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Abstract: Automatic page layout generation is a challenging and promising research task,
which improves the design efficiency and quality of various documents, web pages, etc.
However, the current generation of layouts that are both reasonable and aesthetically
pleasing still faces many difficulties, such as the shortcomings of existing methods in terms
of structural rationality, element alignment, text and image relationship processing, and
insufficient consideration of element details and mutual influence within the page. To
address these issues, this article proposes a Transformer-based Generative Adversarial
Network (TGAN). Generative Adversarial Networks (GANSs) innovatively introduce the
self-attention mechanism into the network, enabling the model to focus more on key
local information that affects page layout. By introducing conditional variables in the
generator and discriminator, more accurate sample generation and discrimination can be
achieved. The experimental results show that the TGAN outperforms other methods in
both subjective and objective ratings when generating page layouts. The generated layouts
perform better in element alignment, avoiding overlap, and exhibit higher layout quality
and stability, providing a more effective solution for automatic page layout generation.

Keywords: deep learning; generative adversarial network; page layout; attention mechanism

1. Introduction

With the continuous development of electronic devices such as computers and smart-
phones, various types of web pages have become an integral part of everyone’s lives. Page
layout design has evolved into a crucial task in many fields. Layout design involves the
effective integration of text, graphics, tables, etc., within limited space, ultimately creating
a visually rich and vibrant composition. The layout style can be dignified and steady
or dynamic and lively, capable of capturing the attention of diverse readers, enhancing
reading interest, and allowing readers to visually perceive the essence conveyed by the lay-
out. Layout design is applied across various domains such as web pages, advertisements,
posters, magazines, documents, newspapers, presentations, and other graphic and visual
design contexts. Designs are often challenging to create as they must effectively convey
information while meeting aesthetic objectives. In fact, Computer-Aided Design (CAD) rep-
resents an early achievement in computer-assisted page design. In recent years, benefiting
from rapid advancements in image processing through deep learning technologies, some
scholars have begun to employ deep neural networks [1-5] to advance automatic page
layout tasks. Page layout technology has evolved from early statistically based learning on
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limited samples to machine learning and deep learning based on deep neural networks,
reducing the manual dependence in the design process and improving the accuracy of
data generation [6-8]. Since 2014, Generative Adversarial Networks (GANSs) [9,10] have
garnered widespread attention for their powerful image generation capabilities. In the
initial stages of research, the limitations of generative techniques were evident in their
ability to generate structurally strong images limited to faces or pattern textures. Through
the continuous refinement of GAN architectures, introduction of new loss functions, and
further enhancement of model generation capabilities, applications have expanded to
natural image generation, product design, 3D printing, and various other domains. Current
research is progressing towards the development of large models for intermodal conversion
between text, images, and videos, high-resolution image generation, and style transfer.

A GAN is a type of neural network that employs unsupervised learning to achieve
image generation. Due to the suboptimal quality of images generated by traditional neural
networks, Goodfellow et al. [11] in 2020 improved upon the traditional single neural net-
work by combining mutually antagonistic components—a generator G (Generator) and a
discriminator D (Discriminator)—to construct the Generative Adversarial Network (GAN).
Compared to other generative models, the GAN exhibits notable advantages, including in-
dependence from prior assumptions and a straightforward approach to sample generation.
Subsequent research has unfolded in various application domains such as style transfer,
image restoration, and semantic segmentation. To address issues such as poor stability, gra-
dient vanishing, and insufficient diversity in generated images during the training process
of GAN models, scholars have conducted research on two fronts: improvements in network
architecture and the construction of loss functions. Classifying GAN structural variants,
the main representative models include the following: the Deep Convolutional Generative
Adversarial Network (DCGAN) [12,13], which provides more stable training and is suitable
for image classification; the Semi-Supervised Learning Generative Adversarial Network
(SGAN) [14,15], which improves sample generation quality and reduces training time; the
Conditional Generative Adversarial Network (CGAN) [16,17], which controls the gener-
ation of samples meeting specific labels; the Laplacian Pyramid Generative Adversarial
Network (LAPGAN) [18,19], which achieves high-quality fine image generation; and the
Boundary Equilibrium Generative Adversarial Network (BEGAN) [20,21], which simplifies
the model training process. Classifying GAN loss function variants, models encompass the
Wasserstein Generative Adversarial Network (WGAN) [22], which improves the stability
of training by enhancing probability distribution metrics; the WGAN-GP (Wasserstein
GAN with Gradient Penalty) [23,24], a further refinement of the WGAN; the F-Divergence
Generative Adversarial Network (F-Divergence GAN) [25], optimizing the problem of max-
imizing and minimizing values; and the Least Squares Generative Adversarial Network
(LSGAN) [26], which enhances both the quality of generation and training stability.

Furthermore, research on utilizing Generative Adversarial Networks for tasks re-
lated to automatic layout is on the rise [27]. StackGAN [28], by constructing a stacked
network structure, achieved the generation of photo-realistic images corresponding to
textual descriptions for the first time, with image sizes reaching 256 x 256. Xu et al. [29]
introduced the Deep Attention mechanism into the generator of GAN, thus creating the
AttnGAN model. This model utilizes attention-driven multi-stage refinement techniques,
focusing on relevant descriptive words to synthesize fine-grained details in images, provid-
ing a reference for the text-to-image task in complex scenarios. Chai et al. [30] proposed
a Transformer-based diffusion model for layout generation. Jiang et al. [31] adopted a
site-embedded generative adversarial network (ESGAN) for automated building layout
generation. Chen et al. [32] constructed an element-conditioned GAN for graphic layout
generation conditioned on specified design elements. Banerjee et al. [33] proposed the
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Attention and Condition-based Generative Adversarial Network (AC-GAN). The model,
based on given text attributes, accomplishes image generation across various categories,
including different clothing styles, colors, patterns, and necklines, and has been applied in
design and production applications.

The aforementioned methods have given rise to various GAN variant models, con-
tributing to a more stable training process and a significant improvement in the quality
of generated images. Nevertheless, the present generation of layouts that combine both
rationality and aesthetic appeal encounters numerous challenges, including the deficiencies
of current methodologies in structural logic, alignment of elements, handling of text-image
relationships, and inadequate attention to element details and their mutual interactions
within the page. To address these issues, this paper proposes a Transformer-based Genera-
tive Adversarial Network for page layout. Transformers [34-37] exhibit excellent contextual
modeling abilities and robust long-term memory capabilities in handling lengthy textual
tasks. The experimental outcomes demonstrate that the TGAN surpasses other techniques
in both subjective and objective evaluations for generating page layouts. The layouts
produced by the TGAN exhibit superior element alignment, effective overlap avoidance,
and enhanced overall layout quality and consistency, thereby offering a more efficient
approach to automated page layout creation.

