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ABSTRACT

Artificial Intelligence (AI) tools are increasingly being used to help make consequential decisions about individuals. While AI

models may be accurate on average, they can simultaneously be highly uncertain about outcomes associated with specific

individuals or groups of individuals. For high stakes applications (such as healthcare and medicine, defence and security,

banking and finance), AI decision support systems must be able to make personalised assessments of uncertainty in a rigorous

manner. However, the statistical frameworks needed to do so are currently incomplete. Here, we outline current approaches to

Personalised Uncertainty Quantification (PUQ) and define a set of grand challenges associated with the development and use

of PUQ in a range of areas, including multimodal AI, explainable AI, generative AI, and AI fairness.

1 Introduction

Artificial Intelligence (AI) based predictive models are starting to find use in highly sensitive systems – such as healthcare and

precision medicine [3], defense and criminal profiling [15], banking and financial forecasting [24] – in which decisions of high

consequence are made about individuals. While AI models may be accurate at a population level (i.e., on average), they can

simultaneously be uncertain about certain individuals or groupings of individuals. For high stakes applications, such decisions

systems must be able to provide personalised assessments of uncertainty in a rigorous manner. However, model uncertainty

will typically depend on many factors, such as protected characteristics and other demographic information (that, in turn, are

associated with data availability/missingness) and is therefore highly personalised. Failing to understand such personalised

uncertainty can hide significant shortcomings in predictive model performance.

Typically, uncertainty is viewed as deriving either from (1) the data used to train the model (in which case, it is referred

to as being aleatoric) or (2) the model itself (in which case, it is referred to as being epistemic). Aleatoric uncertainty (or

statistical uncertainty) arises due to inherent randomness or measurement noise, and cannot be reduced. Epistemic uncertainty

1



(or systematic uncertainty) arises due to lack of knowledge or limited data, and can be reduced with more information or

better models [45]. For example, weather forecasting exhibits aleatoric uncertainty due to chaotic atmospheric dynamics; poor

weather models also have epistemic uncertainty, that can be improved with better training data and methods. Similarly, in a

medical diagnosis context, aleatoric uncertainty may arise from the inherent variability in patient responses to a treatment, while

epistemic uncertainty may arise due to incomplete knowledge about the relationships between symptoms and diseases. Often, it

is hard to disentangle sources of uncertainty and these two classes are not always distinguished in practice [28]. Moreover,

epistemic and aleatoric uncertainties may be interrelated. For instance, including additional predictors (i.e., increasing the input

data dimensionality) may reduce aleatoric uncertainty at the expense of increased epistemic uncertainty [45]. This interrelation

can make it challenging to marry traditional statistical concepts of uncertainty with the epistemic/aleatoric dichotomy, because

notions such as the ‘p-value’ typically quantify uncertainty deriving from both data and model. More generally, uncertainty

quantification concepts are often encountered indirectly in accuracy vs. precision tradeoffs [85] (also referred to as bias-variance

trade-offs in the statistical literature [88]). Accuracy quantifies how close a prediction is to the true value, while precision

quantifies the reproducibility of repeated predictions, with the same expected outcome. Sources of uncertainty can thus be

categorised by their impact on either the accuracy or the precision of the model prediction. As with the epistemic/aleatoric

dichotomy, precision and accuracy are interrelated, for example decreasing the precision of a highly accurate model, will also

generally lower its accuracy [45]. Moreover, again, they refer population-level, rather than individualized, metrics.

Tools that are tailored to individual predictions and are an inherent part of the machine learning process are now needed.

