

Time-varying global energy budget since 1880 from a new reconstruction of ocean warming

Article

Accepted Version

Wu, Q. ORCID: <https://orcid.org/0000-0002-0686-8922>,
Gregory, J. M. ORCID: <https://orcid.org/0000-0003-1296-8644>,
Zanna, L. and Khatiwala, S. (2025) Time-varying global energy budget since 1880 from a new reconstruction of ocean warming. *Proceedings of the National Academy of Sciences of the United States of America*, 122 (20). e2408839122. ISSN 1091-6490 doi: 10.1073/pnas.2408839122 Available at <https://centaur.reading.ac.uk/122225/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1073/pnas.2408839122>

Publisher: National Academy of Sciences

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 Time-varying global energy budget since 1880 2 from a new reconstruction of ocean warming

3
4
5
6 Quran Wu^{a,1}, Jonathan M. Gregory^{a,b}, Laure Zanna^c, and Samar Khatiwala^d

7 This manuscript was compiled on March 5, 2025

8
9 The global energy budget is fundamental for understanding climate change. It states that
10 the top-of-atmosphere imbalance between radiative forcing (which drives climate change)
11 and radiative response (which resists the forcing) equals energy storage in Earth's heat
12 reservoirs (i.e. the ocean, atmosphere, land and cryosphere). About 90% of Earth's energy
13 imbalance is stored as heat content in the ocean interior, which is poorly sampled before
14 1960. Here, we reconstruct Earth's energy imbalance since 1880 by inferring subsurface
15 ocean warming from surface observations via a Green's function approach. Our estimate of
16 Earth's energy imbalance is consistent with the current best estimates of radiative forcing and
17 radiative response during 1880–2020. The consistency is improved in this study compared to
18 previous ones. We find two distinct phases in the global energy budget. In 1880–1980, Earth's
19 energy imbalance closely followed the radiative forcing. After 1980, however, Earth's energy
20 imbalance increased at a slower rate than the forcing; in 2000–2020, the imbalance amounted
21 to less than 50% of the forcing. In simulations of historical climate change, the model-mean
22 energy imbalance is consistent with observations within uncertainties, but individual models
23 with a "weak" response to anthropogenic aerosol agree better with observations than those
24 with a "strong" response. Because the global energy budget before and after 1980 imply very
25 different global warming in the future, further studies are required to better understand the
26 cause of this historical variation.

27
28 global energy budget | ocean heat uptake | radiative forcing | radiative response | climate model

29
30
31 The global energy budget is a fundamental aspect of Earth's climate system.
32 Human-induced changes in the atmospheric composition have resulted in a
33 positive radiative forcing F at the top of the atmosphere (TOA) since 1750, which
34 warms the Earth's surface (1, 2). A warmer Earth tends to radiate more energy to
35 space, counteracting the effect of F ; this is referred to as Earth's radiative response
36 R (3). The imbalance between F and R determines the net TOA radiative flux,
37 which must be equal to N , the change in Earth's heat storage (4), as required by
38 energy conservation, i.e. $N = F + R$. Reproducing the historical global energy
39 budget is a basic test for climate models. The energy budget itself provides a useful
40 constraint on the Earth's equilibrium temperature response to CO₂ forcing (3, 5, 6).

41 The global energy budget has been analysed using observation-based data (2, 7–
42 9). Earth's energy imbalance N can be derived from observed changes in Earth's
43 heat reservoirs. During 1971–2020, observations suggest that about 90% of N is
44 stored in the ocean, followed by 6% in the ground, 4% in the cryosphere and 1% in
45 the atmosphere (4, 10). From 2000 onwards, satellite radiometers have provided
46 a direct estimate of N , which agrees well with the N inferred from Earth's heat
47 storage (11). In contrast, the radiative forcing F and the radiative response R are
48 not observable directly. F can be derived from radiative transfer models forced
49 with observed changes in the atmospheric composition. R can be calculated as
50 the product of the observed global surface warming T and the climate feedback
51 parameter α , with the caveat that α exhibits a large uncertainty in the literature
52 (2). The fifth assessment report of the Intergovernmental Panel on Climate Change
53 (IPCC) demonstrated that the global energy budget is closed within uncertainties
54 during 1971–2010 (8). The IPCC sixth assessment report extended this analysis to
55 2018 with improved consistency (2).

56 Global ocean heat content (OHC) change (unit: J) is an important measure of
57 Earth's energy imbalance N (unit: W m⁻²) stored in the ocean, i.e. dOHC/dt ≈
58 90% × N × A , where A is the Earth's surface area. Conventionally, OHC estimates
59 are derived from mapping in-situ temperature data to a global ocean grid ("in-situ"
60 means that data is collected at the point where the instrument is located). The
61 historical temperature data are sparse in space and time and suffer from systematic
62 instrument biases, especially during early periods (12, 13). This has prevented an

71 Significance Statement

72 The global energy budget is essential for understanding human-induced climate change. It states
73 that energy storage in Earth's heat reservoirs is determined by the top-of-atmosphere imbalance between
74 radiative forcing (which drives climate change) and radiative response (which resists the forcing).
75 Here, we infer Earth's energy imbalance from a new reconstruction of ocean warming. This improves
76 the closure of the global energy budget for 1880–2020 compared to previous studies. We find two
77 distinct phases in the global energy budget. Earth's energy imbalance closely followed the forcing in 1880–
78 1980, but was less than half of the forcing in 2000–2020. That is: the fraction of forcing that went into
79 heating the Earth has been smaller in recent decades than in earlier periods.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125 Q.W. and J.M.G. designed research; Q.W. performed research; L.Z. and S.K. contributed new analytic tools;
126 Q.W., J.M.G., L.Z. and S.K. wrote the paper.

127 The authors declare no competing interests.

128 ¹To whom correspondence should be addressed. E-mail: quran.wu@reading.ac.uk

125 estimate of global OHC change before 1960, which leaves a
126 gap in the global energy budget record. Since 2006, Argo
127 autonomous floats have provided high-quality temperature
128 measurements with unprecedented spatial coverage of the
129 global ocean, greatly improving the accuracy of the OHC
130 estimate (14).

131 Recently, methods have been developed for reconstructing
132 OHC before 1960 (15, 16). In particular, Zanna et al. (16)
133 estimated OHC change starting from 1870 by propagating
134 observed sea surface temperatures (SSTs) into the ocean
135 interior using a Green's function (GF) approach (17–19).

136 In this study, we derive Earth's energy imbalance N since
137 1880 from an OHC reconstruction based on an improved GF
138 approach. Our estimate of Earth's energy imbalance N agrees
139 with the sum of radiative forcing F and radiative response R
140 derived from independent sources. This allows us to present
141 a continuous record of the global energy budget starting from
142 1880 using observation-based data.

143 **Green's Function Method in a Nutshell**

144 In this section, we explain the procedure of computing OHC
145 change and associated uncertainties using the GF method.
146 The GF method is detailed in Materials and Methods (MM)
147 **A** and contrasted with the in-situ method in Table 1.

148 Ocean heat uptake (OHU) is caused by surplus heat being
149 added to the ocean surface via air-sea fluxes and then carried
150 to depth by ocean transport (advection and mixing). The
151 GF method exploits this fact and attempts to reconstruct
152 ocean warming at depth from its surface signature. For a
153 given interior location, the GF estimate of ocean warming
154 can be written as

$$155 \Theta_e(t) = \sum_{\mathbf{r}_s} \sum_{t_s < t} G(\mathbf{r}_s, t - t_s) \Theta_e^s(\mathbf{r}_s, t_s), \quad [1]$$

156 where Θ_e and Θ_e^s are the interior and surface ocean temperature
157 change relative to a pre-industrial state, respectively, t
158 and t_s their corresponding time variables, and \mathbf{r}_s (longitude
159 and latitude) the location vector of Θ_e^s . Basically, $\Theta_e(t)$
160 is reconstructed as the weighted sum of the Θ_e^s values
161 everywhere at the ocean surface and any time prior to t ,
162 with the GF kernel G providing the weightings. Physically,
163 the GF kernel partitions a water parcel at a given location
164 according to the time and place of its last surface contact; i.e.
165 the joint water-mass and transit-time distribution (17, 19).
166 Importantly, the GF method does not rely on subsurface
167 temperature measurements, in contrast to the in-situ method
168 (Table 1).

169 The GF method requires two inputs: the GF kernel G and
170 the boundary condition Θ_e^s . These are derived as follows.

171 The GF kernel G is derived from observations of ocean
172 transient tracers CFC-11 and CFC-12 via an inverse approach,
173 using simulations of G as an initial guess (18, 20) (MM **B**).
174 This method exploits the fact that the GF is an intrinsic
175 property of ocean circulation (advection and mixing) and
176 thus applies to any conservative tracer in the ocean.

177 The GF derived here has two caveats. First, CFC
178 observations only constrain G for lead times less than ~ 50
179 years because CFC emissions started in the 1950s. We expect
180 this caveat has little impact on our result because we focus on
181 historical climate change, which is dominated by responses on
182 multi-decadal timescales (21). While tracers such as argon-39

183 can further constrain G on centennial timescales, very few
184 measurements are available (22). Second, we assume G is
185 stationary in time because observations are insufficient to
186 constrain its time evolution. That is, we ignore potential
187 changes in ocean circulation under global warming, which may
188 lead to a roughly 10% overestimate of global OHC increase
189 between 2008 and 1980 (16, 23).

190 Technically, the boundary condition Θ_e^s should be surface
191 excess temperature (23). By that we mean the part of
192 SST change that originates at the surface, excluding SST
193 redistribution due to changes in ocean circulation. Because Θ_e^s
194 is not observable, we construct it by combining observations
195 and model simulations (MM **C**). We separate Θ_e^s into the
196 global mean and regional anomalies. The former is derived
197 from the global-mean SST change in observations, while
198 the latter are diagnosed from climate model simulations.
199 Deriving the global-mean Θ_e^s from the global-mean SST
200 change introduces a cold bias because the latter contains
201 a weak cooling signal from SST redistribution (MM **C**). This
202 leads to an underestimate of global OHC increase, which
203 partly compensates the overestimate due to G discussed
204 earlier.

205 We differ from Zanna et al. (16) in that we impose
206 observational constraints on the GF kernel and we use
207 a different construction of boundary conditions (Table 1).
208 These changes bring the GF OHC estimate closer to the
209 in-situ estimate during the Argo period (shown later).

210 We quantify the uncertainty of the GF OHC estimate
211 using sets of alternative estimates of the GF kernel G and the
212 boundary condition Θ_e^s . We derive twelve G estimates from
213 three first-guess solutions and four realisations of ocean tracer
214 observations (MM **B**). We also derive six Θ_e^s estimates from
215 three observational SST datasets and two excess temperature
216 simulations (MM **C**). In total, our sensitivity test produces
217 $12 \times 6 = 72$ members of the GF OHC estimate. Results are
218 reported as the ensemble mean $\pm 2 \times$ standard deviation
219 (σ). Uncertainties from other studies are converted to the
220 2σ -range when discussed here, assuming a Gaussian error
221 distribution.

