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 A B S T R A C T

Enhancing our understanding of the meteorological factors influencing renewable energy is crucial in the 
energy transition, as inherent biases in widely used meteorological numerical models reduce their reliability 
in accurately simulating essential variables for electricity modeling. This study examines five bias correction 
methods for estimating wind power capacity factors, utilizing ERA5 reanalysis, Weather Research and 
Forecasting Model (WRF) simulations, and experimental data from multiple anemometric towers. Areas 
influenced by large-scale effects, such as the interaction between large-scale atmospheric circulation and 
orography, were accurately reproduced; however, regions with complex terrain exhibited larger errors. In 
some cases, the constraints imposed by large-scale features on near-surface winds are strong enough to make 
bias correction unnecessary. The Weibull quantile mapping and the quantile percentile method produced the 
lowest errors, however the latter preserved bi-modality. The mean state, linear scale, and quantile mapping 
Rayleigh methods produced the highest errors in 72% of the cases examined. Analysis of ERA5 revealed the 
dependence of its ability to reproduce the capacity factors on the conditions around the site. Bias correction 
alters the probability distribution’s shape, significantly impacting CF estimates through its interaction with the 
power curve.
1. Introduction

Numerical weather prediction models and related datasets, such 
as reanalyses, are widely accepted and used means of advancing the 
implementation of the global energy transition, as they constitute an 
important source of meteorological data (wind speed, solar radiation, 
temperature). In particular, the wind energy sector uses data from 
reanalysis and mesoscale simulations to evaluate the local and re-
gional potential for power generation [1]. These models are also a 
powerful tool for examining resource complementarity [2], forecast-
ing resources [3], and the effects of global climate change [e.g. 4]. 
However, a crucial stage for numerical model data to be useful is its 
validation against observations from different sources, such as in-situ 
observations from tower masts and buoys [5], remote-sensed data from 
lidars and satellites, or by comparing different reanalyses against each 
other.

The accuracy of numerical models largely, but not solely, depends 
on their resolution, as this determines the range of physical and dy-
namical processes that can be represented. However, regardless of 
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model resolution, an important caveat is the omnipresence of biases in 
model output, even when this output might correlate well with obser-
vations. In reanalysis data, bias effects manifest as an underestimation 
of resources, which can be linked to the reanalyses’ coarser spatial 
resolutions [6]. High-resolution products, such as COSMO-REA6 [7], 
have been shown to better represent power output [8]. However, over-
estimation is generally present in mesoscale simulations such as those 
produced using the Weather Research and Forecasting model (WRF), 
due to the limitations of the model in reproducing physics caused by 
complex topographic conditions, land use, or the oversimplification of 
physical processes [9,10]. In fact, previous studies have shown that the 
best resource estimates were made when the analyses were performed 
on flat terrain or offshore [11,12].

Biases arise due to several reasons, such as insufficient spatial 
resolution to accurately resolve physical processes and simplified as-
sumptions and uncertainty in the parametrizations that are used to 
represent those missing processes [13]. Errors in numerical models 
in the evaluation of wind resources represent an important aspect of 
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wind power estimation because power production is a highly nonlinear 
function of wind speed. This characteristic amplifies the error when 
calculating wind power, making bias correction a crucial aspect for 
assessing the wind power potential.

One strategy to improve model reliability is to implement bias 
correction methods, which consist of the statistical correction of model 
data aiming at reproducing the observed statistics for a given variable. 
In the case of the wind energy sector, bias correction is an attempt to 
better represent wind conditions without complex model modifications 
and therefore with low computational cost. Generally, wind speed is 
bias corrected and then a power curve is used to map wind speed into 
power output. Alternatively, directly correcting for biases in the esti-
mated power output is also possible [e.g. 14]. However, this approach 
relies on the availability of power output observations, which can be 
more difficult to obtain than wind speed observations and therefore this 
approach is not always feasible.

The importance of bias correction for wind resource assessment 
has been discussed in various studies at continental and national lev-
els [8,15], which have shown that it is only after bias correction 
that estimations of capacity factor are realistic. However, the quality 
of the results has been found to highly depend on the location of 
the site at which power output is to be estimated [15]. Furthermore, 
bias correction can lead to mixed results. For example, when using 
high-resolution data from the Global Wind Atlas to correct biases in 
reanalyses such as ERA5 it is found that the impact is either null or 
detrimental [16].

There are several options to correct for bias in a dataset. These 
options range from simple methods such as mean-state correction [e.g., 
4] to sophisticated methods such as quantile mapping [17]. Given 
the variety of bias-correction options several questions arise regarding 
which method is the most suitable to achieve an accurate estimate of 
wind power: whether it is sufficient to correct for a central statistical 
value, to apply a correction factor based on statistical parameters [18], 
or whether it is necessary to correct higher-order statistics, as suggested 
by quantile mapping methods [17]. Previous studies have found that 
most sophisticated bias correction methods, such as quantile mapping, 
perform generally well [19]. However, the method’s performance qual-
ity can vary widely depending on factors such as the complexity of the 
terrain [15].

