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A B S T R A C T

The time taken for ecosystems to recover after wildfire affects the rate of carbon sequestration, and this in turn 
impacts land–atmosphere exchanges and hydrological processes. Factors affecting post-fire recovery time have 
been investigated at site or regional scale, but there is comparatively little information about this at a global 
scale. In this study, we use solar-induced chlorophyll fluorescence (SIF) to estimate the recovery of photosyn
thetic activity after fire for more than 10,000 fires representing the range of ecosystems across the globe. We then 
examined the factors that influence post-fire recovery time, initially using the relaxed lasso technique to identify 
the most important factors and then using a linear regression model incorporating these factors. We show that 
vegetation characteristics, the characteristics of the fire, and post-fire climate all influence recovery time. Gross 
primary production (GPP) is the most important factor, with faster recovery in ecosystems with higher GPP. Fire 
properties which indicate substantial vegetation damage, such as fire intensity and duration, result in longer 
recovery times. Post-fire climate also affects recovery time: anomalous temperature and temperature seasonality, 
and higher than normal dry days increase recovery time while higher-than-average precipitation decreases re
covery time. There is an additional impact of vegetation type (biome), which may reflect differences in plant 
adaptations to fire between biomes. We show that there is a clear relationship between the proportion of plants 
that resprout after fire in a biome and recovery time, with ecosystems characterised by higher abundance 
recovering faster.

1. Introduction

Fire is a widespread natural disturbance, playing an important role in 
shaping the ecosystems through reducing vegetation cover and conti
nuity, initiating succession and changing vegetation composition (Bond 
et al., 2005; Harrison et al., 2010; Pausas and Keeley, 2009). The time 
taken for vegetation to recover after a fire influences the rate of carbon 
sequestration and hence impacts the terrestrial carbon cycle. The re
covery process affects carbon storage and turnover times, which in turn 
can impact hydrological processes and land–atmosphere interactions 
through feedbacks involving changes in vegetation, CO2 levels, and 
climate (Fan et al., 2023; Li and Lawrence, 2017; Marcos et al., 2023). 
Identifying the factors that influence recovery time after wildfire will 
improve our understanding of ecosystem resilience (González-De Vega 
et al., 2016; Marcos et al., 2023) and aid in developing land 

management to promote the sustainability of ecosystems (Francos et al., 
2016; Ireland and Petropoulos, 2015; Jucker Riva et al., 2016).

Post-fire recovery times are known to vary considerably. Fire prop
erties, such as the intensity of the fire, have been shown to have a sig
nificant negative relationship with regeneration ability in Spain (Díaz- 
Delgado et al., 2003). Higher fire severity, as measured by the delta 
Normalized Burn Ratio (dNBR) or Composite Burn Index (CBI), has been 
shown to lead to slower recovery because it results in more complete 
vegetation destruction such that the ecosystem must recover from an 
early successional stage (González-De Vega et al., 2016; Liu, 2016; 
Viana-Soto et al., 2017). Extreme high-intensity fires can trigger vege
tation shifts, altering species composition and ecosystem structure 
(Keeley, 2009; Kruger, 1984; Smit et al., 2010). Factors such as fire size 
and heterogeneity in the severity of the fire have also been shown to 
affect post-fire recovery time. Turner et al. (1997), for example, showed 
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that recovery, both in terms of vegetation cover and species richness, 
was quicker after smaller fires than larger fires. Burnt patch perimeter- 
area ratio (PAR), the shape complexity that reflects the heterogeneity of 
burn severity, has also been shown to affect recovery time: higher het
erogeneity is more likely to enhance post-fire vegetation regeneration 
since less severely burned or unburned ‘islands’ can act as seed sources 
(João et al., 2018). Topographic factors such as aspect has been shown 
to influence recovery, Ireland and Petropoulos (2015), for example, 
showed that regeneration was faster on north-facing slopes than to 
south-facing slopes in western Canada while Shryock et al. (2015) found 
that vegetation recovery in the Sonoran Desert was faster at higher 
elevation sites. The long-term climate has also been shown to be 
important for recovery. Giorgis et al. (2021) showed that ecosystems 
characterised by higher temperatures and water availability recovered 
more quickly after fire by comparing several studies from South Amer
ica. Shryock et al. (2015) found that vegetation recovery after fire in the 
Sonoran Desert was fastest in areas with higher average annual pre
cipitation. The climate after the fire has also been shown to affect re
covery time: higher than normal precipitation in the year after fire has a 
positive influence on postfire recovery (Liu, 2016; Meng et al., 2015). 
Little work has been done to quantify the impact of vegetation properties 
which might affect fuel loads and continuity, such as gross primary 
production (GPP), on recovery time. Other ecosystem properties, such as 
plant adaptations to fire such as resprouting, serotiny or heat- or smoke- 
induced germination, are known to influence the rate of post-fire re
covery (Clarke et al., 2010; Clarke et al., 2013; Harrison et al., 2021; 
Lawes and Clarke, 2011). Serotiny, for example, allows seeds to be 
released in place without the need for migration of propagules from 
outside the fire-affected area, while resprouting produces even faster 
recovery through rapid regeneration from meristems. However, again 
there has been little work to quantify this.