222 SST datasets have two potential biases in early periods:
223 a cold excursion in 1900–1920 and the World War 2 warm
224 anomaly in 1939–1945 (24–28). To examine how these biases
225 affect the GF OHC estimate qualitatively, we apply the
226 following simple corrections. We remove the 1900–1920 cold
227 excursion by setting SST anomaly in that period to its 1880–
228 1900 time mean, and remove the 1939–1945 warm anomaly
229 by scaling down SST anomaly in that period by 50% (i.e. a
230 reduction of 0.15 K). In both case, the anomaly is relative
231 to the 1870–1880 time mean. The bias corrections and the
232 resulting differences in our OHC estimate are shown in Fig.
233 S5. In what follows, we focus on the results with the bias
234 corrections and discuss the differences that arise without
235 them when relevant.

236 **Global Ocean Heat Uptake**

237 In this section, we compare the GF OHC estimate of this
238 study against (i) the in-situ OHC estimates of Cheng (31),
239 Levitus (32), Ishii (33) and Bagnell (34) and (ii) the GF
240 OHC estimates of Zanna (16) and Gebbie (15). The results
241 of Cheng, Levitus, Ishii are shown in Fig. 1, while those of
242 Gebbie and Zanna are shown in Fig. S5. The GF OHC
243 estimate is 0.10 ± 0.02 W m⁻² (Table 1), which is
244 consistent with the in-situ estimates. The GF OHC estimate
245 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with
246 the in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
247 (Table 1), which is consistent with the in-situ estimates. The
248 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
249 consistent with the in-situ estimates. The GF OHC estimate
250 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
251 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
252 (Table 1), which is consistent with the in-situ estimates. The
253 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
254 consistent with the in-situ estimates. The GF OHC estimate
255 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
256 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
257 (Table 1), which is consistent with the in-situ estimates. The
258 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
259 consistent with the in-situ estimates. The GF OHC estimate
260 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
261 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
262 (Table 1), which is consistent with the in-situ estimates. The
263 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
264 consistent with the in-situ estimates. The GF OHC estimate
265 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
266 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
267 (Table 1), which is consistent with the in-situ estimates. The
268 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
269 consistent with the in-situ estimates. The GF OHC estimate
270 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
271 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
272 (Table 1), which is consistent with the in-situ estimates. The
273 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
274 consistent with the in-situ estimates. The GF OHC estimate
275 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
276 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
277 (Table 1), which is consistent with the in-situ estimates. The
278 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
279 consistent with the in-situ estimates. The GF OHC estimate
280 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
281 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
282 (Table 1), which is consistent with the in-situ estimates. The
283 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
284 consistent with the in-situ estimates. The GF OHC estimate
285 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
286 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
287 (Table 1), which is consistent with the in-situ estimates. The
288 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
289 consistent with the in-situ estimates. The GF OHC estimate
290 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
291 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
292 (Table 1), which is consistent with the in-situ estimates. The
293 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
294 consistent with the in-situ estimates. The GF OHC estimate
295 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
296 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
297 (Table 1), which is consistent with the in-situ estimates. The
298 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
299 consistent with the in-situ estimates. The GF OHC estimate
300 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
301 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
302 (Table 1), which is consistent with the in-situ estimates. The
303 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
304 consistent with the in-situ estimates. The GF OHC estimate
305 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
306 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
307 (Table 1), which is consistent with the in-situ estimates. The
308 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
309 consistent with the in-situ estimates. The GF OHC estimate
310 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
311 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
312 (Table 1), which is consistent with the in-situ estimates. The
313 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
314 consistent with the in-situ estimates. The GF OHC estimate
315 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
316 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
317 (Table 1), which is consistent with the in-situ estimates. The
318 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
319 consistent with the in-situ estimates. The GF OHC estimate
320 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
321 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
322 (Table 1), which is consistent with the in-situ estimates. The
323 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
324 consistent with the in-situ estimates. The GF OHC estimate
325 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
326 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
327 (Table 1), which is consistent with the in-situ estimates. The
328 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
329 consistent with the in-situ estimates. The GF OHC estimate
330 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
331 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
332 (Table 1), which is consistent with the in-situ estimates. The
333 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
334 consistent with the in-situ estimates. The GF OHC estimate
335 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
336 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
337 (Table 1), which is consistent with the in-situ estimates. The
338 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
339 consistent with the in-situ estimates. The GF OHC estimate
340 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
341 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
342 (Table 1), which is consistent with the in-situ estimates. The
343 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
344 consistent with the in-situ estimates. The GF OHC estimate
345 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
346 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
347 (Table 1), which is consistent with the in-situ estimates. The
348 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
349 consistent with the in-situ estimates. The GF OHC estimate
350 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
351 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
352 (Table 1), which is consistent with the in-situ estimates. The
353 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
354 consistent with the in-situ estimates. The GF OHC estimate
355 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
356 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
357 (Table 1), which is consistent with the in-situ estimates. The
358 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
359 consistent with the in-situ estimates. The GF OHC estimate
360 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
361 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
362 (Table 1), which is consistent with the in-situ estimates. The
363 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
364 consistent with the in-situ estimates. The GF OHC estimate
365 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
366 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
367 (Table 1), which is consistent with the in-situ estimates. The
368 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
369 consistent with the in-situ estimates. The GF OHC estimate
370 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
371 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
372 (Table 1), which is consistent with the in-situ estimates. The
373 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
374 consistent with the in-situ estimates. The GF OHC estimate
375 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
376 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
377 (Table 1), which is consistent with the in-situ estimates. The
378 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
379 consistent with the in-situ estimates. The GF OHC estimate
380 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
381 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
382 (Table 1), which is consistent with the in-situ estimates. The
383 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
384 consistent with the in-situ estimates. The GF OHC estimate
385 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
386 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
387 (Table 1), which is consistent with the in-situ estimates. The
388 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
389 consistent with the in-situ estimates. The GF OHC estimate
390 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
391 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
392 (Table 1), which is consistent with the in-situ estimates. The
393 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
394 consistent with the in-situ estimates. The GF OHC estimate
395 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
396 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
397 (Table 1), which is consistent with the in-situ estimates. The
398 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
399 consistent with the in-situ estimates. The GF OHC estimate
400 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
401 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
402 (Table 1), which is consistent with the in-situ estimates. The
403 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
404 consistent with the in-situ estimates. The GF OHC estimate
405 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
406 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
407 (Table 1), which is consistent with the in-situ estimates. The
408 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
409 consistent with the in-situ estimates. The GF OHC estimate
410 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
411 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
412 (Table 1), which is consistent with the in-situ estimates. The
413 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
414 consistent with the in-situ estimates. The GF OHC estimate
415 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
416 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
417 (Table 1), which is consistent with the in-situ estimates. The
418 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
419 consistent with the in-situ estimates. The GF OHC estimate
420 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
421 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
422 (Table 1), which is consistent with the in-situ estimates. The
423 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
424 consistent with the in-situ estimates. The GF OHC estimate
425 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
426 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
427 (Table 1), which is consistent with the in-situ estimates. The
428 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
429 consistent with the in-situ estimates. The GF OHC estimate
430 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
431 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
432 (Table 1), which is consistent with the in-situ estimates. The
433 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
434 consistent with the in-situ estimates. The GF OHC estimate
435 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
436 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
437 (Table 1), which is consistent with the in-situ estimates. The
438 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
439 consistent with the in-situ estimates. The GF OHC estimate
440 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
441 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
442 (Table 1), which is consistent with the in-situ estimates. The
443 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
444 consistent with the in-situ estimates. The GF OHC estimate
445 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
446 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
447 (Table 1), which is consistent with the in-situ estimates. The
448 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
449 consistent with the in-situ estimates. The GF OHC estimate
450 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
451 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
452 (Table 1), which is consistent with the in-situ estimates. The
453 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
454 consistent with the in-situ estimates. The GF OHC estimate
455 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
456 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
457 (Table 1), which is consistent with the in-situ estimates. The
458 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
459 consistent with the in-situ estimates. The GF OHC estimate
460 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
461 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
462 (Table 1), which is consistent with the in-situ estimates. The
463 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
464 consistent with the in-situ estimates. The GF OHC estimate
465 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
466 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
467 (Table 1), which is consistent with the in-situ estimates. The
468 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
469 consistent with the in-situ estimates. The GF OHC estimate
470 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
471 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
472 (Table 1), which is consistent with the in-situ estimates. The
473 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
474 consistent with the in-situ estimates. The GF OHC estimate
475 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
476 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
477 (Table 1), which is consistent with the in-situ estimates. The
478 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
479 consistent with the in-situ estimates. The GF OHC estimate
480 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
481 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
482 (Table 1), which is consistent with the in-situ estimates. The
483 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
484 consistent with the in-situ estimates. The GF OHC estimate
485 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
486 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
487 (Table 1), which is consistent with the in-situ estimates. The
488 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
489 consistent with the in-situ estimates. The GF OHC estimate
490 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
491 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
492 (Table 1), which is consistent with the in-situ estimates. The
493 GF OHC estimate is 0.08 ± 0.02 W m⁻² (Table 1), which is
494 consistent with the in-situ estimates. The GF OHC estimate
495 is 0.08 ± 0.02 W m⁻² (Table 1), which is consistent with the
496 in-situ estimates. The GF OHC estimate is 0.08 ± 0.02 W m⁻²
497 (Table 1), which is consistent with the in-situ estimates. The
49

249 **Table 1. A comparison of different methods for estimating ocean heat uptake**

250 Method	251 Green's function G	252 boundary condition Θ_e^s	253 subsurface temperature	254 measurements
255 This study	256 observation-based, constrained by CFC-11 257 and CFC-12 in the ocean, initial guesses are 258 derived from ocean models	259 SST anomaly relative to 1870–1880 + corrections 260 for a) excess temperature, b) the 1900– 261 1920 cold excursion, and c) the World War 2 262 warm anomaly	263 not used	264
265 Zanna (16)	266 derived from an ocean state estimate (29)	267 SST anomaly relative to 1870–1880	268 not used	269
270 Gebbie (15)	271 observation-based, inferred from climatology 272 of ocean tracers (30)	273 SST anomaly relative to 0015	274 not used	275
276 In situ	277 N/A	278 N/A	279 XBT, CTD, Argo, etc.	280

281 Bagnell and Gebbie are shown separately in Fig. S6 for clarity.
282 All of them are integrated over the upper 2000 m.

