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ABSTRACT

Insurers and risk managers for critical infrastructure such as transport or power networks typically do not account for flooding
and extreme winds happening at the same time in their quantitative risk assessments. We explore this potentially critical un-
derestimation of risk from these co-occurring hazards through studying events using the regional 12km resolution UK Climate
Projections for a 1981-1999 baseline and projections of 2061-2079 (RCP8.5). We create a new wintertime (October-March) set of
3427 wind events to match an existing set of fluvial flow extremes and design innovative multi-event episodes (At of 1-180days
long) that reflect how periods of adverse weather affect society (e.g., through damage). We show that the probability of co-
occurring wind-flow episodes in Great Britain (GB) is underestimated 2-4 times if events are assumed independent. Significantly,
this underestimation is greater both as severity increases and episode length reduces, highlighting the importance of considering
risk from closely consecutive storms (At ~3 days) and the most severe storms. In the future (2061-2079), joint wind-flow extremes
are twice as likely as during 1981-1999. Statistical modelling demonstrates that changes may significantly exceed thermody-
namic expectations of higher river flows in a wetter future climate. The largest co-occurrence increases happen in mid-winter
(DJF) with changes in the North Atlantic jet stream an important driver; we find the jet is strengthened and squeezed into a
southward-shifted latitude window (45°-50° N) giving typical future conditions that match instances of high flows and joint ex-
tremes impacting GB today. This strongly implies that the large-scale driving conditions (e.g., jet stream state) for a multi-impact
‘perfect storm’ will vary by country; understanding regional drivers of weather hazards over climate timescales is vital to inform
risk mitigation and planning (e.g., diversification and mutual aid across Europe).

1 | Introduction that the risk of impacts occurring together is harder to quantify,

while the impact of a combined event to society can be greater

The challenge of multi-hazard risk has long been recognised for
many natural hazards (Gallina et al. 2016; Hillier 2017; Kappes
et al. 2012; UNEP 1992; Ward et al. 2022) and storms in particu-
lar (e.g., Southern 1979; White 1974). This co-occurrence of haz-
ards has also recently been framed as ‘compound events’ (e.g.,
Simpson et al. 2021; Zscheischler et al. 2018). The difficulty is

than would be the case if the events were to occur separately
(e.g., Hillier et al. 2023).

Inland flooding and extreme winds events cause the largest
losses of the weather related hazards affecting North-West
Europe (European Environment Agency 2024; Mitchell-Wallace
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et al. 2017; PERILS 2024). Illustratively, during 16-21 February
2022 three storms (Dudley, Eunice and Franklin) inflicted var-
ious hazards including flooding and extreme winds across the
UK and Northwest Europe (Miihr et al. 2022; kendon 2022;
Volonté et al. 2024a, 2024b), resulting in multi-sector impacts
(e.g., to transport and power distribution) and nearly €4 billion
in insured losses (Kendon 2022; PERILS 2023; Saville 2022).
Similarly, from 3 to 27 December 1999 the storm sequence of
Anatol, Lothar, Martin caused ~€10 billion insured property
damage alone in Belgium, Switzerland, Luxembourg, France,
Germany and Denmark (PERILS 2024; Roberts et al. 2014).

Strikingly, most of the 98 impactful wintertime (October-
March) wind or flood incidents in the PERILS database
(PERILS 2024) from 2010 to 2024 affect Great Britain (GB,
73), more than France or Germany (38 or 47, respectively).
Moreover, wintertime correlation of proxies for flooding and ex-
treme wind in countries near GB appears similar (Bloomfield
et al. 2023; Hillier and Dixon 2020). This is likely because extra-
tropical cyclones typically track eastwards from the Atlantic
(e.g., Roberts et al. 2014) and are a key driver of both hazards
across NW Europe (Figure 1), illustrated by joint wind-flood
events during named storms (e.g., Fink et al. 2009; Kendon and
McCarthy 2015; Liberato 2014; Matthews et al. 2018). As such
GB is a useful sentinel location for studying co-occurring flood-
wind impacts in NW Europe.

Building on initial work establishing a relationship between
flooding and extreme winds (Hillier et al. 2015; Matthews
et al. 2014), there is now strong evidence of co-occurrence in
GB on daily to seasonal timescales (Bloomfield et al. 2023; De
Luca et al. 2017; Hillier and Dixon 2020; Jones, Stephenson,
and Priestley 2024; Martius, Pfahl, and Chevalier 2016;
Owen, Catto, Dunstone, et al. 2021; Owen, Catto, Stephenson,
et al. 2021), perhaps controlled by the jet stream's character-
istics via its influence on cyclogenesis and storm evolution
(Hillier and Dixon 2020). Existing work predominantly uses
heavy precipitation as a proxy for flooding (e.g., Vignotto,
Engelke, and Zscheischler 2021). As reviewed in Bloomfield
et al. (2023) studies using observed river flow or impact data,
which more directly relate to flooding, are much less common
in GB (De Lucaet al. 2017; Hillier et al. 2015, 2020) or elsewhere
(Kiipfer 2024). Indeed, even globally and considering modelled
data, work is sparse; only three studies asses the dependency
of river flow and wind derived from the same underlying cli-
mate model, two in GB (Bloomfield et al. 2023, 2024) and one
globally for tropical cyclones (Stalhandske et al. 2024). Thus,
future change in joint wintertime flood-wind risk remains of
interest.

Two recent studies have used the UK Climate Projections to
advance understanding of the drivers of the wintertime co-
occurrence of potential flooding and extreme wind in GB, pres-
ent and future. Bloomfield et al. (2024) used 30 pre-defined
weather patterns from the 12km horizontal resolution regional
simulations of this model (hereafter UKCP18r) and a GB hy-
drological model to assess the meteorological drivers of joint
wintertime wind and high flow extremes. For 1-day windows,
using population-weighted severity indices, they found cyclonic
weather types typical, and also confirmed the positive phase
of the North Atlantic Oscillation (NAO+) as an associated
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FIGURE 1 | Indicative map of the distribution of severe wind in
NW Europe from a sub-set of 25 storms that caused significant dam-
age in the British Isles from two catalogues (PERILS 2024; Roberts
et al. 2014), for which ERAS5 data are available (i.e., 1979-2023). Of
these, 16 pre-2021 tracks are shown where track data are available (light
grey lines) (CCC 2022) with four illustrative tracks labelled and named
(dark grey lines). SSI is the Storm Severity index is v? over 98th percen-
tile (see Section 2.1) and is a total per country accumulated over the
storms. Map projection: Plate carrée. [Colour figure can be viewed at
wileyonlinelibrary.com]

state (Hillier et al. 2020). At seasonal timescales Bloomfield
etal. (2024) also demonstrated a future increase in years that will
be both wet and windy (c. X3, p<0.05). Manning et al. (2024)
used the convection permitting UKCP local (2.2km horizontal
resolution) to investigate the role of storm track position and
jet stream on the co-occurrence of wind and rain extremes. For
individual storm events in mid-winter (December-February)
they ascribed future change in co-occurrence to predominantly
thermodynamic causes (i.e., warmer and therefore wetter condi-
tions) supported by a more southerly jet stream position during
those storms. Both papers find a fourfold increase in short-
duration joint events (i.e., < 1-day) into the future.

Our work here provides several unique contributions to this
research area. Using high flows rather than precipitation,
it quantifies the co-occurrence of events (E) within multi-
hazard episodes (¢) spanning daily to seasonal durations (i.e.,
At =1-180days long) from October to March in the UKCP18 re-
gional data (1981-1999, 2061-2079). It uses high flows as they do
not simply arise from precipitation in individual storms, so the
causative storm(s) might differ in character as might anteced-
ent conditions (e.g., soil saturation) and associated jet stream
dynamics. It examines more deeply the role of the jet stream,
primarily by investigating the role of seasonality (i.e., the time-
distribution of events within the winter). To do this it employs an
accessible index that is widely used to characterise the latitude
and strength of the North Atlantic jet (Woollings, Hannachi,
and Hoskins 2010), which will enable future inter-comparison
between climate models. Finally, to give real-world relevance
it develops an Event Coincidence Analysis approach using dy-
namically positioned time windows (AWECA) to reflect how
these multi-event windy episodes coincident with high river
flows (At=1-180days) are experienced societally.

To define distinct claims (re)insurers commonly use windows
of 72h for storms (At=3days) or 21days for floods (so-called
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‘hours clauses’ e.g., Mitchell-Wallace et al. 2017; PERILS 2023),
which insurers will position to encompass the maximum loss
possible. More widely, key impacts are typically documented
(e.g., by an emergency response manager) with a day-to-day de-
scription e.g., ‘It started with the storm on Tuesday, and ended
after the last heavy rain on Sunday’. As such, our proposal of
dynamic time windows for episodes (¢) uses the weather events
(E) themselves to define the evident start and end of the adverse
conditions, as an interested observer might. To study individ-
ual weather phenomena (e.g., distinct storm) a buffer approach
has been used, such as +24h (i.e., Manning et al. 2024; Martius,
Pfahl, and Chevalier 2016) to give a 3-day symmetrical window.
However, it is less straightforward to appropriately capture an
episode containing a cluster of storms over a longer period such
as 14-days (e.g., Vitolo et al. 2009), and non-overlapping win-
dows or block maxima (e.g., Bloomfield et al. 2023; Zscheischler
et al. 2021) may chop a storm in half. Also, time-to-peak model-
ling of hydrographs indicates that riverine responses to precipi-
tation in GB are $40h (De Luca et al. 2017), giving a lag after a
storm that should be accounted for. So, as well as aligning with
timescales associated with storms, our analysis is designed to
align with stakeholder definitions and experience, with insurers
providing a specific motivation to focus on time windows (Af)
of 3 and 21days. The work has real-world relevance as even in
insurance, where natural hazard risk modelling is quite mature
(e.g., Mitchell-Wallace et al. 2017) because flooding and extreme
wind models of NW Europe are still independently derived;
they are based on different underlying climate simulations
(Dixon, Souch, and Whitaker 2017; Hillier et al. 2024), with po-
tentially significant underestimates of financial losses (Hillier
et al. 2023, 2024).

