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We study the Hilbert matrix operator H and a related integral operator T acting 
on the standard weighted Bergman spaces Ap

α. We obtain an upper bound for T , 
which yields the smallest currently known explicit upper bound for the norm of H
for −1 < α < 0 and 2 + α < p < 2(2 + α). We also calculate the essential norm for 
all p > 2 + α > 1, extending a part of the main result in [Adv. Math. 408 (2022) 
108598] to the standard unbounded weights. It is worth mentioning that except for 
an application of Minkowski’s inequality, the norm estimates obtained for T are 
sharp.

© 2025 The Author. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Hilbert matrix operator on Banach spaces of analytic functions is dfined, using the Taylor series, 
as

∑
n≥0

anz
n �→

∑
n≥0

(∑
k≥0

ak
n + k + 1

)
zn.

The norm of the Hilbert matrix operator H on Banach spaces of analytic functions on the unit disk is a 
well studied topic. On Hardy spaces Hp, the conjecture

‖H‖L(Hp) = π

sin
(
π
p 
) , 1 < p < ∞

was solved in the positive in [8]. The proof implies that the essential norm, ‖H‖L(Hp), is the same value as 
the norm. On classical Korenblum spaces H∞

α [3, Theorem 3.3], it was proved that
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‖H‖L(H∞
α ) = π

sin(απ) , 0 < α ≤ α0

and that

π

sin(απ) < ‖H‖L(H∞
α ) < [1 + (2α− 1)(21−α − 1)] π

sin(απ) , α0 < α < 1,

where α0 ∈]12 , 1[ is the unique zero to α �→ 2α−1
2 β(1

2 , 1− α)− 1, where β is the classical beta function. The 
explicit expression for the norm is [3, Theorem 3.1]

‖H‖L(H∞
α ) = sup 

r∈]0,1[
(1 + r)α

1 ∫
0 

(1 − rt)2α−1

tα[2 − (1 + r)t)]α dt.

Replacing the weight (1 − |z|2)α by the equivalent weight wα(z) = (1 − |z|)α, it was proved in [13] that

‖H‖L(H∞
wα

) = ‖H‖e,L(H∞
wα

) = ‖H‖e,L(H∞
α ) = π

sin(απ) , 0 < α < 1.

Concerning the norm of H on the standard weighted Bergman spaces Ap
α, the following conjecture was 

stated in [11]:

Conjecture 1. If 1 < 2 + α < p, then

‖H‖L(Ap
α) = π

sin
( (2+α)π

p 
) .

The conjecture is still believed to hold true, although it has not been fully resolved yet. The first result 
dates back to 2004 when it was proved in [5] that the previously known representation

H(f)(z) =
1 ∫

0 

f(t) 
1 − zt

dt, z ∈ D

for the operator acting on Hardy spaces [6] is still valid on Bergman spaces. This integral expression can 
already be seen in [16], which was published in 1950. In [5] the author examined H : Ap

α → Ap
α when α = 0

(the unweighted case), and proved it to be bounded for p > 2 and that the value given in Conjecture 1
is an upper bound for ‖H‖L(Ap

α) when p ≥ 4. In [8] the correct lower bound for the norm was found 
and in [1] the conjecture was solved for the case α = 0. Around the same time, the boundedness of 
H : Ap

α → Ap
α, p > 2 +α > 1 was proved in [10]. About a year later, [11] it was proved that the value given 

in Conjecture 1 is indeed a lower bound for ‖H‖L(Ap
α) when 1 < 2 + α < p extending earlier results on the 

lower bound [8] and solving one side of Conjecture 1. Concerning the upper bound, progress has been made 
in [5,8,10,11,15,12,7,4], but it is still open even in the Hilbert case when p = 2, in which case −1 < α < 0.

When α > 0, Conjecture 1 has been proved for p > 2 + α satisfying

p ≥ α + 2 +

√
(α + 2)2 −

(√
2 − 1

2

)
(α + 2),

see [12, Corollary 1.1], or

p ≥ 3α
4 

+ 2 +

√(
3α
4 

+ 2
)2

− α + 2
2 

,



D. Norrbo / J. Math. Anal. Appl. 548 (2025) 129408 3

see [7, Theorem 1.1] (see also [4, Theorem 3.2]). The constraint given in [7,4] solves the conjecture for new 
pairs (p, α) compared to [12] when α ≥ α0 ≈ 1

2 . Moreover, in [4, Section 5 and Theorem 4.1], the conjecture 
was proved to hold whenever α = 1 or 0 < α < 1 

47 and p > 2+α. Among other results in [4], the conjecture 
is also true when 2 + α < p < βα, α > 0, for some 2 + α < βα < 5

2 + α [4, Theorem 3.8].
Additionally, for all p > 2+α ≥ 2, the essential norm [13] is given by the conjectured value for the norm, 

that is,

‖H‖e,L(Ap
α) = π

sin
( (2+α)π

p 
) . (1.1)

When −1 < α < 0 and p > 2 + α, various upper bounds were obtained in [12,2]. Very recently, the 
conjecture was solved in the positive [4, Theorem 6.5] for p ≥ 2(2 + α), −1 < α < 0.