2. Methods

2.1. Generative Adversarial Networks
2.1.1. The Theory of Generative Adversarial Networks (GANSs)

The generation method based on GANSs avoids the probabilistic computational chal-
lenges posed by traditional models such as Markov chains and maximum likelihood esti-
mation. Through adversarial training between the generator and discriminator, end-to-end
backpropagation is achieved, effectively reducing the training difficulty of the generative
model and improving training efficiency through the updating of network parameters.
Additionally, GANs’ powerful representational capabilities support arithmetic operations
in the latent vector space, converting them into corresponding operations in the feature
space to learn the intrinsic representation of data. For example, given the attribute feature
of an image in the latent space as a female wearing a gray T-shirt, by subtracting the feature
vector of this female and adding the feature vector of another male, the network outputs
an image of a male wearing a gray T-shirt. In real life, unlabeled data far exceed labeled
data, and GANs excel at unsupervised learning from such unlabeled data, making full use
of the vast resources available on the network. Although the data generated by GANs are
synthetic, the model can generate data that are non-existent in real life but comparable in
quality to real data. Therefore, GANSs can learn to generate page layouts that do not exist
but can rival real-world layouts by learning from existing page layouts.

2.1.2. The Principle of Generative Adversarial Networks (GANs)

Generative models can be broadly categorized into two types: those that represent
the exact distribution function of the data and those that involve a fuzzy distribution
function for generating new data. The GAN belongs to the latter category. The GAN, an
unsupervised learning model, consists of a discriminator and a generator and is employed
for generating images, audio, video, or text. Both the discriminator and the generator can
be constructed using any neural network architecture, such as Artificial Neural Networks
(ANNSs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
Long Short-Term Memory Networks (LSTMs), etc. GAN directly models the probability
distribution of data samples implicitly through neural networks. The generator takes a
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random vector from a distribution, often a normal or uniform distribution denoted as P(z),
and transforms it into synthetic data G(z).

The discriminator essentially functions as a binary classifier. Given a real image x,
it outputs the probability that the input data are real by comparing them with the data
generated by the generator, G(z), where 0 represents fake and 1 represents true. The
training process of GANS, as illustrated in Figure 1, involves the generator learning to
produce a distribution similar to the real data distribution, while the discriminator learns
to differentiate between inputs. The generator and discriminator engage in continuous
adversarial training until the model reaches Nash equilibrium. At this equilibrium, the
generator produces data that closely resemble the target distribution, and the discriminator
cannot distinguish between real and generated data, assigning both probabilities of 1/2.
In other words, the discriminator is unable to discern the difference between real and
generated images, and both the generator and discriminator achieve optimal performance.

Discrimina
tor

rue/False?

Real —> (0-1)

Figure 1. Schematic diagram of GAN structure.

The training process of GANs involves a minimax game between the generator G and
the discriminator D. The generator G takes a random vector z from a simple distribution
P, and generates synthetic data G(z). The discriminator D evaluates the probability that
the input data are real. The objective function is defined as:

mingmaxp{V(D,G) = Ey_p,,, [log D(x)] + E,_p,[log(1 — D(G(z)))] }. (1)

Here, P4, represents the distribution of real data, and z is the input random vector to
the generator. The first term represents the expected log probability that the discriminator
correctly identifies real data, and the second term represents the expected log probability
that the discriminator correctly identifies generated data as fake. The generator aims to
minimize this objective function, while the discriminator aims to maximize it.

KS (KL divergence), also known as Kullback-Leibler divergence, is a critical concept
in statistics used to measure the proximity between two probability distributions. The
larger the KS divergence, the greater the difference between the probability distributions;
conversely, smaller KS divergence indicates closer proximity between distributions. In
GAN, KS divergence is effective in determining whether the generator and discriminator
have reached Nash equilibrium. Assuming two continuous distributions P and Q, their KL
divergence is defined as follows:

P(x)
Q(x)

Do (PIIQ) = [ P(x)log O rd(x). ®
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The objective of the generator is to minimize the gap between the distribution P, (x)
and the distribution P;(x; ) generated by feeding the random vector z into the generator,
eventually approaching the same distribution. The generation principle is illustrated in
Figure 2. Here, 0 is determined by the network parameters, and the ultimate task of the
network is to find 6 to make Py, (x) close to Pg(x; 0). The optimal generator achieved by
the generative model is denoted as G*:

G* = mi V(D,G). 3
minmax V(D, G) 3)

Given the data and a fixed generator G, consider Py, (x) and Pg(x) as constants.
Adjust the discriminator D to maximize V(D):

* Pdata (x )
D*(x) = . 4
)= Bal) + Rl) “
Substituting D* into the previously optimal generation result, we obtain:
max V(D,G) = ~2log2 + KL <Pdan(x) Pda“(x); Pa(v) ) +KL (PG(x) [ Pda“(x>2+ Pe(v) ) . ®)
G(z) =x P, (x;0) Piata (X)

Generate
Network

O

Z

T~

Figure 2. GAN principle diagram.

We adjust D to maximize the value of V(G, D), where the two KL divergences together
constitute the maximum, thus measuring the degree of difference between Py, (x) and
Pg(x). The generator G aims to minimize the KL divergence between the generated data
and real data, while the discriminator D attempts to maximize it. The model training
process is illustrated in Figure 3, where the horizontal line z represents the input random
vector, the horizontal line x represents real data, and the arrows between the two parallel
lines represent the mapping from the input random vector to the generated data, i.e., the
mapping from uniformly distributed data to non-uniformly distributed data. The green
solid line reflects the distribution of generated data, the black dashed line reflects the
distribution of real data, and the blue dashed line represents the discriminator. The model
training process is illustrated in Figure 3, where the horizontal line z represents the input
random vector, the horizontal line x represents real data, and the arrows between the two
parallel lines represent the mapping from the input random vector to the generated data,
i.e., the mapping from uniformly distributed data to non-uniformly distributed data. The
green solid line reflects the distribution of generated data, the black dashed line reflects the
distribution of real data, and the blue dashed line represents the discriminator. Figure 3a—-d
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represent the model training initial state, fixing G to train D, fixing D to train G, and
the final convergence stage, respectively. By the (d) stage of training, the distribution of
generated data perfectly matches the distribution of real data.

rrr:fA

.\

‘1
.