However, assessments of personalised uncertainty are rarely used as performance metrics when training machine learning

models. Rather, the performance of a predictive model is usually assessed by its accuracy, typically using a single metric that

summarises the model performance over the whole of a held-out test dataset – for example the proportion of correct predictions

or an Area Under the Curve (AUC) assessment. Sometimes such metrcs are reported per class, and additional accuracy related

metrics like precision, recall or F1 score may also be used [53]. However, the uncertainty associated with individual predictions

may vary considerably, and so even in a mostly accurate model, some individual predictions may be poor. This can happen

due to a combination of many factors such as a lack of similar training data points for some individuals, a greater proportion

of missing data in some regions of the training data, inappropriate extrapolations being made either explicitly or implicitly

within the model, or some individuals being edge cases and so fundamentally harder to predict. For a model to support robust

decision-making in high-stakes contexts it should account for predictive uncertainty on an individualised basis and, moreover,

be able to incorporate this information into the decision-making process.

Doing this is a significant challenge that we have yet to solve properly. For this reason, the Alan Turing Institute (UK’s

national institute for AI), in partnership with Roche Pharma, hosted a series of workshops in 2022-2023 to convene a

multidisciplinary community of experts to identify the outstanding problems in personalized uncertainty quantification (PUQ),

and sketch a road map for their solution. This paper is the fruit of those meetings. The article is organized as follows. Section 2

provide an introduction to PUQ within the wider statistics and machine learning literature, with a particular focus on conformal

prediction as a particularly promising methodology, among others. In Section 3 we then outline a set of grand challenges in

PUQ, which if resolved will substantially advance the field, and place us in a stronger position to appropriately deploy machine

learning methods. Section 4 will end with some forward-looking concluding remarks.

2 Towards Personalised Uncertainty Quantification

Consider the situation in which an AI-based clinical decision support system helps provide a patient prognosis for a clinician.

Suppose for a particular patient, it predicts that they do not have a given disease, but also has a high level of uncertainty in

that prediction. This is equivalent to saying that the patient has unknown prognosis (or all possible prognoses, including

poor outcomes) and so is of no practical use to the clinician. Moreover, it is less reassuring to the patient than a prediction
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of a moderate outcome with high certainty since this would rule out particularly poor outcomes (and would also, in turn,

avoid the need for invasive or burdensome further testing). In practice, such situations may be common since the predictive

uncertainty of the model may vary considerably between patients, reflective of many factors including the level of atypicality

of the individual, the number of similar cases in the training data set used to derive the model, or the lack of availability of

some data modalities, such as genetic testing, for some patients [70]. These differences may also reflect the rarity of some

conditions, and associated lack of knowledge, or the fact that less data was collected for some patient populations (which could

be associated with demographic factors, such as deprivation) than others [66].

For a prediction to have utility for decision making, then, the prediction point estimate must be placed into context, including

an understanding of the uncertainty attached to it. Often this takes the form of a prediction interval that provides a range of

values in which the yet to be observed value will fall with a specified probability [81]. Within traditional statistical models

based on, for example, linear or logistic regression, there is a well-established theory to generate such prediction intervals.

However, these methods do not automatically extend to more general data driven modelling scenarios, particularly when data

distribution assumptions are violated. Non-parametric techniques such as bootstrapping, which can theoretically be applied

to any modelling technique, may be useful in these situations but are typically computationally expensive to implement [54].

Similarly, Bayesian modelling frameworks [35] naturally allow for the generation of credible intervals from the posterior

distribution, whilst notions such as Monte Carlo (MC) dropout can be used to estimate uncertainty in deep leading models via

generating an appropriate ensemble [61]. However, each of the different methods described above rests on different assumptions,

and thus results in different uncertainty intervals, even if they ostensibly have the same coverage, implying that some intervals

may represent weaker or less representative bounds on the ‘true’ model uncertainty.

