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CRT: A Convolutional Recurrent Transformer for
Automatic Sleep State Detection

SM Nuruzzaman Nobel, S M Masfequier Rahman Swapno, Md Mohsin Kabir, M. F. Mridha, Senior
Member, IEEE, Nilanjan Dey, Senior Member, IEEE, R. Simon Sherratt, Fellow, IEEE

Abstract—Sleep is a crucial period of rest necessary for
optimal cognitive function, psychological well-being, and
execution of everyday tasks. In the field of sleep healthcare,
the primary objective is to identify and classify the various
sleep states. Implementing sleep state detection in a sys-
tem is problematic and essential for accurate diagnosis.
Our study used an integrated framework to recognize sleep
states. The dataset contained approximately eight lakh data
points sorted into two groups: onset and wake-up. We suc-
cessfully deployed a cutting-edge Convolutional Recurrent
Transformer (CRT) model for sleep state detection. The
training accuracy of our detection model was measured at
97.83%, a constant validation accuracy of 97.07%, and a
testing measurement accuracy of 97.23%, were maintained.
These scores indicate the model’s proficiency in precisely
recognizing the sleep states. Our system’s detection capa-
bilities demonstrate the ability to identify different sleep
states, enhance the accuracy of diagnoses and increase
healthcare outcomes in this specialized field.

Index Terms— Machine Learning, Deep Learning, Sleep
State, CNN, RNN, Healthcare, CRT, Transformer.

[. INTRODUCTION

LEEP [1] is a fundamental physiological process crucial

for cognitive function, mental well-being, and daily func-
tioning. Despite its importance, the prevalence of sleep-related
disorders such as insomnia, sleep apnea, and restless legs is
increasing. Optimal sleep [2] encompasses various factors,
including duration, quality, scheduling, and consistency [3].
Lack of sufficient sleep affects cognitive abilities, hunger
regulation, insulin response, immune function, emotional state,
response time, focus, and memory. Moreover, many of the
population suffer from sleep issues, and many cases remain
undiagnosed [4]. Specifically, light and deep sleep phase [5],
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[6] are crucial for supporting various biological processes,
including immune function and memory.

Sleep is essential [7], [8] for the molecular maintenance
and regulation of many biological processes, which aids in
the restoration of human physical and mental health as well as
appropriate brain function during the day [9]. Unfortunately,
sleep disorders are frequently disregarded, resulting in poor
sleep quality [10]. According to Stranges et al. [10], sleep-
related issues are a serious global health concern. They exam-
ined the prevalence of sleep issues in low-income nations using
data from the International Network for the Demographic
Evaluation of Populations and Their Health INDEPTH) and
the World Health Organization (WHO). According to reports,
150 million adults, or 16.6% of the total population, suffer
from sleep issues, and current trends suggest that this number
will rise to 260 million by 2030.

Recently, sleep state classification has become increasingly
essential for the effective care and management of individuals
with sleep disorders. Ambulatory sleep detection and bedtime
monitoring are common strategies for detecting and treating
sleep-related issues [11]. However, traditional methods such
as polysomnography (PSG) are impractical for continuous
monitoring, owing to their intrusive nature [12]. Human spe-
cialists’ current manual classification of sleep stages suffers
from variability and cost constraints [13]. Portable monitoring
devices offer promise for improving accessibility and reducing
costs; however, reliability concerns persist [14]. To address
these challenges, reliable and efficient automatic sleep state
classification has become crucial.

Researchers specialize in building automatic and intelligent
systems and employ various methods, such as machine learn-
ing [15]-[17], and deep learning [18]. Furthermore, numerous
experts have focused on sleep state classification and worked
on two sleep stages: onset and wakeup. Ram et al. [19]
introduced a machine-learning technique to identify two sleep
states: onset and waking phases. They focused on identifying
children’s sleep states. An RCNN model was utilized to
detect sleep states. They identified the precision and IOU
matrix and attained a model accuracy of 70.05%. Bjorvatn
and Pallesen et al. [20] discovered circadian rhythm sleep
disorders. They evaluated two data points for implementing
their system: onset and wakeup. In addition, they identified
sleep phase abnormalities. They focused on determining the
regular phase by analyzing a thorough patient history. Fraiwan
and Lweesy et al. [21] introduced a method for identifying
the sleep states of newborns using deep learning. They are
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engaged in deep learning, feature extraction and classification.
Twelve characteristics were derived from a solitary electroen-
cephalogram (EEG) recording. The retrieved characteristics
were derived from statistical parameters obtained from the
temporal and spectral domains of the EEG signal. They
achieved an accuracy of 80.04% for the complete dataset.
The authors conducted experiments on sleep state detection,
utilizing various methods to classify sleep states. Ram et al.
[19] implemented a Recurrent Convolutional Neural Network
(RCNN) approach for this purpose, whereas Bjorvatn and
Pallesen et al. [20] proposed a novel methodology for detecting
sleep states. Additionally, Fraiwan and Lweesy et al. [21]
focused on EEG recordings as the basis for their analysis. EEG
is a type of signal that reflects the brain’s electrical activity
and is commonly used to analyze and interpret different sleep
states. Despite employing different techniques and criteria, all
studies share a common objective: to advance the detection
and understanding of sleep states.