Bias correction methods require a training period before being 
suitable for application to a full dataset. The training period is defined 
by the availability of observations. Of course, for climate change studies 
observations are only available for present-day climate. Thus, a sep-
arate question is whether it is valid to assume that a bias correction 
method, trained on observations of the present-day climate, can be used 
on the climate model output for future climate projections.

In this work we will assess five bias-correction methods, namely 
mean-state correction, which only corrects the mean of the biased 
dataset; linear scale correction, which corrects the mean and the vari-
ance of the biased dataset, and three implementations of quantile 
mapping, the first one based on the assumption of underlying Weibull 
distributions [20], the second based on the assumption of underlying 
Rayleigh distributions (as a particular case of the Weibull distribution), 
and the third based on the empirical cumulative distribution functions 
of the observed and modeled data [21]. These five bias-correction 
methods were applied to estimate wind power capacity factors using 
ERA5 and WRF simulations. These models were chosen because the 
ERA5 reanalysis dataset demonstrates fewer discrepancies compared 
to the experimental data [16]. Furthermore, enhancing resolution typ-
ically leads to improved wind speed modeling, making the selection of 
WRF appropriate for this analysis [22].

In this paper we assess the performance of these five bias-correction 
methods applied to estimations of wind speed and capacity factor from 
a reanalysis and a series of bespoke WRF simulations. The assessment is 
carried out using four metrics using, as reference, in-situ observations 
from thirty towers located across Mexico and annual wind power 
production reported for southeast Mexico. Mexico is characterized by 
a wide diversity of terrain complexities ranging from mountainous to 
2 
coastal regions, including two peninsulas. Thus, by taking advantage of 
these diverse orographic conditions, rather than the plain assessment of 
these methods the aim of the paper is to answer the following question: 
Can the performance of a bias correction method be expected to be 
uniformly maintained temporally and spatially? To answer the first 
part of the question, i.e. temporal homogeneity, we study whether, for 
specific locations, the annual bias-correction parameters are consistent 
throughout several years. To answer the second part of the question, 
i.e. spatial homogeneity, we investigate the relationship between oro-
graphic complexity and error after a bias correction method has been 
applied.

The remainder of this paper is organized as follows. The reanalysis, 
WRF simulations, and observational data used to perform the analyses 
are described in Section 2. The methodology is described in Section 3. 
Section 4 presents the results of the study. The results are discussed in 
Section 5, where conclusions are also drawn.

2. Data

Four primary data sources were used: (1) wind speeds from anemo-
metric masts, (2) ERA5 wind speeds and subgrid-scale orography, (3) 
interpolated wind speeds from the mesoscale numerical model, WRF, 
and (4) annual wind farm capacity factors. In addition, three wind 
turbine power curves were selected to reproduce the power output and 
capacity factor from biased and biased-corrected wind speeds. All the 
wind speed data used in this study had an hourly resolution.

2.1. Observed data

2.1.1. Wind speed observations
This study used 30 anemometric masts located throughout Mexico. 

The observed data from these stations were obtained from two different 
projects: the ‘‘Mexican Wind Atlas’’ (AEM, by its Spanish acronym), 
whose data covered 2018 and 2019 [23], and the ‘‘Wind Project’’ [24], 
whose data were measured for at least a year between 2006 and 2007. 
The objective of both initiatives was to deliver high-caliber information 
aimed at promoting wind energy sector development, thus leading 
to the selection of unobstructed open landscapes. Additionally, the 
National Institute of Electricity and Clean Energy (INEEL) ensured the 
quality control of data, as it was accountable for both projects. Forty-
meter tall masts were equipped with a calibrated anemometer and vane 
at 20 m and 40 m, using the 40 Maximum model. The 80-m tall masts 
featured calibrated Wind sensor P2546A-OPR anemometers installed at 
20, 40, and 60 m, with vanes positioned at 58 and 78 m. Additionally, 
two anemometers were installed at the 80-m height. Table  1 presents 
the names of the measurement stations, acronyms, heights at which the 
anemometers were located, years, and regions. Thus, data reliability 
was ensured by redundant measurements. Fig.  1 shows the locations of 
the anemometer masts.

In addition, time series of wind speed observations were obtained 
from an instrument co-located with a wind turbine with a hub height 
of 80 m in Mexico’s southeast region. All data were measured and 
recorded as 10-min means.

