University of
< Reading

Quantitative evidence synthesis: a
practical guide on meta-analysis, meta-
regression, and publication bias tests for
environmental sciences

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Nakagawa, S. ORCID: https://orcid.org/0000-0002-7765-5182,
Yang, Y. ORCID: https://orcid.org/0000-0002-8610-4016,
Macartney, E. L. ORCID: https://orcid.org/0000-0003-3866-
143X, Spake, R. ORCID: https://orcid.org/0000-0003-4671-
2225 and Lagisz, M. ORCID: https://orcid.org/0000-0002-
3993-6127 (2023) Quantitative evidence synthesis: a practical
guide on meta-analysis, meta-regression, and publication bias
tests for environmental sciences. Environmental Evidence, 12.
8. ISSN 2047-2382 doi: 10.1186/s13750-023-00301-6
Available at https://centaur.reading.ac.uk/121839/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1186/s13750-023-00301-6

Publisher: BioMed Central


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf

w sos] University of
< Reading
All outputs in CentAUR are protected by Intellectual Property Rights law,

including copyright law. Copyright and IPR is retained by the creators or other

copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Nakagawa et al. Environmental Evidence (2023) 12:8 Environmental Evidence
https://doi.org/10.1186/513750-023-00301-6

o : : : ®
Quantitative evidence synthesis: a practical =

guide on meta-analysis, meta-regression,
and publication bias tests for environmental
sciences

Shinichi Nakagawa'? ®, Yefeng Yang" ®, Erin L. Macartney'®, Rebecca Spake®*® and Malgorzata Lagisz'

Abstract

Meta-analysis is a quantitative way of synthesizing results from multiple studies to obtain reliable evidence of an inter-
vention or phenomenon. Indeed, an increasing number of meta-analyses are conducted in environmental sciences,
and resulting meta-analytic evidence is often used in environmental policies and decision-making. We conducted a
survey of recent meta-analyses in environmental sciences and found poor standards of current meta-analytic practice
and reporting. For example, only ~40% of the 73 reviewed meta-analyses reported heterogeneity (variation among
effect sizes beyond sampling error), and publication bias was assessed in fewer than half. Furthermore, although
almost all the meta-analyses had multiple effect sizes originating from the same studies, non-independence among
effect sizes was considered in only half of the meta-analyses. To improve the implementation of meta-analysis in
environmental sciences, we here outline practical guidance for conducting a meta-analysis in environmental sciences.
We describe the key concepts of effect size and meta-analysis and detail procedures for fitting multilevel meta-
analysis and meta-regression models and performing associated publication bias tests. We demonstrate a clear need
for environmental scientists to embrace multilevel meta-analytic models, which explicitly model dependence among
effect sizes, rather than the commonly used random-effects models. Further, we discuss how reporting and visual
presentations of meta-analytic results can be much improved by following reporting guidelines such as PRISMA-
EcoEvo (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Ecology and Evolutionary Biology).
This paper, along with the accompanying online tutorial, serves as a practical guide on conducting a complete set of
meta-analytic procedures (i.e., meta-analysis, heterogeneity quantification, meta-regression, publication bias tests and
sensitivity analysis) and also as a gateway to more advanced, yet appropriate, methods.
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Background

Evidence synthesis is an essential part of science. The
method of systematic review provides the most trusted
and unbiased way to achieve the synthesis of evidence
[1-3]. Systematic reviews often include a quantitative
summary of studies on the topic of interest, referred to
as a meta-analysis (for discussion on the definitions of
‘meta-analysis, see [4]). The term meta-analysis can also
mean a set of statistical techniques for quantitative data
synthesis. The methodologies of the meta-analysis were
initially developed and applied in medical and social sci-
ences. However, meta-analytic methods are now used
in many other fields, including environmental sciences
[5-7]. In environmental sciences, the outcomes of meta-
analyses (within systematic reviews) have been used
to inform environmental and related policies (see [8]).
Therefore, the reliability of meta-analytic results in envi-
ronmental sciences is important beyond mere academic
interests; indeed, incorrect results could lead to ineffec-
tive or sometimes harmful environmental policies [8].

As in medical and social sciences, environmental sci-
entists frequently use traditional meta-analytic models,
namely fixed-effect and random-effects models [9, 10].
However, we contend that such models in their original
formulation are no longer useful and are often incorrectly
used, leading to unreliable estimates and errors. This is
mainly because the traditional models assume independ-
ence among effect sizes, but almost all primary research
papers include more than one effect size, and this non-
independence is often not considered (e.g., [11-13]). Fur-
thermore, previous reviews of published meta-analyses in
environmental sciences (hereafter, ‘environmental meta-
analyses’) have demonstrated that less than half report
or investigate heterogeneity (inconsistency) among effect
sizes [14—16]. Many environmental meta-analyses also
do not present any sensitivity analysis, for example, for
publication bias (i.e., statistically significant effects being
more likely to be published, making collated data unreli-
able; [17, 18]). These issues might have arisen for several
reasons, for example, because of no clear conduct guide-
line for the statistical part of meta-analyses in environ-
mental sciences and rapid developments in meta-analytic
methods. Taken together, the field urgently requires a
practical guide to implement correct meta-analyses and
associated procedures (e.g., heterogeneity analysis, meta-
regression, and publication bias tests; cf. [19]).

To assist environmental scientists in conducting meta-
analyses, the aims of this paper are five-fold. First, we
provide an overview of the processes involved in a meta-
analysis while introducing some key concepts. Second,
after introducing the main types of effect size measures,
we mathematically describe the two commonly used tra-
ditional meta-analytic models, demonstrate their utility,
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and introduce a practical, multilevel meta-analytic model
for environmental sciences that appropriately han-
dles non-independence among effect sizes. Third, we
show how to quantify heterogeneity (i.e., consistencies
among effect sizes and/or studies) using this model, and
then explain such heterogeneity using meta-regression.
Fourth, we show how to test for publication bias in a
meta-analysis and describe other common types of sen-
sitivity analysis. Fifth, we cover other technical issues
relevant to environmental sciences (e.g., scale and phylo-
genetic dependence) as well as some advanced meta-ana-
lytic techniques. In addition, these five aims (sections)
are interspersed with two more sections, named ‘Notes’
on: (1) visualisation and interpretation; and (2) reporting
and archiving. Some of these sections are accompanied
by results from a survey of 73 environmental meta-anal-
yses published between 2019 and 2021; survey results
depict current practices and highlight associated prob-
lems (for the method of the survey, see Additional file 1).
Importantly, we provide easy-to-follow implementations
of much of what is described below, using the R pack-
age, metafor [20] and other R packages at the webpage
(https://itchyshin.github.io/Meta-analysis_tutorial/),
which also connects the reader to the wealth of online
information on meta-analysis (note that we also provide
this tutorial as Additional file 2; see also [21]).