Using the idea of framing multi-hazard risk environments as an
in-depth or user focussed case study to cut through complexity
(Hillier and Van Meeteren 2024; Ward et al. 2022) the present
work is framed by the insurance sector, yet results are more
widely applicable across society, answering four main research
questions:

1. To what extent do the most severe extreme winds and flows
tend to co-occur? Particularly, asymptotic dependence is
considered.

2. How does strength of co-occurrence vary with the time-
window (Atf) used to group events into episodes?

3. How effectively might relatively simple metrics of jet
position and strength be used in a functional, readily
applied tool to distinguish jet states characteristic of
co-occurrence?

4. How do future changes in the North Atlantic jet stream in-
fluence co-occurrence in climate model simulations of the
future?

2 | Data and Methods

The workflow in Figure 2 is used to produce individual events
for wind (Ey,) and flood (Ej) with timestamps from the same
underlying climate model, namely the UKCP18 12km, RCP8.5
perturbed parameter ensemble, hereafter UKCP18r. Then,

from these ensemble members, multi-hazard episodes (¢) are
created and analysed. All metrics are calculated during ex-
tended winter (October-March) and nationally aggregated.
Thresholds are defined from the present-day climate simula-
tions, with values of event severity metrics assigned in abso-
lute terms based on each percentile used, with these 1981-1999
absolute values then applied to future climate to understand
potential changes.

Existing data and practice (e.g., thresholds, definitions) are
adopted to create events and define their severity (Bloomfield
et al. 2023; Griffin, Kay, Bell, et al. 2022, Griffin, Kay, Sayers,
et al. 2024; Manning et al. 2024), with a detailed justification of
this choice given in Appendix A which updates these discussions
to include the latest literature. Importantly, the co-occurrence of
events for the simulated present (1981-1999) in UKCP18r repli-
cates well that in historic observations. Respective Spearman's
rank correlations between GB aggregated high river flows and
extreme wind, calculated for time windows ranging from 1 to
180days in UKCP18r and observations, match closely. This
holds true even when taking multiple historic weather datasets
and river-flows derived from them (Bloomfield et al. 2023, 2024;
Harrigan et al. 2023; Hersbach et al. 2020; Hirpa et al. 2018).
Indeed, these correlations have also been verified against im-
pacts on the GB rail network (Bloomfield et al. 2023). UKCP18r
simulations therefore appear to adequately capture the level
of co-occurrence between extreme winds and high river flows
(detail in Appendix Al).

2.1 | Defining Events (E) for Each Separate Hazard

Each event (E) is a grid of the maxima of a hazard driver
(e.g., v) during a time-window containing an isolated hydro-
meteorological extreme (detail in Appendix A2). For each event,
summary metrics (total area, duration, severity index) are as-
signed to a single date t,,,, the individual day during the event
when the greatest number of grid cells exceeding the set thresh-
old level for that hazard driver. An event's Storm Severity Index,
SSI(E) follows Klawa and Ulrich (2003) as given by Equation (1)
and Table 1, with this choice of SST form and hazard percentile
threshold supported by a literature review updated to include
the latest work in Appendix A3:

NN y 3
SSIE) = ), Z(”(E)” -1) .1, W

98
=1 j=1 viJ

o0 if v(E)iJ<v?j
I;= )

otherwise

For simplicity, and to avoid a judgement linking value directly
to population density (e.g., consider a wind farm), no population
weighting is used. The optimal formulation of SSI (e.g., power-
law, exponential, wind threshold, storm duration) is still actively
debated. Most pertinently, probabilistic models that account for
the uncertainty in how individual assets are damaged (Heneka
et al. 2006; Heneka and Ruck 2008; Pardowitz et al. 2016; Prahl
et al. 2012) better approximate losses in Germany across all 2004

3 0of 22

85UB017 SUOWIWOD BAITeaID 9|gedl(dde au Ag peusenob ae sejoiie WO ‘8sn J0 Se|n Joy Aelq i 8uluQ 481N UO (SUOIIPUOD-pUe-SWLB)W0o" A8 | 1M AfeIq 1 PU1|UO//SANY) SUONIPUCD PUe SWe | 8yl 8es *[S20z/c0/ST] o ARiqiauliuo Ae|IM ‘150 L Aq £9/8°20(/200T 0T/10p/wod Ao |Im Aelg 1 jeuluo s/ sdny wouy pepeojumod ‘0 ‘8800.60T



Climate Modelling
UKCP regional (~12 km)
Lowe (2018)
Other .
variables Pre(_:lp. Wind
p daily total V daily max 10m
FIOW (mm) instantaneous
Modelling (ms™)
G2G
Griffin (2022)
<;i Flow r-—=-—=-==-
5 q (m’™) - o % GB area
° affected by extreme
% conditions E 3
1. Define hazard-specific events [
1
Flow: by | Precipitation & Wind: as
Griffin | Griffin (2022) 0% b--—--J-\ S B VR
(2022) 1L —  Daily
! J t Ifor t) ¢ s tn!ax o steI?i‘:s
[ ) overallB " J\E1 E.'%off’
~ severity (high flow) EF2
2. Event (E) severity indices I Y O-C A o
As Bloomfield (2023) & Manning (2023) - —
Fsl PSI ssl e tes
N\ \ ya / & ' '
~[ \ / Event Window (e.g. of
o - - > ™~ severity ‘Window’ 12 days) created ‘
5 3. Define multi-hazard Atfor Jgiggotl;& 5(325, ‘
kst ep|d°de5 (8) : Episode : (i.e. single day)
3 and subset based on S (Fig. 3) |
L AN J | Daily
— TTT A - time
™ Vs ~N [ series
e 4. Statistics & Simulation
2 Define R, R ,, to evaluate
g | S co-occurrence )
FIGURE2 | Workflow used in this analysis, including definitions for some of the variables. Detailed explanation is in main text. For the flow data

from Grid-to-Grid (G2G) (Griffin, Kay, Bell, et al. 2022), 0.1% of the river network is ~20 cells, or > ~20km?. For the UKCP18r data on wind gusts and
precipitation 0.1% is of the GB land area is > 2 cells or ~300km?. To find the largest SI to create episodes, FSI and SSI are normalised so that their 95th
percentile values are equal (ratio=1.0). In reality, rare storms might have twice the impact of floods (e.g., Hillier et al. 2024), but sensitivity testing
shows that ratios of 0.5 and 2.0 have minimal effect on the episodes defined. Time series are illustrative, not real data. Precipitation is included for
completeness (see Appendix A). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE1 | Table of parameters used, with precipitation included for completeness (see Appendix A).

Parameter Symbol  Units
Maximum daily 10m wind gusts at a grid cell i,j, and the threshold (98th) percentile taken to define v, v, 0% msT!
extreme at a grid cell

Total daily precipitation, and the threshold (98th) percentile taken to define extreme at a grid cell p.p;p* mm
Daily mean river flow 9q,,q”° ms™
Day t Days
Event E. Type of event is W, F or P: W is for Wind, F is for river flows and P is precipitation. k is the event's Eyy —
identification number within the set

Multi-hazard episode ¢, with its type (wind W, high flow F, joint J) and severity percentile exceeded by e —

the episode’s constituent events (i.e., > 75th, 95th or 99th of events within the relevant event set). Also see
Figure 3

Event's most extreme day, to which summary statistics (e.g., duration, FSI) are assigned Eax Days
Temporal limits of an event (i.e., start and end) Estare fond Days
Length of multi-hazard episode, ‘time window’ At Days
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FIGURE3 | (a)Illustration of subsets and nomenclature used, with numerical detail for At=3 during 1981-1999 from Figure 4a. £’ is the subset
of all episodes with both hazards jointly having at least one event exceeding the 75th percentile. Also see Table 1. (b) Nomenclature used to define U
in Section 2.3: F is the percentile threshold defining episodes as large or potentially impactful, as a fraction; n is the total count of episodes, divided
into subsets n, to n, depending upon whether or not they exceed the threshold for river flow on the x-axis and/or extreme wind on the y-axis. [Colour

figure can be viewed at wileyonlinelibrary.com]
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FIGURE4 | Scatter plots of the summed severity of potential flooding (FSI) and extreme wind (SSI) for 3-day episodes for (a) present and (b) fu-
ture time slices relative to the 75th percentile of these measures. Two thresholds are shown, the 75th percentile (red) and 95th percentile (dark red).
Thresholds for 1981-1999 are used in all panels. (c) and (d) are the same, but for 21-day episodes. Light blue arrows visually highlight the tendency

for FSI to increase into the future, which is particularly prominent for At=

wintertime days in 11years (1997-2007). The exception to this is
the costliest days (~10 per year), which are still adequately mod-
elled using cubic excess-over-threshold approach with a 98th
percentile (Prahl et al. 2015). Thus, using Equation (1) is appropri-
ate here. Because recent developments have not been previously

21. [Colour figure can be viewed at wileyonlinelibrary.com]
reviewed, a detailed justification is in Appendix A3. The new wind
event set is described in Appendix A4.

Based on the form of SSI, Flood Severity Indices (FSI) have re-
cently been developed (Bloomfield et al. 2023). Only grid cells on
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FIGURES5 | Enhancement in co-occurrence, for a range of window lengths (Af) used to create episodes. (a) Uplift in number of events involved in

multi-hazard episodes (1981-1999) as compared to a baseline of independence (pink line, R

day). Solid red lines are statistically significant, unlikely

from variability within the independent case (pink shading is 20) assessed by simulation. Joint episodes £° are labelled ‘75", and so on. The Black dots

situate the analyses of Figure 6 within this plot. Dashed line indicates lower subjective confidence as occurrences get low, with x’ marking statisti-

cally significant points. Dotted lines on Figure 5 indicate that caution is needed, where episodes occupy > 10% of time because ‘remnant’ time periods

left between already created episodes might start to appear, or where the observation is not clearly different from the baseline (i.e., p>0.05) because
n becomes low or the difference small. (c) and (d) Return period of multi-hazard episodes at 3 percentiles (75, 95 and 99). Note that the grey bars are
identically positioned on (a) and (b), and on (c) and (d). [Colour figure can be viewed at wileyonlinelibrary.com]

the river network are used, again with no population weighting.
Thus, each events' flood severity FSI(E) is given by Equation (2)
and Table 1 with the 99.5th percentile choice based on previ-
ous sensitivity testing and verifications (Bloomfield et al. 2023;
Griffin, Kay, Bell, et al. 2022, Griffin, Kay, Sayers, et al. 2024);
see Appendix A2 for a detailed justification.