Remote-sensing data has been used to investigate vegetation recov
ery after specific fire events by comparing the remote sensed vegetation 
parameters before and after a fire (Gitas et al., 2012; Viana-Soto et al., 
2022; Zhou et al., 2019). The most frequently used data are optical 
remote sensing products from sensors such as the Moderate Resolution 
Imaging Spectroradiometer (MODIS), the Advanced Very High Resolu
tion Radiometer (AVHRR) and Landsat. For example, Liu (2016) showed 
that the shortwave infrared (SWIR) vegetation index from Landsat could 
be used to quantify post-fire recovery in boreal larch forests. The recent 
development of products from microwave and LiDAR (Light Detection 
And Ranging) remote sensing sensors has been used to examine biomass 
recovery in dense forests after fire. Zhou et al. (2019) and De Luca et al. 
(2022) monitored the post-fire vegetation regrowth through c-band SAR 
backscatter data. Bousquet et al. (2022) compared the performance of 
different vegetation optical depth (VOD) bands and showed that L-VOD 
can be used to monitor post-fire recovery, especially over densely 
vegetated areas. Sato et al. (2016) quantified post-fire changes in forest 
canopy height and biomass using an airborne LiDAR sensor in western 
Amazonia, and LiDAR and multispectral data have been combined to 
assess post-fire forest structure recovery after fire in Mediterranean pine 
forests (Viana-Soto et al., 2022). Remote sensing products from micro
wave and LiDAR sensors, however, are only available for a limited time 
period, limiting their usefulness in ecosystems that recover slowly. 
However, the use of optical remote sensing products for investigating 
vegetation recovery is complicated by saturation of the signal such that 
vegetation “greenness” indexes reach a plateau although the vegetation 
biomass may continue to increase, leading to underestimates of recovery 
time in areas with high vegetation cover (Liu et al., 2012; Wang et al., 
2019). Furthermore, surface properties and vegetation type affect light 
reflection and absorption, which can bias estimates of recovery time 
(Meroni et al., 2009; Mohammed et al., 2019). The nature of the bias is 
context specific: over dark surfaces, NDVI values are larger than would 
be expected for a given amount of vegetation than if the background is 
lighter, leading to an underestimate of recovery time, and the converse 
is true over very light surfaces such as dry, sandy soils.

Solar-induced chlorophyll fluorescence (SIF) distinguishes the en
ergy emitted by plant chlorophyll after light absorption within the 
600–800 nm wavelength range (Baker, 2008; Mohammed et al., 2019) 
and therefore provides a direct measure of photosynthetic activity at 
large spatial and temporal scales. It has also been considered a useful 
tool to monitor vegetation changes (Guo et al., 2020; Irteza et al., 2021; 
Mohammed et al., 2019; Zhang and Peñuelas, 2023). Qin et al. (2022)
showed SIF was a reliable way of monitoring the loss and recovery of 
vegetation after both fire and drought. Guo et al. (2021) demonstrated 
that SIF reflects the recovery process after fire in boreal forests better 
than vegetation indices such as the Normalized Difference Vegetation 
Index (NDVI) or the Enhanced Vegetation Index (EVI). Xu et al. (2024)
used SIF-based GPP investigated post-fire recovery time at the global 
scale and showed that it is more sensitive to the impact of fire distur
bances than the kernel normalized difference vegetation index (kNDVI) 
or EVI.

In this study, we use SIF to estimate post-fire recovery time of 
photosynthetic activity for more than 10,000 individual fires world
wide. The recovery of photosynthetic activity is the necessary first step 
to full ecosystem recovery, expressed by recovery of biomass or 
ecosystem structure. Furthermore, although photosynthetic activity is 
only one aspect of post-fire recovery, SIF data are available at sufficient 
spatial and temporal resolution to characterise recovery after individual 
fires. We then investigate the fire, vegetation, climatic, topographic and 
human factors influencing the speed of post-fire recovery and how they 
operate, with the goal of determining how best to model post-fire re
covery and thus improve our ability to capture the impact of fire 
disturbance on the carbon cycle.

2. Methods

2.1. Estimating post-fire recovery time for individual fires

The Fire Atlas (Andela and Jones, 2024; Andela et al., 2019) provides 
information on the location of ignitions, size and duration for individual 
fires that occurred between January 2002 to February 2024. We selected 
candidate fires that (a) were larger than the 0.05◦ grid cell resolution of 
the SIF data used as a measure of ecosystem state and (b) occurred in 
grid cells that had not been burnt in the previous three years and could 
therefore be assumed to be undisturbed. As a result of this selection 
criterion the fire candidates were taken from the interval after January 
2005. We used land cover information provided in the Fire Atlas for each 
fire to remove fire candidates from grid cells classified as cropland, 
water, urban and built-up or where land cover was not specified.

We used SIF measurements of photosynthetic activity as an index of 
both the pre-fire and post-fire ecosystem state. The SIF data were 
derived from the Long-term spatially Contiguous Solar-Induced Fluo
rescence (LCSIF) product (Fang et al., 2023). LCSIF leveraged the red 
band and near-infrared band from MODIS and AVHRR to reproduce the 
Orbiting Carbon Observatory-2 (OCO-2) SIF using a neural network. The 
LCSIF product provides bi-weekly values covering the period between 
1982 and 2022 at 0.05◦ resolution. We used the LCSIF data from 2002 
onwards, corresponding to the start date of records from the Fire Atlas. 
We estimated monthly values of LCSIF as the largest of the two bi- 
weekly values in each month. We extracted the area weighted average 
value of LCSIF per month for each fire candidate. We used the maximum 
monthly value recorded in the three years preceding the fire to represent 
the vegetation state pre-fire. We used the maximum monthly value for 
each year after the fire to determine the trajectory of recovery (Fig. S1), 
where recovery was defined as 90 % of the pre-fire LCSIF value 
following Bastos et al. (2011). Alternative metrics, such as relative re
covery within five years and recovery to 50 % of pre-fire SIF, were tested 
but found unsuitable for ecosystem-wide analysis (see Supplementary 
Section 3).
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2.2. Data on potential factors affecting recovery time

We selected 28 variables that are thought to influence recovery time, 
categorized into five groups: fire characteristics, climate factors, vege
tation factors, topographic factors, and human activity.

