energy consumption for schooling days in a week using different strategies across various cities and seasons: (a) spring,
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as detailed in the Supplementary Material. Such variability
can enhance energy savings by leveraging more favorable
weather conditions, underscoring the importance of both
indoor-outdoor thermal differences and outdoor thermal
condition variations in energy savings.

3.3 Theimpact of indoor thermal setpoints

The setpoints for maintaining indoor thermal conditions,
including temperature and relative humidity, can significantly
influence the base case energy consumption. Specifically,
setting indoor thermal conditions vastly different from the
outdoor conditions substantially increases the ventilation
heating/cooling load. As established, for the proposed
strategies, the quantity of reduced energy is proportional to
the base case energy consumption level, indicating that
varying indoor thermal condition setpoints can affect the
energy reduction achieved.

Using Strategy 4 as an example, Figure 11 highlights
how different indoor thermal condition setpoints affect (a)
reduced energy consumption and (b) energy reduction ratio,
compared to energy consumption at the same setpoint
but without optimization, in Harbin during winter. Given
Harbin’s low temperature and relative humidity in winter,
setpoints with higher temperature and relative humidity
usually indicate a larger indoor-outdoor thermal condition
difference, resulting in a higher heating load. The results in
Figure 11 indicate that while increasing indoor temperature
and relative humidity setpoints can enhance the quantity
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of energy reduced, it only slightly improves the energy
reduction ratio. Consequently, the total energy consumption
at higher temperature and RH setpoints remains greater than
at lower setpoints. This finding suggests that the reduced
energy consumption achieved through the improved energy
efficiency of the optimization strategy cannot compensate for
the increased energy consumption due to the adjustment
of indoor thermal condition setpoints. Therefore, indoor
thermal condition setpoints should be carefully selected for
energy conservation. Setpoints closer to outdoor thermal
conditions are more effective in conserving energy.

3.4 Comparing with standard practice

Taking Strategy 4 as an example, Figure 12 further compares
the energy efficiency of the proposed strategy with a standard
practice (i.e., baseline occupant schedule and a ventilation
rate of 10 L/s per person), which is widely recommended
during the COVID-19 pandemic to ensure air quality and
reduce the risk of virus transmission (EMG-SPI-B 2021;
ASHRAE 2022; Li et al. 2022). The energy reduction ratio
here refers to the total energy reduction (over five school days
in one week) relative to the standard practice, with a higher
reduction ratio indicating a higher energy efficiency.

Figure 12 shows that Strategy 4 achieves an energy
reduction ratio of over 30% compared to the standard practice
in all studied cases, with the maximum reduction reaching
about 66% in Guangzhou during winter. These findings
suggest that the standard ventilation rate of 10 L/s per person,
while effective for minimizing transmission risks, can lead
to excessive energy use. Rather than simply adopting a
constant ventilation rate, new ventilation design methods and
control strategies should be developed to not only maintain
health and safety standards, but also optimize energy efficiency.
Recent studies have proposed new ventilation design
methods, which recommend deriving infection risk-based
target ventilation rates for specific indoor spaces to save
energy (Buonomano et al. 2023; Kurnitski et al. 2021, 2023).
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Fig. 12 Energy reduction ratio relative to the standard over five
school days for Strategy 4, compared across various cities and seasons

Based on the exposure-based control theory we proposed,
our results offer novel method to further enhance the energy
efficiency of these infection risk-based ventilation design
methods in school-like environments. This involves adjusting
ventilation in response to outdoor weather conditions and
incorporating suitable occupancy strategies, providing new
perspectives for ventilation system design and operation.

4 Limitations and future work

Our study encompasses several limitations. First, the
accuracy of our optimization algorithm requires further
refinement. Given the large solution spaces, especially in
Strategy 4 with over 20 decision variables, achieving precise
analytical optimal solutions is computationally intensive
and time-consuming. We use a metaheuristic approach,
specifically the Genetic Algorithm (GA), to approximate the
best solutions (Schmitt 2001; Lambora et al. 2019). However,
the ‘optimal’ solutions from GA are approximations and
not exact optima. The accuracy of these solutions heavily
depends on the tuning of hyperparameters like population
size, and the algorithm may converge on local optima.
Adapting GA for specific scenarios such as varying classroom
sizes and occupant capacities might require recalibration of
these hyperparameters to enhance solution precision. In
the future, more advanced methods, such as integrating GA
with an Artificial Neural Network (ANN), can be further
developed to efficiently predict and guide hyperparameter
selection of GA.

