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ABSTRACT

The coupling between carbon uptake and water loss through stomata implies that gross primary production (GPP) can be limited
by soil water availability through reduced leaf area and/or stomatal conductance. Ecosystem and land-surface models commonly
assume that GPP is highest under well-watered conditions and apply a stress function to reduce GPP as soil moisture declines.
Optimality considerations, however, suggest that the stress function should depend on climatic aridity: ecosystems adapted to
more arid climates should use water more conservatively when soil moisture is high, but maintain unchanged GPP down to a
lower critical soil-moisture threshold. We use eddy-covariance flux data to test this hypothesis. We investigate how the light-use
efficiency (LUE) of GPP depends on soil moisture across ecosystems representing a wide range of climatic aridity. “‘Well-watered’
GPP is estimated using the sub-daily P model, a first-principles LUE model driven by atmospheric data and remotely sensed
vegetation cover. Breakpoint regression is used to relate daily f() (the ratio of flux data—derived GPP to modelled well-watered
GPP) to soil moisture estimated via a generic water balance model. The resulting piecewise function describing $(6) varies with
aridity, as hypothesised. Unstressed LUE, even when soil moisture is high, declines with increasing aridity index (AI). So does
the critical soil-moisture threshold. Moreover, for any Al value, there exists a soil moisture level at which (6) is maximised. This
level declines as AI increases. This behaviour is captured by universal non-linear functions relating both unstressed LUE and
the critical soil-moisture threshold to AI. Applying these aridity-based functions to predict the site-level response of LUE to soil
moisture substantially improves GPP simulation under both water-stressed and unstressed conditions, suggesting a route towards
a robust, universal model representation of the effects of low soil moisture on leaf-level photosynthesis.

1 | Introduction

The tight coupling between carbon uptake and water loss via
stomata (Cowan and Farquhar 1977, Manzoni et al. 2011a)
implies that gross primary production (GPP) can be limited
by water availability through reduced vegetation cover and
leaf area index, reduced stomatal conductance, or a combina-
tion of these. Reduced evapotranspiration under water stress

causes increased sensible heat flux, warming the atmosphere
above the canopy, which, in turn, causes a further reduction
in transpiration and plant carbon uptake (Gentine et al. 2016;
Grossiord et al. 2020; Seneviratne et al. 2010). Plants need to
coordinate these two processes—water loss and carbon up-
take—to maximise assimilation while minimising water loss.
Although this trade-off is well established as a general concept,
determining whether the reduction in GPP is due to stomatal
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or non-stomatal limitation or both remains challenging; more-
over, the mechanisms behind non-stomatal limitation are not
entirely clear. However, plants in seasonally dry environments
evidently have to deal with low soil moisture and must adjust to
it by reducing either leaf area or photosynthesis. In this study,
we isolate the effects of soil moisture on the light-use efficiency
(LUE) of photosynthesis relative to the well-watered condition,
which we represent using the sub-daily version of the P model
(Mengoli et al. 2022) using remotely sensed data on fractional
absorbed solar radiation (FAPAR), a measure of green vegeta-
tion cover, as an input to the model.

There is evidence that soil moisture, rather than atmospheric
demand, is the principal immediate constraint on GPP in
arid and semi-arid ecosystems (Dubey and Ghosh 2023; Pei
et al. 2020; Xu et al. 2023, but see also Verma and Ghosh 2024,
who showed how antecedent vapour pressure deficit (VPD)
acts on GPP via its effect on soil moisture). GPP is substantially
reduced—much more than total ecosystem respiration—in re-
sponse to drought (e.g., Shi et al. 2014). Liu et al. (2020) showed
that soil moisture is the dominant water stress on vegetation
over 70% of the global land area. However, the response of
GPP to water stress in models from the previous round of the
Coupled Model Intercomparison Project, CMIP5, is too strong
(Huang et al. 2016) and representation of the soil moisture ef-
fects on GPP remains one of the largest sources of uncertainty
in carbon cycle models (Trugman et al. 2018). Many studies
have focused on the impact of drought on vegetation green-
ness (e.g., Li et al. 2023); but soil moisture stress also impacts
light-use efficiency (LUE) directly, which further reduces GPP
(Lv et al. 2023; Xing et al. 2023). Thus, it is important to ac-
count for the impact of soil moisture stress on LUE, as well as
on vegetation greenness.

The P model is a model for the LUE of GPP based on eco-
evolutionary optimality (EEO) theory (Cai and Prentice 2020;
Stocker et al. 2020; Wang et al. 2017). It captures the trade-off
between CO, uptake and water loss and provides realistic es-
timates of the seasonal and diurnal cycles of GPP under well-
watered conditions, performing as well as or better than more
complex models despite having far fewer parameters (Harrison
et al. 2021; Stocker et al. 2020). The sub-daily version of the P
model, tested at multiple sites representing different biomes,
climates and vegetation types, accurately simulates diurnal
and seasonal cycles of GPP in well-watered climates without re-
quiring any plant functional type-specific parameters (Mengoli
et al. 2022). But despite the model's accuracy as judged against
GPP inferred from eddy-covariance flux measurements in well-
watered ecosystems, it overestimates GPP in seasonally dry en-
vironments. This is because although the model accounts for
the effect of VPD in reducing stomatal conductance, it does not
account for any additional impact of soil-moisture stress. Given
the potential for EEO-based models to provide robust represen-
tations of vegetation and land-surface exchanges with the at-
mosphere (Franklin et al. 2020; Harrison et al. 2021; Mengoli
et al. 2022), it is important to develop a well-founded approach
to implement soil-moisture stress in an EEO context.

A number of studies have indicated that ecosystems in more arid
regions adapt by extracting water at lower rates yet continue to
do so at an unchanged rate down to lower critical soil-moisture

thresholds than ecosystems in humid regions. Intuitively, this
strategy is consistent with the concept of optimal water use under
limited availability. It is expected to be manifested both in evapo-
transpiration (ET) and GPP due to the dominance of transpira-
tion in ET, and the close coupling between transpiration and GPP.
An empirical analysis of the influence of soil moisture stress on
ET responses across biomes by Fu et al. (2021) found that critical
soil-moisture thresholds for ET decline vary widely, with arid eco-
systems maintaining unchanged ET at lower soil moisture levels
than well-watered ecosystems. Fu et al. (2022) further showed
that both the critical soil-moisture threshold and the maximum
evaporative fraction (EF, the fraction of available energy used
for ET) under moist conditions are shaped by climatic aridity:
more arid ecosystems conserve water at high soil moisture lev-
els, but sustain ET as soil moisture decreases to lower levels. In
other words, arid ecosystems optimise water use by adopting
strategies that maximise evapotranspiration and photosynthesis
under water-limited conditions. Fu et al. (2024) derived a global
map of critical soil-moisture thresholds, showing that these
thresholds vary depending on aridity, soil texture and vegetation
cover. Supporting these findings, Bassiouni et al. (2020) identi-
fied lower soil-moisture thresholds for water uptake in arid eco-
systems. Theoretical modelling by Manzoni et al. (2014) explains
this behaviour as representing optimal coordination of hydraulic
traits to maximise long-term water use, with arid-adapted plants
sustaining water uptake from drier soils. Bassiouni, Manzoni,
and Vico (2023) expanded this idea using a theoretical model
linking plant hydraulic traits to climate, showing that optimal
water-use strategies result in varied threshold values across cli-
mates and demonstrating that these strategies align with an eco-
evolutionary optimal response to water scarcity. These various
findings emphasise that vegetation models should incorporate
aridity-related soil-moisture thresholds and highlight the conver-
gence of data-driven and theoretical studies in supporting a gen-
eral hypothesis of optimal water use.

