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Enhancing our understanding of the meteorological factors influencing renewable energy is crucial in the
energy transition, as inherent biases in widely used meteorological numerical models reduce their reliability
in accurately simulating essential variables for electricity modeling. This study examines five bias correction
methods for estimating wind power capacity factors, utilizing ERA5 reanalysis, Weather Research and
Forecasting Model (WRF) simulations, and experimental data from multiple anemometric towers. Areas
influenced by large-scale effects, such as the interaction between large-scale atmospheric circulation and
orography, were accurately reproduced; however, regions with complex terrain exhibited larger errors. In
some cases, the constraints imposed by large-scale features on near-surface winds are strong enough to make
bias correction unnecessary. The Weibull quantile mapping and the quantile percentile method produced the
lowest errors, however the latter preserved bi-modality. The mean state, linear scale, and quantile mapping
Rayleigh methods produced the highest errors in 72% of the cases examined. Analysis of ERA5 revealed the
dependence of its ability to reproduce the capacity factors on the conditions around the site. Bias correction
alters the probability distribution’s shape, significantly impacting CF estimates through its interaction with the
power curve.

1. Introduction model resolution, an important caveat is the omnipresence of biases in

model output, even when this output might correlate well with obser-

Numerical weather prediction models and related datasets, such
as reanalyses, are widely accepted and used means of advancing the
implementation of the global energy transition, as they constitute an
important source of meteorological data (wind speed, solar radiation,
temperature). In particular, the wind energy sector uses data from
reanalysis and mesoscale simulations to evaluate the local and re-
gional potential for power generation [1]. These models are also a
powerful tool for examining resource complementarity [2], forecast-
ing resources [3], and the effects of global climate change [e.g. 4].
However, a crucial stage for numerical model data to be useful is its
validation against observations from different sources, such as in-situ
observations from tower masts and buoys [5], remote-sensed data from
lidars and satellites, or by comparing different reanalyses against each
other.

The accuracy of numerical models largely, but not solely, depends
on their resolution, as this determines the range of physical and dy-
namical processes that can be represented. However, regardless of
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vations. In reanalysis data, bias effects manifest as an underestimation
of resources, which can be linked to the reanalyses’ coarser spatial
resolutions [6]. High-resolution products, such as COSMO-REA6 [7],
have been shown to better represent power output [8]. However, over-
estimation is generally present in mesoscale simulations such as those
produced using the Weather Research and Forecasting model (WRF),
due to the limitations of the model in reproducing physics caused by
complex topographic conditions, land use, or the oversimplification of
physical processes [9,10]. In fact, previous studies have shown that the
best resource estimates were made when the analyses were performed
on flat terrain or offshore [11,12].

Biases arise due to several reasons, such as insufficient spatial
resolution to accurately resolve physical processes and simplified as-
sumptions and uncertainty in the parametrizations that are used to
represent those missing processes [13]. Errors in numerical models
in the evaluation of wind resources represent an important aspect of
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wind power estimation because power production is a highly nonlinear
function of wind speed. This characteristic amplifies the error when
calculating wind power, making bias correction a crucial aspect for
assessing the wind power potential.

One strategy to improve model reliability is to implement bias
correction methods, which consist of the statistical correction of model
data aiming at reproducing the observed statistics for a given variable.
In the case of the wind energy sector, bias correction is an attempt to
better represent wind conditions without complex model modifications
and therefore with low computational cost. Generally, wind speed is
bias corrected and then a power curve is used to map wind speed into
power output. Alternatively, directly correcting for biases in the esti-
mated power output is also possible [e.g. 14]. However, this approach
relies on the availability of power output observations, which can be
more difficult to obtain than wind speed observations and therefore this
approach is not always feasible.

The importance of bias correction for wind resource assessment
has been discussed in various studies at continental and national lev-
els [8,15], which have shown that it is only after bias correction
that estimations of capacity factor are realistic. However, the quality
of the results has been found to highly depend on the location of
the site at which power output is to be estimated [15]. Furthermore,
bias correction can lead to mixed results. For example, when using
high-resolution data from the Global Wind Atlas to correct biases in
reanalyses such as ERAS it is found that the impact is either null or
detrimental [16].

There are several options to correct for bias in a dataset. These
options range from simple methods such as mean-state correction [e.g.,
4] to sophisticated methods such as quantile mapping [17]. Given
the variety of bias-correction options several questions arise regarding
which method is the most suitable to achieve an accurate estimate of
wind power: whether it is sufficient to correct for a central statistical
value, to apply a correction factor based on statistical parameters [18],
or whether it is necessary to correct higher-order statistics, as suggested
by quantile mapping methods [17]. Previous studies have found that
most sophisticated bias correction methods, such as quantile mapping,
perform generally well [19]. However, the method’s performance qual-
ity can vary widely depending on factors such as the complexity of the
terrain [15].