The motivation behind this research is the recognition of
sleep as a key foundation of human health and well-being,
which is crucial for cognitive function, emotional regulation,
and overall physiological functions. Precise identification and
categorization of sleep stages are crucial for accurate diagnosis
and efficient treatment of sleep disorders. Nevertheless, the
existing techniques frequently depend on subjective judgments
or complicated procedures, underscoring the necessity for an
inventive method. This study provides a strong foundation
for sleep state recognition by utilizing breakthroughs in deep
learning, namely the CRT model. The objective is to attain
high accuracy in detecting sleep stages by analyzing large
datasets. Identifying sleep onset and wakeup states holds
significant importance in healthcare due to its direct relevance
to timely interventions and personalized management of sleep
disorders. By focusing on these particular transitions, health-
care professionals can promptly initiate suitable therapies or
relaxation techniques when they identify the beginning of
sleep, thereby enhancing sleep quality and effectively man-
aging sleep-related problems. Customizing monitoring tactics
to focus on these vital periods optimizes resource use and
reduces extra data collection, which is particularly important
in healthcare settings with limited resources or during ambu-
latory monitoring. Moreover, understanding individual sleep
initiation and awakening patterns allows for tailoring therapies,
resulting in enhanced efficacy of treatment strategies for sleep-
related illnesses. This eventually leads to improved health
outcomes and the long-term management of sleep disorders.

Our study achieved a significant milestone by pioneering
an advanced sleep state detection method. In this system, a
CRT model is developed that is specifically tailored for this
purpose. The contributions of this study are as follows:

o Development of a novel CRT model dedicated to the ef-
fective identification of sleep states. This model presents a
precise, fast, and fully automatic approach to classifying
sleep states. Its superiority lies in its advanced ability
to perform classification tasks more effectively than that
of other existing methods. This model ensures high
accuracy and significantly reduces the time required for
classification, making it an invaluable tool in medical

diagnostics.

e A novel, advanced, and complex layer based CNN Trans-
former model was created to construct a powerful model
for sleep state classification. This novel function outlines
the increased efficiency, driving the model towards faster
and more accurate results.

« An advanced, high-precision sleep state classification sys-
tem that outperforms existing solutions in terms of both
speed and accuracy is developed. This system establishes
notable detection standards, and sets a new benchmark for
precision and efficiency in the field of sleep diagnostics.

This study was divided into several sections, each serving
a specific purpose. In Section II, the research methodology
is explained along with the technique used and the dataset
analysis in the study. The results are explained in Section
III, where the analyzes are presented. An in-depth discussion
of the topic and a critical evaluation of the results and
implications are provided in Section IV. Finally, Section V
presents the study results and recommendations for future
research directions.

[I. METHODOLOGY OF RESEARCH
A. Dataset Analysis and Preprocessing

This study obtained a dataset from the Child Mind Institute
in New York, which is publicly available in Kaggle [22]. This
dataset is designed to classify the two distinct sleep states.
The sleep states were clearly labelled and classified within
the dataset, which is freely accessible and has been developed
specifically for research purposes. The dataset includes over
500 wrist-worn accelerometer data recordings over several
days that were annotated with two event types: awakening,
which marks the end of sleep, and onset, which marks the start
of sleep. You are responsible for identifying when these two
occurrences occur in the accelerometer series and totalling 987
megabyte. Every recording was carefully documented using
two specific event categories: “onset”, which indicates the
beginning of sleep, and “wakeup”, which indicates the end
of sleep. The dataset includes various data types, such as
numerical, object-oriented, and time series data. The dataset
has 7,670,073 records spread across ten columns, providing a
vast and comprehensive information collection.

Our data set included sleep duration data collected on
different days of the week. The dataset detected outliers in
the sleep duration data for six days. This study implemented
preprocessing techniques for imputation (mean, median, or
feature-derived value) to enhance the precision of the results
and mitigate the influence of outliers. Fig. 1 shows the outliers
associated with the sleep duration. Outliers in a dataset may
have a detrimental effect on the classification process. To solve
this problem, we used a series of preprocessing methods to
identify and eliminate outliers, producing a more trustworthy
dataset better suited for efficient categorization. In our pre-
processing pipeline, a set of reliable techniques is utilized
to improve the quality of our dataset. The min-max scaler
maintained the original distribution while adjusting the values
to fit within a specified range. In addition, mean imputation,
standard deviation, and other methods were employed to



NOBEL et al.: CRT: A CONVOLUTIONAL RECURRENT TRANSFORMER FOR AUTOMATIC SLEEP STATE DETECTION 3

Box Plot of Sleep Duration by Day of Week
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Fig. 1. Box Plot of Daily Sleep Durations The plot highlights the median, quartiles, and outliers in sleep durations, enabling the analysis of anomalies

and weekly sleep patterns.

handle missing values in time series data. These measures
fixed our dataset’s missing data and made future research more
reliable. The standard deviation can measure sample variability
or dispersion around the mean.

This study includes the synthetic minority oversampling
tool synthetic minority over-sampling technique (SMOTE)
[23], [24] as a feature engineering tool, acknowledging the
significance of managing unbalanced datasets. By interpolat-
ing between minority class samples that already exist, the
SMOTE approach creates synthetic samples. Although they are
incorporated into the training process, these extra samples are
not directly utilized in the accuracy computation. To provide
an objective evaluation of the performance, the accuracy was
tested on a different test set that excluded the synthetic sam-
ples. SMOTE successfully achieves data distribution balance
by intelligently producing synthetic samples for the minority
class. Fig. 2 displays a graphical depiction of the balanced
data. This system carefully partitioned data to provide a
rigorous assessment of our model. For training, assigned 70%
of the dataset points, corresponding to a total of 5,369,051
data points. The validation set, which accounted for 20% of
the data, was created using 1,534,014 instances. The testing
set, which comprised 10% of the dataset, consisted of 767,008
data points.