- 1) 'Ii,j )

{o if q(B)y<q;;°
1

otherwise

N. N,
- q(E);;
psie - 3 3402

i
=1 j=1 \ 9,

I

Debate on the form of FSI is expected to continue, so a de-
tailed justification is in Appendix A3. Pertinently, FSI as con-
figured in Equation (2) is suitable here as only extreme and
potentially damaging events are later selected for analysis,

namely those exceeding at least the 75th percentile of events
(see Figure 3); using the 75th percentile for this selection gives
5-6 high flows per year, comparable to the ~7 floods per year
in commercial risk models (Hillier et al. 2024). The threshold
used depends on the time window At as explained below, and
sensitivity testing has been conducted to examine the impact
of these choices (Figure 5).

2.2 | Defining Multi-Hazard Episodes (¢)

Extratropical cyclones cluster in time, with two or three meteo-
rologically distinct cyclonic systems (Mailier et al. 2006; Vitolo
et al. 2009) combining in longer windy periods. Similarly, rainy
days occurring in succession might be grouped in episodes
(Kopp et al. 2021). Here, this concept is applied to multi-hazards
(Figure 2), adopting the term episode (¢) and applying it to mean
a grouping in time of hazardous events (E) within a selected spa-
tial domain as is established practice when hazards co-occur (e.g.,
Bloomfield et al. 2023; De Luca et al. 2017; Hewitt and Burton 1971;
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Hillier et al. 2015; Kappes et al. 2012). In this case, the domain is
set to GB. The temporal grouping approach accounts for a time-
lag between events as do Claassen et al. (2023), but the protocols
differ in that here they are stakeholder rather than hazard driven.
In particular the time-lag here might also be due to impact related
factors (e.g., time to develop, repair or recovery time, staff fatigue,
an organisation's reporting timeframe, an April-March financial
year) not just duration and overlap of physical hazard (e.g., Hillier
et al. 2023; Hillier and Dixon 2020; de Ruiter et al. 2019).

Episodes are defined for a prescribed window length of At
days, although the episode creation process can be repeated
later for other window lengths. For each At, episodes are de-
fined by starting with the event with the greatest severity
index (SI), placing a window of length At days around it dy-
namically positioned so as to capture other events that create
the largest total SI (see Figure 2), and then removing these
events from the initial list. Then, this is repeated until all
events are accounted for. Once created, an episodes’ severity
at this At must be quantified.

That flood-wind co-occurrence might be enhanced by a greater
frequency of an NAO+ state across a 180-day season (Bloomfield
et al. 2024; Hillier et al. 2020) raises the technical question of
how to quantify severity for long episodes. This depends on
stakeholder and purpose. It is possible to simply sum daily SSI
or FSI (Bloomfield et al. 2023), implicitly assuming that each
day is independent and additive in its impact (i.e., duration/
persistence is significant). Is being flooded at 2.0m depth for
5days five times more damaging than for 1day? For an electric-
ity network operator fined by customer minutes lost, it might
be (Wilkinson et al. 2022). As the strongest gusts or highest
river levels during an event approximate insured damage well
(Mitchell-Wallace et al. 2017), an alternative is to use an event-
based approach (e.g., Griffin, Kay, Sayers, et al. 2024; Roberts
et al. 2014), then sum events' losses. This implicitly assumes a
reset between events, ignoring duration (Appendix A3) and is
the (re)insurance approach followed in Figure 4.

Here, our main aim is to quantify the co-occurrence of large
events that drive risk. So, episodes (¢) are classified by the sever-
ity of their constituent events (Table 1), with thresholds chosen
to select potentially impactful events (Section 2.1, Appendix A3)
and mutually exclusive subsets containing roughly equal num-
bers of episodes (i.e., RPs). This classification is not a summa-
tion. Illustratively, £} contains at least one wind event Ey, with
an SSI in the top 5% of wind events but no high flow event.
Figure 3 shows the thresholds for At=3days. For At=21days,
since longer windows can more readily unite rarer and more
extreme events, joint hazard (g;) uses the 95th percentile and
individual hazards (e, £y,) the 99th.

2.3 | Statistical Simulation for Co-Occurrence
Analysis

A variety of options exist to quantify dependency of hydro-
meteorological extremes (e.g., Bevacqua et al. 2021; Heffernan
and Tawn 2004; Serinaldi and Papalexiou 2020), although it is ad-
vised to ensure that they are not reinvented or untested (Serinaldi,
Lombardo, and Kilsby 2022). One well-established approach is

using copulas to fit a distribution to data extreme in both vari-
ables (e.g., Bevacqua et al. 2017; Manning et al. 2024). This per-
mits smoothed curves to be fitted, but relies upon selecting an
appropriate distribution (e.g., Gumbel copula). Alternatively, ex-
tremal dependency for wet and windy conditions can be quanti-
fied by measures of the co-occurrence of extremes above a given
percentile (Hillier et al. 2015; Martius, Pfahl, and Chevalier 2016;
Owen, Catto, Stephenson, et al. 2021). y (Coles, Heffernan, and
Tawn 1999) and uplift in co-occurrence U (De Luca et al. 2017;
Hillier et al. 2015), which are closely related (Equations (3
and (4))- with nomenclature as defined in Figure 3b.

Ny

= (1 _f)n (3)

X

n n

a

N E|n,] N a-p*n @)

x is the probability that one variable is extreme if the other is also
extreme, varying between 0 and 1 (e.g., Bloomfield et al. 2023;
Vignotto, Engelke, and Zscheischler 2021). U is an occurrence
ratio, the observed number of co-occurrences divided by the num-
ber expected due to chance for independent events (i.e., E [na]). It
is also, therefore, the extent to which one would underestimate
the probability of co-occurrence if independence were assumed.
Some authors have called U a ‘Likelihood multiplication factor’
(Ridder et al. 2020; Zscheischler and Seneviratne 2017). With
independent events uniformly distributed over a time period,
the significance of U is found with a binomial test (Bevacqua
et al. 2021), but E[n, ] can also be simulated directly.

Event coincidence analysis (ECA) is a method in time-series
analysis to assess if one type of event might be a precursor to
another based on an underlying Poisson process (e.g., netCoin
or CoinCalc R packages) (Donges et al. 2016; Escobar 2015;
Siegmund, Siegmund, and Donner 2017). With the dynamic po-
sitioning of the window and 1-n events potentially within each
episode, it is not straightforward to construct this analytically.
So, statistical simulation modelling (e.g., Hillier et al. 2015;
Ridder et al. 2020) is used to calculate E [na] to investigate U
in UKCP18r by eliminating elements of its temporal structure
(Hillier et al. 2015, 2020; Hillier and Dixon 2020; Zscheischler
et al. 2021). For this simulation modelling an ECA is designed
that uses dynamic windows to form episodes, which we name
here dwWECA; in conjunction with this two simpler (i.e., less
structured) models of events are created, from which episodes
are then formed as in Section 2.2 for comparison with the epi-
sodes directly extracted from UKCP18r.

1. Model Rday: For each event, year and day are randomised,
a uniform distribution. This is E[na], reflecting an
October-March climatology approach (e.g., Champion,
Allan, and Lavers 2015; Smith and Phillips 2012;
Stephan, Ng, and Klingaman 2018), or a business-as-
usual case in (re)insurance (e.g., Hadzilicos et al. 2021;
Hillier et al. 2024).

2. Model R,,.: For each event, only year is randomised. All
relationships to proximal events within a time-series are
broken up to and including inter-seasonal timescales, yet

seasonality (i.e., the pattern of frequency as time progresses
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FIGURE 6 | Seasonality of individual events (E) and multi-hazard episodes (¢ ). (a) Seasonality of events for all high-flows (blue) and extreme

wind (green) exceeding the 95th percentile. Thick lines represent 1981-1999 and thin lines 2061-2079. n, and nare total counts for the present and
future, respectively. ‘inc.” is the mean increase (multiplier) from present to future for the 12 ensemble members with the p value for the total count
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model), and independent phenomena (pink, Rday model). Coloured ribbons are 20, assessed by

day and Ryear (t-test). (c) as

for (b) except for the future climate period. (d)-(f) as for (a)-(c), but for the 75th percentile and At=3. [Colour figure can be viewed at wileyonlineli-

simulation. RP is return period of episodes in years, and p values are calculated using variability of statistical model runs R

brary.com]

through a winter) is retained. This avoids pre-supposing
a December-February peak storm season (e.g., Manning
et al. 2024; Martius, Pfahl, and Chevalier 2016), as this may
change in future.

Episodes created from events directly extracted from UKCP18r
contain real-world dependencies (e.g., storms triggering both
wind damage and flooding), while dependencies do not exist
in models R, and R, . Thus, the difference between co-
occurrence in modelled worlds with and without dependency
(i.e., U, Equation (4) reveals the effect on co-occurrence of those
dependencies; that is, models Rday and Ryear are directly equiva-
lent to a null hypothesis, what could happen only by chance, the
basis of all inferential statistics. The relative sizes of uplift U for
different window lengths (e.g., At=3, 21 days) allows insight into
phenomena that act on different timescales (e.g., storms, or clus-
ters of storms). A key advantage of this simulation approach is its
simplicity. Designing a statistical model to replicate observations

requires the multiple choices in the selection of statistical distri-
butions and parameters, but there are no such choices here.

Note that all randomisation is conducted separately within each
ensemble member. This is cautious (i.e., perhaps less significant
p values) but remains valid even if the 12 ensemble members of
UKCP18r are not a truly random sample. Randomisation is re-
peated five times, giving 1140 simulated years in total, 228 for
each statistical model run. The chance (p value) of occurrences in
UKCP18r occurring in the simplified models can then be assessed
by taking each as a null hypothesis H, (i.e., Figures 5 and 6). Here,
for episodes, uplift U, is the total count of the number of events (1)
over threshold within episodes.