A number of recent methodological advancements have started to address this challenge,. For example, a Dirichlet-based

method was proposed to quantify personalised uncertainty across heterogeneous data sources in federated learning scenarios

[52]. By integrating improved posterior networks, the methodology adjusts predictions for individual data distributions while

estimating their uncertainty. Similarly Bayesian deep learning based approaches for quantifying uncertainty of personalised

recommendations have also been suggested – for example, in the context of collaborative filters which are popular in

recommender systems [89]. Though these two methods make useful advancements in quantification of personalised uncertainty,

they do so in very specific settings (federated learning and recommender systems respectively). Yet, there is a need to go

beyond such specific situations and formulate principled ways to establish rigorous bounds independently of the training data

distribution and model architecture, and can be generalised across most application areas.

To meet this challenge, conformal prediction (CP) [86] is a modern uncertainty quantification technique, that is applicable to

any AI algorithm, which has garnered significant interest in the recent years [7]. In contrast to other uncertainty quantification

methods, CP provides guarantees in real-world scenarios (albeit with some caveats, as described below) subject to minimal

assumptions regarding sample size and data distribution. We next present CP and then proceed to describe how it represents a

powerful tool for moving towards PUQ.

2.1 Conformal prediction for PUQ
At a high-level, conformal prediction (CP) [86, 65, 7], is a technique that converts the predictions of an arbitrary AI algorithm

into set-valued predictions, called prediction sets, that contain the true outcome with a probability above a user-specified level

1−α . The general idea underlying CP is to use a hold-out dataset, known as the calibration set, that has not been used for

training the predictive model, to rigorously assess the uncertainty of the model’s predictions.

To see how this works, let X denote a covariate variable, such as a vector of unidimensional measures, or an image, and Y

denote an outcome variable, which may be categorical or continuous. Let (Xi,Yi)
n
i=1 be an exchangeable hold-out sample of

observations and Xn+1 be a new patient for which we would like to predict Yn+1 (the new observation also being exchangeable).

An assumption of conformal prediction is that the sequence of data points (hold-out examples and new test points) is
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exchangeable. This means that the probability distribution of the data does not change when the order of the data points

is altered. Exchangeability is important for the validity of conformal prediction because the method relies on ranking or

comparing the conformity scores of data points. Formally, the general aim of conformal prediction is to build the smallest

possible prediction set Ĉα(Xn+1) such that the probability of the true outcome being in the prediction set (coverage) is above

1−α . That is,

P(Yn+1 ∈ Ĉα(Xn+1))≥ 1−α,

where in the above equation, the probability is over (Xi,Yi)
n+1
i=1 , and α is a user-specified margin of error (e.g., 5%). The above

guarantee has a concrete, intuitive interpretation: for 1−α% of data points, the output prediction sets will contain the true

outcome.

To achieve a coverage above the target confidence level, CP relies on the use of a non-conformity score function ν : (x,y) 7→R,

that measures the inadequacy of y as a prediction for x based on a pre-trained predictive model. In a regression task, a classical

choice for the non-conformity score is ν(x,y) = |µ̂x − y|, where µ̂x is the point prediction given by a trained regressor for the

data point x. In the classification case, the non-conformity score is typically ν(x,y) = 1− p̂y(x), where p̂y(x) is the estimated

probability that the data point x is in class y given by a trained classifier.

For a given non-conformity score, CP constructs a prediction set for Yn+1 by comparing the non-conformity score of

(Xn+1,y) for any possible outcome y to the non-conformity scores on the hold-out calibration data: y is excluded from the

prediction set Ĉα(Xn+1) only if the non-conformity score for y is large enough with regards to this set of values, that is, larger

than the (1−α) n+1
n quantile. Hence, the hold-out data is used to build a reference set representing the predictive model’s

estimated uncertainty associated to true outcomes. Moreover, under exchangeability of (Xi,Yi)
n+1
i=1 , CP guarantees that the

coverage is above 1−α . Crucially, this guarantee holds regardless of the size n of the hold-out set, the type of data distribution

(as long as exchangeable), the predictive model used and its accuracy. At the same time, the larger the hold-out sample size and

the more accurate the predictive model, the more informative or smaller the prediction sets will be.