Bias correction methods require a training period before being
suitable for application to a full dataset. The training period is defined
by the availability of observations. Of course, for climate change studies
observations are only available for present-day climate. Thus, a sep-
arate question is whether it is valid to assume that a bias correction
method, trained on observations of the present-day climate, can be used
on the climate model output for future climate projections.

In this work we will assess five bias-correction methods, namely
mean-state correction, which only corrects the mean of the biased
dataset; linear scale correction, which corrects the mean and the vari-
ance of the biased dataset, and three implementations of quantile
mapping, the first one based on the assumption of underlying Weibull
distributions [20], the second based on the assumption of underlying
Rayleigh distributions (as a particular case of the Weibull distribution),
and the third based on the empirical cumulative distribution functions
of the observed and modeled data [21]. These five bias-correction
methods were applied to estimate wind power capacity factors using
ERA5 and WRF simulations. These models were chosen because the
ERAS reanalysis dataset demonstrates fewer discrepancies compared
to the experimental data [16]. Furthermore, enhancing resolution typ-
ically leads to improved wind speed modeling, making the selection of
WREF appropriate for this analysis [22].

In this paper we assess the performance of these five bias-correction
methods applied to estimations of wind speed and capacity factor from
a reanalysis and a series of bespoke WRF simulations. The assessment is
carried out using four metrics using, as reference, in-situ observations
from thirty towers located across Mexico and annual wind power
production reported for southeast Mexico. Mexico is characterized by
a wide diversity of terrain complexities ranging from mountainous to

Renewable Energy 247 (2025) 122927

coastal regions, including two peninsulas. Thus, by taking advantage of
these diverse orographic conditions, rather than the plain assessment of
these methods the aim of the paper is to answer the following question:
Can the performance of a bias correction method be expected to be
uniformly maintained temporally and spatially? To answer the first
part of the question, i.e. temporal homogeneity, we study whether, for
specific locations, the annual bias-correction parameters are consistent
throughout several years. To answer the second part of the question,
i.e. spatial homogeneity, we investigate the relationship between oro-
graphic complexity and error after a bias correction method has been
applied.

The remainder of this paper is organized as follows. The reanalysis,
WREF simulations, and observational data used to perform the analyses
are described in Section 2. The methodology is described in Section 3.
Section 4 presents the results of the study. The results are discussed in
Section 5, where conclusions are also drawn.

2. Data

Four primary data sources were used: (1) wind speeds from anemo-
metric masts, (2) ERA5 wind speeds and subgrid-scale orography, (3)
interpolated wind speeds from the mesoscale numerical model, WRF,
and (4) annual wind farm capacity factors. In addition, three wind
turbine power curves were selected to reproduce the power output and
capacity factor from biased and biased-corrected wind speeds. All the
wind speed data used in this study had an hourly resolution.

2.1. Observed data

2.1.1. Wind speed observations

This study used 30 anemometric masts located throughout Mexico.
The observed data from these stations were obtained from two different
projects: the “Mexican Wind Atlas” (AEM, by its Spanish acronym),
whose data covered 2018 and 2019 [23], and the “Wind Project” [24],
whose data were measured for at least a year between 2006 and 2007.
The objective of both initiatives was to deliver high-caliber information
aimed at promoting wind energy sector development, thus leading
to the selection of unobstructed open landscapes. Additionally, the
National Institute of Electricity and Clean Energy (INEEL) ensured the
quality control of data, as it was accountable for both projects. Forty-
meter tall masts were equipped with a calibrated anemometer and vane
at 20 m and 40 m, using the 40 Maximum model. The 80-m tall masts
featured calibrated Wind sensor P2546A-OPR anemometers installed at
20, 40, and 60 m, with vanes positioned at 58 and 78 m. Additionally,
two anemometers were installed at the 80-m height. Table 1 presents
the names of the measurement stations, acronyms, heights at which the
anemometers were located, years, and regions. Thus, data reliability
was ensured by redundant measurements. Fig. 1 shows the locations of
the anemometer masts.

In addition, time series of wind speed observations were obtained
from an instrument co-located with a wind turbine with a hub height
of 80 m in Mexico’s southeast region. All data were measured and
recorded as 10-min means.

2.1.2. Annual wind farm power production

The most recent freely available reported data on wind farm gen-
eration in Mexico were used to compare wind power production. The
Energy Secretariat [25,26] reports data corresponding to the installed
capacity and annual production of wind farms for 2016 and 2017. This
information was used to estimate the annual Capacity Factor (CF) of
each wind farm.
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Fig. 1. The location of the anemometer masts (red dots). For further analysis, the masts are grouped by regions, delimited by red squares. The code names for these regions are

given in bold fonts.

Table 1
Measurement stations, name, acronym, height, year, and region.