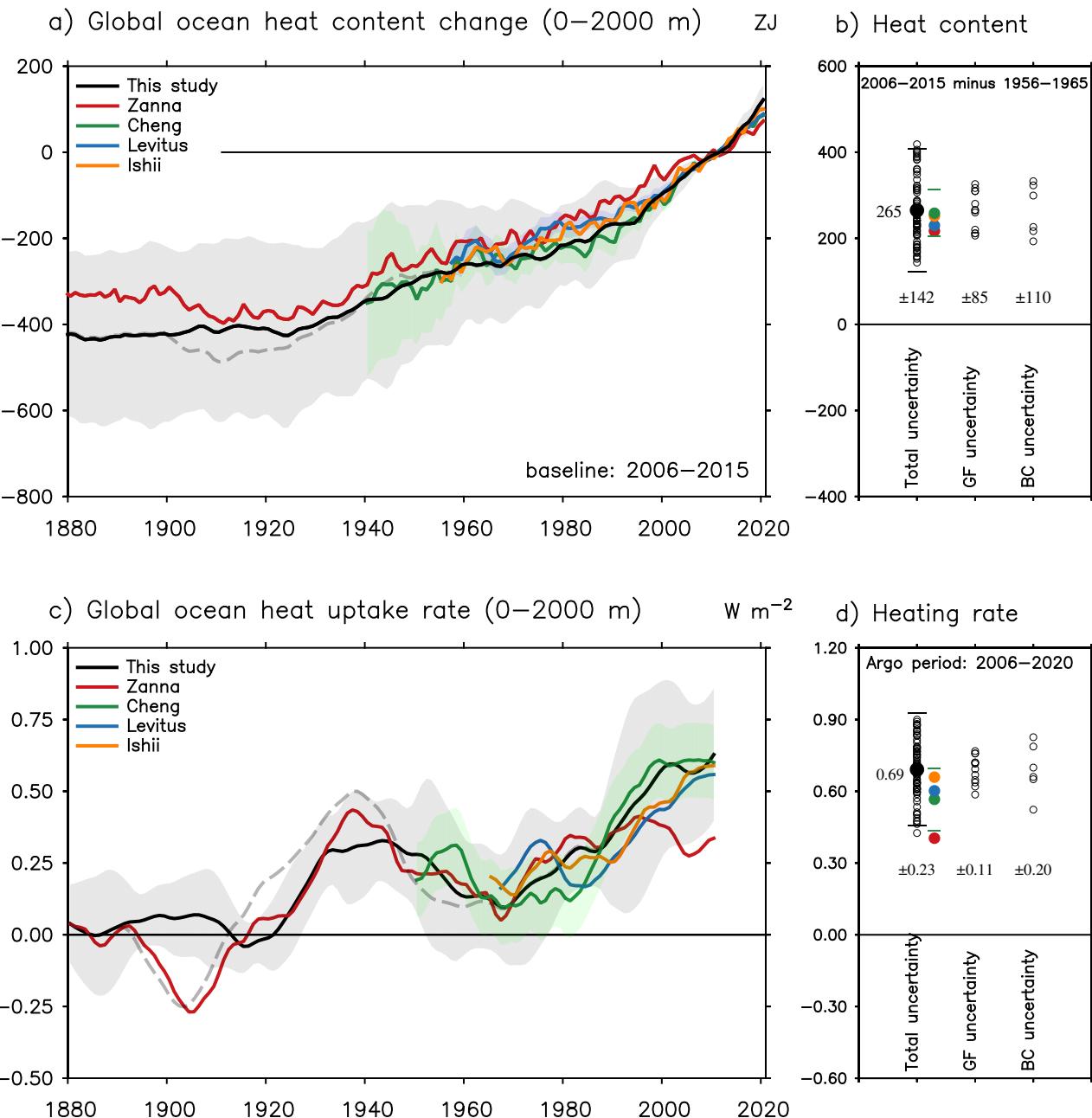
283 **Ocean Heat Content Change.** The GF OHC estimate of this
284 study exhibits an upward trajectory during the historical
285 period (Fig. 1a). The global OHC change between 2006–2015
286 and 1956–1965 is 265 ± 142 ZJ from our estimate (black dot,
287 Fig. 1b, leftmost column), 230 ± 38 ZJ from Levitus (blue dot)
288 and 258 ± 54 ZJ from Cheng (green dot), for instance; other
289 OHC estimates are consistent with those numbers within
290 uncertainties (Figs. 1b and S6b). 1956–1965 is a common
291 starting period for the in-situ datasets.

292 Different choices of SST dataset and excess temperature
293 estimate (MM C) result in ± 110 ZJ ($\pm 2\sigma$) spread in the
294 GF OHC change between 2006–2015 and 1956–1965 (Fig. 1b,
295 rightmost column), while the corresponding spread due to
296 uncertainties in the GF kernel is ± 85 ZJ (Fig. 1b, middle
297 column). The latter arises because existing observations are
298 insufficient to fully constrain the GF kernel.

299 **Ocean Heat Uptake Rate.** We evaluate the rate of OHU (i.e.
300 its time-derivative) using linear trends derived from a 20-
301 year moving window, and express the result per unit area
302 of Earth surface. The choice of 20 years for the window is
303 a compromise between filtering out the unforced variability
304 and resolving the time evolution. Altering the window span
305 from 20 years to 10, 15 or 30 years does not affect the time
306 evolution of the OHU rate in Fig. 1 very much, although
307 a longer window does give a smoother timeseries (Fig. S7).
308 The uncertainty of the in-situ OHU rate has been assessed
309 in the literature using different methods, as summarised in
310 Meyssignac et al. (10) table 1. We use the 1993–2008 error
311 of ± 0.13 W m $^{-2}$ in Lyman et al. (35) as the 2σ -error of the
312 in-situ OHU rate, because it accounts for a comprehensive
313 list of uncertainties. In addition, we assume that the in-situ
314 error of ± 0.13 W m $^{-2}$ is constant in time. We note that
315 this choice likely underestimates the in-situ error before the
316 1990s (36), but using a larger in-situ error does not affect our
317 discussion below.

318 The OHU rate has exhibited a robust acceleration since the
319 1960s (36–38). The GF OHU rate (this study) increased from
320 0.12 ± 0.23 W m $^{-2}$ in 1960–1980 to 0.63 ± 0.23 W m $^{-2}$ in 2000–
321 2020 (Fig. 1c, black line), i.e. a linear trend of 0.12 ± 0.07
322 W m $^{-2}$ per decade over 1960–2020. The Cheng estimate
323 shows a similar OHU rate increase over the same period,
324 from 0.10 ± 0.13 W m $^{-2}$ to 0.60 ± 0.13 W m $^{-2}$. The in-situ
325 OHU rates may be underestimated before 1990 because of
326 linear vertical interpolation and the XBT data biases (39).
327 The in-situ OHU rates differ from one another regarding

328 detailed time evolution, but the difference is not significant
329 considering their uncertainties (± 0.13 W m $^{-2}$). The Zanna
330 OHU rate exhibits a weaker upward trend than the in-situ
331 estimates in 1980–2020, while the Gebbie OHU rate exhibits
332 a downward trend after 1990 (Figs. 1c and S6c). Note that
333 the Gebbie estimate was built to study OHU on a much
334 longer timescale than the one focused here (past 2000 years
335 vs. past 140 years).


336 Prior to 1960, the GF estimate (this study) suggests that
337 the OHU rate was accelerating in 1920–1940 (central years),
338 and decelerating in 1950–1970 (Fig. 1c, black line). The
339 transition between the two episodes coincides with the ramp-
340 up of anthropogenic aerosol emission (40, 41).

341 The potential biases in SST datasets have a marked impact
342 on the GF OHU rate prior to 1960 (Fig. 1c compare the
343 black solid and dashed line). Removing the cold excursion in
344 1900–1920 changes the OHU rate in 1900 from -0.21 ± 0.19 to
345 0.06 ± 0.12 W m $^{-2}$. Halving the World War 2 warm anomaly
346 reduces the OHU rate in 1940 from 0.47 ± 0.19 to 0.31 ± 0.17 W
347 m $^{-2}$. Whether the above bias corrections can be justified is
348 examined later through the lens of the global energy budget.
349 The Zanna and Gebbie estimates both show a reversal in
350 the trend of OHU rate between 1920–1940 and 1950–1970,
351 similar to our estimate (Fig. S6c). However, the peak OHU
352 rate at 1940 is higher in their estimates compared to ours;
353 this difference is potentially related to the World War 2 SST
354 biases discussed above.

355 **The Argo Era.** We compare the OHU rate from different
356 estimates for 2006–2020, when the Argo floats have achieved
357 a near-global coverage in 0–2000 m. During 2006–2020, the
358 GF estimate (this study) suggests an OHU rate of 0.69 ± 0.23
359 W m $^{-2}$, consistent with the in-situ estimates of 0.57 ± 0.13 ,
360 0.60 ± 0.13 , 0.66 ± 0.13 and 0.59 ± 0.13 W m $^{-2}$ from Cheng,
361 Levitus, Ishii and Bagnell, respectively (Figs. 1d and S6d).
362 Different choices of SST dataset and excess temperature
363 estimate (MM C) result in ± 0.20 W m $^{-2}$ spread in the GF
364 OHU rate, while uncertainties in the GF kernel lead to ± 0.11
365 W m $^{-2}$ spread (Fig. 1d). Note that the GF OHC uncertainty
366 is no smaller during the Argo era than in earlier periods (Fig.
367 1c grey shading). This is because the GF method uses the
368 full SST history to infer OHC change (Eq. 1), i.e. the OHU
369 rate at any time is affected by SSTs at all previous times,
370 including their uncertainties. During the Argo era, the Zanna
371 OHU rate sits near the lower limit of our estimate (Fig. 1d);
372 this difference is mostly due to our use of excess temperature
373 for the boundary condition (Fig. S8). The Gebbie estimate is
374 excluded for this comparison because it is not available after
375 2015.

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Fig. 1. Global ocean heat uptake during the historical period (0–2000 m). Different estimates are color coded. “This study” and “Zanna” are based on the Green’s function (GF) method; the other three are in-situ estimates. a) time evolution of ocean heat content change relative to the 2006–2015 baseline ($1 \text{ ZJ} = 10^{21} \text{ J}$). b) ocean heat content change between 2006–2015 and 1956–1965. c) time evolution of ocean heat uptake rate per unit area of Earth’s surface. d) ocean heat uptake rate during the Argo period (2006–2020). In (c), the rate of change is computed as linear trends of a 20-year running window. In (b) and (d), the spread of our GF estimate is decomposed into that due to the GF kernel G and that due to the boundary condition Θ_e^* ; individual members are shown as circles. Shading and error bars indicate the 2σ -error. In (a) and (c), the dashed black line is the same as the solid black line, except that it is computed from SST datasets without bias corrections.

497 Global Energy Budget

498 In this section, we analyse the global energy budget since
499 1880 using our GF OHU reconstruction. Methods for deriving
500 the energy budget terms and associated uncertainties are
501 summarised in Table 2. All the energy budget terms are
502 shown as anomalies with respect to the 1870–1880 time mean.
503

504 **Observation-Based Data.** We derive Earth’s energy imbalance
505 N from our GF OHU reconstruction, because heating rates
506 in other Earth system components are poorly known prior to
507 1960. We do not use the GF estimate for OHU below 2000 m
508 because the GF kernel is poorly constrained by observations
509 at those depths (SI Appendix 1C). We obtain the full-depth
510 OHU rate by combining: (i) the GF OHU rate for 0–2000 m
511 depth with (ii) $0.07 \pm 0.04 \text{ W m}^{-2}$ from Johnson et al. (42)
512 for below 2000 m; the latter only applies to the 1980–2020
513 period. Earth’s heat inventory in recent decades (e.g. 1971–
514 2020) suggests that OHU accounts for $90 \pm 6\%$ of N (2, 4, 8).
515 We therefore divide the full-depth OHU rate by $90 \pm 6\%$ to
516 derive N . Note that, due to insufficient observations, we
517 assume that: 1) OHU below 2000 m is negligible before 1980
518 and 2) the fraction of N stored in the ocean is constant in
519 time. These assumptions should be revisited in the future
520 when extended records of Earth’s heat inventory become
521 available.