2.4 | Jet Stream Metrics

One widely used and relatively simple metric of jet position is that
of Woollings, Hannachi, and Hoskins 2010. This diagnostic uses
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four low-level wind fields (925-700hPa) to quantify the latitude
and speed of the eddy-driven jet stream. It is zonally averaged
over the North Atlantic (0-60°W, 15-75°N), low pass filtered
with a 10-day window to remove effects from individual synop-
tic systems, then the maximum westerly wind speed across the
latitudes is taken to locate and quantify the jet. Data used here
(McSweeney and Bett 2020) are taken from the UKCP18 global
model, which drives the regional model used in this paper.

3 | Results

Visually, on Figure 4, a first impression is that the number of
more severe joint episodes (¢;) increases in a future climate. This
is investigated further for a range of time periods and thresh-
olds (Section 3.1). Then, distribution by month or ‘seasonality’
is explored (Section 3.2). Finally, the jet stream is examined as a
possible cause of the observed patterns (Section 3.3).

3.1 | Uplift Factors

Uplift (U,) is the number of times is more common co-occurrences
are in UKCP18r than expected for independent events uniformly

distributed across October-March (i.e., R day pink). Figure 5a
clearly shows two patterns (red lines) for the present.

1. U, isbroadly two to four for all At (1-180days) and percentiles
(75-99th), but difficult to detect for seasonal timescales.

2. U, is highest for more extreme events (i.e., rarer, larger per-
centiles) and at shorter time windows (i.e., smaller Af).

Visually, U, is similar in future (Figure 5b), best seen by com-
parison to the grey vertical lines which are identical in each
panel. As U, is relative to a baseline (R, , E[n,]) that accounts
for the total of severe events (i.e., n, + n, + n,, see Figure 3b)
increasing in future, it isolates the potential change in the de-
pendence structure (i.e., level of ‘correlation’). Illustratively, for
At=3 at the 95th percentile in 2061-2079 (&}°), the UKCP extract
that includes dependence has a 23-year return period (red line,
Figure 5d), which is considerably lower than the 104-year value
for the simulation that enforces an assumption of independence
(pink line). Return periods (RPs) in Figure 5c,d are simply cal-
culated based on the number of episodes (n,) that exceed a se-
verity threshold for a given At (i.e., RP = years/n,). As such,
the increased number of high-flow events is reflected in RPs
reduced to about half their present value.
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For 1-day windows, the act of collapsing events to a single day
(tmaw Will tend to underestimate co-occurrence, as flooding is
expected to peak the day after wind given that water takes time
(typically up to 24 h) to flow into and through GB's rivers (De Luca
et al. 2017); daily or storm-based analyses (Bloomfield et al. 2023;
Manning et al. 2024) will be less influenced in this particular.

3.2 | Seasonality

Distribution by month of the co-occurrence of severe episodes,
their seasonality, is explored in Figure 6 at the key timescales
of At=3 and 21days using €]’ and ¢}°, respectively. Since a lon-
ger window is more likely to contain extreme events, a higher
threshold captures sufficient events for At=21. There are three
pertinent features:

1. Considered individually (Figure 6a,d), both high flows and
wind are notably more seasonal in future, more concen-
trated in midwinter (December-February); the exception
is lower (75th) percentile flows. This effect is greater for the
higher (95th) percentile (Appendix B).

2. U,is 2-3, present and future, aligning with Figure 5.

3. For At =21, the red line (Ryear) is only a little below the
UKCP18r occurrences (dark red), so at a storm-sequence
timescale of weeks (At =21) U can largely by modelled by
seasonality (i.e., Ryear); the small but significant difference in
January and February in future is worth noting for investi-
gation in further research. However, on a shorter timescale
(At =3), an additional physical mechanism must be invoked
that operates on a shorter time-scale, that of a single storm or
storms in fairly rapid sequence (i.e., At ~2-10days).

Note that the seasonality effect in this bootstrap modelling
(Ryear, Figure 6¢) arises simply due to more events being placed
(e.g., by a broader-scale atmospheric driver) in a restricted time-
frame. Illustratively, consider a daily analysis of 10 winters each
comprising 100 days, containing 50 floods and 50 wind extremes
in total. If uniformly distributed (i.e., Poisson randomness), the
expected number of co-occurrences is 0.05x0.05x1000=2.5
coincidences (e.g., Bevacqua et al. 2021; Hillier et al. 2015).
Now, compress these into the central 50days, the expectation is
0.1x0.1x500=5.0 coincidences.

3.3 | JetStream

Figure 7 investigates the jet stream as a potential physical mech-
anism for the uplift U that cannot be explained by seasonality
for 3-day episodes (¢]°) identified in Section 3.2. Jet characteris-
tics for the days of these episodes are plotted, with other subsets
(), €,) (see Figure 3a) and average values for time blocks (e.g.,
December-February) displayed for comparison. Figure 8 pres-
ents a differently derived view, maps of westerly wind velocity
anomalies on f,,, days. Exact consistency between the two is
not expected.

A number of features support the reliability and relevance of
the main results to follow. First, in Figure 7 subsets (e.g., €7,
535) are distinct from time blocks and the statistical models

(Ryear, R day)’ This simply would not happen if there were a mis-
match (e.g., in timing) between the metrics of the jet in the
global model (McSweeney and Bett 2020) and extreme weather
extracted here for GB from the regional model. Second,
the present day trimodal peak in ERA-40/ERA-Interim,
matched ‘reasonably well’ by UKCP18r (McSweeney and
Bett 2020; Woollings, Hannachi, and Hoskins 2010), is present
(Figure 7a,b). Third, on days that severe weather occurs in GB
jet-related wind anomalies occur over NW Europe, not else-
where (Figure 8), indicating that the jet metrics (McSweeney
and Bett 2020; Woollings, Hannachi, and Hoskins 2010) are
relevant to the study area.

For 1981-1999 joint severe episodes’ (535, dark red line) jet strength
and latitude differ discernibly from conditions at the times of
year that they typically occur (i.e., Rday, red line and shading in
Figure 7) and from average October-March conditions (Rday);
October-March curves match those for non-severe storms
(¢57°) very closely, although these are not shown for visual clarity
(Figure 7). Extremes also differ from a jet typical of the mid-winter
DJF storm season. Specifically, the four differences are:

1. Days with only high flows (¢3°) have jet latitude frequency
peaks at 45°N, marginally elevated above the seasonal
expectation (Figure 7a). Similar is true for jet strengths
(Figures 7d and 8b).

2. Potentially damaging winds in isolation (&;) are associated
with a strong jet typically focussed on 45-55° latitude range
(Figure 7a,d) with a jet speed anomaly at relatively high lati-
tudes (50-60°N) extending across the Atlantic (Figure 8a).

3. Jet latitude for joint £]° episodes peaks distinctly at 50°N
(Figures 7a,d and 8c). Self-evidently this is largely due to
GB's latitude (Figure 7b) because storms used here must
impact GB, and the southwards displacement in this subset

is highlighted with vertical arrows (Figure 7a).

4. The peak in £]° jet latitude is between the &}’ and &3, peaks
(Figure 7a), and their jet strength is intermediate in a progres-
sion from the high-flow to wind curves (Figure 7d, arrow).
In map view, the joint 5;5 anomaly is also a blend of those
from the individual hazards (Figure 8a-c). A southerly lobe

extending into the mid-Atlantic (20-40° W) is also notable.

Overall, co-occurring events in 1981-1999 appear to be associated
with a jet that blends characteristics of the most severe high-flow
inducing events (i.e., similar to expectations for the time of year)
with the severest wind events. This is true even for the most severe
episodes (i.e., £3° shown as black dots, n= 5 with a RP of 44.8 years).

How does the jet strengths and latitudes change for 2061-2079?
Broadly, most patterns are similar in their character to 1981-
1999, but with some important changes in relative magnitudes.
The main changes are:

1. In future, jet strength and latitude anomalies (7, e?;,
el?f) are of higher amplitude with respect to 1981-1999
(Figures 7 and 8), insensitive to the exact baseline chosen

(e.g., Ryear, non-severe).

2. For jet latitude, the peak for joint extremes (¢]°) shifts ~3°
southwards, as do the conditions for the individual hazards,
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FIGURES8 | Planview of eddy-driven jet anomalies during stormy episodes (At=3) in comparison to the October-March climatology. Composites
of daily mean zonal wind velocity at 850 hPa for (a) dates of wind extremes (e’f;, n="74), (b) high-flow extremes (eQFS, n=135), and (c) days where both
are extreme (¢)°, n=77). (2)-(c) are for 1981-1999, and (d)-(f) are for a future climate. Days used are only the most severe day within an episode (i.e.,
L max)- Solid red lines outline areas where the positive anomaly is significant (p <0.05) for one-tailed ¢ test for difference between means of 12 ensem-
ble members (climatology) and severe episodes. For comparison, thin red outlines are for a DJF climatology, and dashed line is the most significant
point at each longitude for a higher-level jet (u250). Hobo-Dyer (i.e., 37.5° standard parallel) cylindrical equal area projection, with —30° meridian.
Note that (f) is reconciled with Figure 7c by realising that those data (u maximum) typically occur near NW Europe. [Colour figure can be viewed

at wileyonlinelibrary.com]

perhaps caused by the enhanced future seasonality of the
jet which shifts southwards in midwinter despite an overall
(January-December) shift northwards (Figure 7c).

3. Future DIJF jet strength is similar to the present-day jet
states for joint storms (Figure 7f).

4. In map view (Figure 8) anomalies for future wind episodes
remain in a similar location, those for high flows expand
south and west, and the anomaly for joint hazards like in
1981-1999 shares characteristics with both; in Europe it ex-
tends to Iberia like for high-flows, but across the Atlantic at
50-60°N like wind. This is a switch from a high-flow like
pattern to a wind-like one (see Section 4.4).

In short, mean future DJF jet conditions tend to adopt a latitude
that characterises high-flows in GB today and a jet strength
typical of joint extremes today (Figure 7c,f). Thus, in future,
typical shorter-term (At < 10days) midwinter jet states appear
like those characteristic of impactful compound storms today,
aligning with the observation that 535 become more focussed in
DJF (Figure 6). The most severe episodes (&7°) reflect this, being
twice as frequent with a somewhat stronger and more southerly
jet (i.e., n=10, RP 22.4years, Figure 7).