While strict exchangeability is a standard assumption, there are methods to adapt conformal prediction to settings where

exchangeability is not fully met, such as when dealing with time-series data or other structures with complex dependence [13].

One such method is online conformal inference [38, 39, 5, 91]. In online settings data are usually collected in sequence and

the task is to construct a prediction set at each time step for a sequence of pairs of data points (Xi, Yi), with the size of the set

determined by a data-driven threshold for the non-conformity score. After observing the corresponding outcome label Yi, these

methods update the threshold for the non-conformity score depending on whether the algorithm has been under/over-covering

at previous timesteps for the desired error rate α .

While conformal prediction sets are specific to each individual, it is important to emphasize that the aforementioned

guarantee is only marginal: it ensures that the average coverage is above the confidence level, but does not ensure uniform

coverage across the feature space and the outcome space. In other words, it may occur that on certain parts of either the feature

space or the outcome space, the coverage is below the level of confidence (i.e, under-covered), while it is above it on the

remaining parts of the space (i.e., over-covered). For instance, parts of the feature/outcome space which are under-represented

in the hold-out sample are more likely to be under-covered [55, 57]. Alternatively, if there is heteroscedasticity in the outcome’s

distribution given the covariates then parts of the feature space where the variance of the outcome is larger are also more likely

to be under-covered. Thus, while CP provides a powerful framework for assessing PUQ it is not yet complete. Indeed, a range

of challenges still remain.

3 Grand challenges in PUQ

To scope these challenges, the Alan Turing Institute convened a series of workshops to understand the issues and determine a

trajectory for future research in CP and PUQ more generally. In this section we outline eight grand challenges in PUQ, that
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arose from these discussions. Collectively, they scope the problems associated with PUQ, provide a road map for the further

development of PUQ as a field of study, and outline a set of future research directions that will help advance PUQ for machine

learning at scale. These grand challenges are also visually summarised in Figure 2.

3.1 PUQ for individualised predictions
In the last section, we discussed several methods for PUQ, including CP. We noted that although CP is powerful, it only provides

marginal guarantees; yet, truly personalized uncertainty quantification requires guarantees conditioned on the individual, since

they ensure that the probability of error is the same for all individuals. While exact conditional coverage is known to be

impossible without distributional assumptions [33], various approaches have been proposed to tackle this issue in practice. For

example, heuristics for improving conditional coverage empirically, either through a special choice of the non-conformity score

[72, 73] or a modification of the conformal procedure itself [42, 29] have been proposed. A special case of interest consists

of aiming for equal coverage across a finite number of non-overlapping groups, such as age groups. In this case, a standard

solution is to use Mondrian CP (MCP), a minor extension of classical CP in which calibration is performed separately for each

group [86, 71, 75]. MCP achieves equal group-wise coverage subject to the trade-off that prediction sets are constructed using

a smaller number of calibration samples. Recently, a relaxation of the conditional coverage objective and generalization of the

CP procedure which achieves exact guarantees (and therefore includes group-conditional coverage as a special case) has been

proposed [40]. Such innovations are a step towards achieving PUQ, yet a general solution is elusive, particularly when we seek

to strengthen PUQ from sub-group level guarantees to the level of specific individuals, which is the ultimate goal in this area.

3.2 PUQ for multi-scale modelling
Multi-scale modelling involves the integration of information at different length or timescales (e.g., from microscopic to

macroscopic levels) or resolutions (e.g., combining individual-level with population-level information). Incorporating data at

different scales not only increases model complexity, but also poses challenges to quantifying personalised uncertainty [90].