Name Acronym Height (m.a.g.l.) Year Region
La Rumorosa BCN1 20, 40, 60, 80 2018, 2019 BCA
El Paso BCS1 15 2006 BCS
San Hilario BCS2 15 2006 BCS
Bahia Tortugas BCS2 20, 40 2006 BCS
Los Mochis SI01 20, 40 2006 NOR
Cuauhtémoc CHO1 20 2005 NTE
Samalayuca CHO2 16 2005 NTE
Villa Ahumada CHO3 15, 30 2006 NTE
Samalayuca II CHO4 15, 30 2006 NTE
Cd. Cuauhtémoc CHO5 20, 40, 60, 80 2018, 2019 NTE
Cieneguillas ZC0o1 20, 40 2005 0oCC
La Virgen 7C02 20, 40 2007 0ocC
Ojuelos JAL1 20, 40, 60, 80 2018, 2019 ocC
Los Naranjos TMO1 20, 40 2006 NES
Fco. Villa TMO02 20, 40 2006 NES
San Fernando TMO03 20, 40, 60, 80 2018, 2019 NES
Barra de Coyuca GRO1 10 2006 ORI
Pastejé EMO1 10 2006 ORI
Cerro Pelén HGO1 20, 30 2005 ORI
Alchichica PBO1 20, 40 2005 ORI
Tepexi PB02 20, 40, 60, 80 2018, 2019 ORI
Perote VZ01 20, 40 2006 ORI
Punta Delgada VZ02 20, 40 2006 ORI
La Ventosa 0A01 20, 40 2006 ORI2
Cd. Ixtepec OA03 20, 40 2007 ORI2
CERTE OA04 20, 40, 60, 80 2018, 2019 ORI2
La Venta LvV01 15, 32 2005 ORI2
El Progreso CIo1 20, 40 2006 ORI2
Sisal YCO1 20, 40 2006 PEN
Mérida YC02 20, 40, 60, 80 2018, 2019 PEN

2.2. Reanalysis data

The reanalysis data selected for the analysis was ERA5 [27], the
most recent reanalysis product by the European Center for Medium-
Range Weather Forecasts (ECMWF), because of its high resolution and
documented effectiveness in reproducing wind speeds [28]. ERA5 has
a horizontal spatial resolution of 30 km, 137 levels from the surface up
to a height of 80 km, an hourly output frequency, and data availability
from 1950 to the present five days in real time [29]. The main variables
used in this reanalysis were the wind speed at a height of 100 m,
calculated from the zonal and meridional components, and the slope
of the subgrid-scale orography, defined as the ratio of the change in

elevation to the change in horizontal position [30]. Only data over
Mexico were extracted from the ERA5 database, which corresponds to
a spatial domain between 80°W and 120°W zonally, and between 10°N
and 35°N meridionally.

2.3. Simulated data

The WRF model [31] version 4 was used to model wind speeds
in the same period and location as the observational data from the
wind turbine in the southeastern region of Mexico [32]. WRF is an
open-source atmospheric modeling system from the National Center for
Atmospheric Research (NCAR). It uses compressible, non-hydrostatic
Euler equations [33] using terrain-following vertical coordinates based
on pressure. The National Centers for Environmental Prediction Final
Operational Global Analysis (NCEP-FNL), with a horizontal resolution
of approximately 110 km and 26 vertical levels, was used to specify
the lateral boundary conditions and initial conditions. The simula-
tions were conducted at the location of a wind turbine located in the
southern-east region of Mexico. using four nested domains with the
following horizontal resolutions: 75 km (these results were not used
because the output data were not hourly), 15 km (labeled WRF2), 3
km (labeled WRF3), and 1 km (labeled WRF4). The parametrization
settings used here are the same as those in Hernandez-Yepes et al. [32],
where further details can be found.

2.4. Wind turbines power curves

Three wind turbines power curves were chosen to calculate power
production: Acciona AW70-1.5 MW, Gamesa G80-2 MW, and Vestas
V90-2 MW. These are the most popular wind turbine models in Mex-
ico [15] and are used as benchmarks to simulate wind power output
and CF. The height of the hub was set at 100 m when using ERA5;
however, when the WRF analysis was performed, it was set at 80 m,
i.e., at the nominal height of the WRF wind speed data.

3. Methodology

Before carrying out any bias-correction assessment, the observa-
tional and numerical data were post-processed to have both datasets
on the same location and the same temporal resolution, as follows:
ERAS velocities u and v, were used to estimate wind speeds, then was
bilinearly interpolated from its native grid to the location of each mast.
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Fig. 2. Flow chart illustrating the methodology followed in this paper.

Then, the anemometric data were extrapolated to a height of 100 m to
coincide with the nominal height of the ERA5 wind speed data. Finally,
the observational wind speed data was resampled by estimating 1 h
mean from the original 10-min temporal resolution to ERA5’s hourly
resolution.