522 We derive the radiative forcing F and the radiative
523 response R using methods that are independent of the global
524 energy budget, that is $N = F + R$ is not guaranteed by
525 construction. F is obtained from the assessed range in the
526 IPCC sixth assessment report (AR6) (2), which combines lines
527 of evidence from models and observations. R is computed
528 by two methods. The first method (R_{simple}) considers R
529 due to the global-mean surface warming T and a constant
530 climate feedback parameter α (i.e. $R_{\text{simple}} = \alpha T$). The mean
531 and 2σ of T are derived from the HadCRUT5 dataset (43)
532 using its 200 ensemble members. The feedback parameter
533 $\alpha = -1.16 \pm 0.79 \text{ W m}^{-2} \text{ K}^{-1}$ is obtained from the assessed
534 range in the IPCC AR6 (2). The uncertainty of R_{simple} comes
535 from propagation of error. The second method (R_{spatial})
536 considers R due to spatially-varying SST and sea ice changes
537 in observations using 3D atmosphere general circulation
538 models. The Cloud Feedback Model Intercomparison project
539 (44) specifically designed an experiment (amip-piForcing)
540 to diagnose R_{spatial} ; we use the results of eight atmosphere
541 models to compute the mean and 2σ of R_{spatial} (MM E).

542 The energy imbalance N is derived from the 20-year
543 running window used to compute the OHU rate. For
544 consistency, the radiative forcing F and radiative response
545 R are smoothed by a 20-year running mean. Note that this
546 makes dips in F after volcanic eruptions less obvious.
547

548 **Budget Closure.** Our estimate of Earth’s energy imbalance N
549 (Fig. 2a blue line) agrees with the sum of the TOA radiative
550 forcing F and radiative response R within uncertainties all
551 the time since 1880, indicating a closure of the global energy
552 budget. This conclusion is robust regardless of (i) the choice
553 of the R estimate (Fig. 2a black and gray line) and (ii) whether
554 OHU is derived from SST with bias corrections (compare
555 Figs. 2a with S9a). We also use the Zanna and Gebbie
556 OHC estimate to derive N estimates following the method
557 described above. The resulting N estimates agree with $F + R$
558

559 during 1880–2020 when considering uncertainties estimated
560 in this study (Fig. S10).

561 **Central Estimate.** We compare N against $F + R$ for the central
562 estimate. Our estimate of N closely follows $F + R_{\text{spatial}}$ (Fig.
563 2a blue and black line); both feature a weak positive trend
564 before 1950 and a stronger one after 1980. The root-mean-
565 squared error between them is 0.14 W m^{-2} over 1880–2014.
566 In comparison, the Zanna and Gebbie N estimates do not
567 track $F + R_{\text{spatial}}$ as closely as our estimate does; both of them
568 suggest a strong decadal variability in N during 1900–1960,
569 which is not seen in $F + R_{\text{spatial}}$ (Fig. S10). The root-mean-
570 squared error between N and $F + R_{\text{spatial}}$ is 0.17 and 0.28 W m^{-2}
571 for the Zanna and Gebbie estimates, respectively.
572

573 Our estimate of N (Fig. 2a blue line) agrees better with $F + R_{\text{spatial}}$
574 (black line) than with $F + R_{\text{simple}}$ (grey line), wherein
575 R_{simple} and R_{spatial} are derived from $R = \alpha T$ and atmosphere
576 models, respectively. This suggests that atmosphere models
577 provide a more realistic estimate of R than the simple model
578 with a constant α . Recent studies have shown that surface
579 warming at different locations affects R differently (45, 46);
580 this mechanism is resolved in R_{spatial} , but not in R_{simple} .
581

582 **Distinct Phases.** We find two distinct phases in the global
583 energy budget. Before 1980, the evolution of Earth’s energy
584 imbalance N (Fig. 2b blue line) closely followed that of the
585 radiative forcing F (orange line); the two are not significantly
586 different, considering their uncertainties. Deriving N from
587 SST datasets without bias corrections does not alter this
588 finding (compare Figs. 2b with S9b). After 1980, however,
589 the energy imbalance N started to increase at a slower rate
590 than the radiative forcing F , and the two became significantly
591 different in 2010 (Fig. 2b). N/F measures the fraction of the
592 forcing that went into heating the Earth. The N/F ratio is
593 close to unity before 1980, but gradually decreases after that,
594 reaching $38 \pm 15\%$ in 2010 (Table 2). Note that N/F is highly
595 uncertain before 1980 because F is not significantly different
596 from zero during that time.
597

598 **Reduced Historical Forcing Uncertainty.** We infer the radiative
599 forcing F as the difference between N and R following
600 previous studies (7, 47), and compare the result against the
601 F estimate in the IPCC AR6. The uncertainty of the inferred
602 F is derived via propagation of error.
603

604 We focus on the 1960–1980 period, for which the F in
605 the IPCC AR6 has a large uncertainty ($0.08 \pm 0.71 \text{ W m}^{-2}$). The
606 inferred F range is $0.38 \pm 0.29 \text{ W m}^{-2}$ from $N - R_{\text{simple}}$ and
607 $0.17 \pm 0.29 \text{ W m}^{-2}$ from $N - R_{\text{spatial}}$. In both cases, the lower
608 bound of the inferred F is substantially less negative than the
609 IPCC AR6 estimate, and the range is about 60% narrower.
610 This uncertainty reduction is comparable to that found by
611 Andrews and Forster (47), who consider the 2005–2015 period.
612 The inferred F also has a smaller uncertainty than the F of
613 IPCC AR6 in 1920–1940 and 2000–2020 (Table 2), but the
614 improvement is less pronounced than in 1960–1980.
615

616 **Pre-1880 Period.** Our global energy budget analysis assumes
617 that Earth’s climate is near equilibrium in 1870–1880,
618 consistent with the IPCC AR6 (48). However, some studies
619 argue that an earlier baseline should be used because CO_2
620 concentration increases started before 1870 (49). As a
621 sensitivity test, we evaluate the global energy budget for
622

Fig. 2. Evaluating the global energy budget since 1880 using observation-based data. The three components examined here are: Earth's energy imbalance N , the radiative forcing F , and Earth's radiative response R . Methods for deriving N , F and R are summarised in Table 2. In all panels, shading indicates the 2σ -error. F and R are both smoothed by a 20-year running mean. The N estimate of this study is shown as the blue line in (a-c), the same in each panel. The N estimate in the dashed blue line is the same as that in the solid blue line, except that it is computed from SST datasets without bias corrections. In (b-d), simulations from climate models are shown as pale dots, plotted every 20 years for clarity; different panels contain different numbers of model results due to data availability. In (c), the models are split into those with a "weak" and "strong" response to anthropogenic aerosol forcing, respectively.

1700–1880 using surface temperature change reconstructed from palaeoclimate records (MM D). The result shows that Earth's energy imbalance N is dominated by responses to volcanic eruptions in 1700–1800, without a clear sign of long-term increase (Fig. S11). In 1860–1880, the energy imbalance N is close to zero, consistent with our choice of the reference period, i.e. 1870–1880.

Evaluating Climate Model Simulations

In this section, we evaluate the radiative forcing F , the radiative response R and the energy imbalance N simulated in 17 climate models (i.e. atmosphere–ocean general circulation models) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) (50) against the observation-based estimates described in the previous section. The energy imbalance N is available for all 17 models up to 2020, while the radiative forcing F and radiative response R are available

for 7 models only (up to 2014 in 3 models and 2020 in 4) because they are low priority outputs. We focus on the 1920–1940 and 2000–2020 periods, which sample distinct phases in the observed energy budget. Model results are shown as pale dots in Figs. 2b-d and individually in Figs. S12–15. Methods for deriving the global energy budget from climate models are described in MM E and summarised in Tables 2 and 3. All model results are smoothed by a 20-year running mean to be consistent with the observation-based estimates.

The CMIP6 simulations of F , R and N agree with the observation-based estimates within the 2σ inter-model spread (Figs. 2b-d and Table 2). Notably, CMIP6 models tend to simulate a more negative R than R_{spatial} in 1920–1940 (-0.10 vs. 0.00 W m^{-2}) and a less positive F than the F of IPCC AR6 in 2000–2020 (1.71 vs. 2.02 W m^{-2}) (Table 2).

We next compare the CMIP6 simulations of F , R and N in individual models against the observation-based estimates.

745 **Table 2.** Radiative forcing F , radiative response R and Earth's energy imbalance N from observation-based estimates and climate model
 746 simulations. The rate of ocean heat uptake is denoted as “dOHC/dt”. All quantities are in units of W m^{-2} of Earth's surface area. The 1920–1940
 747 and 2000–2020 averages are selected to demonstrate two distinct phases in the global energy budget. The two R estimates, R_{simple} and R_{spatial} ,
 748 are both computed from observed surface warming; the difference is that R_{simple} only considers the global-mean warming, whereas R_{spatial}
 749 considers the spatially-varying warming using 3D atmosphere models. For climate model simulations, the data source shows the experiment
 750 name, with the ensemble size denoted in parentheses. The 2σ -error is derived from various sources/approaches for observation-based
 751 estimates, but it is always computed from the inter-model spread for climate model simulations. Different climate model experiments are
 752 contrasted in Table 3.

Observation-based estimates				
Variable	1920–1940	2000–2020	Data source	Uncertainty
dOHC/dt 0–2000 m	0.25 ± 0.13	0.63 ± 0.23	GF method	perturbation of inputs
dOHC/dt >2000 m	negligible	0.07 ± 0.04	Johnson et al. (42)	Johnson et al. (42)
dOHC/dt full depth	0.25 ± 0.14	0.70 ± 0.23	sum of previous two	propagation of error
Imbalance N	0.28 ± 0.16	0.78 ± 0.27	$\text{dOHC/dt} \div (0.90 \pm 0.06)$	propagation of error
Forcing F	0.23 ± 0.28	2.02 ± 0.82	Forster et al. (2)	Forster et al. (2)
Response R_{simple}	-0.11 ± 0.11	-1.07 ± 0.74	simple model $R = \alpha T$	propagation of error
Response R_{spatial}	0.00 ± 0.17	-1.15 ± 0.51	atmosphere models	inter-model spread
$N \div F$	1.22 ± 1.28	0.38 ± 0.15	N and F	propagation of error
Inferred N	0.23 ± 0.20	0.87 ± 0.58	$F + R_{\text{spatial}}$	propagation of error
Inferred F	0.28 ± 0.21	1.93 ± 0.54	$N - R_{\text{spatial}}$	propagation of error
Inferred R	0.05 ± 0.24	-1.25 ± 0.71	$N - F$	propagation of error
Climate model simulations				
Variable	1920–1940	2000–2020	Data source	CMIP6 variable
dOHC/dt full depth	0.15 ± 0.14	0.71 ± 0.29	historical (17)	hfds
Imbalance N	0.16 ± 0.15	0.72 ± 0.28	historical (17)	rsdt, rsut, rlut
Forcing F	0.26 ± 0.19	1.71 ± 0.54	piClim-histall (7)	rsdt, rsut, rlut
Response R	-0.10 ± 0.15	-0.98 ± 0.45	N and F (7)	N/A
$N \div F$	0.61 ± 0.58	0.43 ± 0.17	N and F (7)	N/A

781 For a given model, uncertainties of F , R and N are obtained
 782 as the standard deviation of the TOA radiative flux in its
 783 pre-industrial simulation, after applying the 20-year running
 784 mean. This accounts for the fact that model simulations may
 785 differ from observations because their unforced variability are
 786 in different phases.