These challenges often arise from one of three sources: scale integration, data diversity/quality, and model complexity/validation

[2]. Issues that arise from scale integration are related to lack of understanding of the non-linearities associated with moving

between scales. For example, constructing a non-conformity function for conformal predictions that accounts for all scales

in parallel is often intractable and, as a result, is often tackled by combining the output of scale-specific functions that do

not properly account for relationships between scales [6]. Issues to do with data diversity or quality arise because data

heterogeneity will often differ considerably between scales. For instance, a disease risk prediction model that incorporates

environmental information at the postcode level with genetic testing at the individual level will have to account for very different

sources of hetereogeneity. Genetic data will be highly sparse – and missing for many individuals – but, where available,

highly accurate; whilst environmental data may be mostly complete but much coarser. In both cases, underlying biases pose

different challenges both in ensuring accuracy and in quantifying uncertainties associated with individual predictions [1] –

these challenges are closely related to those associated with PUQ for multimodal data (see Challenge 7). Accurately assessing

personalised uncertainties in such situations requires accounting for scale-dependent data quality issues. This area can be

overlapping in scope with the next challenge in multimodal AI, but there is a subtle distinction which might be best illustrated

with the following illustrative example from computational healthcare. When we are dealing with radiology imaging for say

lung cancer we could look at the whole image in the context of the location of the nodule within the lung cavity, or we could

zoom in onto the nodule and look at it morphological characteristics, each would provide different sets of information and

challenges for the AI system. Same holds true when looking at histopathology image of the same nodule, where the whole

slide image would give tissue level information and resolutions whereas the most zoomed in view would provide cellular level

tumour microenvironment information and resolutions. In each of these cases the modality remains the same, either radiology

or pathology. However if we combine the two into the same decision pipeline, plus perhaps include further modalities like
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clinicogenomcis, then the system becomes multimodal and brings with it a whole new set of challenges regarding compatibility

of data structures, information overlap or orthogonality or redundancy, etc. Thus a grand challenge in this area of multi-scale

modelling is to design non-conformity functions such that they are robust to data qualities across different scales.

3.3 PUQ for multimodal AI
As technology advances, new and varied data modalities are emerging that provide complementary sources of information. For

instance, the growth of -omics approaches to obtain biomedical data has brought the desire to integrate diverse biological data

sources (e.g., genomics, proteomics, metabolomics, transcriptomics, radiomics etc) [50, 48]. The increasing availability of

wearable sensors and digital health solutions promises to bridge these insights to a genuinely dynamic understanding of health

and disease [21], whether at a single timepoint or through the patient’s life course. These exciting developments provide rich

inputs to inform predictive models but also beg the question of whether less is more. Intuitively, the more inputs into a predictive

model, the better informed it will be; yet, introduction of unnecessary confounders increases the risk that nuisance variables,

which increase uncertainty, will be included. The challenge is thus to develop frameworks that account for the trade-off between

increased information and uncertainties. A central insight to this trade-off comes from the value of information theory: a

predictive model is as good as its ability to enable decision-making, bounded by the data and time available and accounting

for associated uncertainties [34]. A key challenge is thus to assess models and uncertainty in a way that considers additional

data and data modalities and their impact on decision-making at a individual level. In some cases additional data or modalities

may not necessarily be beneficial and the benefits derived depend on the specific context of the use of the predictive model.

In addition to changes in the inter-relations in a given data set, new data modalities to augment the existing model could

also become available over the life-cycle of a predictive model. While new data sources can offer promise to improve model

performance and address data scarcity, they bring with them new sources of uncertainties and questions about how to best

integrate then into existing model designs [19]. The emerging field of multimodal learning offers promising solutions for such

situations [10]. In these approaches, data sources that represent different aspects of the same phenomenon (i.e., modalities)

can be modelled separately and/or ‘fused’ into a joint model. Moreover, multimodal co-learning methods [69] can be used to

transfer learnt concepts between models, and thereby help mitigate the uncertainties associated with the introduction of new

modalities into existing systems. The grand challenge in this area is to design PUQ tools that are attuned to multimodal AI

methods, able to adapt to new modalities as they are incorporated, and able to quantify the predictive uncertainty for individuals

for whom not all modalities are available.