Once the observational and numerical data were co-located both
spatially and temporally, we performed the following three-stage analy-
sis. The first stage consisted of a comparison between the ERA5-derived
data (wind speed and CFs) and the observations of wind speed and
CFs computed with the observations assuming the presence of a wind
turbine at the masts’ locations. For this part of the analysis we used
three different error metrics: mean absolute error (MAE), symmetric
mean absolute percentage error (SMAPE), and root mean square error
(RMSE). For this comparison ERA5 data were used without any bias
correction and then bias-corrected using five different methods. Bias
correction was applied to the ERA5 data corresponding to each station’s
location and for the year when observations are available at each
location, as listed in Table 1.

For the second stage of the analysis, we assessed the effectiveness
of using the same bias-correction parameters in two consecutive years,
using the first year for training the bias correction method and the sec-
ond to verify it. The persistence of the yearly adjustment parameters for
the AEM data was evaluated by analyzing the locations with two years
of available data corresponding to 2018 and 2019. Once parameters
were obtained to correct the ERA5S data during 2018, hereafter referred
to as ERA5-2018, the same correction was applied to the ERA5 data
corresponding to 2019, hereafter referred to as ERA5-2019, to study
bias-correction parameter persistence. The power curves for the three
selected wind turbines were then used to estimate CFs of the bias-
corrected and non-bias-corrected ERA5-2018 data, and the observed
data of CF AEM 2018.

The third and final stage of the analysis consisted of applying the
most successful bias-correction methods to the output of the bespoke
WRF simulations. Bias correction methods were also applied to the
WRF simulation output and ERA5-2016 data set using the observed
data set for the location of CIO1. In this analysis stage, we will study
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the reproduction of CFs with error metrics, such as the 2018 data.
Furthermore, Pearson’s correlation coefficient (r) is estimated for bias
and non-bias corrected (NBC) datasets with observational datasets for
two primary purposes: to analyze the accuracy of ERA5 and WRF when
reproducing raw wind speed data and the effects of bias correction
methods in improving their accuracy, and to analyze its relationship
with terrain complexity using the slope of subgridscale orography. A
particular case of the preservation of data bimodality is part of this
analysis.

Through the error metrics, bias correction methods with better per-
formance in reproducing wind power output in the verification analysis
were selected and studied in further detail by comparing their results on
ERA5-2019 data and 2019 observational data through the Kolmogorov—
Smirnoff (K-S) test. For the K-S test, we used a confidence level of 95%,
and the null hypothesis was that the observed data distribution was
the same as the reanalysis data for each case: when bias-corrected and
when non-bias-corrected, the alternative hypothesis states otherwise.
Using this test, we obtained the differences between the observed data’s
Cumulative Distribution Function (CDF) with the bias-corrected data’s
CDF for each method and the CDF of the non-biased corrected data.
Finally, the selected methods were applied to ERA5-2016 and ERA5-
2017 for specific sites (JAL1 and OA04) that were chosen because
of their proximity to wind farm locations that have the most recent
and freely available wind power reported data (2016 and 2017 annual
data) for comparison of capacity factor reproduction. A flow chart that
summarizes the methodology is presented in Fig. 2.

4. Theory — Bias correction methods

In this work we set to evaluate three bias correction methods:
Mean state correction, linear scale correction and quantile mapping
correction. The latter is implemented in two different ways, namely by
empirical percentiles and by assuming Weibull distributions for both
the observed and biased data. The BC methods selected to develop the
analysis are described in this section.

4.1. Mean-state correction

The mean-state correction (MSC) method, Eq. (1), is possibly the
simplest correction method in which the raw probability distribution
function (PDF) is translated by the difference between the mean of the
biased PDF and that of the observed PDF. The corrected data (w,) is
then given by

W) = Wy — Up + Uy, @

where w) is the biased data, and y, and y,, are the mean of the observed
and biased data, respectively [16,34].

4.2. Linear scale correction

Like MSC method, the linear scale correction (LSC) method, Eq. (2),
corrects the mean of the biased PDF to that of the observed PDF, but
also modifies higher order moments. In the LSC the corrected data (w,)
is given by
w, = 22w, @

Hp
where y, is the mean of the observed data set and y, is the mean of
the biased data [18]. This distribution is shown to be equivalent to
a quantile mapping correction based on the Rayleigh distribution in
Section 4.3.3.

4.3. Quantile mapping

Quantile mapping (QM) is a more sophisticated method in which in
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theory every moment is corrected by mapping the biased PDF onto the
observed PDF. In general, the QM corrected data (w;) can be expressed
as Eq. (3)

wy = FloFy(wy), 3)

where F, is the biased data CDF and F~! is the inverse of the observed
data CDF [17]. Here, we discuss three QM implementations, i.e, by
empirical percentiles and by assuming Weibull or Rayleigh distributions
for both the observed and biased data, demonstrate that the latter is
equivalent to the LSC method.