787 For the energy imbalance N , we split the 17 models into
 788 those with a “weak” response to anthropogenic aerosol forcing
 789 (9 models), and those with a “strong” one (8 models) (MM E);
 790 their respective multi-model means are shown as the green
 791 and red line in Fig. 2c. Eight of the nine “weak” models
 792 simulate N that agrees with the observed N (within the
 793 2σ -range) over 90% of the time in 1880–2010 (Fig. S12), but
 794 only two of the eight “strong” models do so (Fig. S13). The
 795 agreement between the observation-based and simulated N
 796 is worse when the former is computed from SST datasets
 797 without bias corrections (Fig. 2c compare the blue solid and
 798 dashed line).

799 The radiative forcing F and radiative response R are
 800 available for 7 of the 17 climate models. Here we use the
 801 inferred F ($N - R_{\text{spatial}}$) and R_{spatial} as the observation-based
 802 F and R , respectively. Six of the seven models simulate F
 803 that agrees with the observation about 90% of the time in
 804 1880–2004 (Fig. S14), while only two do so for R (Fig. S15).
 805 Four of the seven models are the “weak” models, while the

806 rest are the “strong” models. The “weak” models have a
 807 more positive F and a more negative R than the “strong”
 808 models in the model mean (Fig. S16).

Regional Ocean Heat Uptake

849 The GF OHC estimate, by construction, only accounts for the
 850 OHC change originating from the surface (16, 23); we refer
 851 to this as the “excess” OHC change. The difference between
 852 the observed total OHC change and the excess OHC change
 853 gives the “redistributed” OHC change, which integrates to
 854 zero over the global ocean volume (51, 52). In this section,
 855 we examine the excess and redistributed contributions to the
 856 observed total OHC change at different latitudes. We focus
 857 on the zonal-and-depth integrated change over 0–2000 m; a
 858 change is computed as the linear trend over 1980–2020, when
 859 greenhouse gas forcing dominates. The observed total OHC
 860 change is derived from the average of three in-situ datasets:
 861 Cheng, Levitus and Ishii.

862 **Latitudinal Distribution.** The excess OHC change of this study
 863 (i.e. the GF OHC change) has two peaks in both the Indo-
 864 Pacific and the Atlantic, located at around 40°S and 30°N
 865 (Figs. 3a and b, black line). For the central estimate, the
 866 excess OHC change at high latitudes is about twice as large
 867 as at low latitudes (Fig. 3a, black line). The redistributed
 868 OHC change (Fig. 3a, grey line) is much smaller than the excess
 869 OHC change, and has a much more uniform latitudinal
 870 distribution. The total OHC change (Fig. 3a, red line) is
 871 the sum of the excess and redistributed OHC change, and
 872 has a similar latitudinal distribution to the excess OHC
 873 change.

as that at low latitudes. We compare our estimate with the Bronselaer et al. estimate (52) for excess OHC change (Figs. 3a and b, purple line); the latter is inferred from observed anthropogenic carbon change. The two estimates agree with each other broadly; both of them suggest a greater excess OHC change in the Southern Ocean than the Zanna estimate (16) (Figs. 3a and b, red line). We infer the OHC redistribution as the observed total OHC change minus the excess OHC change. The result suggests that OHC redistribution exhibits alternating positive and negative changes across latitudes (Figs. 3c and d), consistent with previous studies (16, 52, 53).

Regional Integral. We examine the role of OHC redistribution in shaping the observed total OHC change for the North Atlantic integral (30°N – 90°N) and the Southern Ocean integral (90°S – 30°S). In 1980–2020, the observed global OHC change is about 7.1 ZJ per year, equivalent to 0.45 W m^{-2} over the Earth's surface. The North Atlantic accounts for about 8% of the global change, while the Southern Ocean account for 40%.

In the North Atlantic (Fig. 3b), the excess change of this study (1.5 ZJ yr^{-1}), Bronselaer et al. (52) (0.9 ZJ yr^{-1}) and Zanna et al. (16) (1.1 ZJ yr^{-1}) all exceed the observed total change (0.6 ZJ yr^{-1}) for the central estimate; the ratio of excess to total is 2.5, 1.5 and 1.8, respectively. This implies a net southward heat redistribution, or a weakening of the northward heat transport, across 30°N . Note that our estimate of excess change is highly uncertain in the North Atlantic (Fig. 3b), which prevents an accurate estimate of the redistributed change there.

In the Southern Ocean (Figs. 3a and b), the excess change of this study and Bronselaer et al. (52) are about the same as the observed total change, especially in the Indo-Pacific sector (Fig. 3a, numbers). This indicates that the redistributed change is close to zero when aggregated over the Southern Ocean, despite its marked patterns there, in contrast with the North Atlantic case.

Summary and Discussion

Earth's energy imbalance N , the radiative forcing F and the radiative response R are essential quantities for monitoring the trajectory of anthropogenic climate change; they are linked through the global energy budget $N = F + R$. The ocean volume-integrated warming dominates Earth's energy imbalance N on multiannual timescales. Poor observational sampling prevents an estimate of global ocean warming before 1960, which leaves a gap in the global energy budget record.

In this study, we produce a reconstruction of global ocean heat uptake beginning in 1880 via a Green's function approach that relies on surface observations, hence alleviating the sampling issue in early periods. Our estimate of ocean warming is consistent with those derived from in-situ temperature profiles since 1960. From our estimate we obtain a timeseries of Earth's energy imbalance N , i.e. the net global-mean top-of-atmosphere (TOA) radiative flux, since 1880.

We highlight two findings in this study. First, our estimate of Earth's energy imbalance N is consistent with the current best estimates of radiative forcing F (2) and radiative response R (R_{spatial}) during 1880–2020. In particular, our N estimate reduces the discrepancy between $F+R$ and N during

1900–1960 in previous studies (Fig. S10), improving the understanding of historical climate change in early periods.

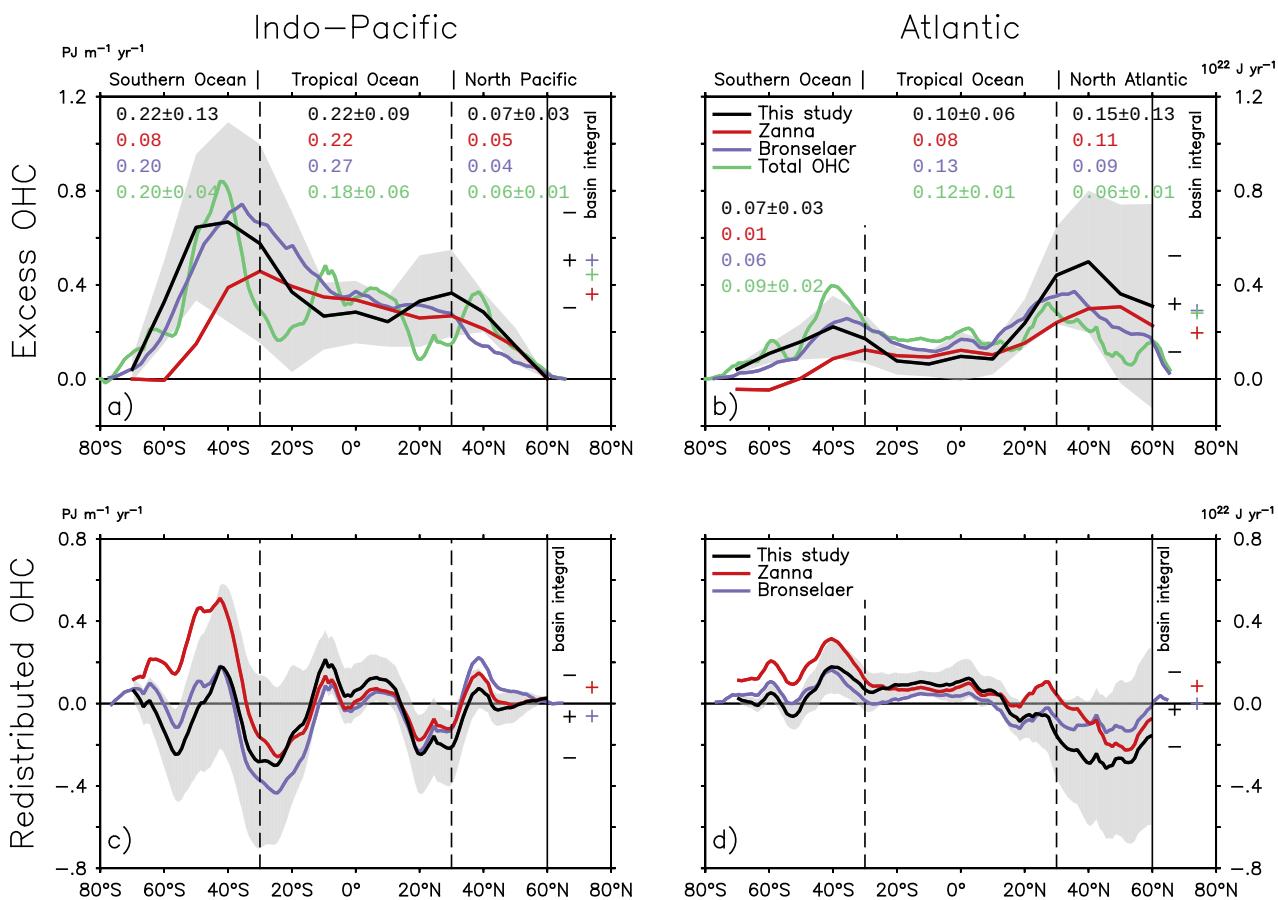
Second, our analysis reveals two distinct phases in the global energy budget. In 1880–1980, Earth's energy imbalance N closely followed the radiative forcing F . After 1980, however, the imbalance N increased at a slower rate than the forcing F ; N only amounts to $38 \pm 15\%$ of F in 2000–2020. While the causes of those distinct phases are unclear, this finding is consistent with recent studies showing that the climate feedback parameter α has been more negative (stable) since 1980 than it was in the preceding decades (45, 46). That is, Earth's radiative response R per unit global warming is increasing, which promotes a more negative R , hence a lower N/F ratio. The change in α is linked to the change in SST warming pattern; the recent La-Nina-like pattern makes α more negative because it increases low cloud cover (54).

A major consequence of OHU is sea-level rise through ocean thermal expansion. The ocean thermal expansion derived from the GF OHC estimate (this study) agrees with that derived from the total sea-level rise minus ocean-mass change, considering uncertainties (Fig. S17a, MM F). This indicates that the GF OHC estimate is consistent with the sea-level budget. Nonetheless, we note there are marked differences in the central estimates of thermal expansion derived from the above two approaches (Fig. S17a). This hinders a tight constraint on OHC change from the sea-level budget in the early 20th century.

Any systematic error in SST datasets will result in systematic errors in our estimate of Earth's energy imbalance N , because SST errors are propagated to N via the Green's function. Past studies suggest that the cold excursion in 1900–1920 and the World War 2 warm anomaly in 1939–1945 may be artefacts of the SST datasets, due to poor sampling coverage and inhomogeneity of instrumentation (24–28). We find that removing those two features produces a N estimate that agrees better with: 1) the observation-based TOA radiation budget ($F+R$) and 2) the historical simulation of N in climate models.