/{///H //////H ///H\\\\ ///H\\\\

Figure 3. GAN training mechanism.

The training algorithm for GAN discriminators and generators, as shown in Algorithm 1,
involves sampling m examples {x1, ..., Xy} from the real data distribution Pdata and m
examples {z1,...,z; } from the generated data distribution Pg to enhance training efficiency.
During the training process, the discriminator D undergoes cyclic training with real and
generated data distributions for k iterations, followed by training the generator G with a
smaller learning rate. G progressively reduces the gap between real and generated samples
during iterative training, achieving convergence.

Algorithm 1 GAN Training Algorithm

1: for number of training iterations do

2 for k steps do

3 Sample m sets of noise data {21, ..., Zy } from the random distribution Pg(z);
4: Sample m sets of samples x1, ..., xm from the real data distribution Py, (x);
5: Update the D network: V,, Ly [log D(x ) +log(1 — D(G(z))];

6 end for

7 Sample m sets of noise data {z1, ...,z } from the random distribution Pg(z);

8 Update the G network: Veg Ly log(l— D(G(z™))).

9: end for

2.2. Transformer

The Transformer consists of an encoder and a decoder. The encoder maps the input
sequence x = (x1,...,Xy,) to a continuous sequence z = (z1,...,z5). The decoder generates
a sequence ¥ = (y1,...,ym) step by step based on the given values of z. The stacked
encoder and decoder component structure is illustrated in Figure 4, where the left side
represents the encoder component and the right side represents the decoder component.
Each encoder has the same structure, consisting of two sub-layers with different weights.
The input passes through a self-attention layer and then is fed to a feed-forward neural
network layer. In addition to these two sub-layers, the decoder also includes an encoder—
decoder attention layer, similar to Seq2Seq, which helps the decoder focus on relevant parts
of the input data. Between these layers, connections are made through Add and Normalize,
involving mainly residual connections and normalization operations. Add and Normalize
breaks the symmetry of the neural network, improving the issue of network degradation.
It accelerates model convergence by optimizing the normalization process and addresses
the problem of gradient vanishing in deep learning.
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Figure 4. Stacked encoder and decoder structure diagram.

By treating data as a sequence, the Transformer initially processes the input data

through embedding to obtain vector representations. Subsequently, position encoding is

applied to the corresponding data in the sequence to prevent data misalignment. Through a

self-attention mechanism, the data are mapped to triplets Q (Query), K (Key), and V (Value)

for representation, and vectors are output. The formula for the self-attention mechanism is

as follows:
QKT

Vi

Attention(Q, K, V) = softmax(

W.

(6)

In the above equation, Q represents the query matrix, and K represents the key matrix,

both of which use dot product matching. The result is the attention matrix, which effectively

reflects the semantic relevance between Q and K. Additionally, di in the equation denotes

the channel dimension, and the weights obtained by applying the Softmax function to the

calculated values are further used to obtain the values of self-attention.

In each layer of the Transformer encoder and decoder structure, in addition to the

multi-head self-attention mechanism, there is also a fully connected feed-forward network.

The fully connected feed-forward network consists of two linear transformations followed

by a ReLU activation function. The computational formula is as follows:

FFN(x) = max (0, xWy + b)) W, + by.

@)

Although the linear transformations at different positions between layers in the fully

connected feed-forward network are the same, the network parameters used within them

are different. The purpose of positional encoding is to obtain accurate information about

the positions of input sequences, thus compensating for the lack of positional information

in Transformer models compared to recursive networks and convolutional neural networks.

By adding positional encoding to the bottom input of the encoder and decoder, the bottom

input and positional encoding have the same dimensions for addition, achieving an accurate

description of the relative and absolute positions of input sequence data. There are various
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methods for performing positional encoding, and the Transformer model uses cosine and
sine functions with different frequencies.

PE (pos,2i) = sin(pos/ 100002/ dmodd)’ ®)

PE( pospiy1) = cos( pos / 10000%/nodet ), )

where i represents the dimension and pos represents the position, indicating that each
dimension of the positional encoding corresponds to a sine function.

2.3. TGAN
2.3.1. TGAN Principle

The starting point for the TGAN generator is no longer just an unknown noise distribu-
tion but rather labels or more detailed features of images, enabling the synthesis of forged
samples. During the training of the TGAN model, the generator learns to produce realistic
samples that match the labels of the dataset, while the discriminator learns to distinguish
between fake samples and label pairs from the generator and real samples and label pairs
from the training set. By introducing conditional variables into both the generator and
discriminator, forming combined conditional variables D(x,y) and G(z,y), the objective
function of the TGAN becomes:

minmax V(D, G) = By, (9108 D(Xly)] + Eyy, ) l0g(1 = D(G(zly)))].  (10)

The TGAN model architecture is illustrated in Figure 5. From the figure, it can be
observed that class labels (y) are input into the generative model along with random noise
(z) and into the discriminative model along with sample images (x). Additionally, the
discriminative model also receives input from the generated samples by the generative
model (G(z | y)).

Sample images (x)

(x,y)
> Originating from
Discriminati real samples or
scr a ve
Class labels (y) generated data
model
Random noise (z) al
G@zly),y)

Figure 5. TGAN model architecture diagram.

