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Vegetation cover regulates the exchangesof energy,water andcarbonbetween landandatmosphere.
Remotely-sensed fractional absorbed photosynthetically active radiation (fAPAR), a land-surface
greenness measure, depends on carbon allocation to foliage while also controlling photon flux for
photosynthesis. Here we use an equation with just two globally fitted parameters to describe annual
maximum fAPAR as the smaller of a water-limited value transpiring a constant fraction of annual
precipitation, and an energy-limited valuemaximizing annual plant growth. Thisminimalist description
reproducesglobal greennesspatterns and temporal trends in remote-sensingdata, comparable to the
best-performingdynamic global vegetationmodels.Widely observedgreening is attributedprincipally
to the influence of rising carbon dioxide on the light- and water-use efficiencies of photosynthesis;
limited browning regions are attributed to drying. This research provides one key component of
ecosystem function as a step towards more robust foundations for new-generation land ecosystem
models.

The exchanges of carbon, water and energy between terrestrial ecosystems
and the atmosphere are regulated by vegetation cover, often quantified by
leaf area index (LAI)1. Plants’ use of photosynthetically active radiation
(PAR) for photosynthesis depends on LAI through its relationship to the
fraction of PAR absorbed by leaves (fAPAR), which depends on canopy
architecture2 but can be represented at its simplest by Beer’s law with a
constant extinction coefficient (k ≈ 0.5)3. Transpiration, tightly coupled to
photosynthesis through stomatal regulation, constitutes the largest part of
total global land-surface evaporation and therefore makes a major con-
tribution to the global hydrological cycle4. LAI also regulates thepartitioning
of net surface radiation to latent versus sensible heat fluxes, exerting a first-
order control on the surface energy balance—a key determinant of local and
regional climates.

Global products based on optical remote sensing, representing the
seasonal and interannual time course of fAPAR, arewidely used as inputs to
land biosphere diagnostic models. Most of these models adopt a light use
efficiency (LUE) formulation, whereby gross primary production (GPP) –
total photosynthesis per unit land area—over periods of a week or longer is
proportional to absorbed PAR (the product of fAPAR and incident PAR)5.
This approach can be justified theoretically as a consequence of photo-
synthetic acclimation, which translates the saturation response of photo-
synthesis to PAR – observed on sub-daily time scales—to a proportionality

on time scales similar to the turnover time of Rubisco, the primary car-
boxylating enzyme6. Big-leaf models treat the canopy as a single-leaf leaf,
with no differentiation between sunlit and shaded leaves. Two-leaf models
allow for the differential penetration of direct anddiffuse light into canopies,
which results in diffuse light being usedmore efficiently7–9.Many variants of
these models exist, including a two-leaf model in which the LUE of sun and
shade leaves differs according to their differing radiation exposure10. Pre-
ntice et al.11 reviewed current approaches and challenges associated with
LUE models for monitoring GPP.

Dynamic global vegetation models (DGVMs), which form the land-
surface component of many contemporary Earth System models, inde-
pendently predict LAI (and thenceGPP) as a by-product of the partitioning
of biomass production among leaves, stems and roots. However, this par-
titioning is one of the less studied aspects of ecosystem function, and the
existing formulations in DGVMs have not been extensively tested.

Here we explore an approach distinct from either LUE-based models
or DGVMs. We seek first-order explanations for the emergence of spatial
patterns and temporal trends of fAPAR in terms of eco-evolutionary
optimality principles, which have been successful in explaining many fea-
tures of plant and ecosystem behaviour12. Ground-based and remote-
sensing data are used to test the hypothesis that the annual maximum
fAPAR (fAPARmax) can be represented as the lesser of two quantities: a
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water-limited value and an energy-limited value. The water-limited value is
determined by the principle of ‘ecohydrological equilibrium’, which states
that a fixed fraction of antecedent annual precipitation is available to sup-
port photosynthesis13; the energy-limited value maximizes plant growth by
balancing the benefit of photosynthesis against a cost, which is assumed to
be proportional to LAI. Conceptually, this cost comprises the construction
and maintenance costs of leaves, plus the additional carbon allocation
required to keep the leaves suppliedwithwater and nutrients. Our approach
was first applied to the Tibetan Plateau14 and used to explain observed,
divergent responses of energy- and water-limited vegetation to recent
environmental changes. which paved the way for the present, global
application.