Overview with key concepts

Statistically speaking, we have three general objectives
when conducting a meta-analysis [12]: (1) estimating an
overall mean, (2) quantifying consistency (heterogeneity)
between studies, and (3) explaining the heterogeneity
(see Table 1 for the definitions of the terms in italic). A
notable feature of a meta-analysis is that an overall mean
is estimated by taking the sampling variance of each effect
size into account: a study (effect size) with a low sam-
pling variance (usually based on a larger sample size) is
assigned more weight in estimating an overall mean than
one with a high sampling variance (usually based on a
smaller sample size). However, an overall mean estimate
itself is often not informative because one can get the
same overall mean estimates in different ways. For exam-
ple, we may get an overall estimate of zero if all studies
have zero effects with no heterogeneity. In contrast, we
might also obtain a zero mean across studies that have
highly variable effects (e.g., ranging from strongly posi-
tive to strongly negative), signifying high heterogeneity.
Therefore, quantifying indicators of heterogeneity is an
essential part of a meta-analysis, necessary for interpret-
ing the overall mean appropriately. Once we observe non-
zero heterogeneity among effect sizes, then, our job is to
explain this variation by running meta-regression mod-
els, and, at the same time, quantify how much variation
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Table 1 Definitions of key concepts and associated statistical parameters, which are used in formulas in the main text

Term

Definition (with associated parameters, if any)

Effect size
Sampling variance

Meta-analysis

A measurement of effect (usually state of a single group, comparison between groups, or association, see Table 2). In a meta-
analytic model, it becomes the response variable (noted as z; in the formulas)

A measure of uncertainty in effect size (noted as v)). Its inverse is often called ‘weight’ (the square-root of weight is ‘precision; and
the square root of sampling variance is ‘sampling standard error’)

A statistical method to aggregate effect sizes from studies on the same or similar topics, by assigning different weights based on
sampling variance of effect sizes. Strictly speaking, in a formal (weighted) meta-analysis, sampling variance needs to be incorpo-

rated and it is assumed to be known (Table 2)
Overall mean (effect)
Heterogeneity

An average effect size based on a meta-analytic model (noted as By and its standard errors, se(Bo))
An indicator of consistency among effect sizes, or an extent of variation around the overall effect (Bo); heterogeneity can be

quantified by absolute measures, such as 72, or relative measures, such as

Meta-regression

A regression model which extends a meta-analytic model with a moderator(s), aiming to explain heterogeneity (quantified as R?)

and quantifying the effect of a moderator (noted as, for example, 87

Publication bias tests

A set of statistical methodologies to detect and correct for publication bias, where a subset of results (positive findings) is more

likely to be published and present in the meta-analytic dataset than otherwise

Sensitivity analysis

A set of statistical analyses that checks the robustness of one’s main analysis; if sensitivity analysis shows different results (qualita-

tively and/or quantitively), then we must doubt the robustness of the main findings

is accounted for (often quantified as R?). In addition, it
is important to conduct an extra set of analyses, often
referred to as publication bias tests, which are a type of
sensitivity analysis [11], to check the robustness of meta-
analytic results.

Choosing an effect size measure

In this section, we introduce different kinds of ‘effect
size measures’ or ‘effect measures. In the literature, the
term ‘effect size’ is typically used to refer to the magni-
tude or strength of an effect of interest or its biological
interpretation (e.g., environmental significance). Effect
sizes can be quantified using a range of measures (for
details, see [22]). In our survey of environmental meta-
analyses (Additional file 1), the two most commonly used
effect size measures are: the logarithm of response ratio,
InRR ([23]; also known as the ratio of means; [24]) and
standardized mean difference, SMD (often referred to
as Hedges’ g or Cohen’s d [25, 26]). These are followed
by proportion (%) and Fisher’s z-transformation of cor-
relation, or Zr. These four effect measures nearly fit into
the three categories, which are named: (1) single-group
measures (a statistical summary from one group; e.g.,
proportion), (2) comparative measures (comparing
between two groups e.g., SMD and InRR), and (3) associ-
ation measures (relationships between two variables; e.g.,
Zr). Table 2 summarizes effect measures that are com-
mon or potentially useful for environmental scientists.
It is important to note that any measures with sampling
variance can become an ‘effect size’ The main reason why
SMD, InRR, Zr, or proportion are popular effect meas-
ures is that they are unitless, while a meta-analysis of
mean, or mean difference, can only be conducted when
all effect sizes have the same unit (e.g., cm, kg).

Table 2 also includes effect measures that are likely
to be unfamiliar to environmental scientists; these are
effect sizes that characterise differences in the observed
variability between samples, (i.e., InSD, InCV, InVR and
InCVR; [27, 28]) rather than central tendencies (aver-
ages). These dispersion-based effect measures can pro-
vide us with extra insights along with average-based
effect measures. Although the literature survey showed
none of these were used in our sample, these effect sizes
have been used in many fields, including agriculture (e.g.,
[29]), ecology (e.g., [30]), evolutionary biology (e.g., [31]),
psychology (e.g., [32]), education (e.g., [33]), psychiatry
(e.g., [34]), and neurosciences (e.g. [35],),. Perhaps, it is
not difficult to think of an environmental intervention
that can affect not only the mean but also the variance of
measurements taken on a group of individuals or a set of
plots. For example, environmental stressors such as pesti-
cides and eutrophication are likely to increase variability
in biological systems because stress accentuates individ-
ual differences in environmental responses (e.g. [36, 37],).
Such ideas are yet to be tested meta-analytically (cf. [38,
39)).

Choosing a meta-analytic model

Fixed-effect and random-effects models

Two traditional meta-analytic models are called the
‘fixed-effect’ model and the ‘random-effects’ model. The
former assumes that all effect sizes (from different stud-
ies) come from one population (i.e., they have one true
overall mean), while the latter does not have such an
assumption (i.e., each study has different overall means
or heterogeneity exists among studies; see below for
more). The fixed-effect model, which should probably be
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Table 2 Selected list of effect size measures and their sampling variances, belonging to three types: (1) single-group effect, (2)

comparative effect and (3) association effect

Type Effect size Point estimate Sampling variance estimate Reference
Single group Mean Xi s?/ni (134]
Single group Proportion pi=%4 pr=p) — iy [134]
i nj n;
Single group Log standard deviation (InSD) Ins; ﬁ 271
Single group Log coefficient of variation (InCV) n(s s 1 (27]
n{% 2 T -0
i niX; i
Comparative Mean difference (MD) XiT — Xic e i s [134]
nic nir
Comparative Standardised mean difference (SMD) di = Xir —Xic RIS @ [25]
(nic=1)s%-+(n =1)s% nic nir 2(nic+nir)
nic+niT—2
Comparative Risk (proportion) difference (RD) % % W(”rg—y/ﬂ + y,((n,%—y,c) [134]
! ! i Nic
Comparative Log odds ratio (INOR j j L ! L ! 134
parativ 9 io ) |n(wy_ry/r) - |n<,,/(y_Cy(> yr U onT=yr + Yic + nic=Yyic [134]
Comparative Log response ratio (INRR) In (&) st s [135]
ic nicXe nixa
) I ) 1 1
Comparative Log variability ratio (InVR) In (;,7) o= + [27]
Comparative Log coefficient of variation ratio (INCVR) In (g) —n (5,7() st I s i (271
i ic nexz  200ic=1 " ppxd T 200m=1)
Association Fisher’s z-transformation of correlation, r (Zr) +1; [134]