2.1.2. Annual wind farm power production
The most recent freely available reported data on wind farm gen-

eration in Mexico were used to compare wind power production. The 
Energy Secretariat [25,26] reports data corresponding to the installed 
capacity and annual production of wind farms for 2016 and 2017. This 
information was used to estimate the annual Capacity Factor (CF) of 
each wind farm.
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Fig. 1. The location of the anemometer masts (red dots). For further analysis, the masts are grouped by regions, delimited by red squares. The code names for these regions are 
given in bold fonts.
Table 1
Measurement stations, name, acronym, height, year, and region.
 Name Acronym Height (m.a.g.l.) Year Region 
 La Rumorosa BCN1 20, 40, 60, 80 2018, 2019 BCA  
 El Paso BCS1 15 2006 BCS  
 San Hilario BCS2 15 2006 BCS  
 Bahía Tortugas BCS2 20, 40 2006 BCS  
 Los Mochis SI01 20, 40 2006 NOR  
 Cuauhtémoc CH01 20 2005 NTE  
 Samalayuca CH02 16 2005 NTE  
 Villa Ahumada CH03 15, 30 2006 NTE  
 Samalayuca II CH04 15, 30 2006 NTE  
 Cd. Cuauhtémoc CH05 20, 40, 60, 80 2018, 2019 NTE  
 Cieneguillas ZC01 20, 40 2005 OCC  
 La Virgen ZC02 20, 40 2007 OCC  
 Ojuelos JAL1 20, 40, 60, 80 2018, 2019 OCC  
 Los Naranjos TM01 20, 40 2006 NES  
 Fco. Villa TM02 20, 40 2006 NES  
 San Fernando TM03 20, 40, 60, 80 2018, 2019 NES  
 Barra de Coyuca GR01 10 2006 ORI  
 Pastejé EM01 10 2006 ORI  
 Cerro Pelón HG01 20, 30 2005 ORI  
 Alchichica PB01 20, 40 2005 ORI  
 Tepexi PB02 20, 40, 60, 80 2018, 2019 ORI  
 Perote VZ01 20, 40 2006 ORI  
 Punta Delgada VZ02 20, 40 2006 ORI  
 La Ventosa OA01 20, 40 2006 ORI2  
 Cd. Ixtepec OA03 20, 40 2007 ORI2  
 CERTE OA04 20, 40, 60, 80 2018, 2019 ORI2  
 La Venta LV01 15, 32 2005 ORI2  
 El Progreso CI01 20, 40 2006 ORI2  
 Sisal YC01 20, 40 2006 PEN  
 Mérida YC02 20, 40, 60, 80 2018, 2019 PEN  

2.2. Reanalysis data

The reanalysis data selected for the analysis was ERA5 [27], the 
most recent reanalysis product by the European Center for Medium-
Range Weather Forecasts (ECMWF), because of its high resolution and 
documented effectiveness in reproducing wind speeds [28]. ERA5 has 
a horizontal spatial resolution of 30 km, 137 levels from the surface up 
to a height of 80 km, an hourly output frequency, and data availability 
from 1950 to the present five days in real time [29]. The main variables 
used in this reanalysis were the wind speed at a height of 100 m, 
calculated from the zonal and meridional components, and the slope 
of the subgrid-scale orography, defined as the ratio of the change in 
3 
elevation to the change in horizontal position [30]. Only data over 
Mexico were extracted from the ERA5 database, which corresponds to 
a spatial domain between 80◦W and 120◦W zonally, and between 10◦N 
and 35◦N meridionally.

2.3. Simulated data

The WRF model [31] version 4 was used to model wind speeds 
in the same period and location as the observational data from the 
wind turbine in the southeastern region of Mexico [32]. WRF is an 
open-source atmospheric modeling system from the National Center for 
Atmospheric Research (NCAR). It uses compressible, non-hydrostatic 
Euler equations [33] using terrain-following vertical coordinates based 
on pressure. The National Centers for Environmental Prediction Final 
Operational Global Analysis (NCEP-FNL), with a horizontal resolution 
of approximately 110 km and 26 vertical levels, was used to specify 
the lateral boundary conditions and initial conditions. The simula-
tions were conducted at the location of a wind turbine located in the 
southern-east region of Mexico. using four nested domains with the 
following horizontal resolutions: 75 km (these results were not used 
because the output data were not hourly), 15 km (labeled WRF2), 3 
km (labeled WRF3), and 1 km (labeled WRF4). The parametrization 
settings used here are the same as those in Hernández-Yepes et al. [32], 
where further details can be found.

2.4. Wind turbines power curves

Three wind turbines power curves were chosen to calculate power 
production: Acciona AW70-1.5 MW, Gamesa G80-2 MW, and Vestas 
V90-2 MW. These are the most popular wind turbine models in Mex-
ico [15] and are used as benchmarks to simulate wind power output 
and CF. The height of the hub was set at 100 m when using ERA5; 
however, when the WRF analysis was performed, it was set at 80 m, 
i.e., at the nominal height of the WRF wind speed data.

3. Methodology

Before carrying out any bias-correction assessment, the observa-
tional and numerical data were post-processed to have both datasets 
on the same location and the same temporal resolution, as follows: 
ERA5 velocities 𝑢 and 𝑣, were used to estimate wind speeds, then was 
bilinearly interpolated from its native grid to the location of each mast. 
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Fig. 2. Flow chart illustrating the methodology followed in this paper.

Then, the anemometric data were extrapolated to a height of 100 m to 
coincide with the nominal height of the ERA5 wind speed data. Finally, 
the observational wind speed data was resampled by estimating 1 h 
mean from the original 10-min temporal resolution to ERA5’s hourly 
resolution.