Vegetation and land-surface models commonly assume that
GPP at any location is maximal under well-watered conditions
(Bonan 2019) and account for the effect of low soil moisture on
GPP by applying a stress function () that reduces GPP—as a
function of declining soil moisture—once a critical threshold of
soil water availability is reached. However, not all models apply
the stress function directly to GPP. Whether a stress function
should be applied directly to photosynthesis (as, e.g., in the JULES
model: Clark et al. 2011), to stomatal conductance, g  (as in the LPJ
model: Sitch et al. 2003) or to the maximum carboxylation rate,
V. nax (@8 in the ORCHIDEE model: Krinner et al. 2005) is debated
(Rogers et al. 2017; De Kauwe et al. 2013). A more process-based
approach has been implemented in the CLM5 model, using plant
hydraulics to predict 8 as a function of the leaf water potential
(Liu et al. 2024). Observational studies show that water stress reg-
ulates GPP via both stomatal and non-stomatal processes (Egea,
Verhoef, and Vidale 2011), but open questions remain about their
relative importance. In this paper, we focus specifically on how
soil moisture influences the LUE of GPP irrespective of specific
mechanisms. We derive piecewise linear functions for this rela-
tionship on a site-by-site basis and show how the parameters of
these functions relate to climatic aridity.

The critical soil-moisture threshold used in the applica-
tion of soil-moisture stress functions in current models is
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either universal or prescribed by vegetation type (e.g., Best
et al. 2011; Boussetta et al. 2013; Oleson et al. 2013). However,
Fu et al. (2021) using eddy covariance flux tower observa-
tions from the ICOS network across Europe, estimated critical
soil-moisture thresholds by analysing EF and soil-moisture
relationships during dry-down periods and noting how the co-
variance between VPD and GPP changes sign as soil moisture
declines. They showed that the critical soil-moisture thresh-
old at which EF is reduced varies across biomes and climates.
Fu et al. (2022) extended this analysis to a global scale. Their
results suggested systematic differences in critical thresh-
olds across ecosystems, with drylands showing adaptations
to water scarcity. Comparing grasslands and (dry) savannas,
they showed that the EF response of grasslands yields higher
annual GPP than if the same ecosystems adopted the EF re-
sponse of savannas, and vice versa. Such findings suggest
that models relying on a single threshold underestimate the
complexity of plant water use, especially under conditions of
water scarcity. These findings are, however, consistent with a
shift from isohydric to anisohydric stomatal regulation with
increasing climatic aridity (McDowell 2011; Kumagai and
Porporato 2012; Konings and Gentine 2017) and with the idea
that plant strategies should maximise carbon assimilation
over the annual cycle.

Here we compare flux tower-derived estimates of daily GPP,
which are inferred from half-hourly eddy covariance mea-
surements of net ecosystem exchange (NEE) using a variety of
assumptions to partition NEE into GPP and respiration compo-
nents (Pastorello et al. 2020), with the expected ‘well-watered’
GPP as calculated by the sub-daily P model (Mengoli et al. 2022)
across the full range of aridity represented in the global flux
tower network (https://fluxnet.org/). We analysed daily GPP
data from 67 eddy-covariance flux towers representing this
range. We fitted breakpoint regressions to account for the im-
pact of soil moisture (8) on LUE, expressed as the ratio 3(6) of
flux-derived GPP to GPP as predicted by the P model for well-
watered conditions. The observed (remotely sensed) fAPAR,
which depends on the leaf area index, was used to drive the
sub-daily P model and is, therefore, already included in the well-
watered GPP simulated by the model. This approach excludes
leaf area dynamics, as these are already accounted for in the
denominator of the (6) ratio (i.e., the well-watered simulated
GPP), in order to focus on LUE.

We then analysed fitted values of both the maximum ((6) and
the critical threshold of 8 as non-linear functions of the cli-
matic aridity index (AI), defined as the ratio of annual poten-
tial evapotranspiration (PET) to annual precipitation. These
relationships were used to generate a family of 3(6) functions,
dependent on AI, which can serve as multipliers of the mod-
elled, well-watered GPP. The performance of the resulting
model was compared with that of the uncorrected sub-daily
P model, with a version of the sub-daily model that applies
the soil-moisture stress function previously developed by
Stocker et al. (2020) for use with the ‘classic’ P model, and
with the MODIS remotely sensed GPP product (Running and
Zhao 2021). The function relating to the reduction of assimi-
lation due to low soil moisture varies systematically as a func-
tion of climatic aridity, rather than being dependent on the

type of vegetation. Moreover, GPP reductions under low soil
moisture satisfy an optimality criterion: that is, for any given
aridity value, there exists a soil moisture level at which the
associated GPP response function is maximal; while as aridity
increases, this level declines.

2 | Methods
2.1 | The P Model

The P model is an LUE model based on EEO theory for the
trade-off between carbon uptake and water loss (Prentice
et al. 2014) and the acclimation and/or adaptation of leaf-level
photosynthesis to environmental conditions (Wang et al. 2017).
The model is driven by air temperature, VPD, incident pho-
tosynthetic photon flux density (PPFD), fAPAR, elevation
(through atmospheric pressure) and the ambient partial pres-
sure of carbon dioxide (c,). The model distinguishes C, and C,
photosynthesis but does not require specification of distinct pa-
rameter values of any other plant functional types. When driven
by satellite-derived fAPAR, it reproduces the seasonal cycle and
interannual variability in GPP at flux sites from a range of nat-
ural vegetation types as well as geographic variation in GPP
(Balzarolo, Pefiuelas, and Veroustraete 2019; Stocker et al. 2020;
Wang, Prentice, and Davis 2014) and temporal trends in GPP at
flux sites (Cai and Prentice 2020).

The P model was modified by Mengoli et al. (2022) to simu-
late diurnal cycles, separating the instantaneous responses of
GPP (with photosynthetic parameters fixed over the diurnal
cycle) from the acclimation responses of those parameters on
a time scale of around 2 weeks. This modified model (P-model
subDaily v1.0.0, accessible at Mengoli 2023b) is used here
to simulate daily GPP as the daily sum of GPP computed on
half-hourly timesteps. The sub-daily model can be run in two
modes, either by using an exponential-weighted mean of the
acclimating quantities or by using a 15-day running mean of
midday temperature to determine acclimation. The two meth-
ods produce virtually identical results (Mengoli et al. 2022).
Here, we use a 15-day running mean of midday temperature
to determine acclimation. Mengoli et al. (2022) showed that
the P-model subDaily v1.0.0 accurately reproduces the diurnal
cycle of GPP in well-watered sites but overestimates GPP in
drylands because it does not include any soil-moisture limita-
tion on GPP.