1
ni—3

For the column 3rd and 4th, notations represent: X (mean), s (standard deviation), n (sampling size), y (the number of events), the subscript T (treatment group), the

subscript C (control group) and the subscript i (the ith effect size or study)

Note that better estimators may be found in the relevant references; for example, SMD can be best estimated by multiplying by (1

more correctly referred to as the ‘common-effect’ model,
can be written as [9, 10, 40]:
zj = Po + mj,

(1)

mj ~ N(O, vj),

where the intercept, By is the overall mean, z; (the
response/dependent variable) is the effect size from the
jth study (j=1, 2,..., Ny,4y in this model, Ny, =the
number of studies =the number of effect sizes), m; is the
sampling error, related to the jth sampling variance (v),
which is normally distributed with the mean of 0 and the
‘study-specific’ sampling variance, v; (see also Fig. 1A).
The overall mean needs to be estimated and often done
so as the weighted average with the weights, w; = 1/v;
(i.e., the inverse-variance approach). An important, but
sometimes untenable, assumption of meta-analysis is
that sampling variance is known. Indeed, we estimate
sampling variance, using formulas, as in Table 2, mean-
ing that vj is submitted by sampling variance estimates
(see also section ‘Scale dependence’). Of relevance, the
use of the inverse-variance approach has been recently
criticized, especially for SMD and InRR [41, 42] and
we note that the inverse-variance approach using the
formulas in Table 2 is one of several different weight-
ing approaches used in meta-analysis (e.g., for adjusted

-3
PP ) and see also [43]

sampling-variance weighing, see [43, 44]; for sample-
size-based weighting, see [41, 42, 45, 46]). Importantly,
the fixed-effect model assumes that the only source of
variation in effect sizes (zj) is the effect due to sampling
variance (which is inversely proportional to the sample
size, n; Table 2).

Similarly, the random-effects model can be expressed
as:

zj = Po + uj + mj,

(2)

uj ~N(0,72), & m; ~ N(0,;),

where 1 is the jth study effect, which is normally distrib-
uted with the mean of 0 and the between-study variance,
72 (for different estimation methods, see [47-50]), and
other notations are the same as in Eq. 1 (Fig. 1B). Here,
the overall mean can be estimated as the weighted aver-
age with weights wj =1/ (12 + vlz) (note that different
weighting approaches, mentioned above, are applicable
to the random-effects model and some of them are to the
multilevel model, introduced below). The model assumes
each study has its specific mean, by + u;, and (in)consist-
encies among studies (effect sizes) are indicated by 2.
When 72 is 0 (or not statistically different from 0), the
random-effects model simplifies to the fixed-effect model
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A Fixed-effect model:
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Fig. 1 Visualisation of the three statistical models of meta-analysis: A a fixed-effect model (1-level), B a random-effects model (2-level),and C a

multilevel model (3-level; see the text for what symbols mean)

(cf. Equations 1 and 2). Given no studies in environmen-
tal sciences are conducted in the same manner or even at
exactly the same place and time, we should expect differ-
ent studies to have different means. Therefore, in almost
all cases in the environmental sciences, the random-
effects model is a more ‘realistic’ model [9, 10, 40].
Accordingly, most environmental meta-analyses (68.5%;

50 out of 73 studies) in our survey used the random-
effects model, while only 2.7% (2 of 73 studies) used the
fixed-effect model (Additional file 1).

Multilevel meta-analytic models
Although we have introduced the random-effects
model as being more realistic than the fixed-effect
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model (Eq. 2), we argue that the random-effects model
is rather limited and impractical for the environmental
sciences. This is because random-effects models, like
fixed-effect models, assume all effect sizes (zj) to be
independent. However, when multiple effect sizes are
obtained from a study, these effect sizes are dependent
(for more details, see the next section on non-inde-
pendence). Indeed, our survey showed that in almost
all datasets used in environmental meta-analyses, this
type of non-independence among effect sizes occurred
(97.3%; 71 out of 73 studies, with two studies being
unclear, so effectively 100%; Additional file 1). There-
fore, we propose the simplest and most practical meta-
analytic model for environmental sciences as [13, 40]
(see also [51, 52]):

zi = Po + ujy) + € + mi, (3)

4~ N(0,72), e ~ N(0,0%), & m; ~ N(O,v)

where we explicitly recognize that N, (i=1, 2,..., N,z
fee) > Nowway (=1, 2,..., Ny,4) and, therefore, we now
have the study effect (between-study effect), u; (for
the jth study and ith effect size) and effect-size level
(within-study) effect, e; (for the ith effect size), with the
between-study variance, 72, and with-study variance, o2,
respectively, and other notations are the same as above.
We note that this model (Eq. 3) is an extension of the
random-effects model (Eq. 2), and we refer to it as the
multilevel/hierarchical model (used in 7 out of 73 stud-
ies: 9.6% [Additional file 1]; note that Eq. 3 is also known
as a three-level meta-analytic model; Fig. 1C). Also, envi-
ronmental scientists who are familiar with (generalised)
linear mixed-models may recognize u; (the study effect)
as the effect of a random factor which is associated with
a variance component, i.e., 72 [53]; also, e; and m, can be
seen as parts of random factors, associated with o2 and v,
(the former is comparable to the residuals, while the lat-
ter is sampling variance, specific to a given effect size).

It seems that many researchers are aware of the
issue of non-independence so that they often use aver-
age effect sizes per study or choose one effect size (at
least 28.8%, 21 out of 73 environmental meta-analyses;
Additional file 1). However, as we discussed elsewhere
[13, 40], such averaging or selection of one effect size
per study dramatically reduces our ability to investi-
gate environmental drivers of variation among effect
sizes [13]. Therefore, we strongly support the use of
the multilevel model. Nevertheless, this proposed mul-
tilevel model, formulated as Eq. 3 does not usually deal
with the issue of non-independence completely, which
we elaborate on in the next section.
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Non-independence among effect sizes

and among sampling errors

When you have multiple effect sizes from a study,
there are two broad types and three cases of non-
independence (cf. [11, 12]): (1) effect sizes are calcu-
lated from different cohorts of individuals (or groups
of plots) within a study (Fig. 2A, referred to as ‘shared
study identity’), and (2) effects sizes are calculated

Fig. 2 Visualisation of the three types of non-independence among
effect sizes: A due to shared study identities (effect sizes from the
same study), B due to shared measurements (effect sizes come
from the same group of individuals/plots but are based on different
types of measurements), and C due to shared control (effect sizes
are calculated using the same control group and multiple treatment
groups; see the text for more details)
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from the same cohort of individuals (or group of plots;
Fig. 2B, referred to as ‘shared measurements’) or par-
tially from the same individuals and plots, more con-
cretely, sharing individuals and plots from the control
group (Fig. 2C, referred to as ‘shared control group’).
The first type of non-independence induces depend-
ence among effect sizes, but not among sampling vari-
ances, and the second type leads to non-independence
among sampling variances. Many datasets, if not
almost all, will have a combination of these three cases
(or even are more complex, see the section "Complex
non-independence"). Failing to deal with these non-
independences will inflate Type 1 error (note that the
overall estimate, b is unlikely to be biased, but stand-
ard error of b, se(b,), will be underestimated; note that
this is also true for all other regression coefficients, e.g.,
by; see Table 1). The multilevel model (as in Eq. 3) only
takes care of cases of non-independence that are due to
the shared study identity but neither shared measure-
ments nor shared control group.