Implementation of this hypothesis is facilitated by the use of the P
model6,15,16, a universal, first-principles LUEmodel for GPP that has no free
parameters and requires no plant functional type (PFT) distinctions apart
from the separation of C3 and C4 photosynthetic pathways (see Online
Methods). The P model has been tested extensively against eddy-
covariance-based estimates of GPP across biomes7,15. Based on the broad
concept of eco-evolutionary optimality7, the P model assumes that vegeta-
tion is adapted and/or acclimates to environmental changes in a way that
minimizes the combined biochemical and water-transport costs associated
with photosynthesis while alsomaintaining biochemical capacity at just the
right level to use all of the available light6. These assumptions make it
possible to dispensewith the need to estimate different sets of parameters for
different PFTs, thus removing a key source of uncertainty in remote-
sensing-based GPP models11.

The P model has the convenient mathematical form of a LUE model,
resulting in proportionality between fAPAR, GPP and transpiration17. Our
analysis here extends the principles underlying the P model to allow inde-
pendent prediction of the annual maximum fAPAR. Under water limita-
tion, optimal fAPAR is taken to be the value that transpires a globally
invariant fraction (to be estimated from data) of antecedent annual pre-
cipitation. This is optimal in the sense that plants are thereby assumed to
adapt their rooting strategy tomakeuse of annual precipitation,whatever its
temporal distribution. Under energy limitation, optimal fAPAR is taken as
the value yielding the largest excess of annual GPP over the canopy cost,
which is assumed to be proportional to LAI (see online Methods). Opti-
mization of LAI is assumed to be independent of leafmass-per-area (LMA),
as co-existing plant species typically vary substantially in LMA, yet those
with higher LMA do not display lower LAI18. We use remotely-sensed
fAPAR rather than LAI as the quantity for direct comparison with model
results in order to avoid problems associated with the saturation of reflec-
tance at high LAI values, where fAPAR approaches unity19.We focus on the
annualmaximumvalue of fAPARper 0.5°; grid cell and year (fAPARmax) as
plantsmust allocate enough carbon to foliage to achieve thismaximum, and
specifically on the 95th percentile of the distribution of fAPARmax within
each grid cell in order to minimize the effects of disturbance or land man-
agement.We do not consider phenology, which can, however, be separately
predicted (given an annual maximum LAI) based on the seasonal time
course of potential GPP20.

This modelled annual maximum fAPAR reproduces global greenness
patterns, and the consistent temporal trends among remote-sensing pro-
ducts, as accurately as the best-performing dynamic global vegetation
models. Widely observed greening is attributed to the influence of rising
carbon dioxide on the light- and water-use efficiencies of GPP, augmented
by wetting in some dry regions and warming in high latitudes. Limited
regions show browning, attributed to drying.

Results
Global comparisons to in situ data and spatial patterns
Ground-basedmeasurements of green vegetation cover apply to small areas
and can therefore be subject to large variation related to local soil conditions
and disturbance history. Reasonable agreement was nonetheless obtained
between a composite set of ground-based fAPAR21,22 and our predictions
(Fig. 1). Mismatches were predominantly overpredictions, particularly in

shrublands; the observed values are bounded above by a line close to the 1:1
line between observations and predictions. The geographic pattern of
fAPARmax predicted by this simple approach shows good agreement with
the observed global pattern derived from MODIS data23 (Fig. 2). The dif-
ferences between modelled and observed multiyear average fAPAR
(mod–obs; Fig. S1) were commonly (53%) within ± 0.1, and most (72%)
differenceswerewithin±0.15. Largerunderestimationoccurred in the Sahel
region of Africa, the caatinga region of north-eastern Brazil, and south-
western North America. Large overestimation is evident in the Tibetan
Plateau and someother, smaller regions at high latitudes or altitudes, such as
northeast Greenland and the high Andes (Fig. S1).

We compared the performance of our model with that of 15 DGVMs
participating in the TRENDY project24 version 9 (Table 1; Fig. 3). Our
predictions performed as well as the best of the TRENDY models on the
three criteria of R2, slope of the regression of observed versus modelled
annual maximum fAPAR, and root-mean-squared error (RMSE)—
achieving the highest R2 (0.95) tied with two othermodels (themodel range
is from0.76 to 0.95), a regression slopewithin±0.02of unityalongwithonly
four other models (the model range is from –0.18 to +0.13), and a low
RMSE (0.15) equalled or marginally outperformed by only three other
models (the model range is 0.14 to 0.33).