In this paper, we extend (1.1) to hold true for all 1 < 2+α < p, see Theorem 1.2. For α < 0 Conjecture 1
remains unsettled for 2 + α < p < 2(2 + α), including all the weighted Hilbert Bergman spaces on which H
is bounded, but an improved upper bound, compared to [2] and [12], is obtained using a new approach, see 
Theorem 1.1. The theorem is also an improvement of the previously known bounds for e.g. p = α+ 3 when 
α > 0 is large, see Remark 3.6.

Another interesting result is Theorem 3.8, which gives a lower bound for the norm of the extended Hilbert 
matrix operator T dfined in (2.2). It is also worth noting that a new phenomenon occurs when examining 
T compared to the classical Hilbert matrix operator H due to the extra singularity. The limit of the norm of 
the operator acting on a weakly null sequence is not invariant under Minkowski’s inequality, see Remark 3.7. 
Without this phenomenon, Conjecture 1 would likely have been solved by Theorem 1.1 due to the sharpness 
of Theorem 3.4. The two main results are presented below:

Theorem 1.1. If p > 2 + α > 1, then

‖H‖L(Ap
α) ≤

1 ∫
−1

(
1
2

[
1 

(1+t)4+2α−p + 1 
(1−t)4+2α−p

]) 1 
p

(1 − t2)1−
2+α
p 

dt < 21− 1 
p

π

sin
(
π 2+α

p 

) .

Theorem 1.2. For p > α + 2 > 1,

‖H‖e,L(Ap
α) = π

sin
(
π 2+α

p 

) .

2. Preliminaries

For p ≥ 1 and α > −1, the weighted Bergman space Ap
α is the Banach space of holomorphic functions 

f : D → C such that ‖f‖Ap
α
< ∞, where

‖f‖Ap
α

:=
(∫

D

|f |p dAα

) 1 
p

and dAα(x+ iy) = (1 +α)(1− |x + iy|2)α dx dy
π . It is well known that the point evaluations are bounded on 

Ap
α, more precisely,

|f(z)| ≲ (1 − |z|2)−
2+α
p , z ∈ D. (2.1)
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We dfine the Hilbert matrix operator and the extended Hilbert matrix operator to be

H(f)(z) =
1 ∫

0 

f(x) 
1 − xz

dx and T (f)(z) =
1 ∫

−1

f(t) 
1 − tz

dt, z ∈ D, (2.2)

respectively. Furthermore, we dfine the following automorphisms of D:

Sa(z) := z − a 
1 − za

yielding S−1
a (z) = z + a 

1 + za
and 1 − |Sa(z)|2 = (1 − |a|2)(1 − |z|2)

|1 − az|2
, a, z ∈ D.

We also dfine fc,θ, 0 < c < 2+α
p , θ ∈ [0, 1] to be the normalized version of the following convex 

combination of approximate evaluation functions on Ap
α

f̂c,θ : z �→ θ(1 + z)−c + (1 − θ)(1 − z)−c.

For a given z ∈ D, we can apply the change of variables t �→ St(z) to obtain

T (f)(z) =
1 ∫

−1

f(St(z))
1 − zt 

dt. (2.3)

This can be justfied by first considering real z, integration on ] − r, r[, 0 < r < 1 and using (2.1) to justify 
the limit r → 1. Then expansion to arbitrary z ∈ D by analytic expansion.

From

T (f)(z) =
1 ∫

0 

f(−t) 
1 + tz

dt +
1 ∫

0 

f(t) 
1 − tz

dt, z ∈ D

it is clear that T ∈ L(Ap
α) if and only if H ∈ L(Ap

α) and by [5] this happens if and only if p > α + 2 > 1. It 
also follows that

T (f)(z) =
∑
n≥0

(∑
k≥0

ak(1 + (−1)k+n)
1 + k + n 

)
zn.

For more information on weighted Bergman spaces we refer the reader to the monograph [9]. Finally, 
some more useful notations. If M ⊂ C and c ∈ C, then cM := {cm : m ∈ M}. Moreover,

χM (z) =
{

1, z ∈ M ;
0, z ∈ C \M ;

z ∈ C.

We also dfine D�>0 = D ∩ {z ∈ C : 
z > 0}, where > could be replaced by other inequalities. Also, for 
functions A,B, the relation A(t) ≲ B(t) means that there is a constant C such that CA(t) ≤ B(t) for all t
in some explicitly mentioned set. If C is not universal, dependencies will be written as subscripts.