Once the observational and numerical data were co-located both 
spatially and temporally, we performed the following three-stage analy-
sis. The first stage consisted of a comparison between the ERA5-derived 
data (wind speed and CFs) and the observations of wind speed and 
CFs computed with the observations assuming the presence of a wind 
turbine at the masts’ locations. For this part of the analysis we used 
three different error metrics: mean absolute error (MAE), symmetric 
mean absolute percentage error (sMAPE), and root mean square error 
(RMSE). For this comparison ERA5 data were used without any bias 
correction and then bias-corrected using five different methods. Bias 
correction was applied to the ERA5 data corresponding to each station’s 
location and for the year when observations are available at each 
location, as listed in Table  1.

For the second stage of the analysis, we assessed the effectiveness 
of using the same bias-correction parameters in two consecutive years, 
using the first year for training the bias correction method and the sec-
ond to verify it. The persistence of the yearly adjustment parameters for 
the AEM data was evaluated by analyzing the locations with two years 
of available data corresponding to 2018 and 2019. Once parameters 
were obtained to correct the ERA5 data during 2018, hereafter referred 
to as ERA5-2018, the same correction was applied to the ERA5 data 
corresponding to 2019, hereafter referred to as ERA5-2019, to study 
bias-correction parameter persistence. The power curves for the three 
selected wind turbines were then used to estimate CFs of the bias-
corrected and non-bias-corrected ERA5-2018 data, and the observed 
data of CF AEM 2018.

The third and final stage of the analysis consisted of applying the 
most successful bias-correction methods to the output of the bespoke 
WRF simulations. Bias correction methods were also applied to the 
WRF simulation output and ERA5-2016 data set using the observed 
data set for the location of CI01. In this analysis stage, we will study 
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the reproduction of CFs with error metrics, such as the 2018 data. 
Furthermore, Pearson’s correlation coefficient (𝑟) is estimated for bias 
and non-bias corrected (NBC) datasets with observational datasets for 
two primary purposes: to analyze the accuracy of ERA5 and WRF when 
reproducing raw wind speed data and the effects of bias correction 
methods in improving their accuracy, and to analyze its relationship 
with terrain complexity using the slope of subgridscale orography. A 
particular case of the preservation of data bimodality is part of this 
analysis.

Through the error metrics, bias correction methods with better per-
formance in reproducing wind power output in the verification analysis 
were selected and studied in further detail by comparing their results on 
ERA5-2019 data and 2019 observational data through the Kolmogorov–
Smirnoff (K–S) test. For the K–S test, we used a confidence level of 95%, 
and the null hypothesis was that the observed data distribution was 
the same as the reanalysis data for each case: when bias-corrected and 
when non-bias-corrected, the alternative hypothesis states otherwise. 
Using this test, we obtained the differences between the observed data’s 
Cumulative Distribution Function (CDF) with the bias-corrected data’s 
CDF for each method and the CDF of the non-biased corrected data. 
Finally, the selected methods were applied to ERA5-2016 and ERA5-
2017 for specific sites (JAL1 and OA04) that were chosen because 
of their proximity to wind farm locations that have the most recent 
and freely available wind power reported data (2016 and 2017 annual 
data) for comparison of capacity factor reproduction. A flow chart that 
summarizes the methodology is presented in Fig.  2.

4. Theory — Bias correction methods

In this work we set to evaluate three bias correction methods: 
Mean state correction, linear scale correction and quantile mapping 
correction. The latter is implemented in two different ways, namely by 
empirical percentiles and by assuming Weibull distributions for both 
the observed and biased data. The BC methods selected to develop the 
analysis are described in this section.

4.1. Mean-state correction

The mean-state correction (MSC) method, Eq. (1), is possibly the 
simplest correction method in which the raw probability distribution 
function (PDF) is translated by the difference between the mean of the 
biased PDF and that of the observed PDF. The corrected data (𝑤1) is 
then given by 
𝑤1 = 𝑤𝑏 − 𝜇𝑏 + 𝜇𝑜, (1)

where 𝑤𝑏 is the biased data, and 𝜇𝑜 and 𝜇𝑏 are the mean of the observed 
and biased data, respectively [16,34].

4.2. Linear scale correction

Like MSC method, the linear scale correction (LSC) method, Eq. (2), 
corrects the mean of the biased PDF to that of the observed PDF, but 
also modifies higher order moments. In the LSC the corrected data (𝑤2) 
is given by 

𝑤2 =
𝜇𝑜
𝜇𝑏

(𝑤𝑏), (2)

where 𝜇𝑜 is the mean of the observed data set and 𝜇𝑏 is the mean of 
the biased data [18]. This distribution is shown to be equivalent to 
a quantile mapping correction based on the Rayleigh distribution in 
Section 4.3.3.

4.3. Quantile mapping

Quantile mapping (QM) is a more sophisticated method in which in 
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theory every moment is corrected by mapping the biased PDF onto the 
observed PDF. In general, the QM corrected data (𝑤3) can be expressed 
as Eq.  (3)
𝑤3 = 𝐹−1◦𝐹𝑏(𝑤𝑏), (3)

where 𝐹𝑏 is the biased data CDF and 𝐹−1 is the inverse of the observed 
data CDF [17]. Here, we discuss three QM implementations, i.e, by 
empirical percentiles and by assuming Weibull or Rayleigh distributions 
for both the observed and biased data, demonstrate that the latter is 
equivalent to the LSC method.