2.2.1. Fire characteristics
We used fire size, fire intensity, fire duration and fire speed as 

measures of fire properties that could influence recovery time, 
hypothesising that fire intensity, duration and rate of spread could affect 
the completeness of vegetation destruction while fire size could influ
ence the speed of post-fire recolonisation of the burned area. Fire 
duration, fire size and fire speed data were obtained directly from the 
Fire Atlas. We also used the perimeter-area ratio (PAR), as a measure of 
the heterogeneity of burn severity in a fire (João et al., 2018), calculated 
by dividing the perimeter of the fire polygon by its area, where the fire 
perimeter and fire size data were taken from the Fire Atlas. Fire intensity 
was estimated by normalising fire radiative power (FRP), obtained from 
the MODIS MCD14ML dataset (Giglio et al., 2006), by the square root of 
fire size following Haas et al. (2022). We used pre-fire plant cover in
formation, specifically tree cover, shrub cover, grass cover and bare 
ground, as measures of other vegetation properties that could affect 
fires, hypothesising that tree cover and shrub cover would reflect the 
likelihood of the occurrence of crown fires and hence be positively 
related to fire intensity while grass cover would reflect the likelihood of 
less intense surface fires. We included pre-fire bare ground as a measure 
of fuel continuity, which would also influence intensity and fire spread. 
We obtained plant cover from the Global Plant Functional Types (PFT) 
dataset (v2.0.8) at 300 m resolution (Harper et al., 2023). To calculate 
total tree cover, we aggregated the cover of all tree types within the 
dataset. Similarly, we derived the total shrub cover by combining the 
cover of all shrub types. Grass cover was determined using the cover of 
natural grasses, and bare cover was extracted directly. We converted the 
data to 0.05◦ via bilinear interpolation and extracted the percentage of 
the four land cover types one year before the fire using the area weighted 
average value for each fire candidate.

2.2.2. Climate factors
We used climatological data on annual mean temperature, temper

ature seasonality, total precipitation, precipitation seasonality, 
maximum dry day length, number of dry days, and number of frost days 
since these factors influence both ecosystem properties and fire occur
rence (Haas et al., 2022; Harrison et al., 2010; Jennings and Harris, 
2017). Climate data were obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) 
dataset (Hersbach et al., 2023) and converted to 0.05◦ resolution via 
bilinear interpolation. Climatological values were derived by averaging 
data from 1990 to 2019 (30 years) and then calculating the area- 
weighted average for each fire candidate. Annual mean temperature 
was calculated as the average of daily mean temperature. Total pre
cipitation was calculated as the sum of daily precipitation over the year. 
Precipitation and temperature seasonality were derived using the coef
ficient of variation, calculated by dividing the standard deviation by the 
mean of the daily total precipitation and daily temperature respectively 
for each year. Dry days were defined as days with less than 1 mm of 
precipitation, summed over the year to provide total number of dry days 
and summed over consecutive dry day intervals to determine the 
maximum dry day length. The number of frost days was calculated as the 
annual sum of days with temperature below 0 ℃. We then calculated 
how post-fire conditions deviated from this climatology to determine 
whether this influenced recovery rates, by calculating the difference 
between the average values obtained for the subsequent years after fire 
until recovery, and the long-term climatological values.

2.2.3. Vegetation factors
We used GPP to investigate the impact of vegetation productivity and 

its seasonality on post-fire recovery time. Monthly GPP data was ob
tained from the Breathing Earth System Simulator (BESS) v2.1 at 0.05◦

(Jeong et al., 2024; Li et al., 2023). Yearly total GPP was derived by 
summing the monthly GPP values and the yearly totals for the interval 
1990–2019 were summed to produce a 30 years long-term average GPP. 
GPP seasonality was given by the coefficient of variation, calculated by 
dividing the standard deviation of the monthly GPP by the mean of the 
monthly GPP for each year. We then averaged yearly GPP seasonality 
over 30 years to obtain the long-term GPP seasonality. GPP and GPP 
seasonality were extracted using their area weighted average for each 
fire candidate.

2.2.4. Human activity
We used human population density as an index of the potential 

impact of fire or vegetation management practices on post-fire recovery 
time, hypothesising that, at a global scale, densely populated regions are 
generally more likely to be characterised by practices to minimise fire 
damage and promote post-fire restoration. Human population density 
was obtained from UN WPP-Adjusted Population Density, v4.11, part of 
the Gridded Population of the World (GPW) v4 (CIESIN, 2018). This 
dataset provides estimates of population density for the years 2000, 
2005, 2010, 2015, and 2020, based on counts consistent with national 
censuses and population registers with respect to spatial distribution, 
but adjusted to match United Nations country totals. We applied linear 
interpolation to get the yearly population density from 2000 to 2020 and 
extracted the human population density for each fire candidate one year 
before the fire using the grid-cell area weighted average for each fire 
candidate.