There are two practical ways to deal with non-inde-
pendence among sampling variances. The first method
is that we explicitly model such dependence using a
variance—covariance (VCV) matrix (used in 6 out of
73 studies: 8.2%; Additional file 1). Imagine a simple
scenario with a dataset of three effect sizes from two
studies where two effects sizes from the first study are
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calculated (partially) using the same cohort of indi-
viduals (Fig. 2B); in such a case, the sampling variance
effect, m;, as in Eq. 3, should be written as:

m; ~ N(0, M)

pyvigvie; O

V1[1]

M= | pVipvin] V12 0 |, (4)
0 Vg[g]

where M is the VCV matrix showing the sam-
pling variances,v(;) (study 1 and effect size 1), vy
(study 1 and effect size 2), and vy3] (study 2 and effect
size 3) in its diagonal, and sampling covariance,
P/VIMV12] = P+/ViiziV1[1] in its off-diagonal elements,
where p is a correlation between two sampling variances
due to shared samples (individuals/plots). Once this VCV
matrix is incorporated into the multilevel model (Eq. 3),
all the types of non-independence, as in Fig. 2, are taken
care of. Table 3 shows formulas for the sampling variance
and covariance of the four common effect sizes (SDM,
InRR, proportion and Zr). For comparative effect meas-
ures (Table 2), exact covariances can be calculated under
the case of ‘shared control group’ (see [54, 55]). But this
is not feasible for most circumstances because we usually
do not know what p should be. Some have suggested fix-
ing this value at 0.5 (e.g., [11]) or 0.8 (e.g., [56]); the latter

Table 3 Examples of dependence between two sampling variances (v, and v,) and their covariance for four common effect size statistics

Effect size Situation Variances estimate Covariance estimate
Proportion Shared measurement Vi = W p 201 p0a—r)
1 n n
_ ya(na—ys) ! 2
Vo) = 3
n;
Zr Shared measurement v = %m(tp ) T (10 \ (122
1 RV L -1,
_ 1 1+
V) = 2|n(1—r2)
INRR Shared measurement v = 53 si 2 2 2 2
- 72 <2 1C 1T 2C 2T
mcx mrx S5+ —= —— + —=
2 2 r (”M?c ”WX?T> (”zcxﬁz ”ZTX§T>
vy = —% L
Xy nmt-Xor
Shared control V= s si 2
mc¥Ke | mrXiy mckic
52 52
— 1C 2T
V2= —5 p)
ncXie na1X5m
SMD Shared measurement 1 1 da 2 2
=l G a1 LI (6 NI I
me mr 20)“?””) p mc + mr + 2(nic+mr) ) \ nac + nar + 2(nyc+nar)
=4y 94
noc not 2(nyc+nat)
Shared control 1 1 didy
T nic 2(mc+mr+nar)

- 1 9
VI =ac + mr + 2(Mmc+mr+nar)
2

d

T ST R
V2= 5 i e

For the 2nd column, see Fig. 2. For the 3rd and 4th column, notations represent: the subscript 1C and 2C (control group for 1st and 2nd effect size, respectively, but for
shared control, 1C is used for both effect sizes, but 1C and 2C are the same cohort or set of plots), the subscript 1T and 2T (treatment group for the 1st and 2nd effect size,
respectively; for shared groups, 1T and 2T represents different groups of individuals/plots whereas, for shared measurements, 1T and 2T are the same set of individuals/
plots), p is a correlation in sampling error variance between two measurements, and the other notations are as in Table 1 and the main text (see also [54, 55])
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is a more conservative assumption. Or one can run both
and use one for the main analysis and the other for sen-
sitivity analysis (for more, see the ‘Conducting sensitivity
analysis and critical appraisal” section).

The second method overcomes this very issue of
unknown p by approximating average dependence among
sampling variance (and effect sizes) from the data and
incorporating such dependence to estimate standard errors
(only used in 1 out of 73 studies; Additional file 1). This
method is known as ‘robust variance estimation, RVE, and
the original estimator was proposed by Hedges and col-
leagues in 2010 [57]. Meta-analysis using RVE is relatively
new, and this method has been applied to multilevel meta-
analytic models only recently [58]. Note that the random-
effects model (Eq. 2) and RVE could correctly model both
types of non-independence. However, we do not recom-
mend the use of RVE with Eq. 2 because, as we will later
show, estimating o2 as well as 72 will constitute an impor-
tant part of understanding and gaining more insights from
one’s data. We do not yet have a definite recommendation
on which method to use to account for non-independence
among sampling errors (using the VCV matrix or RVE).
This is because no simulation work in the context of mul-
tilevel meta-analysis has been done so far, using multilevel
meta-analyses [13, 58]. For now, one could use both VCV
matrices and RVE in the same model [58] (see also [21]).

Quantifying and explaining heterogeneity
Measuring consistencies with heterogeneity

As mentioned earlier, quantifying heterogeneity among
effect sizes is an essential component of any meta-analysis.
Yet, our survey showed only 28 out of 73 environmental
meta-analyses (38.4%; Additional file 1) report at least one
index of heterogeneity (e.g., 72, Q, and P). Convention-
ally, the presence of heterogeneity is tested by Cochrane’s
Q test. However, Q (often noted as Q; or Q,,,), and its
associated p value, are not particularly informative: the test
does not tell us about the extent of heterogeneity (e.g. [10],),
only whether heterogeneity is zero or not (when p<0.05).
Therefore, for environmental scientists, we recommend
two common ways of quantifying heterogeneity from a
meta-analytic model: absolute heterogeneity measure (i.e.,
variance components, 72 and o) and relative heterogene-
ity measure (i.e., I%; see also the "Notes on visualisation and
interpretation” section for another way of quantifying and
visualising heterogeneity at the same time, using predic-
tion intervals; see also [59]). We have already covered the
absolute measure (Egs. 2 & 3), so here we explain 2, which
ranges from 0 to 1 (for some caveats for P, see [60, 61]).
The heterogeneity measure, 2, for the random-effect model
(Eq. 2) can be written as:
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Where v is referred to as the typical sampling vari-
ance (originally this is called ‘within-study’ variance, as
in Eq. 2, and note that in this formulation, within-study
effect and the effect of sampling error is confounded;
see [62, 63]; see also [64]) and the other notations are
as above. As you can see from Eq. 5, we can interpret I?
as relative variation due to differences between studies
(between-study variance) or relative variation not due to
sampling variance.