4 | Discussion

Co-occurring flooding and extreme wind in GB are part of a
complex multi-hazard risk to society (e.g., Simpson et al. 2021),

and this paper considers these hazards using impact-based prox-
ies (Hillier and Dixon 2020), the UKCP18r dataset and modelled
river flows (Griffin, Kay, Sayers, et al. 2024). Its aim is to under-
stand the joint hazard and its drivers. Other complexities, such
as interactions between vulnerabilities or exposed infrastruc-
ture systems, are not considered. This paper offers:

1. A first examination of the jet stream for events based on
high-flow conditions, not extreme rainfall, in a sentinel lo-
cation for NW Europe

2. A multi-temporal (At=1-180days) approach that groups
events into multi-hazard episodes in a way that is relevant
to stakeholders.

3. A new set of 3427 wind events.

4. An examination of the role of seasonality in how high
flows and extreme wind co-occur.

5. An assessment of relatively simple jet stream metrics
(Woollings, Hannachi, and Hoskins 2010) in this context.

The work fits into a growing consensus on various aspects of po-
tential episodes of joint wintertime flooding and extreme wind
in GB. These episodes are typically driven by extra-tropical
cyclones (e.g., Hillier et al. 2015; Manning et al. 2024; Owen,
Catto, Stephenson, et al. 2021; PERILS 2024), and associated
with cyclonic or north-westerly weather patterns in an NAO+
regime (Bloomfield et al. 2024; Hillier et al. 2020). Figure 5 re-
inforces an doubling in frequency in future climate projections,
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and also a x2-4 uplift (U) in co-occurrence over a baseline of
independence, a dependency that is not discernibly greater in
future (Bloomfield et al. 2023; Manning et al. 2024). The jet
stream associated with high river flows is to the south of GB,
while for wind extremes it is to the north (Figure 7a), consis-
tent with ETCs being rainy on their northern flank and windy to
the south (Manning et al. 2024). And, Figure 7c shows that po-
tential flooding tends to shift southwards in future (Bloomfield
et al. 2024). It is also entirely in line with evidence that GB in
future will be wetter (e.g., Lane and Kay 2021; Lowe et al. 2019)
with more frequent and severe high-flows (Collet et al. 2018;
Griffin, Kay, Sayers, et al. 2024). Despite being heavily vali-
dated, a caveat is that these studies rely on UKCP18r using the
RCP8.5 emissions scenario, highlighting the need for a multi-
model study or other emission scenarios. An important aspect of
the agreement across varied approaches is that it demonstrates,
through the episode definition used here, that previous work is
applicable to (re)insurance and other stakeholders and their ex-
perience of episodes.

On this theme, what is an appropriate baseline? Namely, what
statistical model (e.g., days of non-severe storms, uniform oc-
currence in DJF) should be chosen to represent independence
between hazards for a particular enquiry? An insurer's stan-
dard practice might involve independence across an October—
March season today. Then, illustratively (at At=21) £}’ has a
1-year RP and g%ﬁ has a 1-year RP, combining to be a 22-year
RP joint episode assuming the Rday model, which is reduced
fourfold to a 6year RP in 2061-2079 accounting for dependence
(Figure 6b,c). If an insurer's modelling correctly includes the
individual hazards seasonality, the correction needed would be
notably less (Figure 6). Thus, a fixed timeframe for analysis such
as DJF or October-March (e.g., Zscheischler et al. 2021) should
be used with caution, especially since peak months of (co-)oc-
currence may shift in future, and practitioners and researchers
must ensure the statistical approach aligns with the research
question posed.

Selected aspects of the results are now discussed.

4.1 | Co-Occurrence for the Most Extreme Events

The initial estimate of uplift in co-occurrence between ex-
treme winds and high-flow in rivers was ~1.5 times (Hillier
et al. 2015). A value of ~2-4 times in UKCP18r for daily data
(Bloomfield et al. 2023) is now confirmed visually (Figure 4) and
statistically (Figures 5 and Figure 6) for episodes like to cause
loss (Appendix A4), and appears robust in that it is not overly
dependent on the method, metrics, or time period (1981-1999,
or 2061-2079) used in the studies. Less well constrained is
whether, in the limit, are these perils are asymptotically depen-
dent or independent? Namely, do the most severe events have a
weaker or stronger tendency to co-occur? This is a key question
in assessing risk.

For ERAS5 wind gusts and precipitation or GLOFAS derived
river flow (at daily, weekly, monthly resolution), residual tail
dependence () (Coles, Heffernan, and Tawn 1999) does not
tend to 1.0 as required for asymptotic dependence, but equally
gives no indication that correlation disappears into the tail of

the distribution, with the same true for monthly Network Rail
delay data (Bloomfield et al. 2023; Vignotto, Engelke, and
Zscheischler 2021). Indeed, in UKCP18r uplift U increases
from 2.4 to 3.4 as Bloomfield's threshold increases, an effect
previously demonstrated by sensitivity testing (Hillier and
Dixon 2020). Figure 5 extends this, with systematic increases
in U from the 75th to 99th percentile (¢’ to €}°) indicating that
more extreme episodes co-occur more strongly (Figure 5a,b), at
least to return periods of up to ~50-100years (Figure 5c,d).

Other metrics give a different view. Even as ¥ or U increase or
hold steady with increasing threshold, y and Spearman's r de-
crease (Bloomfield et al. 2023; Hillier and Dixon 2020). Taking
this further, for rain and wind, with a Clayton copula best fit-
ting their severity metrics for (UKCP18, 2.2km) Manning
et al. (2024) implicitly assume asymptotic independence for
the most extreme events. Indeed, by taking parts of two win-
ter seasons and summer (i.e., January-December) it is possible
to find negative correlations at higher thresholds and annual
timeframes (Jones, Stephenson, and Priestley 2024). The va-
riety highlights the importance of using measures attuned to
each study's purpose. U is a statistic that directly comments on
the chance of two extreme events in a season, as in some stress
tests for insurers (Bank of England 2022). It could also be used
to force dependency between independently derived (i.e., uncor-
related) event sets at selected percentile(s) (e.g., 75th, 95th, 99th)
perhaps with copulas (e.g., Hillier et al. 2023) to better estimate
actual likely losses, improving on using one Spearman’s r value
to represent dependency for all events causing notable losses
(Hillier et al. 2024). Given these apparent discrepancies, it would
be beneficial to further investigate extreme winds and high river
flows or flooding, perhaps with larger model ensembles.

4.2 | Co-Occurrence Across Timeframes

How does strength of co-occurrence vary with the time-window
(At) used to group events? Previous wind-flow work using
Spearman's r on regular, non-overlapping periods found it to
increase for windows of up to 20-40days and then hold steady,
perhaps decreasing slightly for a whole season (Bloomfield
et al. 2023). Figure 5, however, uses a measure of tail dependency
to focus on the severe events (¢]°) thought to best represent im-
pactful events (Bloomfield et al. 2023, Appendix A4), and indi-
cates that uplift (U)is highest for shorter time windows. Assuming
UKCP18 correctly captures persistence, this overturns the work-
ing hypothesis in the initial papers (Hillier et al. 2015; Hillier and
Dixon 2020). These looked at seasonal timescales, as the prevail-
ing yet unpublished view in 2015 was that individual storms were
either wet or windy, and took evidence of wet and stormy winters
(Kendon and McCarthy 2015; Matthews et al. 2014) to indicate
that co-occurrence might most strongly exhibit on long times-
cales (At=180). Descriptively and numerically, understanding
this trend in strength of dependence with timeframe is useful for
stakeholders who might have varied elements of their business to
risk assess, from operational (e.g., 3day or 21 day long event dura-
tions in insurance contracts, or railway repairs) to planning (e.g.,
annual regulatory or budgetary).

Understanding the relative dominance and interplay of
the various hydrometeorological processes is less readily
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achieved. The conceptual, multi-temporal model set out by
Bloomfield et al. (2023) details evidence for shorter-term
(At =~ 1-15days) contributions from storms (i.e., sub-storm
to storm clusters) and longer term ‘memory’, perhaps in GB
groundwater or distant conditions (De Luca et al. 2017; Hillier
et al. 2015) mediated by atmospheric behaviours captured by
weather patterns or the NAO index (Bloomfield et al. 2024;
e.g., Hillier et al. 2020). While winters in GB and NW Europe
can be undoubtably wet and stormy (Met Office 2024), the pat-
tern in Figure 5 adds weight to a case that processes at shorter
timescales of a few weeks or less might dominate (i.e., storms,
or storm sequences) rather than a set of conditions established
for a season (e.g., Arctic sea-ice) dominating. But, any defi-
nite statement still seems premature. To aid progression to a
process-orientated view, future statistical simulation model-
ling to split out contributions at the various time-scales (e.g.,
Hillier and Dixon 2020) with a consistent metric (e.g., x, U, r) is
needed for high-flows and extreme wind. Meanwhile, a more
in-depth look at the jet stream states associated with extreme
winds and high flows can also contribute.

4.3 | Utility of Simple Jet Stream Metrics

Extra-tropical cyclone (ETC) development is closely intertwined
with the jet stream (Clark and Gray 2018; Dacre and Pinto 2020;
e.g., Geng and Sugi 2001; Laurila et al. 2021). Illustratively,
windstorms are located on its poleward side and are more in-
tense when the jet is stronger (Laurila et al. 2021), and ETC
clustering is more intense in GB with a strong persistent jet at
~50°N (Pinto et al. 2014; Priestley et al. 2017). So, it was logical
for Hillier and Dixon (2020) to propose the jet steam had a role
in whether flooding and extreme wind co-occur or not based on
an ETCs relationship with the jet.

Practically, calculating an index to quantify the jet stream (Ayres
and Screen 2019; e.g., Woollings, Hannachi, and Hoskins 2010;
Zappa, Pithan, and Shepherd 2018) is less demanding than
cyclone tracking (e.g., Hoskins and Hodges 2002; Manning
et al. 2024). So it is useful to ask if the relatively simply derived
metrics for the eddy-driven (lower tropospheric) North Atlantic
of jet of Woollings, Hannachi, and Hoskins 2010 can be a func-
tional, readily applied tool to distinguish co-occurrence. If so,
by being computationally easier than running cyclone tracking
algorithms, it should facilitate inter-comparison of this potential
driver of co-occurring high-flows and extreme wind between
climate models and reanalyses (e.g., CMIP6, ERAS5, UKCP).