3. Improved norm estimates for the Hilbert matrix operator

Before we proceed, we have the following approximate evaluation type lemma:
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Lemma 3.1. For p ≥ 1 and α > −1, let (fn) be a sequence of functions with unit Ap
α-norm satisfying: For all 

ε > 0 it holds that limn supz∈D\B(1,ε) fn(z) = 0. Given any function g, with existing limit at 1 from within 
the disk and such that fng ∈ Ap

α for every n, it holds that

lim
n 

‖fng‖Ap
α

= |g(1)| .

The version of this lemma that we will use is the following

Lemma 3.2. Let p > α+2 > 1 and let g ∈ Ap
α for which the limit exists at 1 and −1 when taken from within 

the disk. It holds that

lim
c→ 2+α

p 
‖fc,θg‖Ap

α
=

( θp

θp + (1 − θ)p |g(−1)|p + (1 − θ)p

θp + (1 − θ)p |g(1)|p
) 1 

p

.

Proof. Note that fc,0 and z �→ fc,1(−z) satifies the given conditions in 3.1 when the limit with respect to c is 
changed to the appropriate limit with respect to n. Moreover, 

∥∥∥f̂c,0∥∥∥
Ap

α

=
∥∥∥f̂c,1∥∥∥

Ap
α

, f̂c,θ = θf̂c,1 +(1−θ)f̂c,0
and

∥∥∥f̂c,θ∥∥∥p
Ap

α

=
∥∥∥χD�≤0 f̂c,θ

∥∥∥p
Ap

α

+
∥∥∥χD�>0 f̂c,θ

∥∥∥p
Ap

α

.

The statement follows from

‖fc,θg‖pAp
α

=
∥∥χD�≤0fc,θg

∥∥p
Ap

α
+
∥∥χD�>0fc,θg

∥∥p
Ap

α

=

∥∥∥χD�≤0 f̂c,θg
∥∥∥p
Ap

α∥∥∥θf̂c,1∥∥∥p
Ap

α

∥∥∥θf̂c,1∥∥∥p
Ap

α∥∥∥f̂c,θ∥∥∥p
Ap

α

+

∥∥∥χD�>0 f̂c,θg
∥∥∥p
Ap

α∥∥∥(1 − θ)f̂c,0
∥∥∥p
Ap

α

∥∥∥(1 − θ)f̂c,0
∥∥∥p
Ap

α∥∥∥f̂c,θ∥∥∥p
Ap

α

and letting c → 2+α
p . �

Remark 3.3. The demand on existence of limit from inside the disk can be reduced to only demanding 
nontangential limits. This is due to the function z �→ |1 − z|−c having height curves that are circles viewed 
from the mass/height concentration point 1.

If we instead of fc,θ consider the normalized version of z �→ θ
(

1−z
2 

)n

+(1− θ)
(

1+z
2 

)n

, the nontangential 
limits of g give no information about the limit in the lemma. In fact, if the tangential limits of g at ±1 are 
zero, the limit in Lemma 3.2 is also zero.

Next, we present one of the crucial results, in order to obtain Theorem 1.1.

Theorem 3.4. For 4 + 2α ≥ p > α + 2 > 1,

sup 
f∈BA

p
α

1 ∫
−1

(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt =
1 ∫

−1

(
1
2

[
1 

(1+t)4+2α−p + 1 
(1−t)4+2α−p

]) 1 
p

(1 − t2)1−
2+α
p 

dt.

Proof. The upper bound
By substituting z �→ S−1

t (z), we have for every −1 < t < 1
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(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

=
(∫

D

|f(z)|p |1 + tz|p

(1 − t2)p
(1 − t2)2

|1 + zt|4
(1 − t2)α

|1 + zt|2α
dAα(z)

) 1 
p

=
(∫

D

|f(z)|p (1 − t2)2+α−p

|1 + zt|4+2α−p dAα(z)
) 1 

p

≤ (1 − t2)
2+α
p −1

(∫
D

|f(z)|p

|1 + 
zt|4+2α−p dAα(z)
) 1 

p

.

(3.1)

Using

g(x) :=

√
1−x2∫

−
√

1−x2

|f(x + iy)|p (1 + α)
π

(1 − x2 − y2)α dy,

we have

1 ∫
−1

(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt ≤
1 ∫

−1

(1 − t2)
2+α
p −1

( 1 ∫
−1

g(x) dx 

|1 + xt|4+2α−p

) 1 
p

dt.

It is clear that g ≥ 0 (is continuous) and

1 ∫
−1

g(x) dx = ‖f‖pAp
α
,

and hence,

sup 
f∈BA

p
α

1 ∫
−1

(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt ≤ sup 
g∈BL1(]−1,1[)

1 ∫
−1

( ∫ 1
−1

|g(x)| dx 
(1+xt)4+2α−p

) 1 
p

(1 − t2)1−
2+α
p 

dt.

Every real valued function g with domain ]−1, 1[ can be uniquely written as the sum of an even function, 
ge, and an odd function, go. For a given g ∈ L1, let |g| = ge + go and note that ge ≥ |go|. Dfine

Ge(t) :=
1 ∫

−1

ge(x) dx 
(1 + xt)4+2α−p

and Go(t) :=
1 ∫

−1

go(x) dx 
(1 + xt)4+2α−p

.