4.3.1. Quantile mapping by empirical percentiles (QMP)

This method calculates the percentiles of the biased and observed
data to obtain the difference between them two. This can be expressed
as

Aw = (F7'[P]) - (F; ' [P)), &)

in Eq. (4), P is the result of applying the cumulative distribution
function (CDF) to its corresponding observed data. From each per-
centile, the corresponding quantile is located in each biased data and
an interpolation is performed between the closest percentiles to each
quantile to assign the correcting difference so that the corrected data
(ws) is given by

ws = wy + Aw. ()

In this way, the correction factor, given by the expression (5), is applied
to each biased data point according to its quantile [21].

4.3.2. Quantile mapping via Weibull distribution (QMW)

For this bias correction method, a Weibull distribution, Eq. (6), is as-
sumed for both the observed and biased data. The Weibull distribution
has CDF given by

F(x)=1-exp [—(f)k] (6)

for x > 0, where ¢ is the scale parameter and k the shape param-
eter [13]. Therefore, the QMW corrected data (wg) is given by the
expression (7),

wi \ ke/ko
—1 b
we = F~ (F(wy)) = ¢, <Z> s @)

where ¢, and k, are the scale and shape parameters derived from the
observed data, and ¢, and k, are the scale and shape parameters derived
from the biased data.

4.3.3. Quantile mapping via Rayleigh distribution (QMR) - Equivalence
with LSC
The CDF of the Rayleigh distribution is given by

F(x):l—exp(—x—2>, (€))

2a2

where « is the scale parameter. The Rayleigh distribution, Eq. (8), is
a special case of the Weibull distribution, Eq. (6), in which k = 2 and
c= \/Ea. Therefore, using (7) the QMR corrected data (w-) is given by
aﬂ

= 2w, 9
wy . wy, ©)
where «, and «, are the Rayleigh scale parameters derived from the
observed and biased data, respectively.

The mean of a random variable distributed following a Rayleigh
distribution is y = ay/x /2. Therefore, the ratio
o _ % 10)
Hy @
Using (10) in (9) and comparing this to (2) proves that the LSC method
and QMR are equivalent.
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5. Results
5.1. Orography analysis

Bias correction is not expected to have an effect on the correlation
between simulated and observed data beyond the effects due to sample
size. Therefore, for applications that depend on event timing, such
as expected production periods or ramp occurrence, the correlation
between modeled data and observations needs to be high a priori, with
bias correction being applied to capture the intensity and duration
of the event. We have performed an analysis of the dependence of
the correlation between observations and NBC data and orographic
complexity. Orographic complexity is here defined simply as the sub-
grid scale orography slope (SGOS) from ERAS5 at the location of a
given station [35]. The local orographic complexity is computed by
linearly interpolating the SGOS to each station’s horizontal coordinates.
The SGOS exhibits a clear correlation with Mexico’s orography, with
the main mountain ranges such as the Sierra Madre Occidental, Sierra
Madre Oriental, Sierra Madre del Sur, Sierra Madre de Chiapas, Sierra
Madre de California, and the Trans-Mexican Volcanic Belt, as well as
the vast flat region of the Yucatan Peninsula (see Fig. 3(a)).

The relationship between the SGOS and the Pearson correlation
coefficient between observed and NBC data is shown in Fig. 3(b). The
plot is dominated by a near-linear relationship flanked for emphasis
by the two red dotted lines. Most stations fall within this section of
the plot highlighting a clear linear anti-correlation between the model-
observations correlation and the complexity of the terrain. However,
there are two notable additional sections in this plot: The first one
is given by the stations exhibiting low correlation coefficient despite
having low orographic complexity. These stations are mostly located
in the Yucatan or Baja California peninsulas or near the coast within
the Gulf of California. The wind at these stations is difficult to represent
accurately by the low-resolution numerical model upon which ERAS5 is
based [15]. The second notable section in the plot is given by stations
displaying high correlation coefficient despite having high orographic
complexity. These stations are mostly located in the Chivela Pass and
the Gulf of Tehuantepec, which is a region where the low-level large-
scale atmospheric circulation is strongly constraint by the presence of
large-scale orography [36].

These results show that ERA5 can accurately reproduce sites that
are influenced by large-scale surrounding orography and its interaction
with large-scale circulation (e.g., stations within the Chivela Pass with
correlation values above 0.8) as it can reproduce the strong northerly
gap winds across the Chivela Pass that originate from the pressure
gradient produced mainly by the increase in pressure in the Gulf of
Mexico as cold air masses move southward from the North American
Great Plains [37]. On the contrary, it struggles to represent wind
speeds around topographic features of high spatial variability, such
as mountain chains (e.g., stations in the Trans-Mexican Volcanic Belt,
with correlation values ranging below 0.7 to 0.4) and rapid contrasting
transitions between land and sea (e.g., stations at the Peninsulas). Fur-
thermore, the inverse relationship between the correlation coefficient
and slope of the subgrid-scale orography provides a good indicator for
understanding the capacity of the model to reproduce the wind speed
according to this local surface characteristic. However, other variables
(e.g., terrain type, vegetation, terrain variability, and roughness length)
could also influence air fluxes and boundary layer development. These
conclusions are consistent with the results found using MERRA2 [15],
and indicate a systematic feature of global reanalyses.