We also conducted sensitivity tests on values for z, f0 and k to examine
the degree to which variations in these parameters can influence our model
performance and whether adopting constant values would result in suffi-
ciently robust predictions. The model with temperature-dependent z and f0
produced a higher R2 (0.97) and regression slope (almost 1) and reduced
RMSE (0.12), making it the best-performing of all models (Fig. S2). Using
either a spatially varying field of k values, or vegetation type-specific values
(Fig. S3&Tab. S1), resulted in onlymarginally different estimates of z and f0
(Tab. S2) and slight deteriorations of the goodness of fit of the model
(Fig. S4). UsingMODIS-derived k yielded slopes closer to 1 but with a high
RMSE, possibly due to the occurrence of a few unrealistically high values
(>1000) for k estimated in this way. MODIS-derived k values were less
dispersed when reduced to vegetation type-specific medians, leading to
reduced RMSE (Fig. S4c). Predictive skill was similar whether using

Fig. 1 | Comparison of predicted fAPARmax with observations. Predictions are
from the theoretical model driven by environmental variables. Observations are
from the GBOV and OLIVE datasets. Observed biomes are shown with different
colours; the model is incognizant of biome type. The dashed line is the regression
line, with the red shaded area being the 95% confidence interval; the solid line is the
1:1 line. RMSE, root-mean-squared error of prediction; n, number of observations;
R2, proportion of observed variance accounted for by the prediction.
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vegetation type-specific k values inferred from MODIS, or from in situ
measurements (Fig. S4c, d). The best overall performance was achieved by
the model with constant k.

Trends during the satellite era
Temporal trends in observed and modelled fAPARmax during 2000–2017
were represented bynon-parametricMann-Kendall coefficients (seeOnline
Methods). The evaluation of modelled temporal trends is hindered by
relatively large and generally unexplained differences among remotely
sensed products.Nonetheless, after eliminating grid cells wherefitted trends
showed opposite signs in different products, we simulate the major features
of observed trends (Fig. 4). Widespread greening was both observed and
modelled. However, parts of semi-arid Central Asia and southwestern
Africa, coastal California, the caatinga region of north-eastern Brazil and
interiorArgentina, showed browning trends both in observations and in the
model. Nonetheless, 27% of natural vegetated land showed greening,
whereas less than 6% experienced browning. The model achieved a level of
success in reproducing temporal trends comparable with that attained by
the best-performing TRENDY models (Fig. 5). R2 values greater than that
obtained with the P model (0.37) were achieved by 40% of the TRENDY
models. However, among these, our model uniquely approached a regres-
sion slope of 1 (0.81); other models had regression slopes of 0.63 or less.
Across all models, R2 values ranged from 0.13 to 0.46, and regression slopes
from0.45 to 0.81. RMSE valueswere similar (0.29 to 0.37) across all models.

Quadratic polynomials andbent-cable piecewise linear regressionwere
used to examine the possibility of shifts in fAPAR trends (see Online
Methods). Quadratic regressions of the global average annual maximum
fAPAR trend were less significant (p = 0.055) than simple linear regression
(p = 0.034) while ANOVA showed that quadratic regression was not better
than linear regression (p = 0.24).When this testwas applied to eachgrid cell,
the majority of grid cells (~91%) showed the same results except for limited
regions in Amazonia, southern Argentina, central Asia and some parts of
Africa (Fig. S5). Bent-cable regression indicated that the numberof grid cells
showing hat-shaped trends, which showed an initially increasing annual

maximum fAPAR followed by declining trend, exceeded the number
showing cup-shaped (first negative then positive) trends, although
throughout the whole period these regions exhibit mostly positive trends
(Fig. S6 & Fig. 4). A very few grid cells (mainly in theMediterranean region
and north-eastern Brazil) showed a continuing decrease. Hat-shaped trends
were widely distributed but a significant portion of these shifting trends
showed turning points close to the start of the period (Fig. S6a), casting
doubt on their reliability.

For grid cells where most remotely sensed products agreed on the sign
of the temporal trends, we estimated the dominant control of the trend
(Fig. 6) by performing multiple simulations in which each environmental
variable was held constant in turn to assess its influence (see Online
Methods). Rising CO2 was implicated as the dominant cause of greening
trends over much of the world, in agreement with previous analyses25.
However, substantial areas showed greening trends that the model attrib-
uted to increasing precipitation, while smaller areas (including those listed
previously) showed browning trends that the model attributed to declining
precipitation. Increasing temperature is indicated to have led to greening in
some regions of the northern high-latitudes, but to browning in a few other
locations20. There are also regions, for example in parts of India and China,
where observed greening has been stronger than ourmodel predicts. This is
likely due to direct human influence in the form of agricultural intensifi-
cation, and (in China) reforestation26.