Notice that Ge(t) and Go(t) are even and odd, respectively, and that Ge(t) ≥ Go(t). It follows that

1 ∫
−1

(1 − t2)
2+α
p −1

( 1 ∫
−1

|g(x)| dx 
(1 + xt)4+2α−p

) 1 
p

dt =
1 ∫

−1

(1 − t2)
2+α
p −1

(
Ge(t) + Go(t)

) 1 
p

dt

=
1 ∫

0 

(1 − t2)
2+α
p −1

[(
Ge(t) + Go(t)

) 1 
p

+
(
Ge(t) −Go(t)

) 1 
p
]
dt.

Using the fact that
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2xγ ≥ (x + y)γ + (x− y)γ , x ≥ y ≥ 0, γ ∈]0, 1],

we obtain

1 ∫
−1

(1 − t2)
2+α
p −1

( 1 ∫
−1

|g| dx 
(1 + xt)4+2α−p

) 1 
p

dt ≤ 2
1 ∫

0 

(1 − t2)
2+α
p −1Ge(t)

1 
p dt.

with equality if and only if go ≡ 0. We have now obtained

sup 
f∈BA

p
α

1 ∫
−1

(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt ≤ sup 
g∈BL1

e(]−1,1[)

1 ∫
−1

(1 − t2)
2+α
p −1Ge(t)

1 
p dt, (3.2)

where L1
e(] − 1, 1[) is the subspace of L1(] − 1, 1[) consisting of nonnegative, even functions.

Next, we examine the function Ge(t). Using the fact that g is a nonnegative, even function and

(1 + tx)−γ + (1 − tx)−γ ≤ (1 + t)−γ + (1 − t)−γ , x, t ∈] − 1, 1[, γ ≥ 0,

we obtain

Ge(t) =
1 ∫

0 

g(x)
[

1 
(1 + xt)4+2α−p

+ 1 
(1 − xt)4+2α−p

]
dx

≤ ‖g‖L1

2 

[
1 

(1 + t)4+2α−p
+ 1 

(1 − t)4+2α−p

]
.

This together with (3.2) provides the upper bound.

The lower bound
By (3.1), we have

(∫
D

|fc,θ(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

=
(∫

D

|fc,θ(z)|p
(1 − t2)2+α−p

|1 + zt|4+2α−p dAα(z)
) 1 

p

.

Next, dfine

hp,α(t) := (1 − t2)
2+α
p −1

(1 − |t|)2
2+α
p −1

, t ∈] − 1, 1[

and note that hp,α(t) ∈ L1 and

(∫
D

|fc,θ(z)|p
(1 − t2)2+α−p

|1 + zt|4+2α−p dAα(z)
) 1 

p

≤ hp,α(t).

Therefore, by dominated convergence and Lemma 3.2, we obtain

lim
c→ 2+α

p 

1 ∫
−1

(∫
D

|fc,θ(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt =
1 ∫

−1

(
θ′

(1+t)4+2α−p + 1−θ′

(1−t)4+2α−p

) 1 
p

(1 − t2)1−
2+α
p 

dt, (3.3)
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where θ′ = θp/(θp + (1 − θ)p). Letting θ = 1
2 , we obtain the statement of the theorem. �

Remark 3.5. If we put θ ∈ {0, 1} in (3.3), the right-hand side is

1 ∫
−1

(1 − t2)
2+α
p −1

(1 − t)2
2+α
p −1

dt =
1 ∫

0 

t
2+α
p −1

(1 − t)
2+α
p 

dt = π

sin
(
π 2+α

p 

) , (3.4)

where the first equality is the substitution t �→ 2t− 1 and the second is Euler’s rflection formula. If θ = 1, 
the one can use the substitution t �→ −t to obtain the left-hand side in (3.4) from the right-hand side in 
(3.3).

Choosing θ = 1
2 in (3.3) maximizes the right-hand side. The expression is in fact increasing w.r.t. θ ∈]0, 1

2 [
and symmetric around θ = 1

2 . This follows from the simple fact that

1 ∫
−1

(
θ

(1+t)4+2α−p + 1−θ
(1−t)4+2α−p

) 1 
p

(1 − t2)1−
2+α
p 

dt =
1 ∫

0 

(
θ
(1 − t)2+α−p

(1 + t)2+α−p
+ (1 − θ) (1 + t)2+α−p

(1 − t)2+α−p

) 1 
p

+
(
θ
(1 + t)2+α−p

(1 − t)2+α−p
+ (1 − θ) (1 − t)2+α−p

(1 + t)2+α−p

) 1 
p

dt

and by differentiation

(θA + (1 − θ)B)γ + (θB + (1 − θ)A)γ

is increasing w.r.t. θ on ]0, 1
2 [ whenever γ ∈]0, 1[, A,B ≥ 0.