2.2.5. Topographic factors
Topographic factors, such as elevation, aspect and slope, influence 

vegetation recovery by shaping the microclimate and soil conditions. 
Steep slopes at higher elevations, for example, are characterised by 
colder conditions and rapid runoff and vegetation recovery is likely to be 
slower under such conditions. Moisture retention also varies between 
north- and south-facing slopes, leading to differences in recovery rate 
between these locations. We used a “northness” index which combines 
information about both slope and aspect: in the Northern Hemisphere, a 
northness value close to 1 indicates a northern exposure on a vertical 
slope, while a value close to − 1 indicates a vertical south-facing slope. 
To reflect differences in radiation receipts on north-facing slopes in the 
northern and southern hemisphere, we assigned negative values to 
northness in the northern hemisphere and positive values to northness in 
the southern hemisphere. We obtained northness and elevation from the 
GMTEDmd 5 km resolution topography data (Amatulli et al., 2018). We 
converted the resolution from 5 km to 0.05 degree by bilinear interpo
lation and extracted the northness and elevation using the area weighted 
average for each fire candidate.

We hypothesised that difference in the prevalence of adaptions to fire 
in different vegetation types could provide additional information about 
post-fire recovery time. We used the Hengl potential natural vegetation 
(PNV) map (Hengl, 2018; Hengl et al., 2018), which provides biome 
information at 250 m resolution. Each candidate fire was assigned to a 
biome based on the most frequently occurring biome within the fire 
polygon, provided it covered more than 50 % of the total area. Fire 
polygons characterised by multiple biomes and where no one biome 
occupied an area > 50 % were not considered in this analysis.

2.3. Data analysis

We applied the relaxed lasso technique (Hastie et al., 2020) to these 
28 factors to identify and rank important variables. Relaxed lasso is a 
variant of the lasso (Least Absolute Shrinkage and Selection Operator) 
regression used for both variable selection and regularization to enhance 
the prediction accuracy and interpretability of statistical models. 
Relaxed lasso produces sparser models than regular lasso but with equal 
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or lower prediction loss for high-dimensional data by including both 
soft- and hard-thresholding of estimators (Meinshausen, 2007) and has 
more interpretable coefficients (Hastie et al., 2020). We applied the 
relaxed lasso technique using the glmnet R package (Tay et al., 2023). 
Log or square-root transformations were applied to reduce the skewness 
of some variables and all variables were transformed to z-scores before 
applying relaxed lasso to ensure the coefficients were meaningful 
(Table 1).

The relaxed lasso helps with variable selection and improves pre
diction accuracy but there may still be collinearity between the selected 
variables. We therefore built a simple linear model after removing var
iables from the relaxed lasso analysis that were not significant or had 
variance inflation factors (VIFs) larger than 5 to avoid multicollinearity.

Finally, we included biomes as dummy variables in the simplified 
linear model to see whether this conferred additional explanatory 
power. We considered the 4323 fire candidates where the dominant 
biome covered > 50 % of the fire area of each fire candidate. We used 
Residual Standard Error (RSE), the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC) to evaluate the significance 
of including biomes in the model. We then examined recovery time 
across different biomes while controlling for other potentially con
founding factors. To explore whether the biome encapsulates informa
tion about fire adaptations, we examined the relationship between post- 
fire recovery time and the abundance of resprouting plants, a trait 
chosen because there is more quantitative data on the abundance of 
resprouters within biomes compared to other fire-related traits. Plot- 
level species abundance data were derived from sPlotOpen 
(Bruelheide et al., 2019; Sabatini et al., 2021), which provides infor
mation on the relative cover of individual species derived by normal
ising the cover of all species to 1 in each plot. We calculated the relative 
cover of resprouters for each plot using species cover data and species 
resprouting information from Shen et al. (2023) in Europe and Australia. 
Only plots that recorded all vascular plant were considered. We then 
calculated the relationship between recovery time and the proportion of 
resprouters for each biome. Scatter plots were used to visualise this 
relationship and R2 was used to evaluate how much variance in recovery 
time was explained by resprouting abundance.

3. Results

3.1. Post-fire photosynthetic recovery time

There were 19,432 fire candidates that met the screening re
quirements, but post-fire recovery time could only be measured for 
10,026 (ca 52 %) of these fires either because they did not reach the 90 
% threshold used to indicate recovery before the next fire occurred 
(5,967 fires) or because recovery was not achieved by the end of the 
sampling period (3,439 fires). Nevertheless, the remaining 10,026 fires 
are widespread across the globe and sample a range of vegetation types 
(Fig. 1A), although there are large numbers of fire candidates in 
northern Australia and parts of central Eurasia. Post-fire recovery times 
ranged from 1 year to 16 years (Fig. 1B), although in 75 % of the cases 
recovery occurred in < 4 years.

3.2. Factors influencing recovery time

The relaxed lasso identified 19 out of the 28 pre-selected potential 
factors as being important (Fig. 2, Table S1, Table S2). These factors 
include vegetation characteristics, fire properties and climate. None of 
the topographic or human activity factors were found to be important in 
this analysis.

The relaxed lasso identified GPP as the most important factor, with a 
negative relationship to recovery time such that ecosystems with higher 
GPP have shorter recovery times. GPP seasonality was also selected by 
relaxed lasso although it only had moderate importance. Temperature 
was the second most important factor from the relaxed lasso, with a 
negative relationship to recovery time. Temperature seasonality was 
also selected by the relaxed lasso although it only had moderate 
importance. The length of dry days was selected by the relaxed lasso, 
with longer dry periods leading to faster recovery. Precipitation sea
sonality was also selected, and showed a positive relationship with re
covery time separately. Post-fire climate was also important for recovery 
time. Anomalously high temperature, increased temperature or precip
itation seasonality, along with larger-than-normal number of frost days 
or larger-than-normal number of dry days increased recovery time while 

Table 1 
Information about the initial selection of predictor variables.