4.3.1. Quantile mapping by empirical percentiles (QMP)
This method calculates the percentiles of the biased and observed 

data to obtain the difference between them two. This can be expressed 
as 
𝛥𝑤 = (𝐹−1[𝑃 ]) − (𝐹−1

𝑏 [𝑃 ]), (4)

in Eq.  (4), 𝑃  is the result of applying the cumulative distribution 
function (CDF) to its corresponding observed data. From each per-
centile, the corresponding quantile is located in each biased data and 
an interpolation is performed between the closest percentiles to each 
quantile to assign the correcting difference so that the corrected data 
(𝑤5) is given by 

𝑤5 = 𝑤𝑏 + 𝛥𝑤. (5)

In this way, the correction factor, given by the expression (5), is applied 
to each biased data point according to its quantile [21].

4.3.2. Quantile mapping via Weibull distribution (QMW)
For this bias correction method, a Weibull distribution, Eq. (6), is as-

sumed for both the observed and biased data. The Weibull distribution 
has CDF given by 

𝐹 (𝑥) = 1 − exp
[

−
(𝑥
𝑐

)𝑘
]

(6)

for 𝑥 ≥ 0, where 𝑐 is the scale parameter and 𝑘 the shape param-
eter [13]. Therefore, the QMW corrected data (𝑤6) is given by the 
expression (7), 

𝑤6 = 𝐹−1(𝐹 (𝑤𝑏)) = 𝑐𝑜

(

𝑤𝑏
𝑐𝑏

)𝑘𝑏∕𝑘𝑜
, (7)

where 𝑐𝑜 and 𝑘𝑜 are the scale and shape parameters derived from the 
observed data, and 𝑐𝑏 and 𝑘𝑏 are the scale and shape parameters derived 
from the biased data.

4.3.3. Quantile mapping via Rayleigh distribution (QMR) - Equivalence 
with LSC

The CDF of the Rayleigh distribution is given by 

𝐹 (𝑥) = 1 − exp
(

− 𝑥2

2𝛼2

)

, (8)

where 𝛼 is the scale parameter. The Rayleigh distribution, Eq. (8), is 
a special case of the Weibull distribution, Eq. (6), in which 𝑘 = 2 and 
𝑐 =

√

2𝛼. Therefore, using (7) the QMR corrected data (𝑤7) is given by

𝑤7 =
𝛼𝑜
𝛼𝑏

𝑤𝑏, (9)

where 𝛼𝑜 and 𝛼𝑏 are the Rayleigh scale parameters derived from the 
observed and biased data, respectively.

The mean of a random variable distributed following a Rayleigh 
distribution is 𝜇 = 𝛼

√

𝜋∕2. Therefore, the ratio 
𝜇𝑜
𝜇𝑏

=
𝛼𝑜
𝛼𝑏

. (10)

Using (10) in (9) and comparing this to (2) proves that the LSC method 
and QMR are equivalent.
5 
5. Results

5.1. Orography analysis

Bias correction is not expected to have an effect on the correlation 
between simulated and observed data beyond the effects due to sample 
size. Therefore, for applications that depend on event timing, such 
as expected production periods or ramp occurrence, the correlation 
between modeled data and observations needs to be high a priori, with 
bias correction being applied to capture the intensity and duration 
of the event. We have performed an analysis of the dependence of 
the correlation between observations and NBC data and orographic 
complexity. Orographic complexity is here defined simply as the sub-
grid scale orography slope (SGOS) from ERA5 at the location of a 
given station [35]. The local orographic complexity is computed by 
linearly interpolating the SGOS to each station’s horizontal coordinates. 
The SGOS exhibits a clear correlation with Mexico’s orography, with 
the main mountain ranges such as the Sierra Madre Occidental, Sierra 
Madre Oriental, Sierra Madre del Sur, Sierra Madre de Chiapas, Sierra 
Madre de California, and the Trans-Mexican Volcanic Belt, as well as 
the vast flat region of the Yucatán Peninsula (see Fig.  3(a)).

The relationship between the SGOS and the Pearson correlation 
coefficient between observed and NBC data is shown in Fig.  3(b). The 
plot is dominated by a near-linear relationship flanked for emphasis 
by the two red dotted lines. Most stations fall within this section of 
the plot highlighting a clear linear anti-correlation between the model-
observations correlation and the complexity of the terrain. However, 
there are two notable additional sections in this plot: The first one 
is given by the stations exhibiting low correlation coefficient despite 
having low orographic complexity. These stations are mostly located 
in the Yucatán or Baja California peninsulas or near the coast within 
the Gulf of California. The wind at these stations is difficult to represent 
accurately by the low-resolution numerical model upon which ERA5 is 
based [15]. The second notable section in the plot is given by stations 
displaying high correlation coefficient despite having high orographic 
complexity. These stations are mostly located in the Chivela Pass and 
the Gulf of Tehuantepec, which is a region where the low-level large-
scale atmospheric circulation is strongly constraint by the presence of 
large-scale orography [36].