Finally, on the one hand we have by Jensen’s inequality

(
1
2

[
1 

(1 + t)4+2α−p
+ 1 

(1 − t)4+2α−p

]) 1 
p

>
1
2

(
1 

(1 + t)
2(2+α)

p 
+ 1 

(1 − t)
2(2+α)

p 

)
.

On the other hand, since (x + y)γ < xγ + yγ for x, y > 0 and γ ∈]0, 1[, we have

(
1
2

[
1 

(1 + t)4+2α−p
+ 1 

(1 − t)4+2α−p

]) 1 
p

<
1 

2
1 
p

(
1 

(1 + t)
2(2+α)

p 
+ 1 

(1 − t)
2(2+α)

p 

)

= 21− 1 
p
1
2

(
1 

(1 + t)
2(2+α)

p 
+ 1 

(1 − t)
2(2+α)

p 

)
.

Using θ′ = θp/(θp + (1 − θ)p), (3.4) yields

1 ∫
−1

(
θ′

(1+t)4+2α−p + 1−θ′

(1−t)4+2α−p

) 1 
p

(1 − t2)1−
2+α
p 

dt ∈ π

sin
(
π 2+α

p 

)[1, 21− 1 
p
[

(3.5)

for any θ ∈ [0, 1] with the lower bound obtained when θ ∈ {0, 1} and the upper bound obtained when θ = 1
2 .

We have now obtained an upper bound for the Hilbert matrix operator on Ap
α, p > 2 + α > 1 and we 

proceed with a proof of Theorem 1.1.
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Proof of Theorem 1.1. We have

|H(f)(z)| ≤
1 ∫

0 

∣∣∣∣ f(t) 
1 − tz

∣∣∣∣ dt ≤
1 ∫

−1

∣∣∣∣ f(t) 
1 − tz

∣∣∣∣ dt =
1 ∫

−1

|f(St(z))|
|1 − tz| dt.

Applying Minkowski’s inequality and Theorem 3.4, we obtain

‖H‖L(Ap
α) ≤ sup 

f∈BA
p
α

(∫
D

∣∣∣∣∣∣
1 ∫

−1

|f(St(z))|
|1 − tz| dt

∣∣∣∣∣∣
p

dAα(z)
) 1 

p

≤ sup 
f∈BA

p
α

1 ∫
−1

(∫
D

|f(St(z))|p

|1 − zt|p dAα(z)
) 1 

p

dt

=
1 ∫

−1

(
1
2

[
1 

(1+t)4+2α−p + 1 
(1−t)4+2α−p

]) 1 
p

(1 − t2)1−
2+α
p 

dt.

The rest of the proof follows from (3.5) in Remark 3.5. �
Remark 3.6. Theorem 1.1 yields an improved upper bound for ‖H‖L(Ap

α) when −1 < α < 0 and α + 2 <

p < 2(2 + α). The previously proved bounds, which are given in [12, Theorem 1.3 (ii)] and [2, Theorem 1.1 
(ii)] are

2
2+α
p 

(
1 + 22 2+α

p −1
) π

sin
(

(2+α)π
p 

) and 2
1−α
p 

(
1 + 22 2+α

p −1
) π

sin
(

(2+α)π
p 

) ,

respectively. To see that Theorem 1.1 is an improvement, it suffices to notice that the constants in front 
of π/ sin((2 + α)π/p) are decreasing w.r.t. p, while 21− 1 

p is increasing. Comparing the constants when 
p = 2(2 + α) yield the statement. It is also worth noticing that limp→1 21− 1 

p = 1, so in some limit sense the 
new bound is sharp, which is to be expected when comparing Minkowski’s inequality with Fubini-Tonelli’s 
theorem. The bound given in Theorem 1.1 is also the smallest known upper bound when p = α+M for any 
fixed M > 5

2 and α > 0 is large enough (depending on M). In [11, Theorem 1.2 (iii)] the explicit bound for 
2 + α < p < 2α + 3 is given by

(
1 + 22 2+α

p −1
) π

sin
(

(2+α)π
p 

) .

For such (p, α), we have p < 2(2 + α), and hence,

(
1 + 22 2+α

p −1
)
≥ 2 = lim

p→∞
21− 1 

p ≥ 21− 1 
p ,

which proves Theorem 1.1 is an improvement of the result in [11, Theorem 1.2 (iii)], which is the best explicit 
upper bound found, except for the pairs (p, α) for which Conjecture 1 has been proved (the relevant results 
are contained in [12,7] and [4]). We will prove that the conjecture has not been proved when p = α+M for 
any fixed M > 5

2 and α > 0 large enough (depending on M). For such (p, α) we can assume 2+α < p < 2α+3
holds. Moreover, considering the asymptotics of the bounds of p w.r.t. α for which the conjecture has been 
proved, it is easy to see that as long as α > 0 is large enough, we obtain some new results, except for if the 
pair (p, α) is contained in the assumption of [12, Theorem 1.2] or [4, Theorem 3.2 (b)]. However, considering 
the left-hand side of the extra condition given in [12, Theorem 1.2] and more precisely, the function
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ξp,α(t) =
1 ∫