Discussion
Our top-down approach intentionally glosses over potentially important
details, such as the likelihoodof environmental influences on f0 and z. Under
water limitation, we have simply assumed that plants can access a fixed
fraction of precipitation, adapting their root-zone capacity as needed to
ensure this even in highly seasonal climates. Some theoretical work has
pointed to an optimality constraint on this fraction, acting via the coordi-
nation of stomatal and hydraulic traits27. Yang et al.28 postulated the exis-
tence of amaximum ‘rainuse efficiency’and found, throughananalogywith
the Budyko curve, that high fAPAR sharpened the transition between

Fig. 2 | Comparison of the spatial distribution of simulated and observed annual
maximum fAPAR from the P model (bottom left) and MODIS observations
(top left). Energy- and water-limited regions are shown in the middle right panel.

Simulated and observed annual maximum fAPAR are multi-year averages for the
study period of 2000–2017.
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energy and water limitation of GPP. Under energy limitation, we have
assumed a fixed cost factor z for the maintenance and replenishment of the
canopy. However, these factors are also likely to vary with environmental
factors, including growth temperature, growing-season length and aridity29

as well as aspects of soil fertility, as less fertile soils are likely to induce higher
costs in below-ground allocation for the uptake of nutrients30.

Over- and under-estimation of fAPAR compared to observations was
primarily a result of adopting constant values for z and f0. The z value fitted
globally (13.86mol C m–2 a–1) was lower than that fitted specifically to data
from the Tibetan Plateau14 (> 25mol C m–2 a–1). Estimated values for z are
shown to rise towards areas with lower temperatures. Such a trend would
account for higher z being required to estimate fAPAR accurately in cold
regions, including the Tibetan plateau, where our current analysis system-
atically overestimates fAPAR. Plant-available watermight be expected to be
lower in dry areas, so it is not surprising that some of the highest biases
occurred in arid and semi-arid regions (Fig. S7).

Our attempt to fit values of the two model parameters against growth
temperature revealed different responses. f0 shows a nearly monotonic
positive increase with temperature. z declines with increasing temperature
up to about 12 °C, followed by an increase, then a further decrease after
about 21 °C (Fig. S8). The increasing relationship between f0 and tem-
perature is consistent with previous research31 suggesting increasing

Fig. 3 | Comparison of simulated fAPARmax and observed fAPARmax fromMODIS. The red dashed line is the regression line; the black solid line is the 1:1 line. RMSE:
root-mean-squared error of prediction; R2: proportion of observed variance accounted for by the prediction; n_neighbors: number of neighboring points around each point.

Table 1 | Details of the models from TRENDY-v9

Model name Spatial resolution Reference

CABLE-POP 1° × 1° Haverd et al.63

CLASSIC 2.8125° × 2.8125° Melton et al.64

CLM 5.0 0.9375° × 1.25° Lawrence et al.65

IBIS 1° × 1° Yuan et al.66

ISAM 0.5° × 0.5° Meiyappan et al67

ISBA-CTRIP 1° × 1° Delire et al.68

JSBACH 1.875° × 1.875° Reick et al.69

JULES-ES 1.25° × 1.875° Wiltshire et al.70

LPJ-GUESS 0.5° × 0.5° Smith et al.71

LPX-Bern 0.5° × 0.5° Lienert and Joos.72

OCN 1° × 1° Zaehle and Friend.73

ORCHIDEEv3 0.5° × 0.5° Vuichard et al.74

SDGVM 1° × 1° Walker et al.75

VISIT 0.5° × 0.5° Kato et al.76

YIBs 1° × 1° Yue and Unger.77
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Fig. 5 | Comparison of simulated and observed trends in fAPARmax. The
simulated trends are derived from the Pmodel and the 15models participating in the
TRENDY project. The observations are derived fromMODIS. Red dashed line is the

regression line; black solid line is 1:1 line. RMSE: root-mean-squared error of pre-
diction; R2: proportion of observed variance accounted for by the prediction;
n_neighbors: number of neighboring points around each point.

Fig. 4 | Trends in annual maximum fAPAR derived from the P model and fromMODIS observations. fAPAR trends were quantified using Mann-Kendall coefficients.
Regions with high fAPAR (>0.85) in the initial year, or where remotely-sensed products disagree on the sign of the trend, are excluded.
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vegetation water uptake at higher temperatures. A possible explanation for
the initially decreasing, then increasing relationship of z to temperature
might be that nutrient limitation at the low end is alleviated by rising
temperature, allowing less below-ground allocation per unit leaf area32,
while water limitation under warmer climates is exacerbated by rising
temperature, forcing plants to allocate more below ground. This is broadly
consistent with the pattern shown inMa et al.33 whereby the relationship of
forest root mass fraction to temperature is positive on dry soils but negative
on wet soils. Adopting the empirical temperature dependency of z and f0
improves model performance to some extent (Fig. S2). Such dependencies
would repay further study both from a theoretical standpoint and in
remotely sensed observations. Nonetheless, the fidelity of our minimalist
model to the major spatial and temporal patterns in fAPAR data is notable,
as is its ability to reproduce both aspects aswell as or better than the farmore
complex DGVMs.