Variable Variable details Units Transformation Group

fire duration Fire duration of the specific fire day square root Fire
fire intensity Fire intensity of the specific fire megawatts km− 1 square root Fire
fire size Fire size of the specific fire km2 log Fire
fire speed Fire speed of the specific fire km day− 1 log Fire
PAR Perimeter-area ratio km− 1 log Fire
tree cover Percentage of tree cover % ​ Fire
bare cover Percentage of bare cover % ​ Fire
grass cover Percentage of grass cover % ​ Fire
shrub cover Percentage of shrub cover % ​ Fire
temperature Annual mean temperature K log Climate
precipitation Annual total precipitation mm square root Climate
temperature seasonality Coefficient of variation of temperature ​ log Climate
precipitation seasonality Coefficient of variation of precipitation ​ ​ Climate
number of frost days Number of frost days (temperature < 0 ℃) day ​ Climate
number of dry days Number of dry days (precipitation < 1 mm) day log Climate
dry day length Maximum length of consecutive dry days day log Climate
Δ temperature Anomalies of temperature K ​ Climate
Δ precipitation Anomalies of total precipitation mm ​ Climate
Δ temperature seasonality Anomalies of temperature seasonality ​ ​ Climate
Δ precipitation seasonality Anomalies of precipitation seasonality ​ ​ Climate
Δ number of frost days Anomalies of number of frost days (temperature < 0 ℃) day ​ Climate
Δ number of dry days Anomalies of number of dry days (precipitation < 1 mm) day ​ Climate
Δ dry day length Anomalies of maximum length of consecutive dry days day ​ Climate
GPP Gross primary production gC m− 2 d-1 log Vegetation
GPP seasonality Coefficient of variation of gross primary production ​ ​ Vegetation
elevation Elevation m ​ Topography
northness Combines sun exposure and steepness of slope ​ ​ Topography
population density Population density persons km− 2 ​ Human activity
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higher-than-average precipitation decreased recovery time.
All the fire-related properties were selected in the relaxed lasso, 

except for PAR and bare ground cover. Fire duration, fire intensity and 
fire speed were identified as highly important factors. Fire duration and 
fire intensity both showed positive relationships with post-fire recovery 
time, while fire speed showed a negative relationship. Tree cover and 
shrub cover were relatively important and have positive relationships 
with recovery time. Although fire size and grass cover were selected in 
the relaxed lasso, they both had an importance very close to zero.

Although factors related to human activity were not selected in the 
relaxed lasso, this may be due to the global scale of this analysis. 
Application of the relaxed lasso to fire candidates from a single biome, 
applied to biomes which had more than 500 samples, showed that 
human activity had relatively high importance in cold evergreen nee
dleleaf forests (Table S3). However, it was not important in tropical 
savannas or steppes.

The linear regression model constructed using all of the factors 
identified as important by the relaxed lasso explained 39 % of the 
variability in post-fire recovery time. However, several of the factors 
identified as important by the relaxed lasso had VIFs larger than 5, 
indicating an unacceptable level of multicollinearity. These factors 
included temperature (VIF = 19.19), temperature seasonality (VIF =

11.89), GPP seasonality (VIF = 9.86), and precipitation seasonality (VIF 
= 6.32). Fire size, grass cover, shrub cover, anomalies of precipitation 
seasonality and anomalies of number of frost days were also excluded 
from the final model because of their insignificance in the linear 
regression (Table S5). The reduced model with only 11 explanatory 
factors explained 35 % of the variance in recovery time (Table 2, Fig. 3) 
which is only 4 % lower than the linear model including all 19 factors 
(Table S5). The direction of the relationships in the linear model (Fig. 3) 
was consistent with those in the relaxed lasso model, although the 
relative importance of some factors was changed. GPP was still the most 
important factor, followed by tree cover and fire duration. The negative 
relationship with GPP is consistent with faster recovery when the 
ecosystem is highly productive. The positive relationship with fire 
duration and with fire intensity, and the negative relationship with fire 
speed, are all consistent with the hypothesis that more time is needed to 
recover after severe fires. Tree cover and shrub cover both reflect the 
likelihood of crown fires, which are generally larger and more intense, 
and thus the positive relationship between these factors and recovery 
time is also consistent with more damage leading to longer recovery 
time. Dry day length showed a stronger negative relationship with post- 
fire recovery time than in the relaxed lasso. This somewhat counter- 
intuitive result probably reflects the fact that ecosystems in drier 

Fig. 1. (A) The geographic distribution of fire candidates used in this study, where the colour coding indicates the number of fires in the grid cell. (B) The distribution 
of post-fire recovery times for the fire candidates where recovery was complete during the sampling interval.
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conditions would experience more fires and thus are probably either 
dominated by grasses (Fig. S2) or dominated by species with adaptations 
to fire, such as resprouting, that promote rapid recovery (Fig. S3). 
Although less important than other factors, post-fire climate conditions 
still had an important influence on recovery time, with anomalously wet 
conditions (indicated by precipitation) leading to more rapid recovery 
and anomalously dry conditions (indicated by temperature, temperature 
seasonality, number of dry days) to less rapid recovery. See (Fig. 4).