3.4 PUQ for explainable AI design
Explainable AI (XAI) is the design of AI algorithms that can be interpreted or interrogated to understand why they give the

output that they do for any individual [58]. Thus, XAI aims to increase trust in the predictions of a model by understanding

the rationale underlying a prediction for an individual, while PUQ assessments aim to increase trust by better understanding

how much confidence should be placed in that prediction [9]. This is especially true for domain inspired explainable design

of AI systems [83], where the alignment to an established decision logic increases certainty and hence trustworthiness. This

then links to personalised uncertainty quantification as Explainable AI may also give an extra indication of uncertainty which

may not otherwise be identified if the explanation for an individual’s prediction would not make sense for that individual [81].

An example of this is the combination of self-explaining models (such as concept bottlenecks or prototype based models)

with conformal analysis [67]. A further interesting potential area of research could be at the intersection of explainable AI

and conformal prediction, where as well as understanding the reasons for the AI model predicting the most likely output,

explainable AI is also applied to understand the reasons underlying all members of the conformal prediction set. For example

applied to digital pathology, this may identify a most likely pathology being driven by features observed within a certain set of

cells, but also recognise there are alternative potential pathologies which would be driven by features observed in other cell
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types [4]. Thus the grand challenge in this area is to employ PUQ in such a manner that it adds interpretability to personalised

decisions, which by default might not be transparent to the non-specialist user.

3.5 PUQ for monitoring models
Dataset drift/shift (the gradual/sudden change in the association between model input and output over time), has the capacity to

drastically limit the performance of a model trained on ‘out-of-date’ data [68]. In some situations, uncertainty quantification

can be used to monitor the performance of predictive models over time, and identify the earliest opportunity to address

performance loss due to dataset drift/shift. There are a number of ways to do this. For example, via data distribution based

uncertainty monitoring [63, 36] (although this can can potentially lead to false alarms) or performance-based monitoring, which

traces deviations in the model output error [77] to detect model changes and uncertainties [76]. Although useful, both these

methods are population based and so may not provide the coverage guarantees at the individual level needed for high stakes

applications like healthcare or criminal justice, in which individuals cannot be treated as outliers or ‘out of distribution’. The

main challenge is that performance-based monitoring requires rapid feedback on predictions, which is not always available

in the real-world environment [36, 16], although various (model-agnostic, Bayesian and non-Bayesian) UQ tools can be

used to monitor and detect model degradation and alleviate the limitations of data distribution-based and performance-based

approaches [37, 54, 12, 82]. Yet, as shown in comparison studies [26, 14], no single uncertainty quantification methods works

best in all data drift scenarios. Ensemble UQ tools could provide a solution by aggregating multiple uncertainty quantification

methods [16]. The quality of uncertainty quantification under data shift is another research challenge as uncertainty estimation

consistently degrades with increasing dataset shift regardless of method [64]. Incremental and online learning paradigms could

be leveraged in model uncertainty monitoring methods, which have high capabilities in continuously adapting to accommodate

the incoming data points in drift handling systems [56, 22]. Recently, some progress has been made in this area via online

conformal prediction [38, 39, 5], as discussed briefly in Section 2.1, but work in this area is still nascent. Thus, there are several

issues to be addressed, but the grand challenge is that the current methodologies like data distribution and performance based

uncertainty monitoring do not provide PUQ; calibration based methods can but they usually need offline calibration whereas

monitoring systems are mostly real-time.