Ecohydrological optimality concepts have a long but chequered history.
Some specific hypotheses earlier proposed by Peter Eagleson, a pioneer of
global ecohydrology, arenowconsidered implausible fromaneco-evolutionary
perspective34,35. A link has been noted between the ratio of transpiration to
precipitation (equivalent to f0) and the aridity index (AI, the ratio of potential
evapotranspiration to precipitation)31. According to Good et al.36, f0 has a
unimodal relationship to AI, reaching a maximum value at an AI around 1.5.
The ascending limb of this relationship relates to our energy-limited case, with
fAPAR independent of precipitation. The maximum of f0 reported in Good
et al.36 is about 0.6, close to our fitted value for water-limited regions. The
descending limb corresponds to a decline in f0 with increasing aridity. Here,
however, we have intentionally kept the formulations as simple as possible, to
illustrate general principles and to facilitate comparison with previous studies.
By linking remotely sensed data with theory in this way, we anticipate that this
workwill contribute to the development ofmore comprehensive theory for the
interactions of vegetation and its growth environment.

The canopy extinction coefficient (k) depends on canopy structure, par-
ticularly the leaf angle distribution37,38. It has long been observed (and theore-
tically predicted) that more vertically inclined leaves, as in needleleaf forests,
lead to lower values of k whereas more horizontally inclined leaves, as in
broadleaf forests, lead tohighervaluesofk38,39. In addition,high fAPARappears
to favour lowk, allowingmore efficientpenetrationof light intodense canopies.
Hikosaka and Hirose38 proposed the existence of an optimal k dependent on
vegetation density, which could explain the geographic pattern in apparent k
andmight also imply temporal variation in k. Indeed, declining k towards the
peak growing season, which would enable greater light penetration, has been

noted40. However, our analysis has shown that the specification of k is not
critical to determining the geographic patterns or temporal trends in fAPAR,
which are predicted with reasonable accuracy assuming an invariant k.

Both positive and negative trends in vegetation greenness in recent
decades have been reported. Negative trends have mostly been associated
with intensified drought stress accompanying warming41,42. However, our
analysis does not support a general transition from greening to browning
from 2000 onwards. Rather, it supports the hypothesis that potential
negative effects of increasing temperature and vapour pressure deficit have
generally been more than counterbalanced by the positive effects of rising
atmosphericCO2concentration, andof longer andwarmer growing seasons
in high latitudes25. Weakening or negative trends of primary production
diagnosed in some research might be due to lack of consideration of CO2

fertilization effect in light use efficiency (LUE)43. Given the accelerated rate
of warming and further interactions between environmental drivers, how-
ever, there are likely to be shifts in future predictions of leaf area that could
counteract the positive effects of rising CO2

44.
This researchhas potential utility in providing one key component of a

general optimality-basedmodel for ecosystem function. Current global land
models contain many ad hoc and untested ‘legacy’ elements – not least for
the determination of carbon allocation to roots, shoots and leaves, for which
there are few generally accepted principles. If the tendency of fAPAR can be
predicted (and the costs of LAI quantified in terms of required below-
ground allocation), it should be possible also to predict annual carbon profit
– and thereby formulate an evolutionarily stable strategy for height com-
petition among plants45. These elements are all required, if a new generation
of land ecosystem models is to rest on more secure foundations.

Methods
Optimality criteria
ForC3plants, the optimality equations (seeOnlineMethods for derivations)
are:

fAPARmax ¼ f0 P ca ð1� χÞ=ð1:6D A0Þ ð1Þ

under water limitation and

fAPARmax ¼ 1� z=ðk A0Þ ð2Þ

under energy limitation, where fAPARmax is annual maximum fAPAR
(assumed in (2) to be related to annual maximum LAI via Beer’s law,

Fig. 6 | Identification of the dominant driver of the trend in P-model simulated annual maximum fAPAR, where (+) and (−) indicate a positive or negative effect of
each driver. Regions with high fAPAR (>0.85) in the initial year, or where remotely-sensed products disagree on the sign of the trend, are excluded.
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fAPARmax = 1 – exp (-k LAImax) with k = 0.5), f0 is the fraction of annual
precipitation (P, molm–2 a–1) available for uptake by plants, ca is the ambient
partial pressure of CO2 (Pa), χ is the ratio of leaf-internal to ambient CO2,D
is the vapour pressure deficit (vpd, Pa), z is the cost factor for LAI, andA0 is
the potential GPP (mol C m–2 a–1), i.e. the GPP that would be achieved if
fAPARmax = 1. The term χ is a function of growth temperature, vpd and
atmospheric pressure, while A0 is a function of incident PAR, temperature
and χ. Single, global values of the two free parameters (f0 and z) were
estimated bynon-linear regression using the log-sum-exp approximation to
the minimum function (Note S1).