3.3. The additional influence of biomes on recovery time

Including biome as a dummy variable in the linear model led to an 
increase in R2 from 0.39 to 0.43 and a reduction in the RSE, AIC and BIC 
values (Table 3) indicating that vegetation type conveys additional in
formation. Post-fire recovery time showed significant differences be
tween biomes, after controlling for other variables by setting them to 
their median values. There is a gradual increase in recovery time moving 
from biomes characteristic of hot or dry or seasonally dry climates (e.g., 
tropical savanna, xerophytic woods/scrub) through forest biomes (e.g., 
warm-temperate evergreen broadleaf and mixed forest) to biomes 

Fig. 2. Importance of factors impacting post-fire recovery of photosynthetic activity, where Importance is determined by the absolute values of the coefficients from 
the relaxed lasso model. For lasso model selection details, see Tables S1 and S2.

Table 2 
Summary statistics of the final linear regression model. The order of factors 
follows the importance determined by the absolute t values. The Variance 
Inflation Factor (VIF) is a measure of the amount of multicollinearity. The sig
nificance codes (Pr(>|t|)) indicate the level of statistical significance: *** for p 
≤ 0.001, ** for p ≤ 0.01.

Estimate Std. Error t value Pr(>| 
t|)

VIF

(Intercept) 0.88 0.01 148.94 *** ​
GPP − 0.42 0.01 − 52.63 *** 1.83
Tree cover 0.21 0.01 22.51 *** 2.63
Fire duration 0.14 0.01 17.90 *** 1.72
Fire intensity 0.09 0.01 14.14 *** 1.14
Dry day length − 0.08 0.01 − 10.43 *** 1.77
Δ Temperature seasonality 0.08 0.01 10.25 *** 1.70
Δ Temperature 0.08 0.01 9.59 *** 1.78
Shrub cover 0.04 0.01 5.93 *** 1.32
Δ Precipitation − 0.05 0.01 − 5.29 *** 2.54
Δ Number of dry days 0.03 0.01 2.98 ** 2.74
Fire speed − 0.02 0.01 − 2.98 ** 1.24
​ ​ ​ ​ R2 = 0.35
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Fig. 3. Partial residual plots showing the relationship between recovery time and individual factors in the final linear regression, assuming that all other factors 
are constant.

Fig. 4. Post-fire photosynthetic recovery times across biomes after controlling for other factors influencing recovery time. The number of fire candidates in each 
biome is shown in brackets. Significant differences between biomes, as measured by the t-test, are indicated by the red letters.
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characteristic of cold climates (e.g., cold evergreen needleleaf forest, 
tundra), although the differences between biomes in each of these 
groups is not always significant. Given that the original model already 
included GPP as a measure of ecosystem characteristics, this analysis 
suggests that there may be other properties such as adaptations to 
different fire regimes that influence post-fire recovery time.

3.4. Fire adaptations as a potential factor influencing recovery time

We use resprouting as an example of the impact of fire adaptations on 
post-fire recovery time. The proportion of resprouting species showed a 
significant variation across biomes: resprouters are more abundant in 
hot and relatively dry biomes subject to frequent fires, such as xero
phytic woods and savannas, and least abundant in biomes characteristic 
of cold climates, such as tundra (Fig. 5). This is reflected in the rela
tionship with post-fire recovery time: recovery was faster in biomes with 
a higher abundance of resprouters and slower in biomes where 
resprouters are rarer (Fig. 5).

4. Discussion

We have shown that recovery time is influenced by vegetation 
characteristics, fire properties and post-fire climate. GPP appears as the 

most important factor, with recovery being faster in more productive 
ecosystems. Measures of ecosystem productivity such as GPP and net 
primary productivity (NPP) have been used to document the trajectory 
of post-fire recovery (Amiro et al., 2000; Goulden et al., 2011; Hicke 
et al., 2003; Xu et al., 2024) but the relationship with long-term pro
ductivity levels has not been quantified at a global scale. However, it 
seems intuitively plausible that more productive ecosystems occur in 
environments that are favourable for plant growth and therefore will 
respond to disturbances, including fire, more quickly. This is consistent 
with a review focusing on forests in Canada, which showed that the 
recovery time following both wildfire and timber harvest was related to 
the inherent productivity of the site (Bartels et al., 2016). However, the 
fact that recovery is also fast in arid ecosystems, as indicated by the 
importance of dry day length, seems to contradict this general rela
tionship. This may reflect the fact that these ecosystems are charac
terised by herbaceous plants or shrubs that regrow more quickly than 
trees, as shown by the fact that that grass cover is higher in regions with 
a longer dry period (Fig. S2). It could also be because ecosystems that 
have long dry seasons during which the fuel load becomes dry enough to 
burn, such as savannas, typically have fires on a regular basis (Keeley 
and Pausas, 2022) and are therefore likely to be characterised by fire- 
adapted plants (Simpson et al., 2022), as suggested by the fact that 
the proportion of resprouters is higher in regions with longer dry periods 
(Fig. S3), and that the proportion of resprouters influences the speed of 
recovery. The negative relationship between dry day length and recov
ery time could also be explained by the adaptation of maximum 
carboxylation rate to dry climate and the trade-off that exists between 
photosynthesis and water-use efficiency (Prentice et al., 2014): drier 
areas have higher photosynthetic efficiency, which means chlorophyll 
fluorescence will recover faster.