The FULL configuration of the current standard P model Pv1.0
(Stocker et al. 2020) includes an empirical water stress function
(also based on eddy-covariance flux data) that approaches 1 at
a threshold value of 6 (6%), where 6 is plant-available water ex-
pressed as a fraction of soil water-holding capacity, and 6* is
set to 0.6. The function declines more steeply with decreasing
0 in drier climates, with climatic moisture quantified by an
estimate of the ratio (a) of actual evapotranspiration (AET) to
potential evapotranspiration (PET). This function is used in
Pv1.0 (FULL) as a multiplier of the modelled, well-watered GPP,
in a similar way to the function proposed here (accessible at
Mengoli 2023a) but has not previously been applied in the sub-
daily model.
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https://fluxnet.org/

2.2 | Flux Tower Data

GPP and meteorological data at 67 flux tower sites (Table S1)
were obtained from the FLUXNET2015 dataset (Pastorello
et al. 2020). We used GPP based on the daytime partition-
ing method (Lasslop et al. 2010; Pastorello et al. 2020).
FLUXNET2015 provides the meteorological variables required
to run the P model, including air temperature, VPD and PPFD
on a half-hourly timestep. However, it does not provide fAPAR.
We obtained fAPAR at each site from the dataset produced by
Stocker et al. (2020) from the MODIS MCD15A3H Collection
6 dataset (Myneni, Knyazikhin, and Park 2015), accessible at
Stocker (2020). The original dataset has a spatial resolution of
500m and a temporal resolution of 4 days. Stocker et al. (2020)
filtered these data to remove points where clouds were present
and derived daily data by linear interpolation. We used a subset
of the sites from Stocker et al. (2020), chosen to cover the full
range of aridity with no major gaps. We initially selected all
sites available in the FLUXNET2015 dataset that, according to
the 20-year climatological aridity index (see paragraph below
for its computation), were classified as arid/dry sites—nine in
total. Then, we included 22 sites classified as semi-arid and 36
sites classified as humid. To balance the contributions from
arid, semi-arid and humid categories, we intentionally did not
include all available sites in FLUXNET2015, as the excluded
sites were all classified as humid. Sites were selected based on
the following criteria: geographic distribution to ensure sites
were spread out globally across different climates and represen-
tativeness of the full range of vegetation types in the dataset.
Sites were also selected based on a minimum record length of
2years, with quality-control flags indicating ‘good’ observa-
tions for at least 80% of the half-hourly records (Table S1). For
arid sites, however, the 2-year minimum record requirement
was not applied due to the limited number of such sites, which
would have further reduced the number of arid sites available
for analysis. Meteorological and MODIS data were not available
for some sites/years, so analyses and simulations were based
on different years across sites (Table S1). Only the half-hourly
records flagged as ‘good” were used.

2.3 | Calculation of the GPP Reduction Factor

We calculated the ratio f(0) between flux-derived and P-model
subDaily v1.0.0 modelled, well-watered GPP for each site and
day. Our approach differs from that of Stocker et al. (2020) in
three key respects. First, our fitted stress function is allowed to
take values <1 under well-watered conditions. We thus allow
for the possibility that ecosystems adapted to arid climates use
water more conservatively even when soil moisture is abun-
dant. Second, in order to ensure consistency of the soil moisture
calculation across sites, we calculate daily soil moisture using
the Simple Process-led Algorithms for Simulating Habitats
(SPLASH) model (version 1: Davis et al. 2017) with simulated
soil moisture converted to relative soil water content (6) by di-
viding by the generic bucket size in SPLASH (150 mm). Third,
we use the aridity index AT (the ratio of PET to annual precip-
itation) rather than the factor o used by Stocker et al. (2020) as
a climatological index, because of its wider use in the literature,
and because its calculation is independent of the SPLASH mod-
el's estimation of AET.

2.4 | Breakpoint Regression Analysis

We used breakpoint regression (Toms and Lesperance 2003) to
evaluate the relationship between the {(6) ratio and soil water
content, which identifies and estimates the maximum level of the
B(6) ratio under well-watered conditions, and the critical thresh-
old below which the ratio declines linearly towards the wilting
point, at each site. This model was selected based on its ability
to capture key transitions in water stress, as demonstrated in a
previous study (Fang and Gentine 2024) where a piecewise lin-
ear relationship was found to consistently represent water stress
limitations across diverse ecosystems. Before this analysis, we re-
moved values of flux-derived GPP below the 5th percentile (which
gave highly variable 3(0) ratios) and observations with greater
than the 99th percentile of 6, which would otherwise have dom-
inated the regression at many well-watered sites. Preliminary
analyses showed that the intercept was generally close to zero
and that imposing the constraint §(0)=0 had little effect at the
great majority of sites (Figure S1). We therefore imposed this con-
straint resulting in a regression model with just two parameters,
the maximum level of 8(8)(y) and the critical threshold of © ({):

B(6) = min [y, (y / w) x 0] @

where B(6) is equal to its maximum level (y) when 6 > while it
is equal to the ratio between its maximum level and the critical
threshold (y/{) when 6 <.

The non-parametric Kruskal-Wallis test was used to determine
whether there were significant differences in fitted parameter
values among aridity classes. We used p <0.05 as the criterion to
identify significant differences between classes.

2.5 | Calculation of the Aridity Index

The length of the meteorological records in FLUXNET2015
is too short to calculate a climatological index at most sites.
We, therefore, derived AI using climate data for a 20-year
period (2001-2020) from the CRU TS 4.06 gridded climate
dataset (Harris et al. 2020). We obtained precipitation data
directly from the CRU dataset and calculated PET using tem-
perature, precipitation and cloud cover from this dataset as
inputs to SPLASH version 1 (Davis et al. 2017). Of the 67 se-
lected sites, nine were classed as arid (AI>5), 22 as semi-arid
(2<AI<5) and 36 as humid (AI<2) (Tables 1 and S1). We
removed two sites classified as arid (AU-Lox, Al =6.32, and
US-Wkg, AI=6.34) and one classified as semi-arid (AU-RDF,
AI=2.16), either because they were irrigated crops (AU-Lox,
AU-RDF) or because the presence of extensive wetlands indi-
cates that they were groundwater-fed (US-Wkg). The deriva-
tion of the stress function was thus eventually based on the
analysis of 64 sites.

2.6 | Dependencies of Parameters on Aridity

The breakpoint regression yielded values of two parameters (y,
1) for each of the 64 sites. We fitted relationships for each pa-
rameter as functions of site AT using non-linear regression. Both
parameters were fitted with a power function:
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TABLE1 | Statistics of P model performance (root mean squared error, RMSE and percent bias, PBIAS) using the new soil-moisture stress function
(new), with its aridity-based parameters, and the stress function used by Stocker et al. (2020) but applied in the sub-daily model used here, compared
to P model performance with no soil moisture correction (ww). The sites are grouped by aridity index (AI) classes (see also Supplementary Table 1).