The P model
Weused thePmodel6,15,16 toprovide the components ofEqs. (1) and (2).The
P model is based on the Farquhar-von Caemmerer-Berry photosynthesis
model, but has the mathematical form of a LUE model. It simulates ter-
restrial ecosystem gross primary production (GPP) as a function of atmo-
spheric CO2 concentration, air temperature, atmospheric pressure, vapor
pressure deficit (vpd, expressed as D), incident photosynthetic photon flux
density (PPFD), the fraction of incident PPFD absorbed by vegetation
(fAPAR), root-zone soil moisture (θ) and C4 vegetation fraction as follows:

A ¼ φ0: PPFD: fAPAR:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c�

m

� �2=3
" #vuut ð3Þ

where

m ¼ ca � Γ�
� �

= ca þ 2Γ� þ 3Γ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6η�Dβ�1 K þ Γ�ð Þ�1� �q	 


ð4Þ

Here,φ0 is the intrinsic quantumyield estimated followingBernacchi et al.46,
Γ� is the photorespiratory compensation point (Pa), K is the effective
Michaelis-Menten coefficient of Rubisco (Pa), η� is the viscosity of water
relative to its value at 25 °C,β is the ratio of cost factors for carboxylation and
transpiration at 25 °C, c* is four times c, the unit cost ofmaintaining Jmax. C3

and C4 vegetation were distinguished by the value form, the CO2 limitation
term. While m is calculated as shown in Eq. (4) for C3 vegetation, for C4

plants m is assumed to be 1 due to the CO2 concentrating mechanism47.
A detailed description of the model can be found in Stocker et al.15,

where it is also showed thatmodel canaccount for observed trends inGPPat
multiple eddy-covariance flux sites. Soil water stress was implemented fol-
lowing Lavergne et al.48, whereby χ is down-regulated under water stress via
β following an empirical relationship with θ given as:

lnβ ¼ 1:81θ þ 4:4 ð5Þ

A dynamic C4 vegetation fraction was simulated, based on a C3/C4

competitionmodel that uses the Pmodel to predict C3 and C4 GPP
49. Areas

where cropland cover is higher than 50%were excluded in theC4 vegetation
fraction map. All calculations and analyses were conducted in the open-
source environments R (version 4.1.2) and Python (version 3.10).

Environmental data
We downloaded globally averaged monthly mean CO2 concentrations
(μmol mol−1) from the NOAA Global Monitoring Laboratory for
2000–2017 (NOAA/GML; https://gml.noaa.gov/ccgg/trends/; last access
June 2022). Monthly precipitation, maximum, minimum and mean tem-
perature andwater vapour pressure at 0.5° resolutionwere derived from the
Climate Research Unit (CRU) TS4.04 data set50. Vapour pressure deficit
(VPD) was calculated using maximum, minimum temperature and water
vapor pressure. Atmospheric pressure was estimated with global gridded
elevation at 0.5° resolution in the WFDEI meteorological forcing dataset51.
Hourly surface downwelling shortwave radiationwas downloaded from the
WFDE5 dataset version 2.052 and summed to provide monthly totals.

The CRU and WFDE5 data sets have relatively low spatial resolution
and are consequently less suitable for site-level model evaluation. We
obtained high-resolution climate data from the Climatologies at High
resolution for the Earth’s Land Surface Areas (CHELSA) dataset53 and used
this as the climate forcing at the site scale. The CHELSA data set provides
monthly air temperature, precipitation, solar radiation, vapour pressure
deficit data, with a spatial resolution of 30 arc sec (around 1 km)53.

Root-zone soil moisture from the Global Land Evaporation Amster-
damModel (GLEAM) v3.6a product54,55 available for the period 1980–2021
was used to estimate soil water stress on stomatal limitation of
photosynthesis.

Annual tree cover percentages for 2000–2020 were derived from
MODIS MOD44B v00656. Cropland cover at 0.05° resolution from
2001–2016 was derived from MODIS MCD12C1 v00657 and regridded to
0.5° resolution using the first order conservative remapping function
(remapcon) from the Climate Data Operators (CDO) software package
(https://code.mpimet.mpg.de/projects/cdo).