By seeing I as a type of interclass correlation (also known
as repeatability [65],), we can generalize I* to multilevel
models. In the case of Eq. 3 ([40, 66]; see also [52]), we have:

) 2 4 o2
total — _[2+02 iy

(7)

Because we can have two more I, Eq. 7 is written as Itzo tal
these other two are I2, , and Ie2 o Tespectively:

study
2

2 T

Istudy - 72 + o2 _}_v’ (8)
2

2 _ o

Ieﬁect - 72 + o2 gy (9)

Itzot ; represents relative variance due to differences both
between and within studies (between- and within-study
variance) or relative variation not due to sampling variance,

while I szm dy is relative variation due to differences between

studies, and Igﬁe ., is relative variation due to differences
within studies (Fig. 3A). Once heterogeneity is quantified
(note almost all data will have non-zero heterogeneity and
an earlier meta-meta-analysis suggests in ecology, we have
on average, I> close to 90% [66]), it is time to fit a meta-
regression model to explain the heterogeneity. Notably, the

magnitude of Isztu dy (and 72) and Iéfe . (and o?) can already

inform you which predictor variable (usually referred to as
‘moderator’) is likely to be important, which we explain in
the next section.

Explaining variance with meta-regression

We can extend the multilevel model (Eq. 3) to a meta-
regression model with one moderator (also known as pre-
dictor, independent, explanatory variable, or fixed factor),
as below:
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Total variance
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Explaining variance: R?

RZ = .
B +7 +0

= 2 2
. - fstudy + feffect

v Sampling variance

o2 Within-study variance

Between-study variance

Legend

v Sampling variance
% Unexplained 72 (study level)

o? Unexplained o2 (effect-size level)
- Explained variance
fsztudy Explained variance (study level)
feszect Explained variance (effect-size level)

Fig. 3 Visualisation of variation (heterogeneity) partitioned into different variance components: A quantifying different types of / from a multilevel
model (3-level; see Fig. 1C) and B variance explained, R?, by moderators. Note that different levels of variances would be explained, depending on

which level a moderator belongs to (study level and effect-size level)

zi = Bo + Brxyjy) + wip) + e + my, (10)
where 1 is a slope of the moderator (x,), x1; denotes the
value of x;, corresponding to the jth study (and the ith
effect sizes). Equation (10) (meta-regression) is compara-
ble to the simplest regression with the intercept (8o) and
slope (B1). Notably, xy;j; differs between studies and,
therefore, it will mainly explain the variance component,

72 (which relates to Ifm dy)' On the other hand, if noted

like x1;, this moderator would vary within studies or at
the level of effect sizes, therefore, explaining o2 (relating
to Iéﬁct). Therefore, when 72 (Isztudy)’ oro? (Igﬁect)’ is close
to zero, there will be little point fitting a moderator(s) at

the level of studies, or effect sizes, respectively.

As in multiple regression, we can have multiple (multi-
moderator) meta-regression, which can be written as:

q
zi=Po+ Z Buxnp + ujlg + e + my,
h=1

(11)

where ZZ=1 Buxpi) denotes the sum of all the modera-
tor effects, with g being the number of slopes (staring
with #=1). We note that g is not necessarily the num-
ber of moderators. This is because when we have a cat-
egorical moderator, which is common, with more than
two levels (e.g., method A, B & C), the fixed effect part
of the formula is By + B1x1 + Baxz, where x; and x, are
‘dummy’ variables, which code whether the ith effect size
belongs to, for example, method B or C, with g1 and B
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being contrasts between A and B and between A and
C, respectively (for more explanations of dummy vari-
ables, see our tutorial page [https://itchyshin.github.io/
Meta-analysis_tutorial/]; also see [67, 68]). Traditionally,
researchers conduct separate meta-analyses per different
groups (known as ‘sub-group analysis’), but we prefer a
meta-regression approach with a categorical variable,
which is statistically more powerful [40]. Also, impor-
tantly, what can be used as a moderator(s) is very flexible,
including, for example, individual/plot characteristics
(e.g., age, location), environmental factors (e.g., tem-
perature), methodological differences between studies
(e.g., randomization), and bibliometric information (e.g.,
publication year; see more in the section ‘Checking for
publication bias and robustness’). Note that moderators
should be decided and listed a priori in the meta-analysis
plan (i.e., a review protocol or pre-registration).

As with meta-analysis, the Q-test (Q,, or Q,,,erat0r) iS
often used to test the significance of the moderator(s).
To complement this test, we can also quantify variance
explained by the moderator(s) using R*. We can define R?
using Eq. (11) as:

2 f?
R _f2+-[2+02’ (12)
q
f* = Var (Z ,thh[i]); (13)
h=1

where R? is known as marginal R* (sensu [69, 70]; cf.
[71]), f? is the variance due to the moderator(s), and
(f* + 12 4 02) here equals to (t2 +02) in Eq. 7, as f2
‘absorbs’ variance from 72 and/or o2. We can compare
the similarities and differences in Fig. 3B where we

denote a part of f2 originating from 2 as S%M dy while o2

as ]21276 - In a multiple meta-regression model, we often
want to find a model with the ‘best’ or an adequate set of
predictors (i.e., moderators). R* can potentially help such
a model selection process. Yet, methods based on infor-
mation criteria (such as Akaike information criterion,
AIC) may be preferable. Although model selection based
on the information criteria is beyond the scope of the
paper, we refer the reader to relevant articles (e.g., [72,
73]), and we show an example of this procedure in our
online tutorial (https://itchyshin.github.io/Meta-analy
sis_tutorial/).

Notes on visualisation and interpretation
Visualization and interpretation of results is an essential
part of a meta-analysis [74, 75]. Traditionally, a forest plot
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is used to display the values and 95% of confidence inter-
vals (ClIs) for each effect size and the overall effect and
its 95% CI (the diamond symbol is often used, as shown
in Fig. 4A). More recently, adding a 95% prediction inter-
val (PI) to the overall estimate has been strongly rec-
ommended because 95% PIs show a predicted range of
values in which an effect size from a new study would fall,
assuming there is no sampling error [76]. Here, we think
that examining the formulas for 95% CIs and PIs for the
overall mean (from Eq. 3) is illuminating:

95%CI = Bo % Laf[a=0.055¢(Bo)s (14)

95%PI = Bo % tapa—005)V s¢*(Bo) + 7> + 0%, (15)

where t4r(4—0.05) denotes the ¢ value with the degree of
freedom, df, at 97.5 percentile (or « = 0.05) and other
notations are as above. In a meta-analysis, it has been
conventional to use z value 1.96 instead of #47(y—0.05, but
simulation studies have shown the use of ¢ value over z
value reduces Type 1 errors under many scenarios and,
therefore, is recommended (e.g., [13, 77]). Also, it is
interesting to note that by plotting 95% PIs, we can visu-
alize heterogeneity as Eq. 15 includes 72 and o2,

A ‘“forest’ plot can become quickly illegible as the num-
ber of studies (effect sizes) becomes large, so other meth-
ods of visualizing the distribution of effect sizes have
been suggested. Some suggested to present a ‘caterpillar’
plot, which is a version of the forest plot, instead (Fig. 4B;
e.g., [78]). We here recommend an ‘orchard’ plot, as it
can present results across different groups (or a result of
meta-regression with a categorical variable), as shown
in Fig. 4C [78]. For visualization of a continuous vari-
able, we suggest what is called a ‘bubble’ plot, shown in
Fig. 4D. Visualization not only helps us interpret meta-
analytic results, but can also help to identify something
we may not see from statistical results, such as influential
data points and outliers that could threaten the robust-
ness of our results.