These results show that ERA5 can accurately reproduce sites that 
are influenced by large-scale surrounding orography and its interaction 
with large-scale circulation (e.g., stations within the Chivela Pass with 
correlation values above 0.8) as it can reproduce the strong northerly 
gap winds across the Chivela Pass that originate from the pressure 
gradient produced mainly by the increase in pressure in the Gulf of 
Mexico as cold air masses move southward from the North American 
Great Plains [37]. On the contrary, it struggles to represent wind 
speeds around topographic features of high spatial variability, such 
as mountain chains (e.g., stations in the Trans-Mexican Volcanic Belt, 
with correlation values ranging below 0.7 to 0.4) and rapid contrasting 
transitions between land and sea (e.g., stations at the Peninsulas). Fur-
thermore, the inverse relationship between the correlation coefficient 
and slope of the subgrid-scale orography provides a good indicator for 
understanding the capacity of the model to reproduce the wind speed 
according to this local surface characteristic. However, other variables 
(e.g., terrain type, vegetation, terrain variability, and roughness length) 
could also influence air fluxes and boundary layer development. These 
conclusions are consistent with the results found using MERRA2 [15], 
and indicate a systematic feature of global reanalyses.

5.2. ERA5 reliability

The sMAPE for CF using ERA5 for the years corresponding to the 
mast data and the power curve of Vestas V90 is shown in Fig.  4. The 
columns in the figure correspond to different bias correction methods, 
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Fig. 3. Orographic complexity. The color code represents the same regions in both plots: blue-ORI, purple-ORI2, fuchsia-BCS, pink-BCA, cyan-NOR, light brown-PEN, dark brown-
NTE, red-NES, green-OCC.
with the non-corrected data (NBC) appearing in the first column; the 
rows correspond to different mast locations.

The mast locations are organized so that masts in a given region 
appear in rows next to each other. Error sMAPE values are color-
grouped to identify high values in blue and lower in yellow. In orange, 
the maximum error among methods per site is highlighted. From 
these results, the bias-correction methods can be separated into two 
groups according to the magnitude of the sMAPE. The MSC and LSC 
methods constitute the high error group, which concentrates 72% of the 
maximum error values between methods. The other two bias-correction 
methods constitute a second group with all the methods leading to 
an error reduction. While we only show the results using sMAPE, the 
analysis was carried out with all three error metrics with all of them 
leading to similar conclusions.

Regarding the regions the masts are located in, it is noticeable 
that there are two regions that exhibit relatively low error (in yel-
low) even without bias correction. These regions are ORI2, located in 
southeast Mexico in the Isthmus of Tehuantepec, and NES, located in 
northeast Mexico at the border with the USA on the Gulf of Mexico 
(cf. Fig.  1). These regions have been highlighted previously for their 
high wind resource potential [38]. Even for these regions applying the 
MSC method appears detrimental. By contrast there are other regions 
such as ORI, located in central Mexico, and BCA, located in northwest 
Mexico bordering the USA, which exhibit the largest error (above 142) 
before bias corrections. These regions are characterized by an intricate 
topography, including mountain ranges and sharp land-sea contrasts, 
which is difficult for a relatively low-resolution global reanalysis to 
describe accurately. Application of any of the bias correction methods 
investigated in this paper, apart from MSC, in these regions has a clear 
beneficial effect in terms of reduction of error.

In Fig.  5, the wind speed histograms of observed (black line), NBC 
(yellow), QMP (blue), MSC (green) and QMW (red) from the 2018 
masts OA04 and TM03 are presented to analyze the effect of corrections 
on the probability distribution. This figure shows the typical behavior 
observed. The MSC method (green histogram in Fig.  5(a)) on mast 
OA04 2018 displays a lack of low wind speeds that are not in line with 
reality, which explains the set of higher error scores of this method.

Fig.  5(b) shows the importance of implementing a correction
method, where a model bias underestimate is evident and an out-
standing similarity is observed for the percentile method and the 
experimental data.

Using the sMAPE results we have shown that the methods that 
lead to better results are the QMP, QMW and LSC (QMR) methods. 
Therefore, these methods were further studied using the Kolmogorov–
Smirnov test. With this test, we quantify the difference between the 
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CDF of the observational data and the CDF of the nonbias-corrected 
data, as well as for the CDF of the bias-corrected data for each bias 
correction method. The null hypothesis states that the two samples 
being compared are drawn from the same distribution, whereas the 
alternative hypothesis states otherwise.

The results show that the bias correction methods improved the 
data correction by showing a smaller difference between their CDF and 
the CDF of the observed data than between the CDF of the observed 
data and the uncorrected data. Furthermore, if the 𝑝-value is less than 
the significance level (𝛼 = 0.05) the null hypothesis is rejected, which 
occurs in all cases. Hence, even though the distributions are not consid-
ered equal, it is concluded that the bias correction methods improve the 
fit of the data by decreasing the difference in the resulting CDFs with 
the CDF of the observational data compared with the uncorrected data. 
However, these performances are not guaranteed to be the same for ev-
ery year because, as shown in the next section, in which the correction 
coefficients extracted from 2018 data are applied to the 2019 data.