Prediction of annual maximum vegetation cover
We hypothesize that on annual and longer time scales, the allocation of
carbon to foliage is limited either by water supply, as a transpiring canopy
cannot be sustained if insufficient root-zone water leads to prolonged sto-
matal closure; or by photosynthesis, as building and maintain leaves (and
supplying themwith water and nutrients) implies a carbon cost that cannot
for long exceed the rate at which they fix carbon.We refer to these two cases
as ‘water limited’ and ‘energy limited’. Under water limitation, we hypo-
thesize that plants collectively adjust their rooting behaviour to extract a
fraction of annual precipitation from the soil, regardless of its distribution
through the year, and allocate carbon to leaves in such a way that all of this
water is transpired and GPP consequently maximized. Under energy lim-
itation, we hypothesize that plants allocate carbon to leaves in such a way as
to maximize GPP after subtracting the costs on constructing and maintain
leaves and keeping them supplied with water and nutrients. This criterion
leads toawell-definedoptimumbecause investment in leaf tissueproduces a
diminishing return, due to the mutual shading of leaves.

General expressions for GPP and transpiration are:

A ¼ Gsca 1� χ
� � ¼ fAPAR:A0 ð6Þ

and

E ¼ 1:6Gs D ð7Þ

where A is GPP (we neglect leaf respiration for simplicity), A0 is potential
GPP assuming full vegetation coverage (fAPAR=1), E is transpiration, and
Gs is the canopy conductance for CO2. If we also assume that E = f0 P then
re-arrangement immediately yields Eq. (1) as the water-limited fAPAR.We
now define the net carbon profit (Pn) as:

Pn ¼ fAPAR:A0 � z: LAI ð8Þ

and assume Beer’s Law:

fAPAR ¼ 1� exp �k:LAIð Þ ð9Þ

Then

Pn ¼ fAPAR:A0 þ
z
k

� �
ln 1� fAPAR
� �

ð10Þ

and

∂Pn

∂ fAPAR
� � ¼ A0 �

z
k

1� fAPAR
ð11Þ
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Setting Eq. (11) to zero yields Eq. (2), corresponding to a maximum in
Pn. The minimum of energy-limited fAPAR (fAPARc) and water-limited
fAPAR (fAPARw) was smoothly approximated using the log-sum-exp
function (see text S1 for detailed derivation):

min fAPARc; fAPARw


 � �� 1
K
log exp �K: fAPARc

� ��

þ exp �K:fAPARw

� �� ð12Þ

where K (≥1) is a constant. The larger the value for K, the closer the
approximation is to minimum function (here we adopted K = 10). in our
simulation. fAPARw and fAPARc were expressed as Eqs. (1) and (2)
respectively. With fAPARw and fAPARc defined by Eqs. (1) and (2)
respectively, we fitted values for f0 and z using non-linear regression
(nls function in R). The globally fitted values for z and f0 were 13.86molm–2

a–1 and 0.62 (unitless) respectively.

Evaluation of predicted vegetation cover and its trend
We used remotely sensed products to evaluate our predictions at a global
scale, as only remote sensing can provide the spatial and temporal continuity
of data required for this purpose. We evaluated the modelled global fAPAR
using the 0.05° resolution fAPAR data58 at daily timestep from 2000–2017
derived from MODIS MOD15A2H Leaf Area Index/FPAR product23. The
annualmaximum fAPAR values were derived first by selecting themaximum
value through the year, and then the 95th percentile of each set of 10 × 10 0.05°
grid cells was used as the maximum fAPAR of each 0.5° grid cell.

To compare the performance of our framework with state-of-the-art
dynamic global vegetation models, we downloaded LAI over 2000–2017 as
simulated by the ensemble of 15 TRENDY24 ecosystemmodels (TRENDY-
v9; Tab. 1) (note that themodels do not report fAPAR and generally do not
model it separately from LAI). We used the S2 simulations, in which
identical, time-varying climate and CO2 are prescribed to all the models.
TRENDY annualmaximumLAIwas taken as themaximumLAI value in a
year in each grid cell and converted to fAPARmax using Eq. (9) for compare
with modelled fAPARmax.

We visually compared the multi-year average of modelled and
observed fAPAR during 2000–2017 across the globe and evaluated the
predicted fAPARmax using R-squared (R2) and root mean squared error
(RMSE). We also performed ordinary least-squares linear regression of
observed versus predicted fAPARmax.