B. Execution of the CRT Model to Detect Sleep State

Our method employs a reliable algorithm based on the CRT
model to identify the different sleep states precisely. In this
system, a complex network was intentionally constructed for
this model, guaranteeing that our approach is state-of-the-
art and efficient for accurately detecting sleep phases. Fig.
3 depicts the complex structure of the CRT model utilized
in our sleep state detection technique. Here, block (a) is the
input block where num, dense, and concatenated operations are
executed. From the input block, the connection links to block
(b) that was positional encoding execution. The convolutional

Imbalance Balance

Oneset /
64.2% /
35.8%
Wakeup 50.0%
<\/Wakeup

Fig. 2. The pie chart illustrates the proportions of balanced and
unbalanced data.

Oneset

" 50.0%

block (c) were working that block execution processing from
input block. After executing the convolutional block, the
transformer block (d) works, and finally, the RNN block (e)
will be executed from the output of our convolutional block.

1) Positional encoding block: First, the model takes data
through an input block where the positional encoding function
starts. This state entails utilizing a positional sequence function
to establish the “maxlen” parameter. Here, n is a random
number used to calculate the positional encoding (PE). The
PE assigns a distinct position-based vector to each token in
the input sequence, allowing the model to comprehend each
element’s sequential connection and location within the input

data. pos
PE (pos,2i) = Sin (m) (1
, B pos
PE (pos,2i +1) = Cos (W) )

Here, PE (pos,2i) denotes the numerical representation of the
positional encoding at a specific location and dimension, and
2i represents the pos position in the sequence. PE (pos,2i+1)
represents the value of the positional encoding at a particular
position and dimension 2i+/ for the pos position in the
sequence. The expression PE (pos,2i+1) denotes the specific
value of the positional encoding at position pos and dimension



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

rem=num/2
length = {0,1............. maxlen-1}
rem-1}/rem

| tengtn |

v
'
1
y ]
4 ]
4 ]
4 ]
g | :
£ 1 1
88 | y:‘ 1
o s [l L
S E [ 77T > l Multmul ‘ 1
S E | ! \ J
23 | b ]
2 1 ' :
o ] [ ; :
1 ] Concatenate H Sin ] '
; . ,,
. -
(b) Positional Encoding
A [ O I {0 1 n-1} S
’ “
[ )
1 ]
. '
i 1 '
L ]
' '
I - N ~ 1
] S |
= IS5 o '
: = o 5 L
] = = = '
: = 2 2 |
s S ' Feed
E : g = 1 Forword
: )
L ]
9 ]
9 ]
L ]
9 ]
L ]
L ]
b ’
h 4{ Concatenate .
~ ~ > ’
J (c) Convolutional Block
— —
Xiq X
input layer
o T 7 N e |y
k3 D
) « . J L <3
3 5
[ -—
Backward l GRU ( GRU ‘ l GRU } a =
e A I =R H
-2 +2 Heq =1 Hy
b2 beq by
N .

(e) RNN Block

Fig. 3. Our proposed CRT model for sleep state identification, which integrates input, positional encoding, convolutional, transformer, and RNN

components. It integrates spatial, temporal, and self-attention strategies t

’2i+1’ in the sequence. “pos” represents the location inside
the sequence. “i” denotes the dimension of the encoding.
dmoder Tepresents the number of dimensions in the model.

2) Convolutional block: The input and position encoding
outcome of encoding is concatenation, which follows the
Convolutional block. Here, creating convolutional filters and
other operations, NumPy is frequently utilized for practical
numerical computations, including matrix operations and ten-
sor manipulations. In order to improve gradient flow and
preserve important information, addition is frequently used in
designs with residual or skip connections to blend features
from previous layers with the output of the current layer. By
using concatenation to mix feature maps from several layers
or routes, the model can effectively learn more complicated
patterns by combining a variety of feature representations.
These techniques enhance convolutional neural networks’
performance and adaptability. This conv block controls the
execution process: Consider NV * N square neuron layer and
that our convolutional layer comes next. When m x m filter w
were applied, the size of our convolutional layer’s output will

0 enhance identification.

be (N —m+1)* (N —m+ 1). To determine the input for a
given unit prior to non-linearity xﬁj we need to combine the
contributions from the cells in the previous layer in our layer.

m—1m—1

x§7 = Z Z w“byéi_-&-la)(j-&-b)

a=0 b=0

3)
Next, the nonlinearity function is applied by the convolutional
1

layer.
g (%)

vij = )

SE
( 5L, . First,

let us determine the gradient component for each Welght by
employing the chain rule. It is important to note that the chain
rule must aggregate the contributions of all expressions in
which the variable is present.

Here, E is the output of each neuron output,

n—mmn—m

Z Z (5xl yz+d)(]+b)

=0 75=0
(5)

n—mmn—m

=2 2 5T

1030

6E &b
5&) ab

5&){,



NOBEL et al.: CRT: A CONVOLUTIONAL RECURRENT TRANSFORMER FOR AUTOMATIC SLEEP STATE DETECTION 5

In this scenario, it is necessary to calculate the sum of

all the Iéj expressions that contain the occurrence of wgp.
. oxl, . ..
The equality 55”}7 can be deduced simply by examining the

forward propagation equations. To calculate the gradient, it is

necessary to determine the values. 5‘;‘? - Calculating the deltas

. . . i .
is rather simple because it involves using the chain rule once
again:

oFE

SE _ 0B oy OB 45
5:623» 5y£j (53:53- 5yfj §x§j

oF
(o0 (xﬁj)) = @

By leveraging our knowledge of the error in the present layer,

55;? , can efficiently calculate the deltas 2£- in the same layer

dxt
byﬂemploying the derivative of the activation function, & ().
Given our knowledge of the mistakes at the present layer,
poss all the necessary information is required to calculate the
gradient of the weights employed by this convolutional layer.