3.6 PUQ with missing data
As large datasets expand over time, not only can the distribution of the data change, but also increasing amounts of missing data

are likely to be present, including structured missing (SM) data in which the missingness is not random but rather exhibits

some multivariate patterns of association [62]. Uncertainty quantification is strongly affected by the presence of SM, so it

needs to be modelled robustly with predictive algorithms handling this problem by design. A new taxonomy for SM has

recently been set out [47] providing important insights into the phenomenon that could facilitate strategies to accommodate

SM into statistical modelling. However, approaching this using standard statistical techniques alone is challenging due to the

ever-increasing volume and heterogeneity of large databases. In particular, the inherent pattern or structure in the missing data

might be connected to certain characteristics of individuals and so must be treated accordingly in the context of PUQ. In this

context, network-based approaches to understanding the geometry of missing readings provide a key complementary tool,

particularly in addressing scalability issues. Networks and their generalisations, including multilayer [17] and higher-order

networks [18] permit a deeper understanding from structured data. When combined with network embedding strategies [11],

and information theory tools [43] they can capture the geometry and topology of missingness patterns, revealing underlying

structures, which can inform the development of statistical models to be used for prediction and uncertainty quantification

when making individual-level predictions. The grand challenge in this area is that the data associated with certain sub-groups of

individuals may be systematically missing in specific data fields that are important to predictions, and so models built on this

data will naturally be more uncertain about these groups. New tools that are able to assess the extent of this problem a priori
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and flag it are needed, as a start. In the longer term tools to deal with such informative missingness will be required.

3.7 PUQ for equitable decisions
Uncertainty in personalised predictive modelling can stem from various sources. For under-represented populations, the paucity

of relevant training data naturally plays a critical role: all else being equal, parameter estimates and model fits will be more

uncertain for subgroups with fewer individuals. Because levels of data availability may vary with certain protected demographic

characteristics like age, ethnicity, gender, [51, 84], this may increase uncertainty for those protected groups for which less

information is available to predict the outcome of interest [62]. Moreover, the use of such attributes in predictive modelling

may have wider societal impacts with respect to inequitable outcomes across population sub-groups, like unfair criminal

profiling of racial minorities [8], which must also be taken into account [87]. Thus, increased uncertainty for under-represented

populations can have significant negative consequences, and the potential adverse effects of data poverty have accordingly been

well documented [46]. Polygenic risk scores (PRS) - disease prediction models based on genomic data - provide a striking

example of this. The vast majority (86%, currently) of data in genomic studies comes from European-ancestry individuals [32].

Correspondingly, PRS exhibit significantly poorer performance for non-European-ancestry individuals, which, should they be

used, may naturally lead to poorer clinical decisions [59]. Similar disparities have been exposed across a range of other domains,

from facial recognition [20] to chest X-ray pathology discrimination [78]. Several strategies are available to mitigate such

consequences. First and perhaps foremost, targeted data collection to redress imbalances in training data must be a priority [23].

In genomics, for example, significant efforts are underway to sequence the genomes of African-ancestry individuals [60]. The

grouping together, or not, of individuals at the training stage can affect downstream predictive performance [80]; appropriate

borrowing of information across subgroups, for example by hierarchical modelling, has the potential to boost predictive power

for under-represented populations. Finally, reports of uncertainty in human-in-the-loop systems may be effective in flagging

highly uncertain predictions to the eventual decision-maker, which may avert poor decisions based on insufficient information

[74]. As AI models are expected to be employed increasingly in high impact decisions for individuals, the grand challenge

here is to implement PUQ so that it operates fairly across population sub-groups and individuals, particularly with respect to

protected attributes like race and gender.

3.8 PUQ for generative AI
The recent emergence of generative AI creates a new range of challenges for quantifying uncertainty [25], such as the worrying

propensity for large language models (LLMs) [31] to make highly plausible but factually incorrect statements with an apparently

high degree of confidence. Unlike outputs from more classical AI, where the prediction may be a numeric value or one of a set

of categories and so an uncertainty can naturally be expressed by a range of values or by a set of categories representing a likely

range of values, the best way to express uncertainty for an image, video or text document generated by AI is less clear [49].