Site ID AI ARIDITY RMSE(ww) RMSE(mew) RMSE(v1.0) PBIAS (ww) PBIAS (new) PBIAS (v1.0)
AU-TTE 7.17 arid 2.07 0.51 0.94 2938.9 658.4 1299.3
AU-ASM 6.97 arid 2.47 0.96 1.02 2771 -3.3 99.5
AU-Cpr 6.36 arid 2.83 0.77 0.87 187.6 —27.4 377
US-Wkg 6.34  notused 393 0.9 1.86 349.6 15.1 145.3
AU-Lox 6.32  notused 2.15 7.03 5.79 2 -76.1 —58.9
US-Whs 5.89 arid 3.4 0.93 1.68 571.7 74.3 266.8
AU-GWW 575 arid 2.57 0.53 1.1 197.4 -18.7 70.1
US-SRG 5.08 arid 4.01 1.46 2.25 289.4 7.1 135.9
US-SRM 5.02 arid 2.82 1.04 1.45 246.5 -5.1 106.6
US-Cop 3.99 semi-arid 1.89 0.46 1.05 577.9 85.8 300.3
AU-Ync 3.96 semi-arid 2.75 0.67 1.7 428.9 53.5 240.1
ES-Ln2 3.84 semi-arid 3.92 0.77 1.71 5359.2 1096.2 2468.2
AU-Stp 3.71 semi-arid 2.62 1.33 1.44 162.5 -16 79.3
AU-Emr 3.08 semi-arid 4.39 1.03 2.87 320.5 50.3 198.8
AU-Gin 2.93  semi-arid 3.22 1.61 1.71 89.9 —-41.2 32.8
AR-SLu 2.89  semi-arid 2.07 5 2.13 16.9 -56.3 -13.8
ES-LgS 2.88  semi-arid 3.33 0.78 1.69 197.4 -9.2 99.3
CN-Du2 2.7  semi-arid 4.53 1.47 3.02 421.4 87.9 256.7
ZA-Kru 2.69  semi-arid 2.14 3.3 1.82 19.5 —55.5 =7.5
US-AR2 2.61  semi-arid 3.88 1.39 2.59 318 61.1 205.5
US-AR1 2.49  semi-arid 31 1.5 2.15 156.2 2.9 89.8
AU-Whr 2.39  semi-arid 3.13 1.41 1.63 79.6 -35.4 36.2
CN-HaM  2.34  semi-arid 1.63 1.68 1.02 48.6 —-41.1 18
AU-Dry 2.32  semi-arid 3.31 1.85 1.63 85.6 -36.6 38.3
IT-Noe 2.26  semi-arid 4.04 1.61 1.86 99 -38.4 42.8
US-Ton 2.23  semi-arid 4.39 1.4 3.05 140.9 -19.4 85.8
US-Var 2.22  semi-arid 5.6 1.27 4.01 313 40.3 219.3
ZM-Mon 2.18 semi-arid 3.11 3.2 1.88 38.5 -50.3 8.9
AU-RDF 2.16  notused 4.34 2.3 3.46 194.7 11 140
US-ARb 2.04 semi-arid 4.02 2.91 3.05 100.7 -13.8 63.1
US-ARc 2.04  semi-arid 3.46 2.54 2.43 80.4 -22.9 46.1
AU-DaS 1.81 humid 2.3 2.9 1.56 29 -50.8 5.8
AU-Rig 1.81 humid 391 1.81 3.45 106.6 —7.8 86.9
AU-DaP 1.8 humid 3.76 3.21 2.66 70.4 -32.8 43.7
AU-Wom 1.75 humid 5.63 2.26 4.25 65.2 —25.7 47
IT-Cp2 1.73 humid 6.05 2.49 41 76.1 -29.4 47.4
AU-Wac 1.69 humid 3.79 2.54 2.54 41.8 —39.8 209
(Continues)
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TABLE1 | (Continued)

Site ID AI ARIDITY RMSE(ww) RMSE(new) RMSE(v1.0) PBIAS (ww) PBIAS (new) PBIAS (v1.0)
FR-Pue 1.57 humid 5.22 1.56 3.6 116.7 -14.8 81.7
AU-Ade 1.55 humid 2.3 3.5 1.88 8.4 —52.2 -3.8
AU-How 1.46 humid 2.83 3.23 2.01 23.3 —53.2 2
CA-SF3 1.41 humid 4.38 1.12 3.61 161.7 30.5 134.7
FR-Fon 1.39 humid 3.04 3.39 2.59 42.1 -34 26
IT-Col 1.35 humid 4.95 3.32 3.59 79.3 —24.3 53.5
AU-Tum 1.34 humid 4.51 3.78 3.76 33.2 -32.9 23.4
IT-SRo 1.34 humid 4.34 2.75 2.9 53.1 -34.6 34.6
US-KS2 1.21 humid 13.08 5.23 12.65 233.6 84.3 226
CA-Man 1.19 humid 5.38 2.06 4.94 160.4 40.7 144.5
CA-NS4 1.19 humid 4.09 1.48 3.82 150.8 39.4 140.5
DE-Gri 1.18 humid 2.32 2.87 2.07 17.1 -35.3 12.1
IT-MBo 1.18 humid 4.51 2.13 4.09 69.1 =2.7 62.4
RU-Hal 1.11 humid 1.75 1.05 1.58 46.4 -17.2 39.8
FR-LBr 1.1 humid 3.27 2.18 2.56 40.4 =31 29.9
US-Wi6 1.08 humid 5.5 2.18 5.46 177.2 66 176.2
AR-Vir 1.02 humid 4.24 2.9 3.87 35.5 -20.7 31.2
US-PFa 1.02 humid 4.33 1.91 4.26 146.3 50.7 144.2
US-Syv 1.01 humid 4.88 2 4.84 87.6 15.6 86.6
RU-Fyo 0.97 humid 2.92 2.14 2.79 36.3 -19.7 329
BE-Bra 0.91 humid 3.01 1.32 3 45.8 —5.8 45.7
FI-Hyy 0.87 humid 2.96 1.97 2.86 50.1 -10.6 47.3
NL-Hor 0.84 humid 3.31 1.73 3.14 65.5 —4.5 62.4
CH-Oel 0.8 humid 3.67 3.94 3.67 2.8 -31.5 2.6
BR-Sa3 0.78 humid 11.1 5.04 11.03 105.3 34.1 104.6
CZ-BK2 0.78 humid 5.74 3.16 5.73 89.3 31.1 890.1
DE-RuR 0.78 humid 6.42 2.96 6.4 101.1 36.1 100.8
BE-Vie 0.73 humid 2.54 2.33 2.54 14.3 —22.5 14.3
CH-Fru 0.71 humid 7.17 3.85 7.17 97.8 43.5 97.8
IT-Tor 0.63 humid 3.83 2.14 3.83 80.3 37.2 80.3
parameter = min [a - AI’, 1] ) GPP,,,, = GPP,,,, x (0) ?)
where b is expected to be negative. This function is bounded where GPP__ is the revised, soil-moisture corrected GPP, GPP_

above in order to avoid potential values >1 in extremely wet
sites, although none were present in the dataset.