To compute the weights for this convolutional layer, it is
necessary to propagate the errors back to the previous layer.
The chain rule can then be reemployed.

5 () ©

m—1

oF
(5yl._.1 - Z
3

a,b=0

0E  0%iwyy) _ _ OE

l -1 - l
0T )ity i, OL(;_q)(j )

Wab

(7

Upon reviewing the forward propagation equations, it is

. Sz, . . .
evident that w. This yields the above number for

the fault in the pfé]ceding layer. The appearance bore some
resemblance to that of convolution. The filter w is applied
to the layer, but instead of (1 a)(j4p), it has T(;_q)(j—v)-
Furthermore, it is important to observe that the formula above
applies only to locations with a minimum distance of m from
the top and left boundaries. To rectify this issue, it is necessary
to append zeros to the top and left borders. By doing that,
conducting an essential convolution utilizing w which reversed
along both axes.

The max-pooling process performed on an input volume
or feature map X, which has dimensions W, * H;, * D;,
(width, height, and depth) following a convolutional operation.
The pooling window size was F*F, and the stride is S. The
equations control the output dimensions after applying max-
pooling to the output of a convolutional layer similar to those
used for standalone max-pooling.

Win — F
Wout = —g +1 ®)
H;, — F
Hout = T +1 (9)
Hout = Din (10)
MaxPooling () = max (21, %2, ..., Tn) (11)

3) Transformer block: As an encoder, the transformer block
adds a max-pooling layer after the convolutional layer to
reduce the feature map dimensions. Downsampling preserves
convolutional filter information while reducing spatial dimen-
sions. The self-attention mechanism helps link the sequence
components: the self-attention network and MLP block en-
coding structure with a normalizing layer and residual con-
nections. The outcome is obtained skillfully by combining

the keys, value pairs, and searches. The compatibility function
assigns weights to the items and calculates their corresponding
weighted quantities. The dot product of all queries with keys
calculated by dividing each query by v/d}, considering inputs
with dimensions dj of queries and keys and d,. The weights
assigned to the value pairs are determined by using the softmax
algorithm. The queries (Q), keys (K), and values (V) required
for the simultaneous calculation of the attention function
comprise an attention matrix. The attention calculation (Q, K,
V) is carried out as follows:

T

Attention (Q, K, V) = softmax (
Vi
Multi-headed attention allows the model to simultaneously
attend to the input from many representation subspaces at
various times.

) «V  (12)

MultiHead (Q, K, V) = Concat (heady, ...., heady,) * wo
(13)

head; = Attention (QW?, KWE, VWZ-V> (14)

A multilayer perceptron (MLP) is a feed-forward neural net-
work consisting of dense and dropout layers. These MLPs
have identical structures and are layered with layer blocks.
Mathematical definition of each block;

Z=0(XU),Z=s5(Z),Y =2V, (15)

20 = [Tetass; 1o 2B, .., 2l B + Epos, BEeRNTV*D (16)

2t = MSA(LNz_1)+z_1,l=1,...,L (17)

z=MLP (LNz') 24, 1=1,...L (18)

Z = LN (z}) (19)

The activation function denoted by o, and the softmax function
applied to the function represented by s(. ), where U and V
are the linear projection dimensions of the channel, respec-
tively. The layer captures spatial interactions across records,
as defined by Equation 15 while autonomously computing the
individual tokens. Prior to stacking in Equation 15, the class
token, patch encoding, and learnable encoding positions of
the layers are thoroughly explained in Equations 16 and 17.
Equation 19 represents the ultimate output of the encoder.

S(Z) = softmazx f (2) (20)

4) RNN block: The gated recurrent unit GRU [25] process
assumes that the number of hidden units is “A”. The small-
batch input at a certain time step “t” may be represented as
xre R™*4, while the hidden state at the previous time step “-
17 is denoted as h;_1e R™*". At the current time step 7, the
output hidden state 4 of a single GRU can be expressed as
follows:

Ry = o (XiWer + Hy 1 Wiy + by) 2D
Zy = 0 (XeWeo + Hi 1 W, + 1) (22)
H, = tan h (X;Wp, + (R © Hy_1) Wiy, + bp) (23)
Hi=(1-2) ©Hy + 7 ® H, 24
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The activation function of the sigmoid represented as o,
o(x) = 1/1 4+ e *; Wy, Wy, Wy, Wy, represent the
weights linking the input layer and reset gate, hidden layer and
reset gate, input layer and update gate, and hidden layer and
update gate, respectively. The terms b, and b, refer to the bias
values of the reset and update gates, respectively. H; refers to
the hidden condition at the present moment. Step ¢; © denotes
the process of multiplying two matrices. Tanh is a hyperbolic
tangent activation function where neural networks introduce
non-linearity and normalize output values between -1 and 1,
aiding in better convergence and learning. It is defined using
the following formula:

2
14e2
Together, the forward and back-propagating GRU units

comprise a bidirectional gated recurrent unit (BiGRU), a type
of neural network. The hidden layer state H; is the BiGRU
determined by the current input X, the output ﬁt is the
forward hidden layer, and the output E is the backward
hidden layer at time step #-1.