2.3.2. Generator

The generator model with the added Transformer module is illustrated in Figure 6. The
generator has two inputs: a 100-dimensional vector randomly sampled from the latent space
(left) and a class label y (right). The model employs a neural network structure consisting
of 2 layers of deconvolution and 1 layer of convolution. Initially, a 100-dimensional
random vector is input into the generator and transformed into a 320-dimensional vector
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through a fully connected layer. The role of the fully connected layer is to fuse image
features and obtain advanced meanings of these features, achieved through multiple
pooling layers and convolutional layers. The vector is then reshaped through a reshape
layer, altering its shape through matrix transformation, and the output is sent to the
transformer_block layer for feature extraction. The data processed by the Transformer
module are flattened using the flatten layer, turning the vector one-dimensional. The
network layers handling the Transformer module include the mentioned dense layer,
reshape layer, transformer_block layer, and flatten layer. These layers primarily aim to
extract more refined features from the image, thereby enhancing the accuracy of image
generation and ensuring faster convergence of the model.

inputl

concatenate_1 input: | (None,7,7,128),(None,7,7,1)

Concatenate | output: (None,7.7,129)

conv2d_transpose_1 | input: | (None,7.7,129)

Conv2DTranspose output: | (None,14,14,128)

input2

input 1 | input: | [(None,100)] leaky_re_lu_2 | input: | (None,14,14,128)

InputLayer | output: | [(None 100]] LeakyRelu | output: | (None,14,14,128)

{ dense 1 | input: | (None,100) conv2d_transpose_2 | input: | (None,14,14,128)

Dense | output: | (None,320)

Conv2DTranspose | output: | (None,28,28,128)

reshape_1 | input: | (None,320) input 2 | input: | [(None,1)] leaky_re_lu_3 | input: | (None,28,28,128)

| Reshape | output: | (None,10,32) InputLayer | output: | [(None,1)] LeakyRelu | output: | (None,28,28,128)

transformer_block | input: | (None,10,32) embedding_1 | input: (None,1) conv2d_transpose_3 input (None,28,28,128)

TransformerBlock | output: | (None,10,32)

output

Embedding | output: | (None,150)

Conv2DTranspose output: | (None,56,56,64)

flatten_1 | input: | (None,10,32) dense_3 input: | (None,1,50) leaky_re_lu_4 input: | (None,56,56,64)

Flatten | output: | (None,320) Dense | output: | (None.149) LeakyRelu | output: | (None,56,56,64)

dense 2 input: | (None,320) reshape 3 input: (Nore,1,49) conv2d_transpose_4 | input: (None,56,56,64)

. Resh: itput: None,7,7,1
Dense | output: | (None,6272) eshape | output: | (None.7.7.1) ConvaDTranspose | output: | (None,112,112,32)

leaky_re_lu_1 | input:

(None,6272) leaky_re_lu 5 | input: | (None,112,112,32)

LeakyRelu output

(None 6272)

LeakyRelu output: | (None,112,112,32)

reshape_2 input: (None,6272) convd_transpose_5 input: | (None,112,112,32)

Reshape | output: | (None7.7,128) Conv2DTranspose | output: | (None,224,224,16)

leaky_re_lu_6 | input: | (None,224,224,16)

LeakyRelu output: | (None,224,224,16)

Convad_1 | input: (None.224.224.16)|

Conv2D | output: (Nune‘ZZA‘224‘1)|

Figure 6. TGAN generator model.

2.3.3. Discriminator

The discriminator takes a grayscale image with pixel size 224 x 224 as input and
outputs a binary prediction indicating whether the image is real (class = 1) or fake (class = 0).
An output of 1 indicates that the discriminator considers the generated image to be close
to a real image, while an output of 0 signifies that the discriminator deems the generated
image quality to be poor. The discriminator model is designed as a moderate convolutional
neural network, using the LeakyReLU activation function with a slope of 0.2 and employing
2 x 2 strides for downsampling. As shown in Figure 7, the model has two inputs: on the left,
the input is the class label (y) and an embedding layer of size 50. This input uses integers as
class labels, achieving the effect of conditioning on the input image with respect to its class.
On the right, the input is an image defined by the CGAN discriminator model, with a size
of 224 x 224. The class label is passed through an embedding layer with a size of 50, where
each class is mapped to a different 50-dimensional vector representation, learned by the
discriminator. The embedded output is then passed through a fully connected layer with
linear activation, reshaped into an activation map of size 224 x 224, and concatenated with
the input image. This operation achieves a dual-channel input image effect when passed
to the next convolutional layer. The update of the discriminator is implemented using the
define_discriminator() function, where the parameterized shape of the input image is used
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after the embedding layer to define the activation of the fully connected layer for reshaping
its output. Finally, the discriminator is defined, compiled, and returned, with the number
of classes also parameterized in the function and set.

input3

concatenate 2 | input: | (None,224,224,1),(None,224,224,1)

Concatenate output: (None,224,224,2)

Convad_2 | input: | (None224,224,2)

Conv2D | output: | (None,112,112,32)

input4

leaky_re_lu_7 | input: | (None,112,112:32)

LeakyRelu | output: | (None,112,112,32)

Convad_3 | input: | (None,112,112,32)

Conv2D | output: | (None,56,56,64)

leaky_re_lu_8 input: (None,56,56,64)

LeakyRelu output: | (None,56,56,64)

Convad 4 | input: | (None56,56,64)

Embedding m (None,1,50)

Conv2D | output: | (None,28,28,128)

leaky_re_lu_9 | input: | (None,28,28,128)

output

input_4 | input: | [(None,224,224,1)] LeakyRelu output: | (None,28,28,128)

dense_4 | input: | (None,150) '"IJU'LBY”|°“‘P“‘ | [(None,224,224,1)] Conv2d_5 | input: | (None,28,28,128)

Dense | output: | (None,150174) Conv2D | output: | (None,14,14,128)

leaky_re_lu_10 | input: | (None,14,14,128)
reshape 2 | input: | (None,1,50174) yre i P ( )

LeakyRelu | output: | (None,14,14,128)
Reshape | output: | (None,224,224,1)

Conv2d_6 | input: | (None,14,14,128)

Conv2D | output: | (None,7,7,128)

leaky_re_lu_11 input: (None,7,7,128) |

LeakyRelu output: (None,7,7,128) |

flatten_1 | input: | (None,7,7,128)

Flatten output: (None,6272)

dropout [ input: (Nune‘6272)|

Dropout | output: (None,6272) |

dense_4 | input: | (None,6272)

Dense | output: | (None1)

Figure 7. TGAN discriminator model.

2.4. Integrated Layout Optimization

To directly optimize layout quality during training, we integrate the energy-based
evaluation metrics into the generator’s objective function. The total loss consists of
two components:

6
Liotar = Lago + A 2 wiEi(X) (11)
i=1
where the following are true:

* L., is the standard adversarial loss from Equation (1).

* Ais abalancing coefficient (set to 0.8 through grid search).

e E;(X) denotes the six energy terms defined in Section 3.4.2.

*  w; are adaptive weights updated every 5 epochs based on validation performance.

This formulation follows recent work on physics-informed neural networks [22],
where domain-specific constraints are directly embedded into the learning objective. As
shown in Algorithm 2, during each training iteration, we have the following:

Algorithm 2 Integrated Training Process.