2.7 | Application
Equations (1) and (2) determine a unique $(8) function for each

value of Al This function was applied as a multiplier of mod-
elled GPP:

is the GPP simulated by the P-model subDaily v1.0.0 without
soil-moisture correction and (6) is given by Equation (1) with
parameter values derived from Equation (2) as a function of
site AI. We compared the predictions of GPP obtained using
this new soil-moisture stress function to GPP simulated by the
P-model subDaily v1.0.0 with (a) no soil-moisture stress and
(b) the soil-moisture stress function used in Pv1.0 at all of the
flux tower sites, with meteorological data provided for the site
in the FLUXNET2015 dataset and fAPAR data from Stocker
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et al. (2020). We also compared these predictions with the cur-
rent, improved version of the widely used MODIS GPP product
(MOD17A2HGF v0.61: Running and Zhao 2021; https://doi.
0rg/10.5067/MODIS/MOD17A2HGF.061). The goodness of fit
between each of the modelled estimates of GPP and the flux-
derived GPP at each site was quantified by the root mean squared
error (RMSE).

3 | Results

The response of LUE to water stress could be described by
Equation (1) using site-specific parameters (Figures 1 and S2).
To assess the fit of the breakpoint regression model across sites,
we computed R-squared values, included in Figure S2. As ex-
pected, the R-squared values are variable, reflecting site-specific
environmental variability and inherent uncertainties. Despite
this variability, the selection of the breakpoint regression model
is supported by previous research (Fang and Gentine 2024),
which demonstrated that a piecewise linear relationship is ap-
propriate for describing water stress limitation across diverse
ecosystems. These findings provide a solid theoretical foun-
dation for applying the model to estimate GPP under varying
moisture conditions.

Figures 2 and 3 depict site-specific parametrisation results,
showing the dependence of GPP reduction thresholds and max-
imum assimilation values on aridity conditions. Both the max-
imum assimilation level and the critical threshold at which soil
moisture stress starts to impact LUE were found to vary system-
atically with aridity. The maximum assimilation level under
well-watered conditions becomes progressively lower from
humid through semi-arid to arid sites (Figure 2).

The difference between humid, semi-arid and arid sites is sig-
nificant. The critical threshold is also reduced, such that water
stress sets in at higher soil moisture in humid sites than in
semi-arid or arid sites (Figure 2). This difference is also signif-
icant. Moreover, the slope of the stress function below the crit-
ical threshold becomes progressively steeper with increasing
aridity. Thus, plants growing in more arid environments have a
lower maximum LUE overall but sustain this level under drier
soil conditions (Figure 3). These relationships were also evident
when the intercept was not constrained to zero (Figure S3).

Both model parameters showed non-linear relationships with
AT that could be fitted using Equation (2) (Figure 4). Although
there were some outliers, these do not seem to be related to ei-
ther vegetation type (Figure S4) or the seasonal concentration

AU-Cpr (Al = 6.36)

US-ARc (Al = 2.04)

US-Syv (Al = 1.01)

1.6

R(0) ratio

"y,
'y,
\..

-

00{ 9 ®
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075 1.00 025 050 0.75 1.00
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FIGURE 1 | Relationship between soil moisture stress and the (6) ratio. Examples of the fitted maximum ((0) ratio (the ratio of actual flux-
derived to modelled well-watered gross primary production) and its response to relative soil moisture below the critical threshold (green line) for

three sites representing the range of climatological aridity levels using site-specific parameters. The 3(8) ratio and relative soil water content are both

unitless. Note that the scale above 1 has been compressed for visualisation purposes. Plots for all the sites used in the analysis are given in Figure S2.
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FIGURE2 | Comparison of the maximum {3(9) ratio and the critical threshold value of soil moisture. Box-plot comparison of the fitted maximum
B(6) ratio (the ratio of actual flux-derived to modelled well-watered gross primary production) (above) and the critical threshold value of soil moisture
(below) under arid, semi-arid and humid conditions, using site-specific parameters. Arid sites have AI> 5, semi-arid sites have AI between 2 and 5,
and humid sites have AI <2. The black line is the median, the box is the interquartile range and the whiskers show the range, with outliers shown as
asterisks. Letters indicate whether the median values are significantly different based on the Kruskal-Wallis test, p <0.05. Classes that are signifi-
cantly different from one another are indicated by different letters.
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FIGURE 3 | Maximum f(0) ratio and the critical soil-moisture threshold under different aridity levels. Values of the fitted maximum {(8) ratio
(the ratio of actual flux-derived to modelled well-watered gross primary production) using site-specific parameters and the critical threshold value of
soil moisture against the climatic aridity index (AI), showing non-linear regressions of both parameters against Al.

of precipitation (Figure S5). The derived equations for the

maximum p(6) level (y) and the critical threshold of © () are v =min [0.34 AT*%, 1] )
as follows:
y =min [0.62 AI"*%, 1] @)
We performed a sensitivity test to assess the impact of uncer-
and tainty in the estimated parameters on GPP by substituting the
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FIGURE4 | Predicted f(0) ratio functions for different aridity levels. Predicted 3(6) ratio (the ratio of actual flux-derived to modelled well-watered
gross primary production) functions based on the regressions shown in Figure 3, for different levels of the aridity index (AI).

upper and lower values of the standard errors on the fitted
parameters in Equations 4 and 5. This test showed that these
uncertainties had little impact on () and did not change the
simulated GPP (Figure 5).

Implementation of the new empirical soil-moisture stress func-
tion, using aridity-based parameters (i.e., the same set of pa-
rameters, in Equations 4 and 5, applied to all sites), produced
a substantial improvement in model performance compared
to simulations with no soil-moisture stress function (Figures 6
and S6-S8). At sites classified as arid (AI>5), simulations that
did not account for soil-water stress produced an overestima-
tion of maximum GPP between 2 and 8gCm~2d~! (The only
exception to this was AU-Lox where the P model predictions
that did not account for soil-water stress accurately matched
the observed magnitude of GPP; see Figure S4. This site is an
irrigated orchard). The overestimation of peak GPP at sites clas-
sified as semi-arid (AI between 2 and 5) was of a similar mag-
nitude (2 to 10 gC m~2 d~'). Even at sites classified as humid
(AI<2), there was an improvement in performance at most
sites (Figures 6 and S8).

To further illustrate the accuracy of the model, we present a
heatmap scatter plot comparing simulated and observed daily
GPP at the same selected sites displayed in Figure 6 (Figure S9).
This visualisation provides a visual assessment of model accu-
racy relative to the 1:1 line, with denser concentrations of data
points appearing in red. The model shows the strongest agree-
ment for lower GPP values, where the highest data density is
concentrated, while discrepancies emerge at higher GPP values.
R? values for these sites confirm this pattern, with poor values
in the three arid sites—AU-Crp, US-SRM and US-SRG—and in
the semi-arid site (ES-LgS), but higher values for the other five
sites—US-Var (0.76), US-Ton (0.70), AU-Wom (0.67), NL-Hor
(0.75) and US-PFa (0.75), demonstrating good predictive skills
in humid and semi-arid regions.