With most classically predictive AI models, greater accuracy or decreased uncertainty as represented by a smaller prediction

interval or set is desirable. However for generative AI uncertainty is context specific – for applications where accuracy is

valuable, such as summarising a long document or writing an essay on a historical character, low uncertainty is valued. However

when Generative AI is used in a creative scenario, for example to generate artwork, then a higher degree of variability may

actually be desirable in order to create a rich and diverse portfolio of pictures [92]. Even in the scenarios valuing accuracy, lower

uncertainty may be more important for some parts of the output than others. For example “Neil Armstrong was born in 1930”

and “1930 is the birth year of the first man to walk on the moon” are different sentences, but the important information that both

sentences convey is identical. This suggests that one approach would be to identify key features associated with a generative

AI output and assess the uncertainty associated with those features, where methods similar to conformal prediction could be

applied. In addition to the scale and complexity of generative AI models, the above issues make quantifying uncertainty from

these models challenging. As the capability and use of generative AI models in a wide variety of domains continues to grow,
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this is an area requiring greater research. Incorporating recognition of uncertainty into LLMs – changing the language from one

which is frequently of certainty whether founded or not, to one of greater nuance such as “it is probable”, “there is a possibility”

or even “I don’t know” – is required. Another pertinent case in point is the recent Gemini model debacle, i.e. when it was

launched it was generating images of people which were adjusted to be representative and inclusive, but consequently ended up

being context inaccurate. For example, when asked to generate images of Third Reich officers from WW2, it generated images

of people of wide range of ethnicity, which would be factually incorrect [41]. This is a recent real life example of why PUQ in

generative AI is important and how this must be matched to both context and demographic. The grand challenge here is that the

allowable bounds of uncertainty for generative applications depend on the application at hand: whereas for creative applications

like AI art or poetry a certain latitude in generative uncertainty (hallucinations) is permissible and even necessary, in other

applications, such as clinical machine learning, where synthetic data is generated for data augmentation and class balancing,

strict PUQ guarantees are needed at a individualised level.

4 Conclusion

In this Perspective, we have highlighted the need for PUQ in AI, and suggested eight grand challenges to developing and

implementing PUQ in AI pipelines. Yet, PUQ will only have real impact if it is successfully communicated to the end user in

an intuitive way. The benefits of communicating uncertainty are twofold: first, the decision-maker is able to understand the

weight of their decision and make informed decisions that align with their values, expert judgment and risk tolerance. Second,

the affected individual can better comprehend the level of confidence associated with the AI-driven recommendation, allowing

them to make an informed decision to trust, or not, in the decision-making process [79]. Decisions informed by AI must present

with clear and accessible representations of uncertainty [44]. User interfaces built on top of AI algorithms should consider

visual aids that convey to the lay user the distribution of potential outcomes and the certainty, or lack thereof, underlying an

individual prediction.

For example, in healthcare, AI algorithms may be deployed in many settings: to make personalized treatment recommenda-

tions [27], assist with emergency room triaging, or predict patient prognosis. PUQ can help clinicians grasp not only the AI

prediction itself but also the magnitude of uncertainty associated with it, in order to weigh recommendations appropriately

against their clinical judgment. Patients, increasingly interested in being informed about their care and medical journey, can

also be provided with this information. As with all aspects of a clinical interaction, PUQ can enable clinicians to consider the

risks, benefits, and the most critical information to convey, and tailor this information accordingly, ensuring that patients are

adequately informed about the AI-driven aspects of their care. More generally, meeting the challenges we have presented could

help design AI systems that accord with emerging AI safety legislation, such as the EU AI Act [30], and enable users to decide

when and when not to adopt AI recommendations, and thereby make better decisions.
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Figure 1. Conformal prediction (CP) for personalised uncertainty quantification (PUQ). CP generates a prediction set that

guarantees provable coverage of the ground truth for each individual prediction with a user-specified probability (subject to

some technical caveats, described in the main text).

Figure 2. Grand Challenges in Personalised Uncertainty Quantification (PUQ) in a range of AI domains from classical

predictive tasks to emerging applications
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