: Sample noise z ~ p,, real data x ~ pys,

: Generate layouts G(z|y)

: Compute adversarial loss £, via Equation (1)

: Calculate layout energy terms {Eq,...,Eg}

: Update generator parameters: 0 < 0g — 1V (L40 + A Y w;iE;)
: Update discriminator normally via Equation (1)

N Ul W N =

The adaptive weighting mechanism automatically adjusts w; based on the relative
difficulty of satisfying each constraint. For example, if alignment (E;,,) has higher valida-
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tion error than other terms, its weight wy;q, increases by 15% for the next 5 epochs. This
ensures balanced optimization across all quality dimensions.

3. Experiment
3.1. Dataset

The content types included in page layouts are diverse, mainly comprising titles,
subtitles, tables, graphics, text, and more. Additionally, the real sizes of different page
layouts vary, making it challenging to treat different page layout samples as input data
for object information. Therefore, this paper addresses different page layouts through the
following two approaches:

1.  To address the issue of varying real sizes across all page layouts, all real data were
standardized to a size of 224 x 224 pixels.

2. Elements within page layouts, such as titles, subtitles, tables, graphics, and text,
were abstracted into differently colored boxes to disregard internal content, text,
images, formats, and other factors that could influence the model’s overall page
layout generation.

For example, as illustrated in Figure 8, the page layout Figrue 8a was standardized to
a size of 224 x 224 pixels, and the elements within the page were marked with different
colors. The final result is shown in Figrue 8b.

1. definition

— tanh(x)

hyperbolic
tangent function

/ usually represented by the symbol

/ The hyperbolic tangent function is

tanh(x) and mainly consists of two
functions: sine and cosine.

2. formula

sinh x
cosh x

tanh x =

3. domain and range

]
REEs L

(a)Page Layout (b)Property layout

- subtitle text - graphics

(c)Attribute type and color mapping

Figure 8. Page layout abstract diagram.

The overall dataset consists of 7256 training samples, with 5804 training samples,
accounting for 80% of the entire dataset, and 1452 testing samples, representing 20% of
the entire dataset. To visually distinguish semantic elements within the page layout, the
labeling process uses green to represent tables, red for titles, pink for subtitles, blue for
text, and yellow for graphics. Through a statistical analysis of the frequency of appearance
of various semantic elements in the dataset, graphics and text account for 99.3% and
89.9%, respectively, indicating that most page layouts include graphics and text. Titles
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and subtitles account for 78.5% and 56.4%, respectively, while tables make up 42.8%. This
suggests that in page layouts, graphics and text are essential elements, followed by titles,
subtitles, and tables in terms of importance.

3.2. Data Augmentation and Pre-Training

To address the limited dataset size (7256 samples), we implemented the following
strategies to improve model robustness:

*  Geometric Augmentation: random scaling (0.8-1.2x), rotation (+15°), and translation
(£10% of layout width /height) to simulate diverse design scenarios.

* Element-wise Augmentation: random permutation of element types (e.g., swapping
text and image positions) and perturbation of bounding box coordinates (+5 pixels).

*  Pre-training: the Transformer module was pre-trained on the RICO dataset [38]
(72k mobile UI layouts) to learn general layout patterns, followed by fine-tuning
on our domain-specific data.

These techniques increased the effective training data diversity, while pre-training
reduced convergence time by 40% compared to training from scratch.

3.3. Experimental Considerations Detail

The experimental implementation employed Python version 3.9, the PyTorch 2.3.0
framework, and CUDA version 12.2.19. The graphics card used was the NVIDIA GeForce
RTX 3060 8G. During the training process, the model’s learning rate was set to 0.0001, and
the batch size was set to 64. The optimizer used was Adam, with ¢ = 107, B1 =0.5,and
B2 = 0.9. To ensure sufficient training of the generator, discriminator, and encoder, and
to avoid the discriminator suppressing the learning of the generator and encoder due to a
too-fast learning rate, the training iterations for the generator and encoder were increased
in the experiment to enhance their learning capabilities.

The revised TGAN objective combines adversarial loss with layout energy terms:

6
Ltotar = Ellog D(x]y)] + Ellog(1 — D(G(zy)))] +A ; w;E;(X) (12)

Adversarial loss

where A controls the weight of layout quality metrics (alignment, balance, whitespace, etc.)
derived from our energy model.

3.4. Evaluating Indicator
3.4.1. Subjective Scoring

This paper conducts user ratings on the layouts of presentation samples, with scores
ranging from 0 to 10, where higher scores indicate better layout quality. In practice, users pri-
marily judge the layout of the presentation visually and subjectively. Combining aesthetic
principles and layout-related criteria, and without considering the overall coordination of
background and color, users subjectively evaluate the layout quality of samples based on
the following two aspects:

1.  Rationality of object placement: Whether the object positions look aesthetically pleas-
ing, whether objects are aligned with each other, and whether objects are within safe
locations on the page. Aligning objects enhances the visual understanding of their re-
lationship for readers and contributes to the overall aesthetic and orderly appearance
of the layout.

2.  Readability of text: whether there is overlap between text and images that
affects readability.
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3.4.2. Objective Scoring

For the objective evaluation of layout quality, it is primarily based on aesthetic princi-
ples and layout-related criteria. This paper employs an energy-based model E(X; ), using
parameter 6 to assess the layout X of the presentation. The overall quality of the layout is
measured by the weighted sum of energy terms:

E(X;0) =) wiE(X; ;). (13)

In this context, the design layout X is defined for each object’s position, metadata,
width, and height, with theta representing the model parameters. The model parameters
are divided into two groups, @ = [w; a|. Each energy term E; has positive weights omega;,
and most terms involve non-linear parameters alpha;. The energy function incorporates
various design principles, including alignment, balance, white space, scale, overlap, and
boundaries. The definitions of each energy term are provided below.

1.  Alignment

Alignment is crucial for design, especially in limited space where efficient informa-
tion transmission and aesthetically pleasing organization are prioritized. The first
consideration in this context is the alignment of various elements. This paper defines
six possible alignment types: Left, X-center, Right, Top, Y-center, and Bottom. Before
defining the alignment energy term, an analysis phase is executed, marking all aligned
objects and alignment groups.