The improved performance compared to the version of the P
model with no soil-moisture stress function is reflected in the
RMSE values (Table 1). The RMSE for arid sites ranged from
0.51to 1.46gCm=2d~! compared to 2.07 to 4.01 gCm~2d~! when
no stress function was applied. All of the arid sites showed a re-
duction in RMSE, with an average reduction in RMSE of 69.3%.
The RMSE for semi-arid sites ranged from 0.46 to 5.0gCm=2d!
compared to 1.63 to 5.6 gCm~2d~! when no stress function was
applied. All but four of the 21 semi-arid sites showed a reduc-
tion in RMSE, with an average reduction in RMSE of 47.3%.
The RMSE for humid sites ranged from 1.05 to 5.23gCm=2d!
compared to 1.75 to 13.08gCm~=2d~! when no stress function
was applied. All but five of the 36 humid sites showed a reduc-
tion in RMSE, with an average reduction of 42.1%.

The new soil-moisture stress function also performed substan-
tially better than the stress function used in Pv1.0, reducing the
overestimation of peak GPP across arid, semi-arid and humid sites
(Figures 6 and S10-S12). The RMSE for arid sites ranged from
0.51 to 1.46gCm~2d~! compared to 0.87 to 2.25gCm=2d~! when
the Pv1.0 moisture-stress function was applied. All of these sites
showed reduced RMSE. The RMSE for semi-arid sites ranged from
0.46 t0 5.0gCm~2d~! compared to 1.02 to 4.01 gCm~2d~! when the
Pv1.0 moisture-stress function was applied. All but six of these 22
sites showed reduced RMSE. The RMSE for humid sites ranged
from 1.05 to 5.23gCm~2d~! compared to 1.56 to 12.65gCm—2d "
when the Pv1.0 moisture-stress function was applied. All but eight
of these 36 sites showed reduced RMSE.

Comparison of the new soil-moisture stress function with
MODIS GPP shows a similar level of performance (Figure 7;
Supplementary Figures 13-15). The average RMSE for the P
model and MODIS at arid sites is 6.67 and 5.80gCm=28-d~1, re-
spectively, and the range of RMSE values (Table 2) is comparable
(3.51-11.08gCm~28-d~! for the P model; 3.50-9.83gCm28-d!
for MODIS GPP). The average RMSE at semi-arid sites is 13.98
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FIGURES5 | Sensitivity of the model to parameter uncertainty. The plot shows gross primary production (GPP) using the new soil-moisture stress
function (GPPnew) at six sites representing the range of climatological aridity compared to the simulated GPP resulting from adding the upper
(GPPnew +) and lower (GPPnew —) standard error to the canonical fitted parameters in Equations 4 and 5. The flux-derived values (GPPobs) are also
shown. Note that the scale varies between the rows.

and 14.66gCm™28-d"! for the P model and MODIS, respec-  sites is 19.61 and 16.80gC m~28-d ! for the P model and MODIS,
tively, with ranges 3.84-39.41gCm~28-d~! (P model) and 4.62- respectively, and again the ranges are comparable (P model: 6.17
51.60gCm=2d~! (MODIS GPP). The average RMSE at humid  to 40.95gCm=28-d~!; MODIS 6.40 to 30.06 gCm~28-d ).
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FIGURE 6 | Impact of new soil-moisture stress function on simulated gross primary production. Examples of how the new soil-moisture stress

function, with its aridity-based parameters, modifies simulated gross primary production (GPP at nine sites representing the range of climato-

)
new-
logical aridity compared to how the original stress function, when applied in the sub-daily model, affects simulated GPP (GPPv1.0). The new model
is compared to the simulated level of GPP under well-watered conditions (GPP_, ), and to flux-derived values (GPP, ). Note that the scale varies

between the rows. Plots for all the flux tower sites are given in Figures S6-S11.
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FIGURE 7 | Comparison of simulated and observed gross primary production under different aridity levels. Comparison of simulated gross pri-
mary production, including the new soil-moisture stress function (GPPnew), with its aridity-based parameters, and the gross primary production
simulated by MOD17A2HGF v0.61 (GPP,, o) against flux-derived values (GPPobs) at nine sites representing the range of climatological aridity.
Note that the scale varies between the rows. Plots for all the flux tower sites are given in Figures S12-S14.

Figure 8 illustrates how well the model explains variations in by summing daily GPP values, accounting for soil-water stress
total annual GPP across different sites and aridity classes. It using the new empirical soil-moisture stress function, and av-
compares observed and simulated total annual GPP—computed eraging across multiple years with adequate data coverage
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TABLE 2 | Statistics of P model performance (root mean squared error, RMSE and percent bias, PBIAS) using the new soil-moisture stress
function (new), with its aridity-based parameters, compared to MOD17A2HGF v0.61 performance (MODIS). The sites are grouped by aridity index

(AJ) classes (see also Table S1).

Site ID Al ARIDITY RMSE(new) RMSE(MODIS) PBIAS (new) PBIAS (MODIS)
AU-TTE 7.17 arid 4.01 4.27 702.7 692.2
AU-ASM 6.97 arid 7.51 5.96 -2.2 20.7
AU-Cpr 6.36 arid 5.51 4.45 —24.7 18.3
US-Wkg 6.34 not used 6.96 6.78 14.2 -19.4
AU-Lox 6.32 not used 52.43 41.96 —75.5 —57
US-Whs 5.89 arid 7.19 5.49 74.6 32.7
AU-GWW 5.75 arid 3.51 3.45 -18.1 7.4
US-SRG 5.08 arid 11.08 9.83 7.4 -7.1
US-SRM 5.02 arid 7.86 7.13 —-5.4 —4.6
US-Cop 3.99 semi-arid 3.84 4.62 112.2 145.2
AU-Ync 3.96 semi-arid 7.99 9.91 156.1 241.9
ES-Ln2 3.84 semi-arid 6.86 9.92 1080.4 1594.5
AU-Stp 3.71 semi-arid 10.11 7.62 -15.4 19.8
AU-Emr 3.08 semi-arid 7.75 11.1 47.6 84.8
AU-Gin 2.93 semi-arid 12.56 8.6 —-40.8 18.1
AR-SLu 2.89 semi-arid 39.41 51.59 -56.3 —74.2
ES-LgS 2.88 semi-arid 5.49 8.27 -10.7 477
CN-Du2 2.7 semi-arid 11.15 9.28 89.8 63.8
ZA-Kru 2.69 semi-arid 23.02 15.19 —51.3 12
US-AR2 2.61 semi-arid 10.04 9.05 61.2 15.2
US-AR1 2.49 semiarid 15.48 15.85 -17.4 -29.1
AU-Whr 2.39 semi-arid 10.64 6.86 —35.3 -9.2
CN-HaM 2.34 semi-arid 12.64 14.71 —40.8 -56.8
AU-Dry 2.32 semiarid 15.49 12.06 —40.5 -17.6
IT-Noe 2.26 semi-arid 12.55 19.84 -39.7 49.7
US-Ton 2.23 semi-arid 10.02 8.71 -21 51
US-Var 2.22 semi-arid 9.52 13.97 39.2 64.4
ZM-Mon 2.18 semi-arid 24.53 17.68 -50.2 -14.7
AU-RDF 2.16 not used 17.93 23.67 -1.6 28.7
US-ARDb 2.04 semi-arid 25.27 29.53 -21.4 -34
US-ARc 2.04 semi-arid 19.62 23.62 -22.9 -32.8
AU-DaS 1.81 humid 21.7 22.01 -48.1 -31.3
AU-Rig 1.81 humid 13.51 14.97 —6.2 -2.3
AU-DaP 1.8 humid 24.87 23.36 -32.1 -6.4
AU-Wom 1.75 humid 15.75 14.04 —23.7 4.7
IT-Cp2 1.73 humid 22.62 14.21 -33.5 -2.5
(Continues)
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TABLE 2 | (Continued)