Checking for publication bias and robustness
Detecting and correcting for publication bias

Checking for and adjusting for any publication bias is
necessary to ensure the validity of meta-analytic infer-
ences [79]. However, our survey showed almost half of
the environmental meta-analyses (46.6%; 34 out of 73
studies; Additional file 1) neither tested for nor corrected
for publication bias (cf. [14-16]). The most popular
methods used were: (1) graphical tests using funnel plots
(26 studies; 35.6%), (2) regression-based tests such as
Egger regression (18 studies; 24.7%), (3) Fail-safe number
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Fig. 4 Different types of plots useful for a meta-analysis using data from Midolo et al. [133]: A a typical forest plot with the overall mean shown as a
diamond at the bottom (20 effect sizes from 20 studies are used), B a caterpillar plot (100 effect sizes from 24 studies are used), C an orchard plot of
categorical moderator with seven levels (all effect sizes are used), and D a bubble plot of a continuous moderator. Note that the first two only show
confidence intervals, while the latter two also show prediction intervals (see the text for more details)

tests (12 studies; 16.4%), and (4) trim-and-fill tests (10
studies; 13.7%). We recently showed that these meth-
ods are unsuitable for datasets with non-independent
effect sizes, with the exception of funnel plots [80] (for
an example of funnel plots, see Fig. 5A). This is because
these methods cannot deal with non-independence in the
same way as the fixed-effect and random-effects models.
Here, we only introduce a two-step method for multilevel
models that can both detect and correct for publication
bias [80] (originally proposed by [81, 82]), more specifi-
cally, the “small study effect” where an effect size value
from a small-sample-sized study can be much larger in

magnitude than a ‘true’ effect [83, 84]. This method is a
simple extension of Egger’s regression [85], which can be
easily implemented by using Eq. 10:

1
zi = Po+ 1 =+ +ei +mi, (16)
l

/30+ﬂ1< )+u][t]+el+mu
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Fig. 5 Different types of plots for publication bias tests: A a funnel
plot using model residuals, showing a funnel (white) that shows the
region of statistical non-significance (30 effect sizes from 30 studies
are used; note that we used the inverse of standard errors for the
y-axis, but for some effect sizes, sample size or ‘effective’ sample size
may be more appropriate), B a bubble plot visualising a multilevel
meta-regression that tests for the small study effect (note that the
slope was non-significant: b=10.120, 95% Cl=[— 0.095, 0.334]; all
effect sizes are used), and C a bubble plot visualising a multilevel
meta-regression that tests for the decline effect (the slope was
non-significant: b=0.003, 95%Cl = [— 0.002, 0.008])

where 7; is known as effective sample size; for Zr and
proportion it is just #, and for SMD and InRR, it is
nicnir/(nic + niT), as in Table 2. When B is significant,
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we conclude there exists a small-study effect (in terms of
a funnel plot, this is equivalent to significant funnel asym-
metry). Then, we fit Eq. 17 and we look at the intercept
Bo, which will be a bias-corrected overall estimate [note
that By in Eq. (16) provides less accurate estimates when
non-zero overall effects exist [81, 82]; Fig. 5B]. An intui-
tive explanation of why Bo (Eq. 17) is the ‘bias-corrected’
estimate is that the intercept represents 1/m; =0 (or
n; = o0); in other words, By is the estimate of the over-
all effect when we have a very large (infinite) sample size.
Of note, appropriate bias correction requires a selection-
mode-based approach although such an approach is yet
to be available for multilevel meta-analytic models [80].

Conveniently, this proposed framework can be
extended to test for another type of publication bias,
known as time-lag bias, or the decline effect, where effect
sizes tend to get closer to zero over time, as larger or sta-
tistically significant effects are published more quickly
than smaller or non-statistically significant effects [86,
87]. Again, a decline effect can be statistically tested by
adding year to Eq. (3):

zi = Po + Bic(yearj) + wipi) + i + mj, (18)

where c(yearj[,»]) is the mean-centred publication year
of a particular study (study j and effect size i); this cen-
tring makes the intercept Sp meaningful, representing the
overall effect estimate at the mean value of publication
years (see [68]). When the slope is significantly different
from 0, we deem that we have a decline effect (or time-lag
bias; Fig. 5C).

However, there may be some confounding modera-
tors, which need to be modelled together. Indeed, Egger’s
regression (Egs. 16 and 17) is known to detect the funnel
asymmetry when there is little heterogeneity; this means
that we need to model \/1/7; with other moderators that
account for heterogeneity. Given this, we probably should
use a multiple meta-regression model, as below:

q
zi = Po + B1 \/ﬁT + Bac(veary) + > Bukngiy + wiy + ei + m,

! h=3
(19)
where ZZ:B Buxpp is the sum of the other modera-
tor effects apart from the small-study effect and decline
effect, and other notations are as above (for more details
see [80]). We need to carefully consider which modera-
tors should go into Eq. 19 (e.g., fitting all moderators or
using an AIC-based model selection method; see [72,
73]). Of relevance, when running complex models, some
model parameters cannot be estimated well, or they are
not ‘identifiable’ [88]. This is especially so for variance
components (random-effect part) rather than regres-
sion coeffects (fixed-effect part). Therefore, it is advisable
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to check whether model parameters are all identifiable,
which can be checked using the profile function in meta-
for (for an example, see our tutorial webpage [https://
itchyshin.github.io/Meta-analysis_tutorial/]).

Conducting sensitivity analysis and critical appraisal
Sensitivity analysis explores the robustness of meta-ana-
lytic results by running a different set of analyses from
the original analysis, and comparing the results (note that
some consider publication bias tests a part of sensitivity
analysis; [11]). For example, we might be interested in
assessing how robust results are to the presence of influ-
ential studies, to the choice of method for addressing
non-independence, or weighting effect sizes. Unfortu-
nately, in our survey, only 37% of environmental meta-
analyses (27 out of 73) conducted sensitivity analysis
(Additional file 1). There are two general and interrelated
ways to conduct sensitivity analyses [73, 89, 90]. The first
one is to take out influential studies (e.g., outliers) and
re-run meta-analytic and meta-regression models. We
can also systematically take each effect size out and run a
series of meta-analytic models to see whether any result-
ing overall effect estimates are different from others; this
method is known as ‘leave-one-out, which is considered
less subjective and thus recommended.