A simple heuristic algorithm is employed to compute the alignment of object bounding
boxes. Initially, the difference between the edges or center positions of the bounding
boxes must be smaller than a threshold:

A?]‘ = (d?] < Tulign)/ (14)

where a is the alignment type and d?j represents the distance between two objects i
and j, depending on the alignment type used for the bounding boxes of the objects.
For example, if a = Left, then dl-]- Left measures the difference between the left edges
of the bounding boxes of two objects. The threshold is set to 7;;5,=0.065, allowing
slightly misaligned objects to still be marked as aligned. Secondly, if an object is
positioned between other objects, the objects may not align:

Bij = (bij < 1), (15)

where bj; is the number of objects between i and j. Next, the alignment indicator is
defined. The alignment indicator variable between objects i and j, denoted as I l-”]-, isa
combination of the terms mentioned above:

I%:AZ/\BI‘]'/\N;Z/\N]{?. (16)

In each axis, two objects typically align with only a single type. The minimum
alignment distance d?; is set to 1, while the other two are set to 0. However, if all types
are perfectly aligned (d?]: 0 for all types), then all three indicators are set to 1.

Next, the aligned group is defined as a set of connected aligned objects. If objects i
and k are aligned and objects k and j are aligned with the same type, then i and j are
set to be aligned, i.e., Ii”j =I5 A Il?j'

Finally, the alignment energy term is defined, measuring the proportion of objects
aligned with a specific alignment type. Larger alignment groups are encouraged, as
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they result in simpler designs and greater uniformity between objects. The alignment
energy term measures the score of pairs of objects aligned with type a:

1
flign = S 3 Y INf+ Y I 1), (17)
ic(all) je(all)

where 7 is the number of objects and Ifj indicates whether objects i and j are aligned
according to type a. Different alignment types define separate energy terms. N7
indicates whether i is a text object aligned internally within type a. Each feature is
transformed by S(x;«), which is a smooth step function defined by the following
formula. The parameter « controls the smoothness of the step, with larger « values
making the energy more sensitive to smaller changes.

S(x;) = Aretan(xa) (18)
arctan(a)

Balance

The term “balance” refers to the equal distribution of weight on a page, indicating
symmetry or asymmetry in terms of color, size, shape, and texture. This paper
primarily focuses on the symmetry of object sizes on the page. The overall balance is
measured using a binary mapping (along the axis flip) of text or graphic objects. For
x-axis symmetry, the balance energy term is defined as:

ZF’ I;‘lip(p,x,G)IFC’
Sx—symm = —Ic -1 P (19)
ce(graphic,text) ZP p
Ex—symm = S(Sx—symm} “txs)/ (20)

where I}, represents a binary variable indicating whether pixel p belongs to the class
c € (graphic, text) and flip(p, x, G) denotes the symmetric counterpart of pixel p
along the x-axis in the image G. A similar balance energy term Ey sy is defined for
y-axis symmetry, where flip(p, x, G) represents the y-axis symmetric term.

White space

In graphic design, white space is the foundation of readability and aesthetics. The
distance between objects is closely related to their correlation; the closer the objects are,
the more likely they are to be associated with each other. White space also influences
the overall design style, and many modern designs incorporate significant empty
spaces. However, excessive white space between objects can distract the reader’s
attention. The blank space should ideally constitute around half of the total page area.
The energy term for white space is defined as follows:

4 ZLI?’_}
wh 2

where | 2 is a binary variable indicating whether the pixel p is covered by an object

2

EwhiteSpuce = S<

W‘ws) ’ (21)

and w and h are the width and height of the entire page, respectively.

Scale

The scale of an object determines its usability and style. Objects must be large enough
for visibility but not too large, as it can lead to a cluttered and unattractive design.
Objects in the layout can be broadly categorized into text and graphics. The size of
text objects is defined as follows:
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M1

Fl,l h 20

1

, (22)

where Mf represents the height of the text object, F! represents the number of lines
in the text object, s is the scaling parameter, and normalization is performed with
respect to the page height h. In this paper, 7; = 1 is used uniformly. Using smaller
values, such as 7 = 0.4, will increase the size of text objects. The size of graphic objects
is defined as follows:

s _
1

oh al (23)

‘MQ,M;, 1

where M, and M;l represent the width and height of the bounding box of the graphic
object and w and h are the width and height of the page. The scale energy term for
text objects is defined as:

1
Etextsize = Z S(Mf;“ts)f (24)
1t ie(text)

where 1, is the number of text objects. The scale energy term EgraphicSize for graphic
objects is defined similarly to EtextSize.

Overlap

Overlap between objects is common in many designs, but some overlaps can impact
information retrieval. Three types of overlaps are defined, including overlap between
text objects, overlap between graphic and text objects, and overlap between graphic
objects. Separate energy terms are defined for each overlap type and summed over
overlapping pixels p. The overlap energy term between text objects is defined as:

0 _Lo4 (25)
textTextOverlap — wh '
EtextTextOverlap =S5 (OtextTextOverlup; “to)r (26)

where A;, represents the pixels overlapped between text objects. EgraphicTextOverlap
and EgraphicGraphicOverlap are similarly defined for overlap between text and
graphic objects and overlap between graphic objects, respectively.

Boundary

The ability to control the extension of objects beyond the boundaries is achieved by
calculating the portion of objects that exceeds the boundaries. Two separate energy
terms, namely, the graphic boundary energy term and the text boundary energy term,
are defined for this purpose. The graphic boundary energy term is defined as follows:

1 Lpei Aplp
Bgmphic = P Z (1 - Zp:liA ’ (27)
i€(graphic) peLLtp
EgraphicBoundary = S(Bgraphic; ‘ng)/ (28)

where } ,c; Ap represents the sum of all pixels in object i and },c; ApI, represents
the sum of pixels in object i that are within the page boundaries. The definition of the
text boundary energy term EtextBoundary is similar to that of the graphic boundary
energy term. By defining energy terms for alignment, balance, white space, scale,
overlap, and boundary separately, it is possible to provide an objective evaluation
of the presentation layout based on its detailed aspects. The range of values for
each energy term is [0,1]. All energy terms are weighted equally with omega =1/6,
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measuring the overall quality of the layout. The closer the weighted sum of energy
terms is to 0, the better the layout quality.