5.2. ERAS reliability
The sMAPE for CF using ERAS for the years corresponding to the

mast data and the power curve of Vestas V90 is shown in Fig. 4. The
columns in the figure correspond to different bias correction methods,
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with the non-corrected data (NBC) appearing in the first column; the
rows correspond to different mast locations.

The mast locations are organized so that masts in a given region
appear in rows next to each other. Error SMAPE values are color-
grouped to identify high values in blue and lower in yellow. In orange,
the maximum error among methods per site is highlighted. From
these results, the bias-correction methods can be separated into two
groups according to the magnitude of the SsMAPE. The MSC and LSC
methods constitute the high error group, which concentrates 72% of the
maximum error values between methods. The other two bias-correction
methods constitute a second group with all the methods leading to
an error reduction. While we only show the results using SMAPE, the
analysis was carried out with all three error metrics with all of them
leading to similar conclusions.

Regarding the regions the masts are located in, it is noticeable
that there are two regions that exhibit relatively low error (in yel-
low) even without bias correction. These regions are ORI2, located in
southeast Mexico in the Isthmus of Tehuantepec, and NES, located in
northeast Mexico at the border with the USA on the Gulf of Mexico
(cf. Fig. 1). These regions have been highlighted previously for their
high wind resource potential [38]. Even for these regions applying the
MSC method appears detrimental. By contrast there are other regions
such as ORI, located in central Mexico, and BCA, located in northwest
Mexico bordering the USA, which exhibit the largest error (above 142)
before bias corrections. These regions are characterized by an intricate
topography, including mountain ranges and sharp land-sea contrasts,
which is difficult for a relatively low-resolution global reanalysis to
describe accurately. Application of any of the bias correction methods
investigated in this paper, apart from MSC, in these regions has a clear
beneficial effect in terms of reduction of error.

In Fig. 5, the wind speed histograms of observed (black line), NBC
(yellow), QMP (blue), MSC (green) and QMW (red) from the 2018
masts OA04 and TMO03 are presented to analyze the effect of corrections
on the probability distribution. This figure shows the typical behavior
observed. The MSC method (green histogram in Fig. 5(a)) on mast
OAO04 2018 displays a lack of low wind speeds that are not in line with
reality, which explains the set of higher error scores of this method.

Fig. 5(b) shows the importance of implementing a correction
method, where a model bias underestimate is evident and an out-
standing similarity is observed for the percentile method and the
experimental data.

Using the sMAPE results we have shown that the methods that
lead to better results are the QMP, QMW and LSC (QMR) methods.
Therefore, these methods were further studied using the Kolmogorov—
Smirnov test. With this test, we quantify the difference between the

CDF of the observational data and the CDF of the nonbias-corrected
data, as well as for the CDF of the bias-corrected data for each bias
correction method. The null hypothesis states that the two samples
being compared are drawn from the same distribution, whereas the
alternative hypothesis states otherwise.

The results show that the bias correction methods improved the
data correction by showing a smaller difference between their CDF and
the CDF of the observed data than between the CDF of the observed
data and the uncorrected data. Furthermore, if the p-value is less than
the significance level (« = 0.05) the null hypothesis is rejected, which
occurs in all cases. Hence, even though the distributions are not consid-
ered equal, it is concluded that the bias correction methods improve the
fit of the data by decreasing the difference in the resulting CDFs with
the CDF of the observational data compared with the uncorrected data.
However, these performances are not guaranteed to be the same for ev-
ery year because, as shown in the next section, in which the correction
coefficients extracted from 2018 data are applied to the 2019 data.

5.3. Interannual bias correction parameter persistency

This part of the analysis was only applied to the seven locations
of the AEM for which data was available for 2018 and 2019. Bias
correction methods were applied to ERA5-2019 data for the AEM
sites using the correction coefficients extracted from ERA5-2018 to
assess the interannual persistence of bias correction parameters. Three
locations (OA04 2019, BCN1 2019, and PBO1 2019) are selected to
illustrate the results. The corresponding histograms for NBC (yellow),
QMW (red), and QMP (blue) are shown in Fig. 6. OA04 2019 illustrates
bimodal behavior preservation; it appears that if the previous year has
bimodality, it is preserved; however, this effect is observed only in one
location. The histogram may overlap the observations for BCN1 2019
and PB02 2019; therefore, there is no clear evidence that the annual
parameters persist. Therefore, further research is needed to explore the
persistence of these parameters over time.