Fire properties also play an important role in determining the 
vegetation recovery rate. Fires that cause substantial damage to the 
vegetation increased recovery time. This is consistent with previous 
studies that have shown that more severe fires lead to longer recovery 

Table 3 
Comparison of model performance for 4232 fire candidates with the dominant 
biome covers > 50 % of the fire area. Residual Standard Error (RSE) is the 
estimated standard error of the residuals, AIC is the Akaike’s Information Cri
terion, BIC is the Bayesian Information Criterion, Loglik is the log-likelihood. 
The adjusted R2 statistic takes account of the degrees of freedom.

R2 adjR2 RSE loglik AIC BIC

Original model 0.39 0.39 0.57 − 3608.00 7242.00 7325.00
Model including 

biomes
0.43 0.43 0.55 − 3454.00 6955.00 7107.00

Fig. 5. Relationships between recovery time and proportion of resprouters across biomes using the median of recovery time and proportion of resprouters of 
each biome.
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time (e.g., González-De Vega et al., 2016; Liu, 2016) and also consistent 
with a global-scale study showing greater combustion-induced vegeta
tion loss causes longer recovery time (Xu et al., 2024). However, some 
studies focusing on specific forest types, specifically mixed pine-oak 
forest or coniferous forest, have shown that recovery is faster after 
high severity fires (e.g., Bright et al., 2019; Meng et al., 2018).The 
accelerated recovery is attributed to fire adaptations; for example, the 
dominant pine in mixed pine-oak forest has thick bark and can recover 
though crown regrowth or epicormic resprouting, while the oaks can 
produce vigorous sprouts from the root collars. These regional studies, 
however, did not control for other factors that might influence recovery 
rate. We have shown that post-fire climate, for example, influences the 
rate of ecosystem recovery. This is consistent with previous studies that 
showed that higher than normal precipitation or less than normal dry 
days both accelerate recovery (Meng et al., 2015; Viana-Soto et al., 
2020).

Topographic factors, such as elevation, slope and aspect, do not 
emerge as important in our analyses. However, topographic factors have 
been shown to be significant in regional studies. Shryock et al. (2015)
and Qiu et al. (2021) found that elevation is one of the strongest pre
dictors of vegetation recovery. Additionally, some northern hemisphere 
studies, for example, have shown that south-facing slopes are more 
prone to drought and this results in slower recovery after fire compared 
to north-facing slopes (Ireland and Petropoulos, 2015; Meng et al., 2015; 
Mitchell and Yuan, 2010; Viana-Soto et al., 2020; Wittenberg et al., 
2007). The lack of importance of topographic factors in our analysis may 
reflect the fact that this micro-climate control is already accounted for 
by other predictor variables, such as GPP. It could also reflect differences 
in spatial resolution between these regional or site-scale studies and our 
global analysis, which was conducted at relatively coarse resolution 
(0.05◦, approximately 5 km).

Human activity was not found to be important in our global analysis, 
which is consistent with Xu et al. (2024) who found that human inter
vention only has minor effect on recovery time at the global scale. 
However, our analyses at the level of individual biomes showed that 
factors related to human activities were important for post-fire recovery 
in non-fire-adapted biomes, such as cold evergreen needleleaf forest, but 
not in fire-adapted biomes, such as tropical savanna and steppe. A 
similar distinction between fire-adapted and non-fire-adapted biomes 
has been found in the degree to which human activities such as land
scape fragmentation promote fire occurrence (Harrison et al., 2021; 
Harrison et al., 2024). This suggests that it would be important to make a 
distinction between fire-adapted and non-fire-adapted biomes in terms 
of the role of humans both in promoting fires and in promoting post-fire 
recovery. However, this would require a more robust and quantitative 
understanding of ecosystem properties that determine resilience to fire.

We have shown that accounting for biome gives additional explan
atory power, and suggested that this is because biomes represent fire 
adaptations. This is borne out by our analysis of the impact of 
resprouting on post-fire recovery time, based on quantitative informa
tion about the proportion of resprouters from plots in Europe and 
Australia, which showed that the recovery time was faster in biomes 
with a higher proportion of resprouters. Field studies also show that 
resprouting trees exhibit significantly faster recovery rates compared to 
non-resprouting trees (e.g., Casady et al., 2010; Gouveia et al., 2010; 
Van Leeuwen et al., 2010). However, resprouting is only one part of the 
syndrome of vegetation adaptations to fire (Harrison et al., 2021). Fire 
adaptations such as smoke- or heat-induced germination could also 
promote fast post-fire recovery, while bark thickness is important in 
reducing the damage from fire and hence ecosystem resilience. Unfor
tunately, there is less information available about these fire adaptations 
than about resprouting, and this precludes detailed analysis of their 
impact on ecosystem recovery.

Our estimates suggest that post-fire recovery of photosynthetic ac
tivity is relatively fast: in 75 % of the cases recovery occurred in < 4 
years. Intuitively, these recovery times seem very fast. However, this is 

not due to methodological choices. Doubling the period used to define 
the pre-fire ecosystem state or considering the entire fire-free period 
before each recorded fire to determine the pre-fire state resulted in 
negligible changes to the SIF target, with recovery times differing by ≤ 1 
year for 95 % of the fires analyzed (Fig. S5, Fig. S6). Using a 100 % 
recovery threshold, rather than the generally accepted level of 90 %, 
again only extended recovery times by ≤ 1-year in 75 % of the fires 
examined (Fig. S7) although post-fire recovery was extended by 10 years 
for a very small number of fires (0.5 %). The use of the 90 % threshold 
was useful because it increased the overall sample size substantially (32 
%) and also reduced uncertainty associated with the SIF measurements. 
Extrapolation of recovery trajectories for fire candidates that had not 
recovered before the end of the sampling period did result in a length
ening of recovery times for cold evergreen needleleaf forest, cold de
ciduous forest and steppe, but this did not affect the selection or relative 
importance of predictor variables (Fig. S8) or the impact of biome type 
on recovery rate (Fig. S9) since most fire candidates had recovered in the 
sampled period. However, an extension of the period covered by high- 
quality fire records would be useful to corroborate these findings.