5.3. Interannual bias correction parameter persistency

This part of the analysis was only applied to the seven locations 
of the AEM for which data was available for 2018 and 2019. Bias 
correction methods were applied to ERA5-2019 data for the AEM 
sites using the correction coefficients extracted from ERA5-2018 to 
assess the interannual persistence of bias correction parameters. Three 
locations (OA04 2019, BCN1 2019, and PB01 2019) are selected to 
illustrate the results. The corresponding histograms for NBC (yellow), 
QMW (red), and QMP (blue) are shown in Fig.  6. OA04 2019 illustrates 
bimodal behavior preservation; it appears that if the previous year has 
bimodality, it is preserved; however, this effect is observed only in one 
location. The histogram may overlap the observations for BCN1 2019 
and PB02 2019; therefore, there is no clear evidence that the annual 
parameters persist. Therefore, further research is needed to explore the 
persistence of these parameters over time.

CF analysis showed an improvement in similarity with the previous 
year in BCN1, JAL1, OA04, TM03, and YC02; error statistics decreased 
when estimating CF with all bias correction methods. However, the 
calculated correction values were not equal to those estimated using 
the 2019 data. Therefore, considerable uncertainty arises regarding the 
persistence of the annual correction parameters.
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Fig. 4. sMAPE for non-corrected (NBC) and bias-corrected data using ERA5 and the power curve corresponding to Vestas V90. The orange square indicates the maximum error 
values for each location among method.

Fig. 5. Histograms of OA04 2018 and TM03 2018 sites to illustrate the effects of BC. For OA04 2018, the MSC showed a gap between zero and minimum values that were not 
consistent with the real data. In the case of TM03 2018, all BC methods overlapped histograms, and the necessity of correcting the data was evident.
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Fig. 6. Histograms for non-corrected data, observations, QMW (QM inv Weibull) and QMP (Percentiles BC) for stations (a) OA04, (b) BCN1 and (c) PB02. The bias correction 
methods were applied on data from 2019 using coefficients from 2018.
Fig. 7. Histograms of (a) CI01 2006 and (b) LV01 2005 for NBC (yellow), QMW (red), QMP (blue), and observed data (black line).
5.4. Bimodality

Some of the studied locations showed the presence of bimodality 
in their wind speed PDFs. This section demonstrates the effects of cor-
recting data from a bimodal distributed dataset. The histograms of CI01 
2006 and LV01 2005 are presented for NBC (yellow), QMW (red), QMP 
(blue), and observed (black line) in Fig.  7. The same underestimation 
effect was observed between the NBC and observations. In addition, 
it was observed that the bimodality behavior was lost when the bias 
correction method was applied, except for the QMP method. This lat-
ter substantially improves the similarity with observations, preserving 
bimodality.

This study showed that only the QMP method could replicate 
bimodality. In addition, it can replicate distributions for most sites 
and deliver better error statistics results than the QM Weibull bias-
correction method. Thus, it is the most effective method for correcting 
the reanalysis when observational data are available.

5.5. WRF analysis

A WRF analysis compared the outputs of three model resolutions 
supplemented by the ERA5-2016 dataset. The focus was on assessing 
the error index using the five BC methods. Fig.  8 illustrates that the 
QMP method yielded the most accurate CF estimates for all three 
turbine models and spatial resolutions. Moreover, the QMP approach 
at the 1-km grid-spacing resolution (WRF4) had the lowest error rate, 
which was less than 0.153% for all three wind turbines analyzed. 
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However, while the linear-scale and QM Rayleigh distribution methods 
produced more consistent and precise approximations of the real ca-
pacity factor than the NBC data across various resolution outputs, the 
QM percentile method was the most precise for correcting the data.

The QMW method outperforms LSC (QMR) method for WRF3 spatial 
resolution. However, the MSC method performed poorly in all cases, 
resulting in capacity factor value errors of 93.7%, 92.9%, and 91.3% 
for the AW70, G80, and V90 wind turbines, respectively.

For all bias correction methods, the output of WRF3 showed similar 
or slightly higher error results than WRF4. This is also reflected in 
the Pearson correlation coefficient results for wind speed (see Fig.  9), 
where WRF3 had higher correlation coefficients than any other spatial 
resolution for every bias-correction method. In general, the raw outputs 
of the WRF model and ERA5-2016 reanalysis showed that WRF3 with 
a 3 km grid size had the most accurate reproduction of wind speed. 
As the grid size increased, the correlation decreased slightly, which is 
consistent with the findings of Hernández-Yepes et al. [32].

5.6. Capacity factors analysis

In Section 5.3, the precision of different bias correction methods 
was tested in reproducing observational data CFs for a training year 
(2018) and on a verification year (2019), resulting in the verification 
year that the best bias correction methods are QMW, QMR and QMP. 
Therefore, they were selected for the final analysis. This section de-
termines whether these selected bias correction methods can improve 
wind power output on ERA5 reanalysis data by comparing their results 
at the same sites with reported CFs.
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Fig. 8. WRF and ERA5-2016 spatial resolutions comparison on CF reproduction of observed, NBC and bias corrected data with each method, for the three selected wind turbines.
Fig. 9. Wind speed’s Pearson correlation coefficients for each WRF spatial resolution 
and ERA5-2016 between observed data and both, the non bias corrected and each 
method’s bias corrected data.