CF analysis showed an improvement in similarity with the previous
year in BCN1, JAL1, OA04, TMO03, and YC02; error statistics decreased
when estimating CF with all bias correction methods. However, the
calculated correction values were not equal to those estimated using
the 2019 data. Therefore, considerable uncertainty arises regarding the
persistence of the annual correction parameters.
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Fig. 4. sMAPE for non-corrected (NBC) and bias-corrected data using ERA5 and the power curve corresponding to Vestas V90. The orange square indicates the maximum error
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Fig. 5. Histograms of OA04 2018 and TMO03 2018 sites to illustrate the effects of BC. For OA04 2018, the MSC showed a gap between zero and minimum values that were not
consistent with the real data. In the case of TM03 2018, all BC methods overlapped histograms, and the necessity of correcting the data was evident.



A. Maciel-Tiburcio et al.

0A04_2019

BCN1_2019

Renewable Energy 247 (2025) 122927

PB02_2019

NBC

[ Observed
0.08 QM inv Weibull CDF
Percentiles BC

>
+£0.06
3
3

0.04
2
o

b
o
]

NBC
[ Observed
273 QM inv Weibull CDF

: Percentiles BC

NBC
[ Observed
T3 QM inv Weibull CDF

0.00+= e
0 5 10 15 20 25

Wind speeds [m/s]

(a) Bimodality is preserved

5 10 .15
Wind speeds [m/s]

(b) Histograms overlapped

20

20
Wind speeds [m/s]

(c) Histograms spreaded

Fig. 6. Histograms for non-corrected data, observations, QMW (QM inv Weibull) and QMP (Percentiles BC) for stations (a) OA04, (b) BCN1 and (c) PB02. The bias correction

methods were applied on data from 2019 using coefficients from 2018.

CI01_2006
0.25 NBC
[ Observed
777 QM inv Weibull CDF
0.20 1 211} Percentiles BC
=
= 0.151
e}
@©
o
o
T
0.00

LVO1_2005
NBC
0.10 [ Observed
277 QM inv Weibull CDF
J111F Percentiles BC
0.08 1

Probability

20 30

0 10
Wind speeds [m/s]

(a) CIO1 2006

0 10 20 30

Wind speeds [m/s]

(b) LVOI 2005

Fig. 7. Histograms of (a) CIO1 2006 and (b) LVO1 2005 for NBC (yellow), QMW (red), QMP (blue), and observed data (black line).

5.4. Bimodality

Some of the studied locations showed the presence of bimodality
in their wind speed PDFs. This section demonstrates the effects of cor-
recting data from a bimodal distributed dataset. The histograms of CI01
2006 and LVO1 2005 are presented for NBC (yellow), QMW (red), QMP
(blue), and observed (black line) in Fig. 7. The same underestimation
effect was observed between the NBC and observations. In addition,
it was observed that the bimodality behavior was lost when the bias
correction method was applied, except for the QMP method. This lat-
ter substantially improves the similarity with observations, preserving
bimodality.

This study showed that only the QMP method could replicate
bimodality. In addition, it can replicate distributions for most sites
and deliver better error statistics results than the QM Weibull bias-
correction method. Thus, it is the most effective method for correcting
the reanalysis when observational data are available.

5.5. WRF analysis

A WRF analysis compared the outputs of three model resolutions
supplemented by the ERA5-2016 dataset. The focus was on assessing
the error index using the five BC methods. Fig. 8 illustrates that the
QMP method yielded the most accurate CF estimates for all three
turbine models and spatial resolutions. Moreover, the QMP approach
at the 1-km grid-spacing resolution (WRF4) had the lowest error rate,
which was less than 0.153% for all three wind turbines analyzed.

However, while the linear-scale and QM Rayleigh distribution methods
produced more consistent and precise approximations of the real ca-
pacity factor than the NBC data across various resolution outputs, the
QM percentile method was the most precise for correcting the data.

The QMW method outperforms LSC (QMR) method for WRF3 spatial
resolution. However, the MSC method performed poorly in all cases,
resulting in capacity factor value errors of 93.7%, 92.9%, and 91.3%
for the AW70, G80, and V90 wind turbines, respectively.

For all bias correction methods, the output of WRF3 showed similar
or slightly higher error results than WRF4. This is also reflected in
the Pearson correlation coefficient results for wind speed (see Fig. 9),
where WRF3 had higher correlation coefficients than any other spatial
resolution for every bias-correction method. In general, the raw outputs
of the WRF model and ERA5-2016 reanalysis showed that WRF3 with
a 3 km grid size had the most accurate reproduction of wind speed.
As the grid size increased, the correlation decreased slightly, which is
consistent with the findings of Hernandez-Yepes et al. [32].

5.6. Capacity factors analysis

In Section 5.3, the precision of different bias correction methods
was tested in reproducing observational data CFs for a training year
(2018) and on a verification year (2019), resulting in the verification
year that the best bias correction methods are QMW, QMR and QMP.
Therefore, they were selected for the final analysis. This section de-
termines whether these selected bias correction methods can improve
wind power output on ERAS reanalysis data by comparing their results
at the same sites with reported CFs.
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OA04 and JAL1 are the specific sites of this analysis because of
their proximity (within a distance of 50 km) to wind farm locations
with the most recent and freely available wind power reported data,
corresponding to 2016 and 2017. For OA04 in 2017, the available
reported data corresponded to 10 wind farms, and in 2016 nine wind
farms. For JAL1, only the reported data of one wind farm was used for
2016 and 2017.