Materials and Methods

A. Excess Heat and Green's Function. Excess heat is the additional heat entering the ocean from the surface. The governing equation of excess heat, written in terms of excess temperature Θ_e , is given by:


$$(\frac{\partial}{\partial t} + L)\Theta_e(\mathbf{r}, t) = Q_a(\mathbf{r}, t), \quad [2]$$

Initial condition: $\Theta_e(\mathbf{r}, 0) = 0$,

where t is time and \mathbf{r} a 3D position vector in the ocean. Q_a is the surface heat flux anomaly relative to the climatology. L is the 3D ocean transport operator, which evolves an ocean tracer field forward in time; it encodes the net effect of ocean transport, from large-scale advection to small-scale mixing. Multiplying Θ_e with the specific heat and density of seawater gives excess heat. Integrating excess heat over the global ocean volume gives global ocean heat content (OHC) change. Diagnostics similar to Θ_e have been used in the literature, for instance, the fixed-circulation temperature change in Winton et al. (55), the added temperature in Gregory et al. (51) and the material warming in Zika et al. (53).

The Green's function (GF) approach solves Θ_e in Eq. 2 by propagating its boundary condition Θ_e^s . The propagation is done via the boundary GF G , which encodes the ocean's surface-to-interior transport (advection+mixing). The above process can be

993	10001
994	10002
995	10003
996	10004
997	10005
998	10006
999	10007
1000	10008
1001	10009
1002	10010
1003	10011
1004	10012
1005	10013
1006	10014
1007	10015
1008	10016
1009	10017
1010	10018
1011	10019
1012	10020
1013	10021
1014	10022
1015	10023
1016	10024
1017	10025
1018	10026
1019	10027
1020	10028
1021	10029
1022	10030
1023	10031
1024	10032
1025	10033
1026	10034
1027	10035
1028	10036
1029	10037
1030	10038
1031	10039
1032	10040
1033	10041
1034	10042
1035	10043
1036	10044
1037	10045
1038	10046
1039	10047
1040	10048
1041	10049
1042	10050
1043	10051
1044	10052
1045	10053
1046	10054
1047	10055
1048	10056
1049	10057
1050	10058
1051	10059
1052	10060
1053	10061
1054	10062
1055	10063
1056	10064
1057	10065
1058	10066
1059	10067
1060	10068
1061	10069
1062	10070
1063	10071
1064	10072
1065	10073
1066	10074
1067	10075
1068	10076
1069	10077
1070	10078
1071	10079
1072	10080
1073	10081
1074	10082
1075	10083
1076	10084
1077	10085
1078	10086
1079	10087
1080	10088
1081	10089
1082	10090
1083	10091
1084	10092
1085	10093
1086	10094
1087	10095
1088	10096
1089	10097
1090	10098
1091	10099
1092	10100
1093	10101
1094	10102
1095	10103
1096	10104
1097	10105
1098	10106
1099	10107
1100	10108
1101	10109
1102	10110
1103	10111
1104	10112
1105	10113
1106	10114
1107	10115
1108	10116
1109	10117
1110	10118
1111	10119
1112	10120
1113	10121
1114	10122
1115	10123
1116	10124
1117	10125
1118	10126
1119	10127
1120	10128
1121	10129
1122	10130
1123	10131
1124	10132
1125	10133
1126	10134
1127	10135
1128	10136
1129	10137
1130	10138
1131	10139
1132	10140
1133	10141
1134	10142
1135	10143
1136	10144
1137	10145
1138	10146
1139	10147
1140	10148
1141	10149
1142	10150
1143	10151
1144	10152
1145	10153
1146	10154
1147	10155
1148	10156
1149	10157
1150	10158
1151	10159
1152	10160
1153	10161
1154	10162
1155	10163
1156	10164
1157	10165
1158	10166
1159	10167
1160	10168
1161	10169
1162	10170
1163	10171
1164	10172
1165	10173
1166	10174
1167	10175
1168	10176
1169	10177
1170	10178
1171	10179
1172	10180
1173	10181
1174	10182
1175	10183
1176	10184
1177	10185
1178	10186
1179	10187
1180	10188
1181	10189
1182	10190
1183	10191
1184	10192
1185	10193
1186	10194
1187	10195
1188	10196
1189	10197
1190	10198
1191	10199
1192	10200
1193	10201
1194	10202
1195	10203
1196	10204
1197	10205
1198	10206
1199	10207
1200	10208
1201	10209
1202	10210
1203	10211
1204	10212
1205	10213
1206	10214
1207	10215
1208	10216
1209	10217
1210	10218
1211	10219
1212	10220
1213	10221
1214	10222
1215	10223
1216	10224
1217	10225
1218	10226
1219	10227
1220	10228
1221	10229
1222	10230
1223	10231
1224	10232
1225	10233
1226	10234
1227	10235
1228	10236
1229	10237
1230	10238
1231	10239
1232	10240
1233	10241
1234	10242
1235	10243
1236	10244
1237	10245
1238	10246
1239	10247
1240	10248
1241	10249
1242	10250
1243	10251
1244	10252
1245	10253
1246	10254
1247	10255
1248	10256
1249	10257
1250	10258
1251	10259
1252	10260
1253	10261
1254	10262
1255	10263
1256	10264
1257	10265
1258	10266
1259	10267
1260	10268
1261	10269
1262	10270
1263	10271
1264	10272
1265	10273
1266	10274
1267	10275
1268	10276
1269	10277
1270	10278
1271	10279
1272	10280
1273	10281
1274	10282
1275	10283
1276	10284
1277	10285
1278	10286
1279	10287
1280	10288
1281	10289
1282	10290
1283	10291
1284	10292
1285	10293
1286	10294
1287	10295
1288	10296
1289	10297
1290	10298
1291	10299
1292	10300
1293	10301
1294	10302
1295	10303
1296	10304
1297	10305
1298	10306
1299	10307
1300	10308
1301	10309
1302	10310
1303	10311
1304	10312
1305	10313
1306	10314
1307	10315
1308	10316
1309	10317
1310	10318
1311	10319
1312	10320
1313	10321
1314	10322
1315	10323
1316	10324
1317	10325
1318	10326
1319	10327
1320	10328
1321	10329
1322	10330
1323	10331
1324	10332
1325	10333
1326	10334
1327	10335
1328	10336
1329	10337
1330	10338
1331	10339
1332	10340
1333	10341
1334	10342
1335	10343
1336	10344
1337	10345
1338	10346
1339	10347
1340	10348
1341	10349
1342	10350
1343	10351
1344	10352
1345	10353
1346	10354
1347	10355
1348	10356
1349	10357
1350	10358
1351	10359
1352	10360
1353	10361
1354	10362
1355	10363
1356	10364
1357	10365
1358	10366
1359	10367
1360	10368
1361	10369
1362	10370
1363	10371
1364	10372
1365	10373
1366	10374
1367	10375
1368	10376
1369	10377
1370	10378
1371	10379
1372	10380
1373	10381
1374	10382
1375	10383
1376	10384
1377	10385
1378	10386
1379	10387
1380	10388
1381	10389
1382	10390
1383	10391
1384	10392
1385	10393
1386	10394
1387	10395
1388	10396
1389	10397
1390	10398
1391	10399
1392	10400
1393	10401
1394	10402
1395	10403
1396	10404
1397	10405
1398	10406
1399	10407
1400	10408
1401	10409
1402	10410
1403	10411
1404	10412
1405	10413
1406	10414
1407	10415
1408	10416
1409	10417
1410	10418
1411	10419
1412	10420
1413	10421
1414	10422
1415	10423
1416	10424
1417	10425
1418	10426
1419	10427
1420	10428
1421	10429
1422	10430
1423	10431
1424	10432
1425	10433
1426	10434
1427	10435
1428	10436
1429	10437
1430	10438
1431	10439
1432	10440
1433	10441
1434	10442
1435	10443
1436	10444
1437	10445
1438	10446
1439	10447
1440	10448
1441	10449
1442	10450
1443	10451
1444	10452
1445	10453
1446	10454
1447	10455
1448	10456
1449	10457
1450	10458
1451	10459
1452	10460
1453	10461
1454	10462
1455	10463
1456	10464
1457	10465
1458	10466
1459	10467
1460	10468
1461	10469
1462	10470
1463	10471
1464	10472
1465	10473
1466	10474
1467	10475
1468	10476
1469	10477
1470	10478
1471	10479
1472	10480
1473	10481
1474	10482
1475	10483
1476	10484
1477	10485
1478	10486
1479	10487
1480	10488
1481	10489
1482	10490
1483	10491
1484	10492
1485	10493
1486	10494
1487	10495
1488	10496
1489	10497
1490	10498
1491	10499
1492	10500
1493	10501
1494	10502
1495	10503
1496	10504
1497	10505
1498	10506
1499	10507
1500	10508
1501	10509
1502	10510
1503	10511
1504	10512
1505	10513
1506	10514
1507	10515
1508	10516
1509	10517
1510	10518
1511	10519
1512	10520
1513	10521
1514	10522
1515	10523
1516	10524
1517	10525
1518	10526
1519	10527
1520	10528
1521	1052

Fig. 3. Excess and redistributed OHC change integrated zonally and vertically (0–2000 m) for ocean basins. The change is computed as the linear trend over 1980–2020, and refers to the left-hand axis. The excess OHC change is from: this study (black), Zanna et al. (16) (red) and Bronselaer et al. (52) (purple). The observed total OHC change (green) is included for comparison. The redistributed OHC change is computed as the difference between the observed total and excess change. The basin-integrated change is shown by the “+” sign in the rightmost portion of each panel, referring to the right-hand axis. The numbers show the changes integrated over three latitude bands, separated by vertical dashed lines, in units of $10^{22} \text{ J yr}^{-1}$. The colors of the numbers and the plus signs match those of the lines, indicated in the legends. Shading, horizontal bar and the “ \pm ” sign indicate the 2σ -range.

written as the following sum over space and time:

$$\Theta_e(\mathbf{r}, t) = \int_{\Omega} d^2 \mathbf{r}_s \int_{-\infty}^t G(\mathbf{r}_s, t - t_s | \mathbf{r}) \Theta_e^s(\mathbf{r}_s, t_s) dt_s, \quad [3]$$

where Ω denotes the global ocean surface and (\mathbf{r}_s, t_s) are coordinate variables for surface quantities. Note that Eq. 3 is a generalisation of Eq. 1.

The GF approach is useful because it can provide an OHC estimate without subsurface temperature measurements; it only requires surface temperature as input, given that the GF G is known. For this reason, the GF approach has been used to reconstruct OHC in the past 2000 years (56). The GF approach, however, has a number of limitations. First, the GF is assumed to be stationary in time, ignoring potential changes in ocean transports due to changes in climate states. Second, estimating the GF from observations is a highly underdetermined problem as there are many more unknowns than tracer constraints, a challenge compounded by poor sampling of ocean transient tracers in space and time. Lastly, the boundary condition Θ_e^s is not observable and must be partly inferred from model simulations.

B. Observational Green's Functions. To infer the GF G from observations, we first rewrite Eq. 3 into a general form

$$X(\mathbf{r}, t) = \int_{\Omega} d^2 \mathbf{r}_s \int_{-\infty}^t G(\mathbf{r}_s, t - t_s | \mathbf{r}) X^s(\mathbf{r}_s, t_s) dt_s, \quad [4]$$

where X is the concentration of a given tracer; e.g. Θ_e or CFC-11. X^s is X at the surface. Eq. 4 holds because all tracers in the ocean experience the same ocean transports (i.e. velocities and diffusivities) (17). Each tracer observation, i.e. $X(\mathbf{r}, t)$, forms a constraint on G at \mathbf{r} via Eq. 4. Here \mathbf{r} and t are the location and time of observations, respectively. A collection of n observations at \mathbf{r} thus forms n equations for G there. In practice, observations are insufficient constraints of G , because the number of observations is much smaller than the number of unknowns in G . Note that G is a function of ocean surface locations and transit times. We solve this underdetermined problem using the Maximum Entropy method (18, 20). Among infinitely many G solutions that satisfy observations, the Maximum Entropy method chooses the one that is the most “similar” to a prior estimate of G (measured by their “relative entropy”). This procedure can be cast into a constrained optimisation problem and solved using standard numerical routines.