Figure 7a,b,d,e clearly shows that the jet steam index of
Woollings, Hannachi, and Hoskins 2010 is able to distinguish
different large-scale jet dynamics associated with joint high-
flow and wind events (¢]°, dark red line), providing an easy
answer to the question posed about utility. Specifically, wind
(¢}) and £7° episodes have a stronger jet than high-flows (7°),
in accord with analysis of extreme precipitation and expecta-
tions that a weaker jet causes ETCs to move more slowly al-
lowing rainfall to persist for longer (Hillier and Dixon 2020;
Manning et al. 2024). Indeed, Figure 7 demonstrates how sta-
tistical significance testing using jet metrics can support this
idea, augmenting visual analysis (Manning et al. 2024). In fu-
ture (2061-2079) latitude illustrates a case where signatures of

subsets are similar, with distinctions not clear-cut using only
this index (Figure 7c). So other views, such as on the timing
of episodes within a season or their planform distributions of
associated high-level wind (Figures 6 and 8), are also useful to
understand the influence of the jet stream.

4.4 | Potential Influences of the Jet Stream on
Future Co-Occurrence

Do dynamical (e.g., jet stream) or thermodynamic effects most
control the co-occurrence? Previous analysis has inferred that
the future increase in co-occurrence is a predominantly thermo-
dynamic response (i.e., warmer air can be wetter, and therefore
more high FSI events), assisted by southwards displaced cyclone
tracks leading to dynamically enhanced temperature (Manning
et al. 2024). Figures 6-8 allows this to be clarified.

First, consider 21 day episodes (Figure 6a-c), likely associated
with storm sequences (e.g., Bloomfield et al. 2023; Dacre and
Pinto 2020; Miihr et al. 2022). For a start, simply doubling the
number of high-flow events during October-March in a wet-
ter future world is insufficient (Rday, Figure 6c¢). Interestingly,
both high-flows and wind extremes become more seasonal,
focused into midwinter, particularly with higher percentiles
(Figure 6a,d, Appendices A and B). An increased frequency
of high flows across winter as a whole is an established idea
(Griffin, Kay, Sayers, et al. 2024), but within this the increased
seasonality has not been noticed as the only relevant study
lacked data over NW Europe (Ridder et al. 2020). Logically
this phenomenon forces future co-occurrences to be more fo-
cussed in January (Figure 6c,f), and when this more intense
seasonality is isolated and modelled (R,,,,) it is nearly possible
to explain the UKCP18r events (dark red line). So, at this time-
frame, if atmospheric drivers distribute extreme conditions
correctly by month, thermodynamics are nearly sufficient to
explain the increase in co-occurrence in future. Figure 7b,c
demonstrates that mean UKCP18r jet stream latitude becomes
more seasonal in future, in wintertime shifting south (equa-
torwards) and focussing on 45° N to impact GB. A stronger and
squeezed future jet is in line with CMIP simulations (Oudar,
Cattiaux, and Douville 2020; Peings et al. 2018), so a latitu-
dinally squeezed wintertime jet might be the key dynamical
driver of the increasingly seasonal future uptick in joint events.
A equatorwards shift is in line with the Polar Amplification
Model Intercomparison Project (PAMIP) findings where a sea-
ice loss effect outweighs the polewards shift in the jet due to
oceanic warming in this ‘tug-of-war’ (Screen et al. 2022). A
northwards historical (1979-2019) shift of the jet stream has
been reported in reanalysis products and climate model runs
including UKCP18, inferred from a difference between mean
zonal wind velocity (500 hPa) at 40-50°N as compared to 20-
30°N (Woollings et al. 2023). This, however, is readily recon-
ciled with our finding of a potential future southerly shift in
the jet and that of ETC tracks (Manning et al. 2024), by con-
sidering Figure 6b,c. In DJF, in the Atlantic at least, there is
a southwards shift of the jet into the 40-50°N bin, increasing
typical wind speeds there with respect to that at 20-30°N. So,
Figure 6 provides an additional insight into how broad-scale
thermodynamic and dynamic factors combine to explain lon-
ger joint high-flow and wind episodes.
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For individual or closely consecutive storms (At=3days),
Figure 6e,f clearly shows that the number of events alone is
insufficient to cause the co-occurrences in UKCP18r, particu-
larly in the future, even if enhanced seasonality is accounted
for (red line, Ryear). So, another shorter-term explanatory at-
mospheric behaviour is needed. Figures 7 and 8 suggest that
this is the disposition and dynamics of the jet stream. In terms
of the latitude and speed of the jet's strongest part, the typ-
ical mid-winter jet becomes more like that characteristic of
impactful compound storms today (Figure 7). Figure 8 adds
plan-view information on the jet at the time of high joint FSI-
SSI episodes impact GB. In the present, joint episodes (5}5)
have a jet that typically blends most of the strength of wind
events (&7;) with the more southerly track of high-flow induc-
ing events (¢}°). In future, a stronger and more southerly jet
is much more prominent for ¢]° episodes (Figures 7c and 8e),
fitting with the location of extreme precipitation (Bloomfield
et al. 2024) and its associated jet (Manning et al. 2024) mov-
ing south.

Future high FSI-SSI episodes (¢]°) better resemble wind ep-
isodes than high-flow (Figure 8d-f), fitting with a view of a
typically rainy wintertime future GB where wind is typically
the missing element for a joint event (Bloomfield et al. 2024).
Namely, wind becomes the limiting factor rather than flooding
as it is now; currently multi-basin high-flows needs multiple
storms setting wet antecedent conditions (De Luca et al. 2017),
and locally the joint impact footprint's extent is limited by its
rain component (Manning et al. 2024). Intriguingly, a south-
erly jet anomaly during a compound storm's lifetime over the
Atlantic (Figure A1—Manning et al. 2024) that obtains a very
windy signature when impacting GB (Figure 8d,f) suggests the
most severe future events might arise from a jet initially passing
over warm southerly water that strengthens and shifts north as
it impacts southern GB. So, in a modification to the conclusion of
Manning et al. (2024) a relatively equal contribution of dynam-
ics (i.e., jet disposition and seasonality) and thermodynamical
(i.e., warmer air carries more moisture) is argued to drive future
increases in joint hazard in GB.

Placing an emphasis on dynamics (e.g., jet stream) ties in with
a broader, emerging picture of linked multi-hazards across the
Atlantic domain (e.g., Rothlisberger, Pfahl, and Martius 2016).
Cold air outbreaks over eastern Canada followed by wind ex-
tremes over northern Europe and the British Isles appear as-
sociated with an enhanced jet stream (Leeding, Riboldi, and
Messori 2023), while January being the dominant month for
compound surge and rainfall around GB (Bevacqua et al. 2020)
ties to the same timing for wind and riverine high-flows
(Figure 6). Furthermore, clustered ETC are associated with a jet
stream anomaly focussed on GB (Dacre and Pinto 2020; Pinto
et al. 2014; Priestley et al. 2017). And, like flow regimes globally,
these relationships are likely to change with the climate (e.g.,
Jiménez Cisnero and Oki 2014; Li et al. 2024). We therefore ad-
vocate a process-orientated approach to co-occurring hazards
(e.g., Manning et al. 2024), highlight that the ‘recipe’ of driving
large-scale conditions (e.g., jet stream state) for such a ‘perfect
storm’ (e.g., Hillier et al. 2023) will vary by country (Goncalves,
Nieto, and Liberato 2023; Raveh-Rubin 2015; Réthlisberger,
Pfahl, and Martius 2016), and advocate the application of our
novel methods in other regions.

5 | Conclusions

This study uses novel statistical modelling of dependencies and
a jet stream index (Woollings, Hannachi, and Hoskins 2010) to
understand the co-occurrence of high-flows and extreme wind
events in multi-hazard episodes, with a focus on 3-day and 21-
day durations. The idea of dynamically defined episodes that
group events to reflect periods of adverse conditions is defined to
reflect lived experience, and extracted using the FSI (Bloomfield
et al. 2023, 2024) and SSI indices (e.g., Klawa and Ulbrich 2003)
from the UKCP18 regional 12km dataset which has previously
been validated (Bloomfield et al. 2023). The main conclusions are:

« Defining stormy multi-event episodes as they are ex-
perienced (i.e., dynamically positioned time windows)
produces results that align with previous work, giv-
ing stakeholders additional comfort in using published
results.

« This said, statistically, it is critical to note that different de-
pendency measures (e.g., y, U, r, 7) reflect different aspects
of distributions of joint extremes, and may even appear con-
tradictory. Also, using fixed timeframe for analysis (e.g.,
October-March, DJF) should be used with caution, espe-
cially since peak months may shift in future. Statistically
modelling seasonality in a month-by-month analysis as
done here may be necessary.

« Uplift (U) in co-occurrence is found to increase as severity in-
creases (e.g., 90th to 99th percentile), meaning that evidence
is starting to suggest that dependence exists to high return
periods, even if not strictly ‘asymptotic’. So, ignoring correla-
tion underestimates risk most for the strongest storms.

« Uplift is found to increase as At is reduced, highest within
insurers’ key windows (At=3 and 21days), suggesting
the importance of atmospheric mechanisms that act to
drive co-occurrence at timescales of days to weeks (e.g.,
storm sequences); see the framework model in Bloomfield
et al. (2023). So, ignoring correlation underestimates risk
most for individual or closely grouped storms.

« Jet stream metrics (e.g., Woollings, Hannachi, and
Hoskins 2010) are found to be a useful, easily determined
tool to investigate its roles as a driver of co-occurrence.

« Future strong jet streams become increasingly focussed in
mid-winter (December-February) driving the increased
seasonality in individual hazards, a larger effect for more
extreme events. This broad-scale dynamic effect, com-
bined with thermodynamics (i.e., a warmer, wetter world),
explains most of the uplift in future joint events at storm-
sequence timescales (At=21days) and over.

« For individual or closely consecutive storms (At=3days),
altered jet characteristics are also needed to fully explain
the uplift in co-occurrence, stronger and displaced south-
wards as storms impact GB. In short, typical future DJF jet
variability closely resembles that of impactful compound
storms in GB today highlighting the contribution of the jet
changes to the increase in extremes.