Second, our optimization process only considers the
heating/cooling load due to outdoor ventilation (Guo et al.
2022). However, a building’s heating/cooling load is
influenced by many factors, including internal loads and
the building’s thermal mass (Yang and Li 2008; Zeng et al.
2011; Hu and Karava 2014; Wang et al. 2014; Risbeck et al.
2021; Wu et al. 2023), which can be used with night
ventilation to reduce cooling loads (Yang and Li 2008).
Considering our main aim is to propose a novel ventilation
and occupant control strategy for energy-efficient infection
risk management, we have not included factors other than
outdoor ventilation for simplicity and to reduce computational
demands. Future studies can include a more comprehensive
consideration of building energy consumption in the
optimization process. In addition, our study primarily
demonstrated the energy-saving potential of optimizing
ventilation and occupant schedules for controlling long-range
airborne transmission. However, other control measures,
such as filtration, can also lower quanta concentrations in
indoor air and should be considered as additional control
variables in future investigations (Azimi and Stephens 2013;
Fazli et al. 2019; Risbeck et al. 2021; Chang et al. 2023; Lyu
et al. 2024; Yang et al. 2024; Yao et al. 2024).
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Our results contain uncertainties associated with
factors such as the estimation of quanta emission rates and
the determination of risk thresholds. This study assumed a
constant quanta emission rate; however, in reality, quanta
emission rates can vary significantly due to factors such
as individual differences and environmental conditions
(Buonanno et al. 2020a, 2020b; Jones et al. 2021; Lyu et al.
2023; Lavor et al. 2025). The literature reports a wide range
of quanta emission rates for classroom settings, from 0.37
quanta/h to 100 quanta/h (Buonanno et al. 2020a; Bazant
and Bush 2021; Peng and Jimenez 2021). Such variability
may influence optimization outcomes. Additionally, the
selected risk threshold may jointly impact the energy-saving
potential of the proposed strategies. For instance, a lower
risk threshold and a higher quanta emission rate can lead
to a lower limit for quanta exposure, necessitating higher
outdoor ventilation. Consequently, the energy-saving
potential from the dynamic adjustment of ventilation may
be reduced, as a higher required average outdoor ventilation
limits the feasibility of adjusting the ventilation rate in
response to outdoor weather conditions. However, at the
same time, the energy-saving potential from adjusting
the occupant schedule may be enhanced, particularly since
reducing energy consumption for the same duration is
more effective at higher outdoor ventilation rates.

Moreover, in our study, both the occupant schedule
and ventilation are optimized daily. However, frequently
adjusting occupant schedules can be difficult in certain
contexts. Instead, optimizing it based on averaged weather
data over longer periods, such as seasonally, might be more
feasible. In contrast, ventilation adjustments are generally
more flexible. Optimizing ventilation based on daily weather
predictions, rather than relying on averaged data over fixed
periods, allows for greater adaptability to outdoor weather
variations.
adaptability by employing Rolling (Receding) Horizon Control
methods. Such approaches would repeatedly optimize
ventilation using real-time updated weather data, therefore
improving responsiveness and overall performance (Kopanos
and Pistikopoulos 2014; Ryzhov et al. 2019; Tabares-Velasco
etal. 2019).

Finally, the energy-saving potential of the proposed
optimization strategies depends heavily on the accuracy of
outdoor weather predictions (Gholamzadehmir et al. 2020;
Zhang et al. 2023a). This study utilized Typical Meteorological
Years (TMY) weather files, representing averaged data
predicting long-term climate variations. Future work could
consider more accurate and detailed weather profiles,
including localized or extreme weather predictions, to
further explore the strategies’ energy-saving potential (Han
et al. 2021; Moazami et al. 2019). Additionally, this study
considered climate data from only four climate zones, which

Future studies could further enhance this

may not fully capture global variations. Different weather
conditions can lead to varying results, necessitating further
investigation.

5 Conclusions

This study introduces innovative optimization strategies
for controlling indoor long-range airborne transmission,
by constraining total virus exposure rather than just
concentration levels. Unlike traditional approaches that
maintain quanta concentration below a fixed safe limit, our
exposure-based control strategies allow quanta concentration
to vary with time, enhancing flexibility in modifying
occupant schedules and outdoor ventilation to optimize
energy use. Based on it, we propose four distinct strategies
to manage occupant schedule and ventilation within school
environments, either individually or in combination, to
balance infection risk with energy conservation.

The energy-saving potential of these strategies is
two-fold. First, they allow for the adaptation of ventilation
and occupant schedules to external weather conditions
to maximize passive heating/cooling potential, thereby
enhancing energy efficiency. For example, Strategy 1 adjusts
air changes per hour (ACH) based on outdoor weather
conditions, increasing ventilation during favorable weather
conditions and reducing it when less favorable. Strategy 2
aligns the occupant schedule with optimal outdoor weather
conditions, shifting occupancy to more favorable time.
Second, the strategies permit adjustments in ACH or
occupant schedules by considering their interaction, thus
maximizing the combined benefits for reducing infection
risks and conserving energy. An example of this is seen in
Strategy 1, where ACH adjustments help maintain a stable
quanta concentration across different segments, leveraging
both break time and outdoor ventilation to reduce quanta
levels efficiently and minimize overall energy usage.

Our results indicate that Strategy 4, which optimizes
both the occupant schedule and ACH flexibly (with varying
time durations for optimal segments and different ACH
levels for each segment), is the most energy-efficient strategy,
achieving energy reductions exceeding 30% compared to
the baseline and over 60% relative to the standard ventilation
scheme. This is followed by Strategy 1, which focuses solely
on ACH, and Strategy 3, which optimizes both factors but
in a stable manner (with uniform time durations and ACH
levels for different types of segments). Strategy 2, focusing
on optimizing only occupant schedule, is the least energy
efficient, achieving only half the energy reduction of
Strategy 1. The viability of these strategies has been proven
across various climate zones and seasons, highlighting their
broad applicability. Additionally, the significance of accurately
establishing setpoints for indoor thermal conditions in the
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formulation of these optimization strategies has been affirmed,
emphasizing the importance of a tailored approach.
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