( t 
2−t )2

x
p
2 −α−2(1 − x)α dx,

we see that the exponent p
2 − α − 2 = α+M

2 − α − 2 can be made arbitrarily small by choosing α > 0
large enough, making the left-hand side of the extra condition diverge while the right-hand side remains 
finite. Concerning [4, Theorem 3.2 (b)], it is enough to see that by e.g. Stirling’s formula, β(1 + α, 2 + α

2 )
tends exponentially to zero as α → ∞, while the other factors tend at most linearly to either 0 or ∞. The 
assumption M > 5

2 assures that the assumptions of [4, Theorem 3.8] are not fufilled.

Remark 3.7. The left-hand side of the expression in Theorem 3.4 is exactly the result of Minkowski’s 
inequality applied to supf∈BA

p
α
‖Tf‖Ap

α
. More generally, assume that K : D×]−1, 1[→ C is such that

gc,t,θ(z) := fc,θ(St(z))
fc,θ(z) 

K(z, t), z ∈ D

is dominated by a function g : ]− 1, 1[→ R in Lp, that is, |gc,t,θ(z)| ≤ g(t) for c < (2+α)/p, θ ∈ [0, 1], z ∈ D

and t ∈]− 1, 1[. Put c0 = (2 +α)/p and θ′ = θp/(θp + (1− θ)p) and note that by Minkowski’s inequality, we 
have ∥∥∥∥∥∥

1 ∫
−1

fc,θgc,t,θ dt

∥∥∥∥∥∥
Ap

α

≤
1 ∫

−1

‖fc,θgc,t,θ‖Ap
α
dt.

Under some reasonable assumptions (a concrete example is given at the end of this remark), we have by 
dominated convergence

lim
c→c0

1 ∫
−1

‖fc,θgc,t,θ‖Ap
α
dt =

1 ∫
−1

(
θ′ |gc0,t,θ(−1)|p + (1 − θ′) |gc0,t,θ(1)|p

) 1 
p

dt (3.6)

and

lim
c→c0

∥∥∥∥∥∥
1 ∫

−1

fc,θgc,t,θ dt

∥∥∥∥∥∥
Ap

α

= θ′
1 ∫

−1

gc0,t,θ(−1) dt + (1 − θ′)
1 ∫

−1

gc0,t,θ(1) dt. (3.7)

The right-hand sides of (3.6) and (3.7) are equal iff gc0,t,θ(−1) = gc0,t,θ(1) or θ ∈ {0, 1} by Jensen’s inequality, 
because p > 1. Minkowski’s inequality is, therefore, most likely too rough of an estimate to be applied in 
this manner in order to obtain the exact value of the norm of T . Indeed, compare (3.6) with the proof of 
the lower bound in Theorem 3.4, and (3.7) with Theorem 3.8. The values of the limits can be compared 
using (3.5) in Remark 3.5.

In a response to the remark above, we state the following conjecture:

Conjecture 2. For 1 < 2 + α < p,

‖T‖L(Ap
α) = π

sin
(
π 2+α

p 

) .
The equality in the following theorem justfies Conjecture 2:
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Theorem 3.8. For p > α + 2 > 1, and any θ ∈ [0, 1],

‖T‖L(Ap
α) ≥ lim

c→ 2+α
p 

‖Tfc,θ‖Ap
α

= π

sin
(
π 2+α

p 

) .
Before we prove the theorem, we state the following useful lemma:

Lemma 3.9. If γ ∈]0, 1[ and δ < 1 − max{γ, 1 − γ}, then

1 ∫
−1

sup 
z∈D

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − |t|)γ+δ

∣∣∣∣ dt ≤ 6
1 ∫

0 

dt 
(1 − t)max{γ,1−γ}+δ

.

Proof. First,

1 ∫
−1

sup 
z∈D

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − |t|)γ+δ

∣∣∣∣ dt = 2
1 ∫

0 

sup 
z∈D

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − t)γ+δ

∣∣∣∣ dt.
Let t > 0. We have

sup 
z∈D�≤0

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − t)γ+δ

∣∣∣∣ dt ≤ 2 
(1 − t)γ+δ

.

With the aid of some pictures, we obtain that for z ∈ D�>0

sup 
t∈]0,1[

|1 − z|
|1 − zt| ≤ sup 

t∈]0,1[

|1 − (z/ |z|)|
|1 − t(z/ |z|)| ≤

2 sin
(

arg z
2 

)
sin(arg z) =

(
cos

(arg z
2 

))−1
≤

√
2,

which yields that for t ∈]0, 1[ we have

sup 
z∈D�>0

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − t)γ+δ

∣∣∣∣ dt ≤ 2γ sup 
z∈D�>0

∣∣∣∣ 1 − z

1 − zt

∣∣∣∣
γ |1 − zt|2γ−1

(1 − t)γ+δ
dt ≤ 2

√
2

(1 − t)max{γ,1−γ}+δ
.