Future work will could unpick and quantify the balance be-
tween dynamic and thermodynamic effects, ideally using higher
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resolution data from a variety of climate models. It will be import-
ant, however, to build area-by-area understanding of how the im-
pact of common drivers varies spatially to improve risk mitigation
and planning (e.g., diversification, mutual aid across Europe). As
the jet stream guides storms to one region, another will be spared.
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Appendix: Event Sets A
Al. Dataset Selection and Fields Used

This study uses the UK Climate Projections 2018 (UKCP18) regional
simulations. On a 12km grid, over the commonly used EURO-
CORDEX domain (Jacob et al. 2014), simulations were run from 1980
to 2080 using the Representative Concentration Pathway (RCP) 8.5 cli-
mate change scenario with 12 member perturbed parameter ensemble
(Tucker et al. 2022). Hourly 10m instantaneous wind gusts and total
precipitation were available from the 12 ensemble members for two pe-
riods (1981-2000, 2061-2080), and UKCP18r-based river flows for these
two time periods have been derived (Griffin, Kay, Sayers, et al. (2024))
by using the simulated precipitation and temperature, and derived
evapotranspiration, to drive the Grid-to-Grid (G2G) hydrological model
(Kay et al. 2021). From these daily mean river flows output by G2G on
a 1km grid over GB, a set of high-flow events was created and is openly
available (Griffin, Kay, Bell, et al. 2022). A daily time-series of the area
subject to extreme high flows was also provided to the authors.

Thus, UKCP18 isselected as it presents the opportunity for more extreme
wind and high-flow events to be analysed than in the observational re-
cord, and for future changes to be examined. The UKCP18r simulations
are argued to well represent extreme precipitation (Cotterill et al. 2021;
Lane and Kay 2021; Lowe et al. 2019; Tucker et al. 2022) and wind gusts
(Manning et al. 2023) when assessed against lower resolution climate
model simulations and gridded historical observations. Importantly,
rank correlation between GB aggregated precipitation, high-flows and
extreme wind for the simulated present (1981-2000) closely matches the
~30km resolution ERAS5 reanalysis (1979-2021) (Hersbach et al. 2020)
and GLOFAS river-flows derived from it using LISFLOOD (Harrigan

et al. 2023; Hirpa et al. 2018) across time windows from 1 to 180days
(Bloomfield et al. 2023). In other words, even after higher-resolution
verification (i.e., against CAMELS-GB/CHESS-MET), the UKCP18r
simulations appear to adequately capture co-occurrence of the extreme
wind and high flows (Bloomfield et al. 2023, 2024).

A2. Defining Widespread Hazard-Specific Events

For the present time period, 1981-1999, UKCP18r has 19 complete
extended winters over 12 ensemble members, giving 228 simulated
seasons designated here by the year they start in (i.e., October 1981—
March 1982 is ‘1981”). These contain unrealised yet plausible extremes.
Griffin, Kay, Bell, et al. (2022) and Griffin, Kay, Sayers, et al. (2024)
used the 99.5th percentile of flow across the whole year (q?;'s, January-
December) and required that greater than 0.1% of the area of the GB
river network (19,914 grid cells, ~20km?) exceed its threshold to consti-
tute being within an event (blue shaded areas in Figure 2). In addition
a 14-day maximum event length was imposed, and events sub-divided
if flow dropped to under 1/3 of the lowest of two included peaks which
were separated by at least an estimated time-to-peak of storm hydro-
graphs. This is a point-over-threshold approach (e.g., Lechner, Simiu,
and Heckert 1993; Robson and Reed 1999) and their intention was to
isolate hydrologically independent, extreme and widespread events.
Here, matching sets of events for extreme wind, and for completeness
precipitation, are extracted.

Grids of daily totals of precipitation (p) and maximum 10m wind gust
(v) are created, and used to define events (E). Each event is the spatial
footprint of the maxima driving that hazard (e.g., v) over a time-window
containing an isolated hydro-meteorological extreme.

For wind events, a daily time series for v of the areal fraction of GB where
it exceeds its grid cell's 98th percentile ()%, October-March) is first com-
puted (Figure 2). Then, the temporal limits (t,, and t,,4) of the extreme
event days are defined as the first and last day of a period where this
areal fraction is at least 0.1% of the whole GB land area (~300km?). 0.1%
is used for consistency with flooding (Griffin, Kay, Bell, et al. 2022), and
the 98th percentile aligns with a recent consensus for wind impact esti-
mation (e.g., Bloomfield et al. 2024; Klawa and Ulbrich 2003; Priestley
et al. 2018) outlined in Appendix A3. Thus, based on these thresholds,
each event consists of a sequence of consecutive extreme days, with
the maximum windspeed (v) across the duration of the event retained
at each location to give an event its footprint. No wind event ever ex-
ceeds 8days (95% < 3days, Figure Al), so the limit of 14days used by
Griffin, Kay, Bell, et al. (2024) and Griffin, Kay, Sayers, et al. (2022) is
not needed. It is likely that clusters of two or three meteorologically dis-
tinct cyclonic systems (Mailier et al. 2006; Priestley et al. 2018; Vitolo
et al. 2009) combine within longer wind events. However, the focus here
is on periods of disruption as they are experienced.

Precipitation events footprints are created exactly as for wind, except
that the sum of precipitation (p) across the duration of the event is re-
tained at each location (i.e., instead of the maximum).

A3. Event Severity Indices

Severity indices are ‘impact-based proxies’ for hazards such as flood-
ing and wind extremes (Hillier and Dixon 2020), calibrated against and
designed to reflected potential damage (Bloomfield et al. 2023; e.g.,
Christofides et al. 1992; Heneka and Ruck 2008; Hillier and Dixon 2020;
Klawa and Ulbrich 2003).

Storm Severity Indices (SSI) aim to condense the risk associated with a
wind event into a single number incorporating factors thought to drive
damage such as maximum wind gust (v), area affected and duration
(e.g., Christofides et al. 1992; Dorland, Tol, and Palutikof 1999; Klawa
and Ulbrich 2003). Recently, following Klawa and Ulbrich (2003) a form
of SSI using v? in excess of a 98th percentile minimum threshold be-
neath which no damage occurs has become well-established as a norm
(Bloomfield et al. 2023; e.g., Leckebusch, Renggli, and Ulbrich 2008;
Osinski et al. 2016; Priestley et al. 2018). Rather than a region defined
by a simple (e.g., circular) geometry (Manning et al. 2022, 2024), grid
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FIGURE Al | (a)Size and duration of events created for wind, precipitation and flood. ‘Flood’ events are high-flow events created by Griffin et al.

(2023). Percentiles are shown from 50th to 99th, calculated separately for duration and area (i.e., this is not a joint distribution). Present day (thick

lines) and future (thin lines) are similar if all the events are considered. (b) Seasonality of the events. [Colour figure can be viewed at wileyonlineli-

brary.com]

cells over land (e.g., Bloomfield et al. 2023; Pinto et al. 2012) are used
to represent GB impact. For simplicity and to avoid a judgement linking
value directly to population density (e.g., consider a wind farm), in con-
trast to Bloomfield et al. (2023), no population weighting is used. Thus,
each event's severity SSI(E) is given by Equation (1):

N;

. 3
SSIE) = Y <v(jii=’ _1> .1
=

i=1 j=1

_Jo if w(E); <v?j
Y 1  otherwise

Two types of model have been used to approximate loss () or SSI,
power-law (I = k,v™ for v > vy ) and exponential (I = k,e), where
k;, k,, < and g are constants, parameters to be determined by fitting to
loss data. In general, the challenge is to approximate data where losses
rise steeply above ~32ms™! (Christofides et al. 1992; Dorland, Tol, and
Palutikof 1999; Heneka and Ruck 2008). Using no threshold an expo-
nential form, which can rise very abruptly, fits postcode district losses
for 5 storms better than « of 2-4 (Dorland, Tol, and Palutikof 1999).
With a threshold of ~20-24 ms~! or the 98th percentile (e.g., Christofides
et al. 1992; Klawa and Ulbrich 2003) v? can fit losses for a storm (i.e.,
within 1-2days) at district or national resolution, and allow modelling
of district level historical losses (e.g., Pinto et al. 2012). This said, the
1999 storms sequence (Anatol, Lothar and Martin) showed losses above
24ms~! may on occasion rise more sharply for certain domains (i.e.,
v* — v’ for Denmark, Germany) (MunichRe 2002).

At a daily timescale a 98 percentile threshold (i.e., ~7 times per
year) arises as, in practice, relatively little damage occurs below
this level (~20ms™) in the flat areas of UK and German (Klawa and
Ulbrich 2003; Palutikof and Skellern 1991). Of course some places,
such a mountains, are windier (Heneka et al. 2006; e.g., Hewston
and Dorling 2011) but both nature (e.g., trees) and the built en-
vironment appear to adapt to this recurrence level. Klawa and
Ulbrich (2003) illustratively note that winds at List (island of Sylt)
exceed 20ms™! 1-in-5days to no noticeable detriment, and building
regulations (e.g., UK, Germany, Netherlands) require greater resil-
ience in windier areas (e.g., Bollman and Jurksch 1984; Chandler,
Jones, and Patel 2001; Dorland, Tol, and Palutikof 1999; Hill, Gatley,
and Peiris 2013). Whilst a higher percentile might be appropriate for
higher frequency data (6-hourly, 99th) (Manning et al. 2024), damage
on 2% of days (i.e., 98th percentile) is not wildly different from the

number of UK storms, which are named (i.e., 7-8 per/year) when the
Met Office believes it has ‘potential to cause disruption or damage’
(Met Office 2024).

Probabilistic models account for the uncertainty in how individual
assets are damaged (Heneka et al. 2006; Heneka and Ruck 2008), for
instance using a power-law and replacing the threshold with a func-
tion describing the probability of damage (Pardowitz et al. 2016; Prahl
et al. 2012). This better approximates losses in Germany across all 2004
wintertime days in 11years (1997-2007), although the costliest days
(~10 per year) are still adequately modelled using cubic excess-over-
threshold approach with a 98th percentile (Prahl et al. 2015). Thus
using Equation (1) is appropriate as these ‘extremes’ are the focus of this
paper, particularly as ranks rather than absolute SSI values are primar-
ily evaluated. Moreover, sensitivity testing indicates limited sensitivity
of patterns of correlation (e.g., spatial) to are largely choice of threshold
(Hillier and Dixon 2020), something borne out by the convergence of re-
sults for recent UK flood-wind research that have employed a spectrum
of methodological choices (see Section 4.1).