3.5. Training Process
3.5.1. Data Preparation

The dataset consists of 7256 page layouts, each standardized to a size of 224 x 224 pixels.
Elements within the layouts (e.g., titles, subtitles, tables, graphics, and text) are abstracted
into colored boxes, with colors mapped to specific element types (e.g., green for tables,
red for titles). The dataset is split into training (80%), validation (10%), and test (10%) sets,
ensuring a balanced distribution of element types across subsets.

3.5.2. Hyperparameter Tuning

We employ the Adam optimizer with an initial learning rate of 0.0001, 81 = 0.5, and
B2 = 0.9. The batch size is set to 64, and the model is trained for 100 epochs with early
stopping if the validation loss does not improve for 10 consecutive epochs. Hyperparame-
ters are tuned using grid search, with the best combination selected based on validation
set performance.

3.5.3. Model Training and Optimization

The generator and discriminator are trained alternately, with the discriminator up-
dated k = 5 times for each generator update. To prevent overfitting, we apply dropout
(rate = 0.3) and weight decay (L2 regularization with A = 0.01). The training process is
monitored using validation set metrics, including alignment, overlap, and balance scores.

3.5.4. Model Evaluation Strategies

Model performance is evaluated using both subjective and objective metrics. Subjec-
tive scores are obtained from 10 human evaluators, while objective scores are computed
using the energy-based model described in Section 3.4.2. Additionally, we visualize training
curves (e.g., generator and discriminator losses) and generated layouts at different training
stages to assess model convergence and sample diversity.

3.6. Ablation Experiment Result Analysis

To validate the impact of individual components in TGANs, we conduct controlled
experiments with five configurations:

e  Standard GAN: basic GAN without Transformer or conditioning.
e  TGAN w/o Self-Attention: remove self-attention modules.

e TGAN w/o Conditioning: remove conditional inputs (labels).

*  Fixed-Weight: TGAN with fixed w; weights.

e Adaptive-Weight (Full): Our complete model with dynamic w;.

The ablation study results (Table 1) reveal the following key insights:

¢ Self-attention impact: Removing self-attention (TGAN w /o SA) degrades alignment
by 23.6% (0.89—0.68) and increases overlap by 257% (0.07—0.25), confirming its critical
role in modeling spatial dependencies.

*  Conditioning necessity: disabling conditional inputs (TGAN w/o Cond) reduces bal-
ance by 16.5% (0.85—0.71), indicating that label guidance stabilizes layout semantics.

*  Adaptive-Weight superiority: Adaptive-Weight outperforms Fixed-Weight in all metrics
(e.g., +8.5% alignment), demonstrating the necessity for dynamic constraint balancing.

¢ Standard GAN limitation: the basic GAN achieves the lowest scores, proving that
vanilla architectures struggle with layout generation.
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Table 1. Component-wise ablation study on layout quality metrics (bold represents the best result).

Method Alignment Overlap Balance White Space Boundary Scale
Standard GAN 0.62 0.31 0.58 0.61 0.72 0.65
TGAN w/o Self-Attention 0.68 0.25 0.63 0.66 0.78 0.70
TGAN w /o Conditioning 0.74 0.19 0.71 0.70 0.82 0.75
Fixed-Weight 0.82 0.12 0.78 0.75 0.87 0.81
Adaptive-Weight (Full) 0.89 0.07 0.85 0.82 0.93 0.88

3.7. Comparison Experiment Result Analysis

We compare the TGAN and GAN in both generated page layout and subjective—
objective scoring to highlight the performance of the TGAN. Firstly, we randomly selected
25 layouts from the results of the TGAN. The layout diagrams are shown in Figure 9a, and
the correspondence between object types and colors is illustrated in Figure 9b.
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(b) Color Mapping for Attribute Types

Figure 9. TGAN layout results.

Similarly, we randomly selected 25 layouts from the results generated by the GAN.
The layout diagrams are presented in Figure 10a, and the correspondence between object
types and colors is depicted in Figure 10b.
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Figure 10. TGAN layout results.

Compared to the results generated by the GAN, the TGAN exhibits a more aesthetically
pleasing layout overall. In summary, the following points highlight the differences:

1.  Results generated by the TGAN exhibit better alignment and fewer instances of
overlap, facilitating more efficient information conveyance.

2. TGAN layouts adhere to topological constraints among objects, arranging elements
with constraints in a logical manner on the page, making the relationships between
elements clear and maximizing their expressive potential.

In order to better assess the subjective and objective scores of the TGAN, we selected
200, 400, and 600 generated samples from the TGAN, GAN, LayoutTransformer [6], VIN [7],
L-CGAN [5], and PLAY [8], and we evaluated the results using subjective and objective
assessment methods. The evaluation results are shown in Table 2.

The results in Table 2 indicate that in subjective evaluation, under the three different
sampling approaches, the mean layout scores of the TGAN are consistently higher than
those of the other methods, while the variances are consistently lower. Notably, our TGAN
demonstrates progressive quality improvement with more training samples, whereas
baseline methods plateau after 400 samples. This suggests superior learning capability for
complex layout patterns. In terms of objective evaluation, both the mean and variance of
the energy item weighted sum for the TGAN are lower than those of the other methods.
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Opverall, this suggests that the TGAN exhibits higher layout quality and stability compared
to other methods.

Table 2. Comparative evaluation of layout generation methods (bold represents the best result).

Subjective Score Objective Score

Method Samples - :
Mean Variance Mean Variance

GAN 200 7.992 0.503 0.078 0.0032
GAN 400 7.876 0.521 0.065 0.0035
GAN 600 8.105 0.417 0.053 0.0029
LayoutTransformer 200 7.983 0.497 0.076 0.0034
LayoutTransformer 600 8.173 0.421 0.057 0.0031
VIN 600 8.123 0.412 0.060 0.0032
L-CGAN 600 7.674 0.501 0.064 0.0031
PLAY 600 8.207 0.445 0.059 0.0030
TGAN (Ours) 200 8.45 0.38 0.048 0.0023
TGAN (Ours) 400 8.52 0.36 0.045 0.0020
TGAN (Ours) 600 8.60 0.35 0.042 0.0018

3.8. Quantitative Metrics and User Study
3.8.1. Quantitative Evaluation of Generation Quality

To comprehensively evaluate the quality and diversity of generated layouts, we
introduce two widely used metrics for generative models:

*  Fréchet Inception Distance (FID): This measures the similarity between the distribution
of generated samples and real data. A lower FID indicates better generation quality.
We use a pre-trained Inception-v3 model to extract feature vectors from layout images
and compute the Fréchet distance between their means and covariances.