H, = GRU <Xt, ﬁt_l)
H, — GRU (Xt, R_l)

o, = wtﬁt + Utﬁt + by

tanh (X) =1 (25)

(26)
27)

(28)

The GRU(.) function is used to apply a nonlinear transforma-
tion to the input water quality data. The input vector encoded
into the GRU hidden state, represented by w; and v;. The
weights of the forward hidden layer ﬁt and the backward
hidden layer E of the BiGRU at time t correspond with these
states. Indicates that b; is the bias in the state of the buried
layer at time ¢ in addition. The final dense layer combines the
input with positional encodings, convolutions, and transformer
layer outputs to distinguish and categorize sleep states.

To comprehend sequential data, such as sleep states, a
transformer module was included to capture global relation-
ships and long-range dependencies. Positional encoding also
guarantees that the model detects temporal patterns. Convolu-
tional layers were employed prior to the RNN to efficiently
concentrate on temporal dependencies to extract localized
spatial information and lower input complexity. Combining
convolutions to handle local patterns, transformers to capture
global dependencies, and RNNs to describe sequential dynam-
ics enables hierarchical feature extraction. Combined, these
modules improve the precision, scalability, and computational
effectiveness, offering a novel and reliable method of detecting
sleep states.

5) Hyparameter tuning of proposed model: By measuring
the system’s optimal setting, we compiled a list of parameters
for the hyperparameter tuning processes to our CRT model.
Hyperparameter tuning is essential for optimizing the perfor-
mance of a model by identifying the best configuration of the
parameters learned during the training process. Finding the
ideal configuration of hyperparameters, such as learning rate,
batch size, and network architecture, is crucial for deep learn-
ing experiments to maximize model performance. Avoiding

TABLE |
PRESENTING A DEMONSTRATION OF HYPERPARAMETER TUNING
VARIABLES IN THE CRT MODEL FOR OPTIMIZING MEASUREMENT.

[ Parameter | Search space [ Selected Value |
Learning rate [0.001, 0.0001, 0.00001] 0.0001
Dropout [0.02, 0.3, 0.4] 0.3
padding [same, valid] same
Optimizer [SGD, Adam, RMSprop] Adam
Weight delay [0.0001-0.001] 0.002
Batch size [32,16,8] 16
Epoch [20] 20
Activation [Sigmoid] Sigmoid
Kernel Initilizer | [glorot, he, normal, uni-form] glorot

underfitting or overfitting contributes to increased efficiency,
accuracy, and generalization. Proper tuning improved model
convergence, speeding up training and producing better out-
comes. This guarantees that the model successfully adjusts to
specific inputs and task specifications. Ultimately, maximizing
the potential of deep learning models requires hyperparameter
optimization. In summary, it is guaranteed that the model
reaches its highest level of performance by optimizing its
structure and configurations. This study analyzed many factors,
such as the learning rate, dropout, padding, optimizer, weight
delay, batch size, epoch, activation, and kernel initializer. In
this study, we systematically explore and implement different
parameter values to identify the optimal configuration of
our system. This ensures the system operates with maxi-
mum accuracy, speed, and efficiency. Table I displays the
outcome of the hyperparameter tuning process for our CRT
model. By conducting methodical experiments, hyperparam-
eter tuning optimizes the model’s performance, improving
its ability to forecast outcomes and its resilience accurately.
For hyperparameter tuning, learning rate, dropout, padding,
optimizer, weight decay, batch size, epoch, activation, and
kernel initializer are essential because they directly impact the
effectiveness, performance, and generalizability of the model.
The model’s learning rate regulates how quickly it learns,
while dropout stops overfitting by turning off the neurons.
To achieve optimal convergence, the optimizer modifies the
model weights and applies padding to ensure constant input
dimensions. Batch size affects training efficiency, weight decay
is a regularizer, and the number of epochs dictates how long
the model is trained. Kernel initializers assist in establishing
the initial weights, and the activation functions add non-
linearity, all of which contribute to a finely calibrated, practical
model.

[1l. RESULT ANALYSIS

This section presents a detailed description of the phases
of sleep analysis. This study analyzed the performance of the
model by presenting its accuracy. Furthermore, we present the
receiver operating characteristic (ROC) graphs for both image
scales generated by our CRT model. In addition, analyzed
the loss function of the model was analyzed. In addition, this
study incorporated accuracy, recall, fl-score, support metrics,
and confusion matrices—the results generated by the models
incorporated into the findings.
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Fig. 4.  The figure displays the accuracy curves for training and
validation, demonstrating how the model’s performance changes over
epochs on known and unknown data, respectively.
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Fig. 5. The proposed CRT model demonstrates loss and validation loss
curves. The curves depict the decrease in training loss and the validation
performance.

To assess the performance of our sleep state detection
model, we assessed it using the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) measures,
among other important indicators. The ability of the model to
accurately classify sleep phases is demonstrated using these
data.

This study achieved excellent success in detecting sleep
states. The CRT model has a remarkable training accuracy
of 97.83%, with a notable validation accuracy of 97.03%.
This accomplishment was achieved through rigorous training
throughout 20 epochs. A succinct depiction of the training
accuracy, validation accuracy, training loss, validation loss,
and ROC curve is required for sleep state identification. Figs.
4 and 5 show the accuracy and loss of our model, respectively.
The performance of a deep learning model on unknown data
is evaluated by validation accuracy, whereas training accuracy
gauges how well the model learns patterns from the training
data. They guarantee that the model is adequately trained and
can be generalized to real-world situations.