Details on formulating and solving the Maximum Entropy problem are documented in Wu and Gregory (23) and summarised in Fig. S1. We use four observations of tracers to infer G at every \mathbf{r} ; they are CFC-11 and CFC-12 in the GLODAP data (57) (observed at 1994) and the climatological temperature and salinity. We combine these tracers together because their distributions are primarily controlled by the climatological ocean transport. Treatment of the observations is described in SI Appendix 1. We generate four realisations of the GLODAP data by randomly perturbing the central estimate with the standard error of the data. We use G computed from two climate models and an ocean state estimate as first-guess solutions for inferring G from observations. The climate models are HadCM3 ($1.25^\circ \times 1.25^\circ$) (58) and FAMOUS ($3.75^\circ \times 2.50^\circ$) (59). The state estimate is ECCO-GODAE ($1^\circ \times 1^\circ$) (29). The 4 sets of observational constraints and 3 first-guess solutions result in 12 sets of observational GFs.

A lack of diversity in the first-guess solution of G is a limitation of this study. We only use three first-guess solutions here because computing G requires carrying out customised ocean tracer simulations, which have not been done in other models.

None of our first-guess solutions is derived from eddy-resolving models. In all of them, horizontal eddy mixing of tracers is parameterised using the Redi (60) and Gent and McWilliams (61) schemes. Errors in eddy parameterisation affect our results by affecting the first-guess solutions. Although observational constraints would correct some of the errors, it is unclear how much still remains. In future studies, deriving G with different eddy parameterisation schemes and model resolutions would help to address this question.

The GF OHC estimate and the Cheng OHC estimate (31) are not fully independent, because HadCM3 is used in both, although

in different ways. To test the impact of this dependency, we have re-computed the GF OHC estimate using the first guess from FAMOUS and ECCO-GODAE, i.e. removing the HadCM3 information. This results in little change in our OHC estimate.

C. Ocean Heat Uptake Boundary Conditions. We refer Θ_e^s as “sea surface excess temperature” (SSTe) to correspond with “sea surface temperature anomaly” (SSTA) used in Zanna et al. (16). The main difference between SSTA and SSTe is that the latter does not contain ocean temperature redistribution (51). Keeping redistributed temperature in the boundary condition may bias the GF OHC estimate. This is because the GF method only accounts for tracers originating from the surface, but redistributed temperature has sources/sinks throughout water columns (23).

We estimate SSTe by combining three SSTA datasets from observations with two SSTe simulations from climate models (SI Appendix 2, summarised in Fig. S3). Specifically, we replace the global mean of SSTe from climate models with the global mean of SSTA from observations. That is, we only use the spatial anomalies (relative to global mean) from model simulations, not their global means. Note that we omit the difference between SSTe and SSTA in the global mean. A model simulation suggests that SSTe is about 0.1 K warmer than SSTA in the global mean after 1960 (23), probably due to reduced ocean convection. This suggests that our SSTe boundary condition may contain a cold bias in recent decades. Both SSTA and SSTe are expressed as anomalies relative to the 1870–1880 time mean, assuming that the ocean is near equilibrium during that period. Our result is not sensitive to small changes in the baseline. For instance, adding a constant offset of 0.1 K to SSTe, as suggested by Jarvis and Forster (62), only increases our estimate of Earth’s energy imbalance N by $\sim 0.01 \text{ W m}^{-2}$ after 1930 (Fig. S18).

We process the global mean of SSTA in two steps. The first step applies a low-pass filter to reduce the impact from interannual heat redistribution. The second step removes two potential biases in SST datasets before 1960 (shown in Fig. S5), which are discussed in the main text. See SI Appendix 2 for further information of the two-step processing.

The SSTe used here is physically connected to the SSTA used in MM E to derive Earth’s radiative response R_{spatial} . Specifically, SSTe is the part of SSTA that originates from surface heat flux change Q_a (23). We enforce this relationship by first identifying climate models that well reproduce the observed SSTA trends, and then using their Q_a fields to carry out SSTe simulations following Eq. 2 (SI Appendix 2).

D. Global Energy Budget in 1700–1880. This supplementary analysis uses the same method as the main analysis for 1880–2022. Because temperature datasets used in the main analysis are not available before 1850, we replace them with PAGES2k data (63), which is based on palaeoclimate proxies. The PAGES2k temperature is used for computing Earth’s radiative response R as well as providing the global mean for the SSTe boundary condition, which is assumed to be globally uniform. PAGES2k data is derived from 7 distinct reconstruction methods, each with 1000 ensemble members. The SSTe boundary condition consists of 7 members, each of which is the ensemble mean of a reconstruction method. This choice is to reduce the cost of evaluating Eq. 3. All 7000 members are used to derive the 2σ -range for computing R . Temperature change is computed with respect to the 1700–1750 baseline.

E. Climate Model Simulations. We use four climate model experiments here. They are the coupled atmosphere–ocean experiment **historical** (1850–2020) with its pre-industrial control **piControl**, and the atmosphere-only experiments **piClim-histall** (1850–2020) and **amip-piForcing** (1870–2014). In all of them, the net TOA radiative flux is computed using TOA incoming shortwave flux (**rsdt**), TOA outgoing shortwave flux (**rsut**) and TOA outgoing longwave flux (**rlut**) from CMIP6 standard outputs. The ocean heat uptake (OHU) rate in the **historical** experiment is derived from the net downward heat flux at the sea surface (**hfds**). Note that climate models tend to store a greater fraction of the TOA imbalance in the ocean compare to observations (96% vs. 90%) because their deficiencies in simulating melting of terrestrial ice and

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

warming of solid Earth (64). The standard historical experiment stops at 2014; we extend it to 2020 using its SSP2-4.5 (medium emission) extension. The distinguishing features of the experiments and our uses of them are summarised in Table 3.

E.1. Global Energy Budget Terms. The global energy budget terms of historical simulations are derived from the historical and piClim-histall experiments. Earth's energy imbalance N is derived from the net TOA flux in the historical experiment. The contributions of radiative forcing F and radiative response R to the energy imbalance N cannot be separated in the historical experiment. We diagnose F using the piClim-histall experiment (65), which is a parallel experiment to historical. The piClim-histall, by construction, has the same F as in historical, but zero R , because its SST and sea ice are fixed to the pre-industrial condition. We derive R of the historical experiment as the difference $R = N - F$. We use the historical experiment from 17 models, which are listed in Table S1; seven of them have the piClim-histall experiment: CNRM-CM6-1, GISS-E2-1-G, IPSL-CM6A-LR, MIROC6, CanESM5, HadGEM3-GC31-LL, and NorESM2-LM.

The amip-piForcing experiment provides an estimate of the radiative response R due to observed SST and sea ice changes, which are prescribed as time-varying boundary conditions, with constant pre-industrial forcing (44, 46). We use the amip-piForcing experiment from eight models: CanESM5, CESM2, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0, and TaiESM1. Note that the historical and amip-piForcing experiment with a given model produce different R because their SST and sea ice fields are different.

E.2. Model Drifts and Energy Leakage. Climate model simulations often contain “climate drift” (unforced trends) (66) and non-closure of the energy budget (67, 68), which are collectively referred to as climate drift here. In practice, the climate drift can be estimated from the steady-state simulation, and then removed from the climate change simulation of interest, assuming the same drift to be present in both simulations (66–68).

For the coupled simulation historical, we remove the climate drift by removing its parallel steady-state simulation piControl. The de-drifting substantially improves the energy conservation in climate models. To demonstrate this we compare the TOA radiative flux and the OHU rate (both are global means). Before de-drifting, the TOA radiative flux is much larger than the OHU rate in several models (Fig. S19), suggesting a non-conservation of energy. After de-drifting, the TOA radiative flux closely matches the OHU rate in all 17 models examined here (Fig. S20), implying that the energy leakage is of similar size between the historical and piControl simulation. For piClim-histall and amip-piForcing, we remove the climate drift by removing their 1870–1880 time mean, because they have no parallel steady-state simulations. The late 19th-century is a common choice for defining the steady state climate; e.g. it is used to design the piControl experiment. The 1870–1880 is also used as the steady-state reference for estimating OHU in this study (Table 1).

E.3. “Strong” and “Weak” Models. We classify each of the 17 climate models as having a “strong” or a “weak” response to anthropogenic aerosol forcing (Table S1). We classify a model as “strong” if its net surface heat loss relative to the pre-industrial control is stronger than 2 W m^{-2} , averaged over the North Atlantic (30°N – 65°N) and 1950–1980, when the aerosol forcing dominates. This gives a similar classification of models as in Robson et al. (69).

F. Sea Level Budget. The global-mean sea-level rise can be decomposed into contributions from a) ocean-mass change and b) ocean thermal expansion. Those are termed as the barystatic and thermosteric component, respectively (70). We derive the global-mean sea level and its barystatic component from observation-based reconstructions in Frederikse et al. (71), which covers 1900–2018. Specifically, the global-mean sea level is obtained from tide-gauge and satellite-altimetry observations and the barystatic change is estimated from mass change of glaciers, ice sheets and terrestrial water. We convert OHC change (ZJ) to thermosteric change (mm) via the expansion efficiency of heat, 0.11 mm ZJ^{-1} . This

number is derived in Zanna et al. (16) based on climatological ocean temperature and salinity in observations.

Data and Software Availability. Ocean heat uptake data of this study is available at <https://doi.org/10.5281/zenodo.11107298>. CMIP6 data is available at <https://esgf-node.llnl.gov>. ECCOv4 data can be downloaded from <https://www.ecco-group.org>. In-situ ocean heat content data are downloaded from: <http://www.ocean.iap.ac.cn> (Cheng), <https://www.data.jma.go.jp> (Ishii), and <https://www.ncei.noaa.gov> (Levitus).

ACKNOWLEDGMENTS. This project was supported by the UK Natural Environment Research Council (NERC) grant NE/P019099/1 for the TICTOC project. We are grateful to colleagues in the TICTOC project for many useful discussions. Q.W. and J.M.G. received support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 786427, project “Couplet”). L.Z. received support from the NSF OCE grant 2048576 and M²LinES through support from Schmidt Sciences, LLC. S.K. received support from the UK NERC grant NE/P019218/1 and NE/W007258/1. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, for producing and making available their model output. We thank the editor and anonymous reviewers for their useful comments and suggestions.