Storm duration has been argued to influence losses (e.g., Christofides
et al. 1992), but statistical studies have found that it does not improve
models and may risk ‘over-fitting’ (Dorland, Tol, and Palutikof 1999),
so in line with the Klawa and Ulbrich (2003) such potential influences
(e.g., precipitation, duration) are not included here. We also note that v3
is theoretically related to kinetic energy flux (e.g., Pinto et al. 2012) and
to the dissipation of kinetic energy in the surface layers of a storm (Bister
and Emanuel 1998; Businger and Businger 2001; Emanuel 1998, 2005).
However, we discount this as any justification for a cubic relationship
between economic loss and v, other than perhaps as for the presence of
non-linearity. Simply, for cubically increasing losses over a threshold
(e.g., Christofides et al. 1992; Dorland, Tol, and Palutikof 1999) a cubic
relationship that starts at zero velocity, as kinetic energy must, does not
fit them well (Prahl et al. 2015).

Based on the form of SSI, Flood Severity Indices (FSI) have recently been
developed (Bloomfield et al. 2023, 2024). Only grid cells on the river net-
work (e.g., Bloomfield et al. 2023) are used, again with no population
weighting. Thus, each events' flood severity FSI(E) is given by Equation (2):

NN
- q(E);;

FSIE) = ) §<W—1 oI
i=1 j=1 \ iy

_ o if qB)y,<q?
1 otherwise
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TABLE Al | Table of thresholds or limits used to define events.
These thresholds used (i) in defining events and (ii) calculating severity
indices are not to be confused with the percentiles used to distinguish
events of differing severity in the Results (e.g., 75th percentile of events
once they have been isolated and quantified in terms of a severity index).

Threshold/limit Value
Percent of river network (q) 0.1%
Percent of GB land area (v, p) 0.1%
Extreme peak river flow (whole year), percentile of daily 99.5%
values

Extreme precipitation (October-March), percentile of 98.0%
daily values

Extreme daily 10 m max wind gust (October-March), 98.0%

percentile of daily values

Maximum length of event—from Griffin, Kay, Bell,
et al. (2022)

14days

The 99.5th percentile is inherited, for consistency, from Griffin, Kay,
Bell, et al. (2022). It is largely arbitrary, intended to yield sufficient
data points for statistical analysis (Bloomfield et al. 2023; Griffin,
Kay, Sayers, et al. (2022); Martius, Pfahl, and Chevalier 2016; Zhang
et al. 2011). It is less than the 2-year return period ‘rule of thumb’ for
bank-full discharge (i.e., 99.9th percentile), although the work this de-
rives from Williams (1978) is highly equivocal (i.e., 1-32year range) due
to factors such as basin characteristics, local climate and flood defences
(Berghuijs et al. 2019; e.g., Tian et al. 2019). The cubic power is removed
as it is not required with, as for SSI, justification of this functional form
of FSI being through validation, replicating losses and capturing known
floods (Bloomfield et al. 2023). Historical FSIs are highly correlated
(r=0.74, p<0.05) with infrastructure loss data on an annual times-
cale, and FSI captures 28 of 34 wintertime floods (1980-2020) in the
Chronology of British Hydrological Events (Black and Law 2004). This
said, lots of small FSI ‘events’ occur where no flooding was historically
recorded. Also, without a threshold non-linearity (i.e., SI"®) improves
the fit of one proxy to losses (Hillier and Dixon 2020), so debate on the
form of FSI is expected to continue.

FSI as configured in Equation (2) is suitable here as only the most ex-
treme events are selected (i.e., > 75th percentile of events). This is 5-6
high flows per year, comparable to the ~7 floods per year in commercial
risk models (Hillier et al. 2024).

A Precipitation Severity Index (PSI) is used for consistency, despite se-
verity perhaps being an incorrect term as rain itself rarely does damage
directly (Manning et al. 2024). PSI is defined as for SSI, except that a
cubic relationship is omitted as there is no justification for the addi-
tional complexity. PSI(E) for each event is given by Equation (3):

NN E)..
PSI(E) = Z(p(gi” —1>-Iw

s 98
L {0 if p(E),<p;;
ij

1  otherwise

Ad. Description of Event Sets

A set of high-flows events (Griffin, Kay, Bell, et al. 2022; Griffin, Kay,
Sayers, et al. 2024) has been created for the UKCP18r 12-member per-
turbed parameter ensemble (PPE) of the Hadley Centre 12km Regional
Climate Model (RCM) (Murphy et al. 2018; Tucker et al. 2022). Thus,
to mirror this, UKCP18r was used to generate wind (n=3427) and pre-
cipitation (n=14,502) events across mainland Great Britain for baseline
(winters 1981-1999) and future (winters 2061-2079) time-slices. The

wind event set is broadly aligned to other such sets in its construction
methods (Lockwood et al. 2022; Osinski et al. 2016; Roberts et al. 2014),
and the data been validated for the purposes of examining hazard co-
occurrence (Appendix Al). Summary metrics are created for these
event footprints (total area, duration and SI) and assigned to a single
date t,,,,, the individual day when the greatest number of grid cells ex-
ceed the set threshold.

First consider the size and number of events at the present time. There
are 7-8 wind events per year in 1981-1999 on average, each tending
to affect a large area (i.e., up to 60% of GB) but be relatively short-
lived (<5-day). This contrasts longer-duration yet more localised
fluvial flooding (Figure Ala). These properties match what is typi-
cal of these event types (e.g., Mitchell-Wallace et al. 2017). No wind
event ever exceeds 8days, so the limit of 14 days used by Griffin, Kay,
Bell, et al. (2022) and Griffin, Kay, Sayers, et al. (2024) is not needed.
Extreme precipitation is more common than wind with 31-33 events
per year, as is flooding at 13-16 events per year.

The relative frequency of events is statistically dictated, depending upon
the size of each phenomenon and the parameters (e.g., thresholds) used
to extract events. The spatial length-scale of correlation (i.e., floods are
typically smaller) increases their number, counteracted somewhat by
them lasting longer and the higher percentile. Imagine an idealised sce-
nario wherein windstorms hit the whole United Kingdom, while floods
impact 10% of its area (e.g., in 10 uncorrelated areas). Now, for a 98th
daily percentile, every 1 in 50days all WS points will peak at the same
time giving 1 event. For flood, this will happen separately in the 10
areas, giving 10 events. The higher percentile (i.e., 99.5th vs. 98th) used
for flooding will reduce this by four times, giving 2.5 events in 50days.
Also, by lasting longer, the flood events might merge more readily, re-
ducing their number.

The events in 2061-2079 have some differences to 1981-1999. Figure A1l
echoes the finding of Griffin, Kay, Sayers, et al. (2022) that flooding
is expected to be more frequent (+18% here) and heavier tailed with
larger extreme events (Figure Ala) and somewhat more seasonal with
a focus in mid-winter (DJF), but also identifies a potential shift to a
slightly earlier peak in future (Figure A1lb). Considering all events, nei-
ther precipitation nor wind events increase in number significantly into
the future (¢ test between means of ensemble members), and echoes the
muted changes in climatology (e.g., Manning et al. 2022, 2024). It dif-
fers, however, from true extremes are examined in papers (Bloomfield
et al. 2023) or the main text. Illustratively, increases for Oct-Mar are
+59% for the 75th percentile of FSI, +91% for the 95th percentile of FSI
in Figure 6a,d, both of which are significant (p <0.01).

Only the top quarter of events defined are focussed upon (i.e., most se-
vere quarter, > 75th percentile). For wind events there are 7-8 per year
in total, which roughly reflects the Met Office’'s named storms 2015-
2023 (7.4 per year) (Met Office 2024). Thus, 1-2 per year are focussed
upon, comparable to the ~3 per year used in insurance industry risk
modelling (Hillier et al. 2024). There are 15 high flow events per year,
and taking the top quarter gives ~4 notable high-flow events, compara-
ble to the 6-7 floods per year in a commercial model (Hillier et al. 2024).

Appendix: Additional Statistics B

B1. For Increased Concentration of Events and Episodes in
Midwinter

In Section 3.2, from Figure 6, claims are made about an increased con-
centration of flooding, extreme wind and episodes containing both in
midwinter. Table A1 presents a statistical analysis of the prevalence of
events and episodes between December and February (DJF) as com-
pared to the whole October-March winter. A Binomial distribution is
used, that is, X ~ B(t,f) , with ¢ trials and a chance of success f. Then
using the cumulative Binomial distribution, the chance of the observed
number of events (i.e., n in DJF) or more arising through random se-
lection within in a stated number of trials (i.e., n in whole winter) can
be assessed. First, the hypothesis that there are more events in DJF is
tested. Here the null hypothesis is that the real distribution in time is
equal between DJF and the three other months, that is, f=0.5. With
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TABLE B1 | Table presenting a statistical analysis of the prevalence of events and episodes between December and February (DJF) as compared
to the whole October-March winter.

Total, n DJF, n Fraction (f) DJF p (f=0.5) p (f=present day)

Single events 3-day Flood Present 766 488 0.637 0.000 —
Future 1197 747 0.624 0.000 0.818

Wind Present 432 267 0.618 0.000 —
Future 450 328 0.729 0.000 0.000

21-day Flood Present 154 102 0.662 0.000 —
Future 266 199 0.748 0.000 0.001

Wind Present 87 52 0.598 0.027 —
Future 101 76 0.752 0.000 0.000

Flood-wind episodes 3-day gzg Present 155 103 0.665 0.000 —
€73 Future 309 228 0.738 0.000 0.002

21-day 533 Present 51 34 0.667 0.005 —
€% Future 83 71 0.855 0.000 0.000

p<0.05 in all cases (Table B1), the research hypothesis that events and
episodes are concentrated in midwinter can be accepted. Second, the
hypothesis that levels of concentration in midwinter are increasing
from 1981-1999 to 2061-2079 is tested. Here, f is set by the fraction of
events in DJF in the present day. In all cases except lower-percentile
(75th) for 3-day flooding, events and episodes are significantly (p <0.05)
more concentrated in midwinter (i.e., DJF).
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