Trends of global annual maximum fAPAR over the study period
(2000–2017) were quantified using Mann-Kendall coefficients after
regridded via CDO remapcon to a coarser resolution of 1.5° in order to
reduce the incidence of false (positive or negative) trends. Areas with high
values in the initial year (fAPARmax >0.85)were excluded to avoid near-zero
trends. Besides MODIS fAPAR data, we also considered remotely-sensed
greenness trends over the same period in the GEOV259, GLOBMAP60 and
AVHRR61 products. We retained only those grid cells where at least three
out of four products showed trends with the same sign. Predicted (MODIS)
and observed trend coefficients were then compared in the same way as the
predicted and observed fAPARmax.

We used both quadratic polynomials and bent-cable piecewise linear
regression to detect whether there had been a shift in the fAPAR trend
during the study period43. We conducted these analyses on each grid cell,
and on the global average of modelled seasonally maximum fAPAR
(fAPARmax). The quadratic regression was compared to linear regression
using ANOVA to determine whether a trend with a turning point could
better describe the temporal pattern of fAPAR than a linear trend. Bent-
cable regression allowed us to further classify heterogeneous fAPAR trends
as being either cup-shaped, where a negative fAPAR trend (“browning”)
was followed by a positive trend (“greening”), or hat-shaped, where fAPAR
at first increased but then declined. We constrained the turning points
(where fAPAR trend shifts) to be in the middle 70% of the time series
(2003–2014), following Higgins et al.43.

In situ measurements provided additional evaluation of model per-
formance. A total of 222 site-year LAI measurements were obtained from
the Ground-Based Observations for Validation (GBOV) dataset in the
Copernicus Global Land Products (https://gbov.acri.fr), and the OLIVE
ground database21,62. The GBOV dataset is part of the Copernicus Global
Terrestrial Service. Its purpose is to develop and distribute reliable in situ
datasets from selected ground-based monitoring sites for systematic and
quantitative validation of terrestrial products. The OLIVE dataset collects
and processes ground-basedmeasurements in accordance with CEOS-LPV
guidelines to ensure data quality and consistency. The dataset includes
shrubland, evergreen and deciduous broadleaf forests, needle leaves forests,
and mixed forests, and spans the years 2000 through 2017. Combining the
two datasets provides a broader range of representative biome types (as
shown in Fig. S7). fAPAR was estimated from LAI with Eq. (9). For com-
parability with the modelled peak vegetation growth, we determined the
annualmaximum fAPARas the peak greenness and evaluated the predicted
against the observed fAPARmax using R2 and RMSE. We determined the
annual maximum fAPAR as the fAPAR at peak greenness, and evaluated
the predicted against observed fAPARmax at the ground sites using R2

and RMSE.

Sensitivity tests
For simplicity in ourmain analysis, wefitted a single, global value for eachof
the parameters z and f0 across all grid cells and years. In principle, however,
both z and f0 could vary with environment. To assess the possibility of
systematic variationwith temperature, we divided the gridded climatologies
into 5° average growing season temperature bins with a 1° moving window
and fitted z and f0 within each temperature bin.

A constant value of 0.5 for the light extinction coefficient (k) was
adopted inourmain analysis for the interconversionof fAPARandLAI.As
this coefficient is expected to vary with canopy structure, sensitivity tests
were performed. We first calculated “apparent” values for k (assuming
Beer’s Law) from the multiyear average of MODIS annual maximum LAI
and fAPARduring 2000–2017 (Fig. S3), and applied the resulting, spatially
varying k in our log-sum-exp regression. We also compared this
spatially varying k to MODIS land cover type and identified the
median value of k within each major biome (Tab. S1). In an alternative
approach, we used in situ measured mean growing-season values for k
derived from a meta-analysis40 (Tab. S1). The fitted values for f0 and z
under these different values for k were shown in Tab. S2, where the var-
iation in k has a slight effect of values for z, but nearly no effect on f0. The
performance of the different fAPAR predictions was evaluated using R2

and RMSE (Fig. S4).

Determination of drivers of the observed trends
To investigate the causes of LAI trends during the study period, we con-
ducted simulations in which each one of the environmental variables
(temperature, solar radiation, precipitation, soil moisture and CO2 level) in
turn was held constant at the value of initial year while other variables were
allowed to change. The trends in fAPARmax derived from these factorial
experiments at each grid cell were compared to the trends seen in the
original simulation with all factors varying. The variable that produced the
highest change in the trend was considered to be the factor controlling the
trend. We also examined if this factor had a positive or negative impact on
the fAPARmax trend by the sign of differences between factorial experiments
and the original simulation.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data used to reproduce all the figures in this research are published openly
on Zenodo (https://zenodo.org/records/14283700) (https://doi.org/10.
5281/zenodo.14283699).
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Code availability
Code used to reproduce all the figures in this research are publicly available
from Github repository (https://github.com/Shirleycwj/annual_maximum
_fAPAR).
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