1. G Myhre, et al., Anthropogenic and natural radiative forcing in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. T Stocker, et al. (Cambridge University Press), p. 659–740 (2013).
2. P Forster, et al., The earth's energy budget, climate feedbacks, and climate sensitivity in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. V Masson-Delmotte, et al. (Cambridge University Press), pp. 923–1054 (2021).
3. P Forster, JM Gregory, The climate sensitivity and its components diagnosed from Earth radiation budget data. *J. Clim.* **19**, 39–52 (2006).
4. K Von Schuckmann, et al., Heat stored in the Earth system 1960–2020: where does the energy go? *Earth Syst. Sci. Data* **15**, 1675–1709 (2023).
5. JM Gregory, RJ Stouffer, SCB Ringer, PA Stott, NA Rayner, An observationally based estimate of the climate sensitivity. *J. Clim.* **15**, 3117–3121 (2002).
6. A Otto, et al., Energy budget constraints on climate response. *Nat. Geosci.* **6**, 415–416 (2013).
7. DM Murphy, et al., An observationally based energy balance for the Earth since 1950. *J. Geophys. Res.* **114**, D17107 (2009).
8. J Church, et al., Sea level change in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. T Stocker, et al. (Cambridge University Press), p. 1137–1216 (2013).
9. C Zhou, MD Zelinka, AE Dessler, M Wang, Greater committed warming after accounting for the pattern effect. *Nat. Clim. Chang.* **11**, 132–136 (2021).
10. B Meysignac, et al., Measuring global ocean heat content to estimate the Earth energy imbalance. *Front. Mar. Sci.* **6**, 432 (2019).
11. NG Loeb, et al., Satellite and ocean data reveal marked increase in Earth's heating rate. *Geophys. Res. Lett.* **48**, e2021GL093047 (2021).
12. T Boyer, et al., Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. *J. Clim.* **29**, 4817–4842 (2016).
13. A Savita, et al., Quantifying spread in spatiotemporal changes of upper-ocean heat content estimates: an internationally coordinated comparison. *J. Clim.* **35**, 851–875 (2022).
14. GC Johnson, et al., Argo—Two Decades: global oceanography, revolutionized. *Annu. Rev. Mar. Sci.* **14**, 379–403 (2022).
15. G Gebbie, P Huybers, The Little Ice Age and 20th-century deep Pacific cooling. *Science* **363**, 70–74 (2019).
16. L Zanna, S Khatiwala, JM Gregory, J Ison, P Heimbach, Global reconstruction of historical ocean heat storage and transport. *Proc. Natl. Acad. Sci.* **116**, 1126–1131 (2019).
17. TW Haine, TM Hall, A generalized transport theory: water-mass composition and age. *J. Phys. Oceanogr.* **32**, 1932–1946 (2002).
18. S Khatiwala, F Primeau, T Hall, Reconstruction of the history of anthropogenic CO₂ concentrations in the ocean. *Nature* **462**, 346–349 (2009).
19. S Khatiwala, F Primeau, M Holzer, Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. *Earth Planet. Sci. Lett.* **325–326**, 116–125 (2012).
20. M Holzer, FW Primeau, WM Smethie, S Khatiwala, Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. *J. Geophys. Res.* **115**, C07005 (2010).
21. Q Wu, X Zhang, JA Church, J Hu, JM Gregory, Evolving patterns of thermosteric sea-level rise under mitigation scenarios and insights from linear system theory. *Clim. Dyn.* **57**, 635–656 (2021).
22. M Holzer, T DeVries, W Smethie, The ocean's global ³⁹Ar distribution estimated with an ocean circulation inverse model. *Geophys. Res. Lett.* **46**, 7491–7499 (2019).

Table 3. A comparison of climate model experiments used in this study.

name	configuration	atmospheric composition	SST	TOA net radiative flux is	climate change is anomaly wrt
piControl	coupled atmosphere–ocean	pre-industrial	predicted by model	model drift	N/A
historical (1850–2014)	coupled atmosphere–ocean	time-varying historical	predicted by model	model historical <i>N</i>	parallel piControl
piClim-histall (1850–2014)	atmosphere-only	time-varying historical	climatology of piControl	model historical <i>F</i>	its own 1870–1880 time mean
amip-piForcing (1870–2014)	atmosphere-only	pre-industrial	observations, time-varying	observation-based <i>R</i> estimate	its own 1870–1880 time mean

23. Q Wu, JM Gregory, Estimating ocean heat uptake using boundary Green's functions: a perfect-model test of the method. *J. Adv. Model. Earth Syst.* **14**, e2022MS002999 (2022).

24. CK Folland, O Boucher, A Colman, DE Parker, Causes of irregularities in trends of global mean surface temperature since the late 19th century. *Sci. Adv.* **4**, eaao5297 (2018).

25. K Cowtan, R Rohde, Z Hausfather, Evaluating biases in sea surface temperature records using coastal weather stations. *Q. J. Royal Meteorol. Soc.* **144**, 670–681 (2018).

26. JJ Kennedy, NA Rayner, CP Atkinson, RE Killick, An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. *J. Geophys. Res. Atmospheres* **124**, 7719–7763 (2019).

27. D Chan, P Huybers, Correcting observational biases in sea surface temperature observations removes anomalous warmth during World War II. *J. Clim.* **34**, 4585–4602 (2021).

28. S Sippel, et al., Early-twentieth-century cold bias in ocean surface temperature observations. *Nature* **635**, 618–624 (2024).

29. C Wunsch, P Heimbach, Practical global oceanic state estimation. *Phys. D: Nonlinear Phenom.* **230**, 197–208 (2007).

30. G Gebbie, P Huybers, Total Matrix Intercomparison: a method for determining the geometry of water-mass pathways. *J. Phys. Oceanogr.* **40**, 1710–1728 (2010).

31. L Cheng, et al., Improved estimates of ocean heat content from 1960 to 2015. *Sci. Adv.* **3**, e1601545 (2017).

32. S Levitus, et al., World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. *Geophys. Res. Lett.* **39** (2012).

33. M Ishii, et al., Accuracy of global upper ocean heat content estimation expected from present observational data sets. *SOLA* **13**, 163–167 (2017).

34. A Bagnell, T DeVries, 20th century cooling of the deep ocean contributed to delayed acceleration of Earth's energy imbalance. *Nat. Commun.* **12**, 4604 (2021).

35. JM Lyman, et al., Robust warming of the global upper ocean. *Nature* **465**, 334–337 (2010).

36. A Minière, K Von Schuckmann, JB Sallée, L Vogt, Robust acceleration of Earth system heating observed over the past six decades. *Sci. Reports* **13**, 22975 (2023).

37. L Cheng, G Foster, Z Hausfather, KE Trenberth, J Abraham, Improved quantification of the rate of ocean warming. *J. Clim.* **35**, 4827–4840 (2022).

38. A Storto, C Yang, Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses. *Nat. Commun.* **15**, 545 (2024).

39. Y Li, JA Church, TJ McDougall, PM Barker, Sensitivity of observationally based estimates of ocean heat content and thermal expansion to vertical interpolation schemes. *Geophys. Res. Lett.* **49**, e2022GL101079 (2022).

40. AJ Dittus, et al., Sensitivity of historical climate simulations to uncertain aerosol forcing. *Geophys. Res. Lett.* **47** (2020).

41. S Gulev, et al., Changing state of the climate system in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. V Masson-Delmotte, et al. (Cambridge University Press), pp. 287–422 (2021).

42. GC Johnson, et al., Global oceans. *Bull. Am. Meteorol. Soc.* **104**, S146–S206 (2023).

43. CP Morice, et al., An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. *J. Geophys. Res. Atmospheres* **126**, e2019JD032361 (2021).

44. MJ Webb, et al., The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. *Geosci. Model. Dev.* **10**, 359–384 (2017).

45. JM Gregory, T Andrews, P Ceppi, T Mauritsen, MJ Webb, How accurately can the climate sensitivity to CO₂ be estimated from historical climate change? *Clim. Dyn.* **54**, 129–157 (2020).

46. T Andrews, et al., On the effect of historical SST patterns on radiative feedback. *J. Geophys. Res. Atmospheres* **127**, e2022JD036675 (2022).

47. T Andrews, PM Forster, Energy budget constraints on historical radiative forcing. *Nat. Clim. Chang.* **10**, 313–316 (2020).

48. D Chen, et al., Framing, context, and methods in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. V Masson-Delmotte, et al. (Cambridge University Press), pp. 147–286 (2021).

49. E Hawkins, et al., Estimating changes in global temperature since the preindustrial period. *Bull. Am. Meteorol. Soc.* **98**, 1841–1856 (2017).

50. V Eyring, et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. *Geosci. Model. Dev.* **9**, 1937–1958 (2016).

51. JM Gregory, et al., The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO₂ forcing. *Geosci. Model. Dev.* **9**, 3993–4017 (2016).

52. B Bronselaer, L Zanna, Heat and carbon coupling reveals ocean warming due to circulation changes. *Nature* **584**, 227–233 (2020).

53. JD Zika, JM Gregory, EL McDonagh, A Marzocchi, L Clément, Recent water mass changes reveal mechanisms of ocean warming. *J. Clim.* **34**, 3461–3479 (2021).

54. C Zhou, MD Zelinka, SA Klein, Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. *J. Adv. Model. Earth Syst.* **9**, 2174–2189 (2017).

55. M Winton, SM Griffies, BL Samuels, JL Sarmiento, TL Frölicher, Connecting changing ocean circulation with changing climate. *J. Clim.* **26**, 2268–2278 (2013).

56. G Gebbie, Combining modern and paleoceanographic perspectives on ocean heat uptake. *Annu. Rev. Mar. Sci.* **13**, 255–281 (2021).

57. RM Key, et al., A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). *Glob. Biogeochem. Cycles* **18**, GB4031 (2004).

58. C Gordon, et al., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. *Clim. Dyn.* **16**, 147–168 (2000).

59. RS Smith, JM Gregory, A Osprey, A description of the FAMOUS (version XDBUA) climate model and control run. *Geosci. Model. Dev.* **1**, 53–68 (2008).

60. MH Redi, Oceanic isopycnal mixing by coordinate rotation. *J. Phys. Oceanogr.* **12**, 1154–1158 (1982).

61. PR Gent, JC McWilliams, Isopycnal mixing in ocean circulation models. *J. Phys. Oceanogr.* **20**, 150–155 (1990).

62. A Jarvis, PM Forster, Estimated human-induced warming from a linear temperature and atmospheric CO₂ relationship. *Nat. Geosci.* **17**, 1222–1224 (2024).

63. R Neukom, et al., Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. *Nat. Geosci.* **12**, 643–649 (2019).

64. FJ Cuesta-Valero, A García-García, H Beltrami, J Finniss, First assessment of the earth heat inventory within CMIP5 historical simulations. *Earth Syst. Dyn.* **12**, 581–600 (2021).

65. R Pincus, PM Forster, B Stevens, The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. *Geosci. Model. Dev.* **9**, 3447–3460 (2016).

66. A Sen Gupta, NC Jourdain, JN Brown, D Monselesan, Climate drift in the CMIP5 models. *J. Clim.* **26**, 8597–8615 (2013).

67. W Hobbs, MD Palmer, D Monselesan, An energy conservation analysis of ocean drift in the CMIP5 global coupled models. *J. Clim.* **29**, 1639–1653 (2016).

68. D Irving, W Hobbs, J Church, J Zika, A mass and energy conservation analysis of drift in the CMIP6 ensemble. *J. Clim.* **34**, 3157–3170 (2020).

69. J Robson, et al., The role of anthropogenic aerosol forcing in the 1850–1985 strengthening of the AMOC in CMIP6 historical simulations. *J. Clim.* **35**, 3243–3263 (2022).

70. JM Gregory, et al., Concepts and terminology for sea level: mean, variability and change, both local and global. *Surv. Geophys.* **40**, 1251–1289 (2019).

71. T Frederikse, et al., The causes of sea-level rise since 1900. *Nature* **584**, 393–397 (2020).