The second way of approaching sensitivity analysis is
known as subset analysis, where a certain group of effect
sizes (studies) will be excluded to re-run the models with-
out this group of effect sizes. For example, one may want
to run an analysis without studies that did not randomize
samples. Yet, as mentioned earlier, we recommend using
meta-regression (Eq. 13) with a categorical variable of
randomization status (‘randomized’ or ‘not randomized’),
to statistically test for an influence of moderators. It is
important to note that such tests for risk of bias (or study
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quality) can be considered as a way of quantitatively eval-
uating the importance of study features that were noted
at the stage of critical appraisal, which is an essential part
of any systematic review (see [11, 91]). In other words,
we can use meta-regression or subset analysis to quan-
titatively conduct critical appraisal using (study-level)
moderators that code, for example, blinding, randomiza-
tion, and selective reporting. Despite the importance of
critical appraisal ([91]), only 4 of 73 environmental meta-
analyses (5.6%) in our survey assessed the risk of bias in
each study included in a meta-analysis (i.e., evaluating a
primary study in terms of the internal validity of study
design and reporting; Additional file 1). We emphasize
that critically appraising each paper or checking them for
risk of bias is an extremely important topic. Also, criti-
cal appraisal is not restricted to quantitative synthesis.
Therefore, we do not cover any further in this paper for
more, see [92, 93]).

Notes on transparent reporting and open archiving

For environmental systematic reviews and maps, there
are reporting guidelines called RepOrting standards
for Systematic Evidence Syntheses in environmental
research, ROSES [94] and synthesis assessment check-
list, the Collaboration for Environmental Evidence Syn-
thesis Appraisal Tool (CEESAT; [95]). However, these
guidelines are somewhat limited in terms of reporting
quantitative synthesis because they cover only a few core
items. These two guidelines are complemented by the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Ecology and Evolutionary Biology
(PRISMA-EcoEvo; [96]; cf. [97, 98]), which provides an
extended set of reporting items covering what we have
described above. Items 20-24 from PRISMA-EcoEvo
are most relevant: these items outline what should be

Table 4 Items relevant to reporting results for a meta-analysis from the Preferred Reporting Items for Systematic reviews and Meta-

Analysis for Ecology and Evolutionary Biology (PRISMA-EcoEvo; [96])

Item Description

20: Sample sizes and study characteristics

“Report the number of studies and effect size for data included in meta-analyses and subsets of data

included in meta-regressions. Provide a summary of kye characteristics for reported outcomes (either in
text or figures; e.g., one quarter of effect sizes reported for vertebrates and the rest invertebrates) and their
limitations (e.g., collinearity and overlaps between moderators), including characteristics related individual

study quality (risk of bias)”

21: Meta-analysis
confidence/credible intervals!

22: Heterogeneity

“Provide a quantitative synthesis of results across studies, including estimates for the main effect size, with

“Report indicators of heterogeneity in the estimated effect (e.g. /, tau® and other variance components)”

23: Meta-regression “Provide estimates of meta-regression slopes (i.e. regression coefficients) for all variables that were assessed
for their contribution to heterogeneity. Include confidence/credible intervals, and report interactions if they

were included. Describe outcomes from model selection, if done (e.g. R%and AIC)”

24: Outcomes of publication bias and
sensitivity analysis

"Provide results for the assessments of the risks of bias (e.g. Egger’s regression, funnel plots) and robustness
of the review's results (e.g. subgroup analyses, meta-regression of study quality, results from alternative
methods of analysis, and temporal trends)”
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reported in the Methods section: (i) sample sizes and
study characteristics, (ii) meta-analysis, (iii) heterogene-
ity, (iv) meta-regression and (v) outcomes of publication
bias and sensitivity analysis (see Table 4). Our survey, as
well as earlier surveys, suggest there is a large room for
improvement in the current practice ([14—16]). Inciden-
tally, the orchard plot is well aligned with Item 20, as
this plot type shows both the number of effect sizes and
studies for different groups (Fig. 4C). Further, our survey
of environmental meta-analyses highlighted the poor
standards of data openness (with 24 studies sharing data:
32.9%) and code sharing (7 studies: 29.2%; Additional
file 1). Environmental scientists must archive their data
as well as their analysis code in accordance with the FAIR
principles (Findable, Accessible, Interoperable, and Reus-
able [99]) using dedicated depositories such as Dryad,
FigShare, Open Science Framework (OSF), Zenodo or
others (cf. [100, 101]), preferably not on publisher’s web-
pages (as paywall may block access). However, archiv-
ing itself is not enough; data requires metadata (detailed
descriptions) and the code needs to also be FAIR [102,
103].

Other relevant and advanced issues

Scale dependence

The issue of scale dependence is a unique yet wide-
spread problem in environmental sciences (see [7,
104]); our literature survey indicated three quarters of
the environmental meta-analyses (56 out of 73 studies)
have inferences that are potentially vulnerable to scale-
dependence [105]. For example, studies that set out to
compare group means in biodiversity measures, such as
species richness, can vary as a function of the scale (size)
of the sampling unit. When the unit of replication is a
plot (not an individual animal or plant), the aerial size of
a plot (e.g., 100 cm? or 1 km?) will affect both the pre-
cision and accuracy of effect size estimates (e.g., InRR
and SMD). In general, a study with larger plots might
have more accurately estimated species richness differ-
ences, but less precisely than a study with smaller plots
and greater replication. Lower replication means that
our sampling variance estimates are likely to be mises-
timated, and the study with larger plots will generally
have less weight than the study with smaller plots, due to
higher sampling variance. Inaccurate variance estimates
in little-replicated ecological studies are known to cause
an accumulating bias in precision-weighted meta-analy-
sis, requiring correction [43]. To assess the potential for
scale-dependence, it is recommended that analysts test
for possible covariation among plot size, replication, vari-
ances, and effect sizes [104]. If detected, analysts should
use an effect size measure that is less sensitive to scale
dependence (InRR), and could use the size of a plot as a
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moderator in meta-regression, or alternatively, they con-
sider running an unweighted model ([7]; note that only
12%, 9 out of 73 studies, accounted for sampling area in
some way; Additional file 1).

Missing data

In many fields, meta-analytic data almost always encom-
pass missing values see [106-108]. Broadly, we have
two types of missing data in meta-analyses [109, 110]:
(1) missing data in standard deviations or sample sizes,
associated with means, preventing effect size calcula-
tions (Table 2), and (2) missing data in moderators.
There are several solutions for both types. The best, and
first to try, should be contacting the authors. If this fails,
we can potentially ‘impute’ missing data. Single impu-
tation methods using the strong correlation between
standard deviation and mean values (known as mean—
variance relationship) are available, although single
imputation can lead to Type I error [106, 107] (see also
[43]) because we do not model the uncertainty of impu-
tation itself. Contrastingly, multiple imputation, which
creates multiple versions of imputed datasets, incorpo-
rates such uncertainty. Indeed, multiple imputation is a
preferred and proven solution for missing data in effect
sizes and moderators [109, 110]. Yet, correct implemen-
tation can be challenging (see [110]). What we require
now is an automated pipeline of merging meta-analysis
and multiple imputation, which accounts for imputation
uncertainty, although it may be challenging for complex
meta-analytic models. Fortunately, however, for InRR,
there is a series of new methods that can perform better
than the conventional method and which can deal with
missing SDs [44]; note that these methods do not deal
with missing moderators. Therefore, where applicable,
we recommend these new methods, until an easy-to-
implement multiple imputation workflow arrives.