These observable indicators comprehensively understand the
model’s performance across the sleep state detection spectrum.

TABLE Il
SHOWCASING THE PERFORMANCE MATRIX OF SEVERAL MODELS TO
CHECKING OUR SYSTEM EFFICIENCY.

[ Model [ Precision | Recall [ F1-Score |
Decision Tree 0.52 0.92 0.72
XGBoost Classifier 0.71 0.93 0.81
Logistic Regression 0.58 0.89 0.76
Gaussian NB 0.69 0.96 0.72
KNN Classifier 0.79 0.98 0.91
LGBM Classifier 0.65 0.96 0.68
AdaBoost Classifier 0.77 0.95 0.69
RNN 0.42 0.58 0.51
LSTM 0.52 0.69 0.61
RandomForest Classifier 0.79 0.97 0.85
Transformer 0.75 0.99 0.87
CRT (Proposed) 0.96 0.99 0.98

Precision, recall, and fl-score are crucial in deep learning
because they serve as metrics for assessing a model’s perfor-
mance. It provides valuable information regarding the model’s
capability to accurately identify relevant instances (precision),
capture all relevant instances (recall), and strike a balance
between the two (fl-score). Table II lists the accuracies
recall, precision, and f1-score of the implemented models. The
precision of our CRT model was 0.96, the recall was 0.99, and
the f1-score was 0.98. This refers to the accurate identification
of the sleep stage.

A confusion matrix is an essential machine-learning method
for assessing the efficacy of a detection model. The text fully
explains the detection capabilities of the model and the degree
to which they correspond to real class names. The matrix is
often organized in a tabular format, with rows and columns
representing the categorized and actual classes. We utilized the
test data from our dataset to evaluate the confusion matrix. The
dataset divided into training (70%), validation (20%), and test
(10%) subsets. With a total of 767,008 data points, the test set
was used exclusively to evaluate the confusion matrices. Fig. 6
illustrates the confusion matrix of the two classes. The ground
truth in a confusion matrix is the actual, true labels of the
data as established by a trustworthy source, such as real-world
observations, expert annotations, or established benchmarks. It
acts as the benchmark or standard by which predictions made
by the model are evaluated. The confusion matrix’s TP, TN,
FP, and FN identified by contrasting the model’s predictions
with the ground truth. Accurate ground truth data are essential
when assessing a model’s performance because they guarantee
that the confusion matrix offers an unbiased evaluation of its
accuracy in classifying instances and areas of mistake.

This study further analyzed sleep state detection research
further. By tested the decision tree, XGBoost, RNN, LSTM,
random forest, transformer, GaussianNB, KNN, LGBM, lo-
gistic regression, and AdaBoost Classifier for the system
performance study. Notably, our findings were consistent with
those of the previous. CRT proves that our model can handle
this crucial task even with higher-quality results. Table III
displays the various models we implemented for sleep state de-
tection and the proposed model. The accuracy rates of 97.83%
for training, 97.07% for validation, and 97.23% for testing



labels of our suggested model to the actual ground truth labels in
many categories. It provides a clear representation of the categorization
outcomes.

TABLE Il
AN ANALYSIS OF CLASSIFIER MODEL'S VALIDATION AND TRAINING
ACCURACY IS CONDUCTED TO ASSESS THEIR ROBUSTNESS AND AID IN
MODEL SELECTION.

[ Model [ Train [ Validation | Testing |
Decision Tree 88.42% 87.04% 87.72%
XGBoost Classifier 86.78% 86.83% 86.55%
Logistic Regression 80.70% 80.71% 79.61%
Gaussian NB 69.38% 69.42% 70.69%
KNN Classifier 93.23% 90.12% 90.71%
LGBM Classifier 86.54% 86.55% 85.87%
AdaBoost Classifier 85.79% 85.96% 85.52%
RNN 56.06% 56.02% 56.02%
LSTM 62.49% 61.96% 62.21%
RandomForest Classifier 96.94% 91.65% 90.27%
Transformer 94.32% 95.68% 91.86%
CRT (Proposed) 97.83% 97.07 % 97.23%

achieved by our CRT model signify its robust performance
for accurately detecting sleep states. These high accuracies
demonstrate the model’s proficiency in correctly identifying
sleep patterns during training and when applied to unseen
data, indicating its reliability and potential utility in healthcare
applications. This finding also suggests that the CRT model
can effectively trained to generalize patterns within the data
without encountering the significant issues of underfitting or
overfitting.

In this study, k-fold cross-validation, essential for profound
learning studies, was employed to guarantee that the model’s
performance is resilient and effectively generalizes unfamil-
iar data. This study applied 10-fold cross-validation. 10-fold
cross-validation offers a fair evaluation of model performance
by utilizing distinct subsets of the data for training and
testing, hence minimizing variability in the assessment. Table
IV displays the results of the 10-fold cross-validation for
the CRT model. To execute 10-fold cross-validation, 90% of
the data was allocated for training and validation purposes,

serve as the training set. This aids in reducing overfitting
and offers a thorough assessment of the model’s correctness.
Calculating the mean of the results from all folds provides a
more dependable estimation of the model’s performance. The
testing accuracy was evaluated using k-fold cross-validation,
and for each fold, the standard deviation (St. Dev) and the
mean of the accuracy values calculated. These metrics provide
insights into a model’s performance’s consistency and central
tendency across the folds. Table IV presents the standard
deviation and mean values computed for each fold, illustrating
the variability and average performance of the cross-validation
process. Specific patterns suggest superior performance when
assessing the effectiveness of a DL model using accuracy,
standard deviation, and mean value. Indicating consistency in
the performance of the model, a reduced standard deviation
ensures that its predictions are steady and not unduly affected
by changes in the data. The objective of an effective model is
to achieve high precision and consistency by maximizing mean
accuracy and decreasing standard deviation. Taken together,
they offer a thorough understanding of these measurements
dependability of a model.