Site ID Al ARIDITY RMSE(new) RMSE(MODIS) PBIAS (new) PBIAS (MODIS)
AU-Wac 1.69 humid 19.49 20.18 -373 19
FR-Pue 1.57 humid 11.57 10.92 ~14.6 8.2
AU-Ade 1.55 humid 26.83 24.76 —52.8 —43
AU-How 1.46 humid 24.62 17.08 —51.2 -22
CA-SF3 1.41 humid 6.17 12.08 8.2 23.8
FR-Fon 1.39 humid 26.27 12.05 —34.2 3.6
IT-Col 1.35 humid 25.12 20.47 —23.9 0.9
AU-Tum 1.34 humid 28.98 22.33 324 -16.3
IT-SRo 1.34 humid 20.78 14.64 —347 -137
US-KS2 1.21 humid 40.95 17.2 88.1 24.6
CA-Man 1.19 humid 21.68 16.62 85.6 33.5
CA-NS4 1.19 humid 10.51 8.85 45.1 29.7
DE-Gri 118 humid 21.36 18.19 -349 -27.8
IT-MBo 118 humid 15.58 13.19 -3.1 -18.4
RU-Hal 111 humid 7.48 6.4 ~16.4 ~14.6
FR-LBr 1.1 humid 15.57 12.29 -30.6 —20.2
US-Wi6 1.08 humid 14.74 21.4 59.1 86.6
AR-Vir 1.02 humid 23.03 26.32 -21.5 -20
US-PFa 1.02 humid 13.32 16.33 46.6 54.7
US-Syv 1.01 humid 13.98 10.97 15.6 -97
RU-Fyo 0.97 humid 15.41 15.45 -20.1 -26.6
BE-Bra 0.91 humid 9.3 6.62 -6.8 0
FI-Hyy 0.87 humid 14.8 10.17 -11.7 -18.9
NL-Hor 0.84 humid 13.34 12.57 —6.1 -6.8
CH-Oel 0.8 humid 28.33 30.06 -30.2 —372
BR-Sa3 0.78 humid 38.47 26.22 31 -21
CZ-BK2 0.78 humid 20.05 19.45 24.1 21.3
DE-RuR 0.78 humid 21.85 16.78 37.1 —24.8
BE-Vie 0.73 humid 16.21 19.69 —22.5 -35.2
CH-Fru 0.71 humid 28.03 23.37 445 -34.8
IT-Tor 0.63 humid 13.73 13.66 38.6 —34.7

(>50%) and data quality (>0.8) for each site. Total annual GPP
is in units of gC m=2year'.

Across most sites, the model captures a reasonably consistent
pattern of GPP over- or underestimation across years, suggest-
ing stability in performance (preliminary figures not shown).
Consequently, we averaged GPP across years to obtain a multi-
year mean of total annual GPP per site, given that no differences
among years were highlighted from preliminary investigations.
This approach also ensures data consistency by excluding years
with low data coverage and poor data quality.

The majority of sites cluster closely around the 1:1 line, indi-
cating that the model performs well overall after the applica-
tion of the new function. To further assess the performance of
the model, we conducted an additional experiment using site-
specific parameters instead of the aridity-based approach. As
shown in Supplementary Figure 16, this approach yielded a
slightly higher R? value (0.85) compared to the aridity-based
parameterisation (0.70, Figure 8). This result confirms that
the aridity-based formulation effectively captures most of the
variability while some site-specific differences remain unac-
counted for. While some arid sites show minor overestimations
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FIGURE 8 | Comparison of simulated and observed total annual gross primary production across multiple sites. Comparison of simulated total

annual gross primary production including the new soil-moisture stress function, with its aridity-based parameters, and the flux-derived total an-

nual gross primary production across 67 sites classified by aridity (arid, semi-arid, humid). Points represent log-transformed values of GPP observed
(log(GPPobs) and simulated (log(GPPsim) at the different sites. Each point shows the multiyear mean of total annual GPP at each site, calculated from
years with >50% data coverage and > 0.8 data quality. The 1:1 line indicates ideal model performance. GPP is in units of gC m~2year".

or underestimations, both semi-arid and humid sites exhibit
a slight tendency for the model to underestimate annual GPP.
Overall, no clear systematic bias is apparent across aridity
classes, and a good fit with the observations is noticeable in the
majority of sites analysed.

There are, however, some notable exceptions where the model
fails to match observed GPP (Figure 8; Supplementary Figures 6,
7). Specifically, the sub-daily P model with the new function
fails to capture the trends of observed GPP at the semi-arid site
ES-Ln2 and the arid site AU-TTE (Supplementary Figures 6,
7), as does the sub-daily P model with the previous function
(Supplementary Figures 9, 10). Furthermore, these two sites
are also sites where the MODIS GPP model shows a very large
bias, similar to the bias of the sub-daily P model (Supplementary
Figures 12, 13). Both sites have distinct characteristics that likely
limit the model's ability to capture the observed GPP. The arid
AU-TTE site experiences highly seasonal rainfall with consider-
able interannual variability, while the semi-arid ES-Ln2 site is a
managed ecosystem.

4 | Discussion

We have developed an empirical function to account for soil-
moisture stress on LUE in the sub-daily version of the P model
(P-model subDaily v1.0.0). The introduction of an empirical
function to account for soil-moisture stress, previously devel-
oped by Stocker et al. (2020) for use with the standard P model
(Pv1.0), improved the simulation of GPP by focusing on reducing
GPP when soil moisture was below a critical threshold of the

B(8) ratio. This stress function does not perform as well in the
sub-daily P model. This reflects differences in the acclimation
timescales of the two models: the standard P model acclimates
to daily average conditions, while the sub-daily P model opti-
mises for noon conditions when GPP responses to soil-moisture
stress are more pronounced. Consequently, a stronger correction
is needed in the sub-daily P model to capture this effect ade-
quately. By incorporating a reduction in the maximum level of
the f(0) ratio with increasing aridity, we have further improved
the performance of the sub-daily P model. However, the com-
parison with the Stocker et al. (2020) correction shows that the
two corrections are not interchangeable.