Complex non-independence

Above, we have only dealt with the model that includes
study identities as a clustering/grouping (random) factor.
However, many datasets are more complex, with poten-
tially more clustering variables in addition to the study
identity. It is certainly possible that an environmental
meta-analysis contains data from multiple species. Such a
situation creates an interesting dependence among effect
sizes from different species, known as phylogenetic relat-
edness, where closely related species are more likely to be
similar in effect sizes compared to distantly related ones
(e.g., mice vs. rats and mice vs. sparrows). Our multilevel
model framework is flexible and can accommodate phy-
logenetic relatedness. A phylogenetic multilevel meta-
analytic model can be written as [40, 111, 112]:
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zi = Bo + ak[i) + Sk + i +ei + my, (20)

ay ~ N(O,sz),sk ~ N(O,yz),uj ~ N(O,rz),
e ~ N(O,az), & m; ~ N(O, v;),

where ay; is the phylogenetic (species) effect for the
kth species (effect size & Nyge, (i=1, 2,..., Nogoe) > Ny
(=1, 2,ecss Nyguay) > Nopecies (k=1, 2,..., Nipegie)), normally
distributed with @?A where is the phylogenetic variance
and A is a correlation matrix coding how close each spe-
cies are to each other and w? is the phylogenetic vari-
ance, sip;) is the non-phylogenetic (species) effect for the
kth species (effect size i), normally distributed with the
variance of 2 (the non-phylogenetic variance), and other
notations are as above. It is important to realize that A
explicitly models relatedness among species, and we do
need to provide this correlation matrix, using a distance
relationship usually derived from a molecular-based phy-
logenetic tree (for more details, see [40, 111, 112]). Some
may think that the non-phylogenetic term (si[;) is unnec-
essary or redundant because si; and the phylogenetic
term (ag[;)) are both modelling variance at the species
level. However, a simulation recently demonstrated that
failing to have the non-phylogenetic term (si[;)) will often
inflate the phylogenetic variance w?, leading to an incor-
rect conclusion that there is a strong phylogenetic signal
(as shown in [112]). The non-phylogenetic variance (y2)
arises from, for example, ecological similarities among
species (herbivores vs. carnivores or arboreal vs. ground-
living) not phylogeny [40].

Like phylogenetic relatedness, effect sizes arising from
closer geographical locations are likely to be more cor-
related [113]. Statistically, spatial correlation can be also
modelled in a manner analogous to phylogenetic related-
ness (i.e., rather than a phylogenetic correlation matrix,
A, we fit a spatial correlation matrix). For example, Maire
and colleagues [114] used a meta-analytic model with
spatial autocorrelation to investigate the temporal trends
of fish communities in the network of rivers in France.
We note that a similar argument can be made for tempo-
ral correlation, but in many cases, temporal correlations
could be dealt with, albeit less accurately, as a special case
of ‘shared measurements, as in Fig. 2. An important idea
to take away is that one can model different, if not all,
types of non-independence as the random factor(s) in a
multilevel model.

Advanced techniques

Here we touch upon five advanced meta-analytic tech-
niques with potential utility for environmental sciences,
providing relevant references so that interested readers
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can obtain more information on these advanced top-
ics. The first one is the meta-analysis of magnitudes, or
absolute values (effect sizes), where researchers may be
interested in deviations from O, rather than the direc-
tionality of the effect [115]. For example, Cohen and col-
leagues [116] investigated absolute values of phenological
responses, as they were concerned with the magnitudes
of changes in phenology rather than directionality.

The second method is the meta-analysis of interaction
where our focus is on synthesizing the interaction effect
of, usually, 2 x 2 factorial design (e.g., the effect of two
simultaneous environmental stressors [54, 117, 118]; see
also [119]). Recently, Siviter and colleagues [120] showed
that agrochemicals interact synergistically (i.e., non-addi-
tively) to increase the mortality of bees; that is, two agro-
chemicals together caused more mortality than the sum
of mortalities of each chemical.

Third, network meta-analysis has been heavily used in
medical sciences; network meta-analysis usually com-
pares different treatments in relation to placebo and
ranks these treatments in terms of effectiveness [121].
The very first ‘environmental’ network meta-analysis, as
far as we know, investigated the effectives of ecosystem
services among different land types [122].

Fourth, a multivariate meta-analysis is where one can
model two or more different types of effect sizes with
the estimation of pair-wise correlations between differ-
ent effect sizes. The benefit of such an approach is known
as the ‘borrowing of strength; where the error of fixed
effects (moderators; e.g., b, and b;) can be reduced when
different types of effect sizes are correlated (i.e., se(b)
and se(b;) can be smaller [123]) For example, it is possi-
ble for InRR (differences in mean) and InVR (differences
in SDs) to be modelled together (cf. [124]).

Fifth, as with network meta-analysis, there has been
a surge in the use of ‘individual participants data; called
‘IPD meta-analysis, in medical sciences [125, 126]. The
idea of IPD meta-analysis is simple—rather than using
summary statistics reported in papers (sample means
and variances), we directly use raw data from all studies.
We can either model raw data using one complex mul-
tilevel (hierarchical) model (one-step method) or cal-
culate statistics for each study and use a meta-analysis
(two-step method; note that both methods will usually
give the same results). Study-level random effects can
be incorporated to allow the response variable of inter-
est to vary among studies, and overall effects correspond
to fixed, population-level estimates. The use of IPD or
‘full-data analyses’ has also surged in ecology, aided by
open-science policies that encourage the archival of raw
data alongside articles, and initiatives that synthesise raw
data (e.g., PREDICTS [127], BioTime [128]). In health
disciplines, such meta-analyses are considered the ‘gold



Nakagawa et al. Environmental Evidence (2023) 12:8

standard’ [129], owing to their potential for resolving
issues regarding study-specific designs and confounding
variation, and it is unclear whether and how they might
resolve issues such as scale dependence in environmental
meta-analyses [104, 130].

Conclusions

In this article, we have attempted to describe the
most practical ways to conduct quantitative synthesis,
including meta-analysis, meta-regression, and publica-
tion bias tests. In addition, we have shown that there is
much to be improved in terms of meta-analytic prac-
tice and reporting via a survey of 73 recent environ-
mental meta-analyses. Such improvements are urgently
required, especially given the potential influence that
environmental meta-analyses can have on policies
and decision-making [8]. So often, meta-analysts have
called for better reporting of primary research (e.g.
[131, 132]), and now this is the time to raise the stand-
ards of reporting in meta-analyses. We hope our con-
tribution will help to catalyse a turning point for better
practice in quantitative synthesis in environmental sci-
ences. We remind the reader most of what is described
is implemented in the R environment on our tutorial
webpage and researchers can readily use the proposed
models and techniques (https://itchyshin.github.io/
Meta-analysis_tutorial/). Finally, meta-analytic tech-
niques are always developing and improving. It is cer-
tainly possible that in the future, our proposed models
and related methods will become dated, just as the tra-
ditional fixed-effect and random-effects models already
are. Therefore, we must endeavour to be open-minded
to new ways of doing quantitative research synthesis in
environmental sciences.
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