We can conclude that

1 ∫
−1

sup 
z∈D

∣∣∣∣ (1 − zt)γ−1(1 − z2)γ

(1 − |t|)γ+δ

∣∣∣∣ ≤ 6
1 ∫

0 

dt 
(1 − t)max{γ,1−γ}+δ

. �

Proof of Theorem 3.8. We have

f̂c,θ(St(z)) = θ
(1 − zt)c

(1 − t)c(1 + z)c + (1 − θ) (1 − zt)c

(1 + t)c(1 − z)c

= (1 − zt)c(θ(1 + t)c(1 − z)c + (1 − θ)(1 − t)c(1 + z)c)
(1 − t2)c(1 − z2)c

= f̂c,θ(z)
(1 − zt)c

(1 − t2)c
θ(1 + t)c(1 − z)c + (1 − θ)(1 − t)c(1 + z)c

θ(1 − z)c + (1 − θ)(1 + z)c .

Dfine
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gc,t,θ : z �→ (1 − zt)c−1

(1 − t2)c
θ(1 + t)c(1 − z)c + (1 − θ)(1 − t)c(1 + z)c

θ(1 − z)c + (1 − θ)(1 + z)c

and gt,θ = g(2+α)/p,t,θ.
The branch cuts of (1 ± z)c are chosen to lie outside of D. We want to compute

lim
c→ 2+α

p 
‖Tfc,θ‖Ap

α
= lim

c→ 2+α
p 

∥∥∥∥∥∥fc,θ
1 ∫

0 

gc,t,θ dt

∥∥∥∥∥∥
Ap

α

.

It is easy to see that for fixed θ ∈ [0, 1], t ∈] − 1, 1[ and 0 < c ≤ (2 + α)/p the limits limz→±1 gc,t,θ(z)
exist from within the disk, more precisely,

∀ε > 0 ∃δ > 0 : |1 − z| < δ and z ∈ D =⇒ |gc,t,θ(z) − gc,t,θ(1)| < ε

and

∀ε > 0 ∃δ > 0 : |−1 − z| < δ and z ∈ D =⇒ |gc,t,θ(z) − gc,t,θ(−1)| < ε.

First, we assume θ ∈]0, 1[. Then for 0 < c ≤ (2 + α)/p it holds that infz∈D 
((1 ± z)c) ≥ 0 and since 
z �→ zc maps {z ∈ C : 1 ≤ |z| < 2 and |arg z| < π

4 } into itself, we have

inf
z∈D�≤0


((1 − z)c) ≥
√

2
2 

and inf
z∈D�≥0


((1 + z)c) ≥
√

2
2 

.

It follows that

|θ(1 − z)c + (1 − θ)(1 + z)c| ≥ θ
((1 − z)c) + (1 − θ)
((1 + z)c) ≥
√

2
2 

min{θ, 1 − θ}. (3.8)

Now, Lemma 3.9 grants the existence of a dominating function gθ(t) ≥ |gt,θ(z)|, hence, the dominated 
convergence theorem yields that

lim
z→−1

∗

∣∣∣∣∣∣
1 ∫

−1

gt,θ(z) dt

∣∣∣∣∣∣ =
1 ∫

−1

gt,θ(−1) dt =
1 ∫

−1

(1 + t)
2+α
p −1

(1 − t)
2+α
p 

dt

and

lim
z→1

∗

∣∣∣∣∣∣
1 ∫

−1

gt,θ(z) dt

∣∣∣∣∣∣ =
1 ∫

−1

(1 − t)
2+α
p −1

(1 + t)
2+α
p 

dt =
1 ∫

−1

(1 + t)
2+α
p −1

(1 − t)
2+α
p 

dt,

where lim∗ are limits taken within the disk D. Since the limits exists and |gt,θ| ∈ L∞, we can apply 
Lemma 3.2 to obtain

lim
c→ 2+α

p 

∥∥∥∥∥∥fc,θ
1 ∫

−1

gt,θ dt

∥∥∥∥∥∥
Ap

α

= θ lim
z→−1

∗

∣∣∣∣∣∣
1 ∫

−1

gt,θ(z) dt

∣∣∣∣∣∣ + (1 − θ) lim
z→1

∗

∣∣∣∣∣∣
1 ∫

−1

gt,θ(z) dt

∣∣∣∣∣∣
=

1 ∫
−1

(1 + t)
2+α
p −1

(1 − t)
2+α
p 

dt = π

sin
(
π 2+α

p 

) .
(3.9)
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Since ∣∣∣∣∣∣‖Tfc,θ‖Ap
α
−

∥∥∥∥∥∥fc,θ
1 ∫

0 

gt,θ dt

∥∥∥∥∥∥
Ap

α

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥fc,θ

1 ∫
0 

(gc,t,θ − gt,θ dt)