OA04 and JAL1 are the specific sites of this analysis because of 
their proximity (within a distance of 50 km) to wind farm locations 
with the most recent and freely available wind power reported data, 
corresponding to 2016 and 2017. For OA04 in 2017, the available 
reported data corresponded to 10 wind farms, and in 2016 nine wind 
farms. For JAL1, only the reported data of one wind farm was used for 
2016 and 2017.

The selected bias correction methods were applied to the ERA5-
2016 and ERA5-2017 datasets of the two stations to remove biases 
and obtain annual CF. Only the results of the V90-2 MW wind turbine 
are shown because of the similar behavior among the turbines. Fig.  10 
shows a reduction in the underestimation by applying bias correction 
methods even on highly correlated sites, reaching a slight overestima-
tion when using the QM percentile method on 2017 data. For the 2016 
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results, overestimation never occurred, but only underestimation was 
reduced when bias correction methods were applied. The variation be-
tween ERA5 and reported CFs could be attributed to a few factors, such 
as the wind farms and geographical locations of measurement stations, 
different power curves of various wind turbine models, varied hub 
heights for each wind turbine model, and the overlooking of generation 
intermittency on reanalysis CFs. This effect can be explained by the 
displacement and deformation of the biased PDF towards the observed 
PDF (not shown). As this happens, the corrected PDF penetrates deeper 
into the transition and rated zones of the power curve, effectively 
increasing the total estimated power.

Two different contrasting behaviors can be observed from these 
results: for the OA04 station, the three bias correction methods overes-
timate CFs for both years, the minimum and maximum measured CFs 
are much lower than the calculated CFs (see Table  2), whereas a minor 
difference is found between measured and calculated CFs when NBC 
data are used as results round on similar values (noticeable in Fig.  10); 
for JAL1 station, a better approximation is appreciated when correcting 
data rather than when not. The orography of the site influenced our 
examination of the impact of capacity factors on the accuracy of the 
reanalysis in reproducing the wind data. In addition, bias correction 
methods tend to enhance the wind speed values, which results in an 
overestimation of highly correlated sites, as shown in OA04.

To apply bias correction, it is recommended to consider the overes-
timation of wind power output connected to each site’s PDF. The focus 
should be on how the bias correction impacts the tail of the PDF, which 
enters the power curve, especially in the transition zone, where the 
cubic wind speed domains. This factor has the most significant impact 
on capacity factor reproduction.

6. Conclusions

The correct wind speed biases depend on the specific conditions 
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Fig. 10. Annual capacity factors of ERA5 for NBC data and bias corrected (BC) data by each selected method, with reported CFs from near wind farms for 2016 and 2017.
Table 2
Calculated capacity factor for OA04 with NBC data and bias corrected data with the 
three selected bias correction methods, minimum and maximum CF values of measured 
data of 2016 and 2017 for this station.
 Year CF calculated CF reported
 NBC QM percentiles QM Weibull QM Rayleigh Min Max  
 2016 0.452 0.618 0.592 0.594 0.271 0.524 
 2017 0.412 0.587 0.590 0.588 0.165 0.429 

of each site. Based on the local orographic features, we can observe 
regional behavior that correlates with the model’s raw wind speeds 
and observations. This behavior indicates the accuracy of the model in 
representing wind speed, which can help identify when to perform bias 
correction for a more accurate wind power output. There are, however, 
cases in which bias correcting might not be necessary or might be 
superfluous. Bias correction might not be necessary when the surface 
wind patterns are largely determined by the interaction between the 
large-scale circulation and large-scale orographic features (e.g. Chivela 
Pass). Bias correction might be superfluous in cases in which even the 
large-scale circulation is not represented sufficiently accurately to serve 
as a constraint to the near-surface wind patterns (e.g. Baja California 
Peninsula).

All bias correction methods, except for the mean state method, 
improved the reproduction of the CF values in both the ERA5 and 
WRF models. The quantile mapping percentile method demonstrated 
exceptional performance for both models, effectively reproducing bi-
modal behavior and leading to more accurate CF approximations with 
minimal errors.

Bias correction methods improved the consistency between the 
reanalysis and observation CF. QMW and QMR (LSC), although the 
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improved wind CF estimations are limited when applied to a bimodal 
dataset, this characteristic is lost. However, the effectiveness can vary 
by year, and more observational data are needed for specific regions. 
Nevertheless, high-quality data can improve bias correction methods, 
which are crucial for the expected climate change effects.

The analysis from the WRF indicates that using a 3 km grid offers 
an outstanding balance between precise wind dynamics and compu-
tational resources. The accuracy of the results is comparable or even 
superior to using a 1 km grid. This indicates that downscaled simu-
lations can be highly effective in obtaining detailed wind speed data 
unavailable through global reanalysis.

Additionally, bias correction can lead to more accurate wind energy 
production estimates, making it particularly useful for locations with 
strong wind potential. Regarding CF, an overall decrease in the error 
metrics for wind power reproduction when applying bias correction 
methods was observed; these error metrics may be associated with the 
interaction between the PDFs shape and the wind turbine power curve.
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