In this study, we used SIF to analyse the recovery process. SIF pro
vides a direct measurement of photosynthetic activity, reducing the bias 
caused by vegetation structure or heterogeneity in vegetation age 
compared to traditional “greenness” monitoring techniques (Guo et al., 
2020; Tang et al., 2016). However, recovery of photosynthetic activity is 
not the same as recovery of above-ground biomass. Fan et al. (2023)
showed that the recovery of above-ground live biomass carbon lagged 
photosynthetic activity in boreal forests in Siberia. Although there are 
global satellite-derived data sets for above-ground biomass, they are 
either estimates for single years (e.g. GEDI 4: Dubayah et al., 2022); JPL 
2020 Global Biomass Dataset: (Xu et al., 2021) or at best cover only 
seven years (ESA CCI Global Forest Above Ground Biomass v5: (Santoro 
and Cartus, 2023), too short an interval to capture recovery after indi
vidual fires in forested ecosystems. VOD data have been used to estimate 
biomass and forest structure, but VOD data sets that cover a relatively 
long time period are at too coarse a resolution to match to individual 
fires (e.g. VODCA: Moesinger et al. 2020); Global L-band VOD: 
(Skulovich et al., 2024) or have sufficient spatial resolution but cover a 
limited time frame (SMOS-IC: Wigneron et al., 2021). Live fuel moisture 
content (LFMC) could also be used as a measure of ecosystem recovery, 
but again available data sets (e.g. Globe-LFMC 2.0: Yebra et al., 2024) 
are based on spatially clustered training data and are difficult to match 
with individual fire records. Nevertheless, a complete understanding of 
post-fire ecosystem recovery will require a better characterisation of 
biomass and structural recovery, and it would be useful to compare the 
recovery trajectories of photosynthetic activity and other ecosystem 
properties when data become available at comparable spatial and tem
poral resolution to the SIF data.

Our findings have implications for process-based fire-enabled vege
tation models currently used to predict the environmental consequences 
of future climate changes (UNEP Rapid Response Assessment, 2022) and 
for land-surface models that incorporate fire as an explicit disturbance 
(Li et al., 2024). GPP is an important predictor of the occurrence of fire 
(Haas et al., 2022), but we have shown that it is also the most important 
factor determining recovery time. Forkel et al. (2019) have pointed out 
that many fire models show an emergent relationship between GPP and 
burnt area that is inconsistent with the observations. Comparison of 
simulated GPP against flux-tower observations shows that land-surface 
models often underestimate GPP at site level (Li et al., 2018; Mengoli 
et al., 2022; Slevin et al., 2015), possibly because they do not take ac
count of plant acclimation to changing climate (Mengoli et al., 2022). 
This would impact both fire occurrence and post-fire recovery time, with 
consequences for the simulated carbon cycle. Our analyses also suggest 
that other ecosystem properties, such as the prevalence of adaptations to 
fire that could promote faster recovery, are important. Although DGVMs 
and LSMs incorporate fire as an explicit disturbance, most do not take 
account of plant adaptations to fire (Hantson et al., 2016; Kloster and 
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Lasslop, 2017; Lasslop et al., 2019). However, Kelley et al. (2014)
incorporated resprouting as a trait in the LPX-Mv1 DGVM, and showed 
that it resulted in much faster ecosystem recovery. Deriving robust 
quantitative relationships between specific fire adaptations and post-fire 
recovery time is challenging due to limited information on these traits, 
but our analyses suggest that establishing such relationships and 
incorporating them into models would improve predictions of the car
bon cycle.

5. Conclusion

In this study, we used solar-induced chlorophyll fluorescence (SIF) to 
quantify the recovery of photosynthetic activity following fire on a 
global scale. We show that vegetation characteristics, fire properties, 
and post-fire climatic conditions all influence recovery time. Gross pri
mary productivity (GPP) is the most important factor determining the 
speed of recovery: recovery is faster in ecosystems characterised by 
higher productivity overall. Fires characterized by greater intensity and 
duration, which cause extensive vegetation damage, are associated with 
longer recovery times. Climate in the period after the fire also influences 
recovery times: anomalously high temperatures, increased temperature 
seasonality, and a higher frequency of dry days are linked to slower 
recovery, whereas above-average precipitation accelerates recovery. 
Recovery times also vary across biomes, most likely reflecting the 
prevalence of fire-adaptive traits that enhance ecosystem resilience. This 
study advances our understanding of the factors driving post-fire 
ecosystem recovery at a global scale and provides information that 
could be used to improve fire-vegetation interactions in process-based 
fire-enabled vegetation models.
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Knollová, I., Kolomiychuk, V., Korolyuk, A., Kozhevnikova, M., Kozub, Ł., 
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Pérez-Haase, A., Peterka, T., Petřík, P., Peyre, G., Phillips, O.L., Prokhorov, V., 
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