*  Inception Score (IS): This evaluates the diversity and semantic consistency of generated
samples. A higher IS indicates more reasonable results. This score is calculated based
on the entropy of the class prediction distribution from Inception-v3.

Table 3 shows the comparison results of the TGAN with existing methods. The ex-
periments use the same test set (1452 samples), and each method generates 1000 layouts
for evaluation. The TGAN achieves the lowest FID (18.3) and the highest IS (10.1), demon-
strating that its generated layouts significantly outperform existing methods in terms of
visual quality, distribution matching, and semantic coherence. Specifically, the TGAN
reduces FID by 16.1% compared to the PLAY model and improves IS by 5.2%, validating
the effectiveness of the self-attention mechanism in modeling complex layout relationships.

Table 3. Comparison of FID and IS Scores (lower /higher values indicate better FID/IS, respectively;
bold represents the best result).

Method FID IS
LayoutGAN 32.7 8.2
Deep Layout 28.5 8.9
VTN 25.1 9.3
PLAY 21.8 9.6

TGAN (Ours) 18.3 10.1
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3.8.2. User Preference Study

To further validate the practical value of the generated layouts, we conducted a user
study with 20 participants (10 male, 10 female, average design experience 3 years). Each
participant evaluated 50 layout sets containing results from the TGAN, LayoutGAN, and
Deep Layout. The evaluation metrics include the following:

*  Aesthetics: visual appeal and style consistency (1-5 scale).

*  Functionality: element alignment and readability (1-5 scale).

*  Opverall preference: percentage of participants selecting the method as “best layout”.
The experimental results are shown in Table 4. What we found was as follows:

¢  The TGAN achieves significantly higher scores in both aesthetics and functionality
(4.5 vs. 3.4) compared to the LayoutGAN.

¢ A total of 78% of participants selected the TGAN as the preferred method, demonstrat-
ing strong alignment with human design intuition.

¢ Qualitative feedback highlights the TGAN's superior performance in handling com-
plex element relationships (e.g., “Text-image alignment feels natural”).

Table 4. User preference study results (mean scores with standard deviation; bold represents the
best result).

Method Aesthetics Functionality Preference (%)
LayoutGAN 31+04 34£03 13%
Deep Layout 3.6+03 3.8+0.2 9%
TGAN (Ours) 43402 45+0.3 78%

3.9. Performance Evaluation

To further evaluate the practical applicability of the TGAN, we compare its com-
putational complexity and training efficiency with state-of-the-art methods. As shown
in Table 5, the TGAN achieves a balance between model capacity and efficiency. While
its calculation complexity (16.9G) is higher than that of lightweight models like the L-
CGAN (9.8G), the hybrid Transformer—GAN architecture ensures superior layout quality
without excessive resource consumption. The adaptive weight adjustment mechanism
further reduces training time by 25% compared to pure Transformer-based approaches
(e.g., LayoutTransformer). This demonstrates the TGAN'’s scalability for larger datasets
and real-world deployment scenarios.

Table 5. Comparison of computational efficiency and model complexity (bold represents the best result).

Model Params (M) FLOPs (G) Training Time (h)
GAN (Baseline) 12.5 4.2 48
LayoutTransformer 68.3 23.7 120
VIN 45.8 18.5 96
L-CGAN 28.6 9.8 72
PLAY 34.2 14.3 84
TGAN (Ours) 53.1 16.9 90
4. Summary

This paper investigates the evaluation of presentation layout quality and automatic
layout design. The TGAN automatic layout algorithm is implemented to optimize the
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results of automatic layout. Subjective and objective evaluation scores are proposed, com-
prehensively assessing layout results in terms of alignment, balance, white space, scale,
overlap, and boundary. In the experimental section, the ablation experiments confirm that
directly optimizing layout quality metrics during training leads to more functionally coher-
ent designs, particularly in complex multi-element scenarios. A comparison of evaluation
results is conducted from both the aspects of visualized results and numerical assessments.
The results indicate that the TGAN automatic layout algorithm achieves high subjective
and objective evaluation scores, demonstrating aesthetically pleasing layouts that adhere
to specific layout principles. Objects with constrained relationships are logically arranged
on the page, facilitating efficient information transmission.

The proposed algorithm in this paper demonstrates favorable outcomes for auto-
matic page layout, with high-quality layout results. However, there is still room for
further research:

1.  The dataset neglects the impact of internal elements and text on the overall layout.
While the dataset used in this study provides a comprehensive representation of page
layouts, it has certain limitations that may impact the results. Specifically, the dataset
abstracts elements such as titles, subtitles, tables, graphics, and text into colored
boxes, disregarding the internal content, text, images, and formats. This abstraction
simplifies the problem but also omits critical information that could influence the
overall layout quality. For instance, the relationships between text and images, such
as how text wraps around images or how images are positioned relative to text
blocks, are not captured in the dataset. These relationships are essential for creating
visually appealing and functional layouts. Additionally, the dataset does not include
information about the content of the text, such as font size, font type, and color, which
can significantly affect readability and aesthetics.

To enhance the quality of the algorithm, future work should consider incorporating
more detailed information about internal elements into the dataset. This could include
the following: Text and image relationships: including information about how text and
images interact, such as text wrapping, image captions, and the spatial relationships
between text blocks and images. Text content: Adding details about font size, font
type, color, and other text attributes to better capture the visual and functional aspects
of text in layouts. Image content: Including metadata about images, such as their
aspect ratio, color palette, and content type (e.g., photograph, illustration, chart), to
help the model understand how different types of images should be placed in a layout.
By incorporating these additional details, the dataset can provide a more comprehen-
sive representation of page layouts, allowing the algorithm to learn more nuanced
and context-aware layout generation strategies. This would lead to higher-quality
and more realistic layout results.

In future work, as software and hardware continue to evolve, there is an opportunity
to enhance the dataset, further optimize the network, and improve the accuracy and
performance of page layout.

2. This paper only scratches the surface of graphic design layout styles in automatic
layout for presentations. It optimizes only the position and proportions of objects,
without considering the influence of color and background. The classification of layout
objects in the paper is relatively coarse, including only five categories: background,
title, subtitle, text, and graphics. This approach has certain limitations. In future work,
additional types of elements should be incorporated, and further subdivisions can be
applied to the existing five categories for a more comprehensive treatment.
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