This study compared the proposed model with existing
approaches in the field of sleep state identification. The
evaluation demonstrated that our model surpassed previous
approaches and correctly identified sleep phases better. Table
V provides a concise overview of the thorough compari-
son between our suggested model and the current methods,
emphasizing the notable progress made by our approach.
Casal et al. [26] developed a network architecture using the
TCN-Transformer method to classify sleep stages (awake or
asleep) based solely on heart rate (HR) signals from a pulse
oximeter. Huang et al. [27] proposed an automatic sleep
staging model incorporating an improved attention module
and a hidden Markov model (HMM). They leveraged single-
channel EEG data and implemented the SENet model. Phan
et al. [28] introduced a sequence-to-sequence sleep staging
approach and employed the SleepTransformer method. Dutt et
al. [29] conducted multiclass sleep stage classification using
EEG data and proposed an explainable unified CNN-CRF
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Confusion Matrix TABLE IV
SHOWCASING THE PROPOSED CRT MODEL'S K-FOLD
CROSS-VALIDATION RESULTS.
05 [ Fold | Train Acc [ Validation Acc | Testing Acc [ St. Dev | Mean |

§ ’ 1 96.65% 95.96% 96.19% 0.064 0.885
¢ 2 97.39% 96.45% 96.67% 0.038 0.920
O 3 98.78% 97.92% 96.96% 0.042 0.926
@ 0.6 4 99.56% 98.47% 97.68% 0.021 0.945
ﬁ ’ 5 99.78% 99.35% 97.35% 0.014 0.953
o 6 99.45% 99.41% 97.92% 0.002 0.968
= 7 99.86% 99.76% 98.45% 0.004 0.973
2 0.4 8 99.52% 99.78% 99.22% 0.008 0.976
& : 9 99.89% 99.86% 99.35% 0.005 0.984
= 10 99.89% 99.82% 99.57% 0.002 0.993

g

(1]

= -0.2

whereas the remaining 10% was reserved for testing. This
0nesetp dicted Val Wakeup experiment divided the dataset into k subsets, where the
redicted Values model was trained k times. Each time, a different subset
Fig. 6. The confusion matrix is a tool that compares the predicted is used as the validation set, while the remaining subsets
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Fig. 7. The ROC curves illustrate the performance of the top eight models employed in this study for classification tasks. Each curve illustrates
a model’'s capacity to differentiate by graphing the rate of false positive (1 - specificity) against the rate of genuine positive (sensitivity) at different

decision thresholds.

approach. Alam et al. [30] focused on sleep apnea detection,
utilizing inter-band energy ratio features extracted from multi-
band EEG signals and employing a Linear Support Vector
Machine (LSVM) classifier. Abasi et al. [31] studied sleep
apnea detection and used the CNN method, while Javeed et
al. [32] predicted sleep apnea based on electronic health data
using the XGBoost model. Almarshad et al. [33] enhanced
the diagnostic performance of oximetry for obstructive sleep
apnea, aiming to reduce the time and costs associated with
traditional polysomnography by employing a Transformer
model. Bahrami et al. [34] processed and segmented data
for sleep apnea detection and applied machine learning and
deep learning methods using the ZFNet-BiLSTM model for
their research. Hu et al. [35] proposed a hybrid Transformer
model based on the self-attention mechanism for sleep apnea
detection using single-lead electrocardiogram (ECG) data.
Fernandez et al. [36] focused on sleep stage scoring using two-
channel EEG signals with a CNN method, whereas Zhu et al.
[37] proposed a CNN combined with an attention mechanism
for automatic sleep staging. From the above analyses, our CRT
model achieved higher test accuracy than the existing methods
and demonstrated superior reliability.

The ROC curve visually displayed the sensitivity and speci-
ficity of the top eight models at various threshold settings. The
ROC curve results demonstrate the superior performance of
our proposed CRT model, achieving an AUC of 0.98, which
surpasses that of all other implemented models. Compara-
tively, the ROC curve results for the other classifiers are as
follows: Transformer (0.97), Random Forest (0.95), XGBoost

TABLE V
EVALUATION OF THE PROPOSED SLEEP STATE DETECTION APPROACH
IN COMPARISON TO OTHER MODELS AND DATASETSMET

l

Author & year

| Technique Employed | Accuracy |

Casal et al. [26] 2022 TCN - Transformer 90.0%
Huang et al. [27] 2022 SENet 84.6%
Phan et al. [28] 2022 SleepTransformer 84.9%
Dutt et al. [29] 2023 CNN-CRF 86.8%
Alam et al. [30] 2024 LSVM 94.81%
Abasi et al. [31] 2024 CNN 90.92%
Javeed et al. [32] 2023 XGBoost_BiLSTM 97.0%
Almarshad et al. [33] 2023 Transformer 80.0%
Bahrami et al. [34] 2022 ZFNet-BiLSTM 88.13%
Hu et al. [35] 2022 Hybrid Transformer 90.5%
Fernandez et al. [36] 2020 CNN 92.7%
Zhu et al. [37] 2020 Attention CNN 93.7%
Our work 2024 CRT 97.83%