The selected bias correction methods were applied to the ERAS-
2016 and ERA5-2017 datasets of the two stations to remove biases
and obtain annual CF. Only the results of the V90-2 MW wind turbine
are shown because of the similar behavior among the turbines. Fig. 10
shows a reduction in the underestimation by applying bias correction
methods even on highly correlated sites, reaching a slight overestima-
tion when using the QM percentile method on 2017 data. For the 2016

results, overestimation never occurred, but only underestimation was
reduced when bias correction methods were applied. The variation be-
tween ERAS and reported CFs could be attributed to a few factors, such
as the wind farms and geographical locations of measurement stations,
different power curves of various wind turbine models, varied hub
heights for each wind turbine model, and the overlooking of generation
intermittency on reanalysis CFs. This effect can be explained by the
displacement and deformation of the biased PDF towards the observed
PDF (not shown). As this happens, the corrected PDF penetrates deeper
into the transition and rated zones of the power curve, effectively
increasing the total estimated power.

Two different contrasting behaviors can be observed from these
results: for the OA04 station, the three bias correction methods overes-
timate CFs for both years, the minimum and maximum measured CFs
are much lower than the calculated CFs (see Table 2), whereas a minor
difference is found between measured and calculated CFs when NBC
data are used as results round on similar values (noticeable in Fig. 10);
for JAL1 station, a better approximation is appreciated when correcting
data rather than when not. The orography of the site influenced our
examination of the impact of capacity factors on the accuracy of the
reanalysis in reproducing the wind data. In addition, bias correction
methods tend to enhance the wind speed values, which results in an
overestimation of highly correlated sites, as shown in OA04.

To apply bias correction, it is recommended to consider the overes-
timation of wind power output connected to each site’s PDF. The focus
should be on how the bias correction impacts the tail of the PDF, which
enters the power curve, especially in the transition zone, where the
cubic wind speed domains. This factor has the most significant impact
on capacity factor reproduction.

6. Conclusions

The correct wind speed biases depend on the specific conditions
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Fig. 10. Annual capacity factors of ERA5 for NBC data and bias corrected (BC) data by each selected method, with reported CFs from near wind farms for 2016 and 2017.

Table 2

Calculated capacity factor for OA04 with NBC data and bias corrected data with the
three selected bias correction methods, minimum and maximum CF values of measured
data of 2016 and 2017 for this station.

Year CF calculated CF reported
NBC QM percentiles QM Weibull QM Rayleigh Min Max

2016 0.452 0.618 0.592 0.594 0.271  0.524

2017 0.412 0.587 0.590 0.588 0.165  0.429

of each site. Based on the local orographic features, we can observe
regional behavior that correlates with the model’s raw wind speeds
and observations. This behavior indicates the accuracy of the model in
representing wind speed, which can help identify when to perform bias
correction for a more accurate wind power output. There are, however,
cases in which bias correcting might not be necessary or might be
superfluous. Bias correction might not be necessary when the surface
wind patterns are largely determined by the interaction between the
large-scale circulation and large-scale orographic features (e.g. Chivela
Pass). Bias correction might be superfluous in cases in which even the
large-scale circulation is not represented sufficiently accurately to serve
as a constraint to the near-surface wind patterns (e.g. Baja California
Peninsula).

All bias correction methods, except for the mean state method,
improved the reproduction of the CF values in both the ERA5 and
WRF models. The quantile mapping percentile method demonstrated
exceptional performance for both models, effectively reproducing bi-
modal behavior and leading to more accurate CF approximations with
minimal errors.

Bias correction methods improved the consistency between the
reanalysis and observation CF. QMW and QMR (LSC), although the

10

improved wind CF estimations are limited when applied to a bimodal
dataset, this characteristic is lost. However, the effectiveness can vary
by year, and more observational data are needed for specific regions.
Nevertheless, high-quality data can improve bias correction methods,
which are crucial for the expected climate change effects.

The analysis from the WRF indicates that using a 3 km grid offers
an outstanding balance between precise wind dynamics and compu-
tational resources. The accuracy of the results is comparable or even
superior to using a 1 km grid. This indicates that downscaled simu-
lations can be highly effective in obtaining detailed wind speed data
unavailable through global reanalysis.

Additionally, bias correction can lead to more accurate wind energy
production estimates, making it particularly useful for locations with
strong wind potential. Regarding CF, an overall decrease in the error
metrics for wind power reproduction when applying bias correction
methods was observed; these error metrics may be associated with the
interaction between the PDFs shape and the wind turbine power curve.
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