The performance of the P-model subDaily v1.0.0 is similar
to that of the most recent and improved gap-filled version of
MODIS GPP (MOD17A2HGF v 0.61). MODIS is a widely used
product but uses a PFT-specific parametrisation, whereas the
P model makes no distinctions by PFTs. Furthermore, whereas
MODIS is empirically based, the P model has a strong theoret-
ical basis in eco-evolutionary optimality theory, allowing it to
take account of the impact of changing CO, on assimilation in
a natural way. Thus, our theory-based and parameter-sparse
model provides an alternative approach that performs as well
as the MODIS product.

The application of the new function substantially reduces the
overestimation of GPP compared to the original model and to
the moisture stress function developed by Stocker et al. (2020)
when applied in the sub-daily model. However, the model does
not always capture peaks in GPP shown by the observations;
it also overestimates GPP outside the growing season at some
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sites (e.g., US-Var). It is difficult to identify the causes of spe-
cific mismatches between eddy-covariance-derived and simu-
lated GPP on particular days or weeks because such mismatches
can have multiple causes. In addition to possible issues with the
model itself, there is uncertainty in the partitioning of measured
net ecosystem exchange to GPP versus ecosystem respiration
(particularly during the non-growing season) and unavoidable
discrepancies between the satellite-derived pixel data and the
footprint of the flux tower (Prentice et al. 2024).

The reduction in the maximum level of LUE with increasing
aridity is consistent with the analyses of Fu et al. (2022), which
focused on EF. The climatological aridity index (AI) provides a
measure of the degree to which water is likely to be limiting (to
both EF and LUE) at some time during the growing season. Our
findings confirm the proposed hypothesis that the response of
GPP to soil moisture varies systematically with climatic arid-
ity, rather than being dependent on the type of vegetation. This
pattern reflects different water-use strategies adopted by plants
to optimise carbon assimilation over the whole growing season
in the climate to which they are adapted (Manzoni et al. 2011b;
Manzoni et al. 2014; Bassiouni, Manzoni, and Vico 2023; Vico
et al. 2013; Fu et al. 2022). The fact that there is a limitation on
EF and LUE—even during intervals with abundant soil mois-
ture—in more arid climates supports this hypothesis of climate-
adapted water conservation strategies. Moreover, as also noted
by Fu et al. (2022) for EF, the slope of 3(6) against 6 (y/¢ in equa-
tion (1)) becomes steeper with increasing aridity. This behaviour
results from the values of the exponent of AI in Equations (4)
and (5) (0.60>0.45), which indicate that y/¢ is an increasing
function of AL It implies that, for every value of Al there is a
value of 6 at which the associated LUE is maximised, exceeding
that of all other $(6) functions, and that this optimal 8 value de-
clines as Al increases.

It is well known that some plants continue to photosynthesise at
higher levels of drought stress than others, a behaviour that re-
flects variability in the strictness of stomatal regulation (Tardieu
and Simoneau 1998; McDowell et al. 2008). However, both strict
(isohydric) regulation and less strict (anisohydric) regulation
can occur within the same community (e.g., Mediavilla and
Escudero 2003; Cruz de Souza et al. 2020; Raffelsbauer et al.
2023) and species may show variable regulation over the sea-
son and between years (Klein 2014; Konings and Gentine 2017).
Thus, although there is some evidence that this behaviour is en-
vironmentally controlled (Manzoni et al. 2011b; McDowell 2011;
Kumagai and Porporato 2012; Zhou et al. 2014; Konings and
Gentine 2017), consistent with our finding that the critical
threshold becomes lower as climatological aridity increases,
it is likely that plant communities often show a diversity of re-
sponses. Our results indicate considerable scatter in both fitted
parameters, whose origin and potential adaptive significance
would repay more detailed study.

This work was originally designed to improve the performance
of the P model and provide a simple algorithm that could have
more general utility in land surface modelling. The new ap-
proach enables the highly parsimonious and parameter-sparse
sub-daily P model to be applied globally, across a wide range of
aridity and soil moisture conditions, without requiring complex
parametrisation or tuning. How best to represent soil moisture

in this context is a challenge. We have opted for a minimalist
approach, using SPLASH. SPLASH is a single-bucket model that
considers only water that is held between the wilting point and
field capacity, and does not account for variation in water hold-
ing capacity among soils. The x-intercept of the breakpoint rela-
tionship corresponds to the wilting point. We have constrained
breakpoint regressions through the origin since little informa-
tion was lost by doing so. In reality, the permanent wilting point
varies across species (Koepke, Kolb, and Adams 2010; Bartlett,
Scoffoni, and Sack 2012) but is also strongly affected by soil
properties (Czyz and Dexter 2012; Chagas Torres et al. 2021),
complexities that we have intentionally ignored to retain the
general applicability of our approach. By using a generic soil
water balance model, we have also intentionally decoupled AET
(computed by SPLASH on the assumption that the ratio AET/
PET is proportional to relative soil water content) from GPP, thus
disregarding the feedback by which seasonal changes in GPP
can influence the seasonal time course of AET and soil mois-
ture. This trade-off simplifies the derivation of the function and
facilitates its implementation in a global modelling framework.
However, while ignoring the coupling is a logical starting point
since the fully coupled system may show a greater variety of be-
haviours, consideration of the coupling will be necessary for cli-
mate modelling applications.

We have developed an empirical soil-moisture stress function
that not only improves the performance of the P model but is
also readily transferable to other modelling contexts. This re-
search, therefore, represents a step towards an empirically well-
founded representation of the interactions between carbon and
water cycling, where the next step will involve the interactive
coupling of transpiration and GPP in a land-surface modelling
framework. However, we have used a long-term average of cli-
mate parameters to calculate the aridity index (AI). Under a
changing climate, AI will change along with changes in vege-
tation properties such as rooting depth and hydraulic strategy.
This poses two practical questions about how to implement our
approach in the context of future climate change. First, what
is the appropriate timescale at which to update the AI calcula-
tion? Second, how will the response to aridity be modified by
changes in atmospheric CO,? Both questions are likely related
to trait plasticity, plant lifespan and the speed and magnitude of
climate change. Further research should prioritise addressing
these questions to enhance the applicability of our approach in
a changing world.

5 | Conclusions

We have derived a new empirical function to account for the
soil moisture effect on the light-use efficiency of GPP as a
function of climatological aridity. The new function provides
a constraint on both the maximum level of GPP and the crit-
ical soil-moisture threshold, with increasing climatological
aridity. Climatological aridity provides a measure of the de-
gree to which water is likely to be limiting at some time during
the growing season. The new formulation is thus consistent
with the idea that plants adopt water conservation strategies
to optimise assimilation over the whole growing season in the
climate to which they are adapted. The new formulation pro-
duces an improved simulation of GPP at flux tower sites from
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arid, semi-arid and humid regions, both during water-stressed
conditions and during unstressed periods. Although this new
function is tested in the context of the existing LUE model (the
P model), it is generic and could easily be implemented in other
models, including land-surface schemes.
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