(0.93), AdaBoost (0.92), Logistic Regression (0.88), Decision
Tree (0.87), and GaussianNB (0.85). These results highlight
the exceptional discrimination ability of our CRT model com-
pared with existing approaches. Fig. 7 provides a clear and
visually imploring representation of the ROC curve, allowing
a better understanding of how the models perform under
different thresholds. The ROC curve highlights the trade-off
between sensitivity and false positive rates by evaluating the
classification performance of a model across thresholds. It
provides information on the discrimination capacity of the
model and is essential for unbalanced datasets. A higher AUC
indicates better overall performance.
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The measurement results obtained from our CRT model are
outstanding. Throughout the training process with the CRT
model, an exceptional accuracy rate of 97.83%. Similarly, the
validation and testing sets resulted in remarkable accuracies
of 97.07% and 97.23%, respectively. Additionally, the ROC
curve graphically represents the relationship between the true
and false positive rates across different threshold values. These
reliable outcomes emphasize the effectiveness of our technique
in detecting sleep states. This promising achievement offers
excellent potential in the medical field, indicating substantial
advancements in enhancing sleep monitoring and diagnosis.

IV. DiscUssION

The investigation of sleep states in healthcare is crucial.
Based on the analysis in the results section, our model
demonstrates a higher accuracy level than previous studies.
The existing strategy consists of a single or hybrid model
with strong capabilities. This study compared the findings and
approaches of previous studies in Table V, emphasizing the
superior performance of our proposed model. Although several
authors have used different strategies to obtain encouraging
results, our new model performs better than the traditional
tried-and-true techniques, showing greater accuracy and more
useful results. This development demonstrates that our strategy
can produce better outcomes in a specified field. However, our
CRT model is more complex and reliable owing to the utiliza-
tion of several advanced block strengths. The technical novelty
of the proposed model is found in its creative fusion of RNN
components, transformer blocks, convolutional layers, and
positional encoding into a single architecture. The advantages
of each model type were successfully combined in this hybrid
technique to handle challenging tasks involving sequential and
spatial data. Positional encoding guarantees that the model
records the sequential order of the inputs, and the convolu-
tional layers effectively extract local features, especially in
spatially structured data. The transformer block’s self-attention
mechanism helps the model focus on pertinent segments of the
input sequence, thereby improving its comprehension of global
contextual linkages. Furthermore, by keeping track of prior
inputs for sequential tasks, the RNN block allows the model
to handle time-dependent data. These potent elements work
together to provide our model with the ability to manage se-
quential dependencies, capture both local and global patterns,
and enhance performance on various tasks. Our system has
some limitations. Currently, our models are not designed for
image classification and segmentation tasks. In addition, the
system is limited to classifying only two sleep states. However,
if the number of classes were to be increased, the model would
become more effective in accurately classifying a wider range
of sleep state types. The total parameter count for our CRT
model is 0.3 million, and the number of trainable parameters
is similarly 0.3 million. Despite our parameter count, precise
results were obtained using a mix of three reliable blocks. This
study performed complex operations within these three blocks
to construct a highly advanced neural architecture. After a
thorough analysis, the computational setup of our model
was confirmed. A Windows 10 computer with an Intel(R)

Core(TM) i7 CPU, 32GB of RAM, and a 12GB GPU was
used for the training process. All offensive automatic traffic
reduction models were implemented using TensorFlow 2.2.1
and Python 3.12.3. A notebook environment was effectively
utilized to manage Python libraries, such as TensorFlow, which
are frequently used for creating sophisticated models. Notably,
our model required 36 min and 55 sec for training. However,
the limitations of our model include its inability to process
pictures, audio, and video. Additionally, our CRT model was
specifically designed for classification tasks. The application of
deep learning for sleep state detection, explicitly targeting the
onset and wakeup times, holds significant clinical value. Accu-
rate identification of these key sleep stages can revolutionize
the management of sleep disorders such as insomnia, sleep
apnea, and circadian rhythm disorders. By providing high
accuracy and precise detection, this technology can facilitate
personalized treatment plans, improve the efficacy of thera-
peutic interventions, and enhance patient monitoring both in
clinical settings and at home. Additionally, it can aid research
by offering reliable data for studying sleep patterns and the
impact of various treatments on sleep quality. In the future,
we plan to address this constraint and provide an alternative
model capable of detecting more than two sleep phases.
This detection is crucial in the healthcare domain because it
aids in diagnosing sleep disorders, ensuring proper treatment,
and promoting overall well-being. Accurate monitoring of
sleep states enables personalized healthcare interventions and
improves patient outcomes and quality of life (QOL).

V. CONCLUSION AND FUTURE WORK

This study accurately identified sleep state as the onset of
falling and waking up. The uniqueness of our work lies in
the creation of an automated system that is built explicitly
to identify sleep states. Our detection technology accurately
and precisely recognizes complex sleep state patterns. The
outcomes are indicative, and this study achieved a high
degree of precision in the categorizing procedure, ensuring
careful state identification. In addition, our detection technique
demonstrates outstanding accuracy, precision, and testing ac-
curacy. Implementing this system to detect sleep states repre-
sents significant progress in medical healthcare technology.
The potential of this technology to enhance diagnosis and
care in the healthcare industry is substantial, as it provides
novel prospects for enhanced patient assessment and treatment
alternatives.

In the future, we aim to address these limitations of the
proposed system. We plan to expand our dataset to include
more classes, enabling the model to classify a broader range
of sleep state types and enhance its effectiveness. Additionally,
we are developing our model to perform diverse tasks, in-
cluding image classification and segmentation, creating a more
versatile and efficient system.
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