∥∥∥∥∥∥
Ap

α

, (3.10)

it remains to show that

lim
c→ 2+α

p 

∥∥∥∥∥∥fc,θ
1 ∫

0 

(gc,t,θ − gt,θ dt)

∥∥∥∥∥∥
Ap

α

= 0. (3.11)

To this end, put c0 = (2 + α)/p and partition gc,t,θ = g
(1)
c,t (z)h(1)

c,t (z) + g
(−1)
c,t (z)h(−1)

c,t (z), where

g
(1)
c,t (z) = (1 − zt)c−1(1 − z)c

(1 − t)c , g
(−1)
c,t (z) = (1 − zt)c−1(1 + z)c

(1 + t)c ,

h
(1)
c,t (z) = θ

θ(1 − z)c + (1 − θ)(1 + z)c and h
(−1)
c,t (z) = (1 − θ) 

θ(1 − z)c + (1 − θ)(1 + z)c .

Now

1 ∫
−1

g
(1)
c,t h

(1)
c,t − g

(1)
c0,th

(1)
c0,t dt =

1 ∫
−1

(g(1)
c,t − g

(1)
c0,t)h

(1)
c,t dt +

1 ∫
−1

g
(1)
c0,t(h

(1)
c,t − h

(1)
c0,t) dt.

For the last integral, Lemma 3.9 yields

sup 
z∈D

∣∣∣∣∣∣
1 ∫

−1

g
(1)
c0,t(z)(h

(1)
c,t (z) − h

(1)
c0,t(z)) dt

∣∣∣∣∣∣
≤ sup 

z∈D
sup 

s∈]−1,1[

∣∣∣h(1)
c,s(z) − h(1)

c0,s(z)
∣∣∣

1 ∫
−1

sup 
w∈D

∣∣∣g(1)
c0,t(w)

∣∣∣ dt < ∞,

(3.12)

and so the right-hand side tends to zero as c → c0. Moreover, for z ∈ D using (3.8)
∣∣∣∣∣∣

1 ∫
−1

(g(1)
c,t − g

(1)
c0,t)h

(1)
c,t dt

∣∣∣∣∣∣ ≤
√

2
min{θ, 1 − θ}

1 ∫
−1

∣∣∣g(1)
c,t − g

(1)
c0,t

∣∣∣ dt

=
√

2
min{θ, 1 − θ}

1 ∫
−1

∣∣∣g(1)
c,t

∣∣∣
∣∣∣∣∣1 −

g
(1)
c0,t

g
(1)
c,t

∣∣∣∣∣ dt
and

1 ∫
−1

∣∣∣g(1)
c,t

∣∣∣
∣∣∣∣∣1 −

g
(1)
c0,t

g
(1)
c,t

∣∣∣∣∣ dt =
1 ∫

−1

∣∣∣∣ (1 − zt)c−1(1 − z)c

(1 − t)c

∣∣∣∣
∣∣∣∣1 − (1 − zt)c0−c(1 − z)c0−c

(1 − t)c0−c

∣∣∣∣ dt

≤
(

sup 
w∈D

sup 
s∈]−1,1[

∣∣(1 − s)c0−c − (1 − ws)c0−c(1 − w)c0−c
∣∣ ) 1 ∫

−1

∣∣∣∣ (1 − zt)c−1(1 − z)c

(1 − t)c+c0−c

∣∣∣∣ dt.
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Furthermore, for c ∈]23c0, c0[, we have by Lemma 3.9,

1 ∫
−1

∣∣∣∣ (1 − zt)c−1(1 − z)c

(1 − t)c+c0−c

∣∣∣∣ dt

≤
0 ∫

−1

∣∣∣∣ (1 − zt)c−1(1 − z)c

(1 − t)c0

∣∣∣∣ dt + (χD�>0(z) + χD�≤0(z))
1 ∫

0 

∣∣∣∣ (1 − zt)c−1(1 − z)c

(1 − t)c+c0−c

∣∣∣∣ dt

≤
0 ∫

−1

2 
(1 + t)1−c

dt + 6
1 ∫

0 

dt 
(1 − t)max{c,1−c}+c0−c

+
1 ∫

0 

2 
(1 − t)c0 dt

≤
0 ∫

−1

2 

(1 + t)1− 2
3 c0

dt + 8
1 ∫

0 

dt 

(1 − t)max{c0,1− 1
3 c0}

< ∞.

We can, therefore, by the dominated convergence theorem conclude that

lim
c→c0

∣∣∣∣∣∣
1 ∫

−1

(g(1)
c,t − g

(1)
c0,t)h

(1)
c,t dt

∣∣∣∣∣∣ = 0

and with (3.12), we obtain

lim
c→c0

∣∣∣∣∣∣
1 ∫

−1

g
(1)
c,t h

(1)
c,t − g

(1)
c0,th

(1)
c0,t dt

∣∣∣∣∣∣ = 0.

Similar calculations can be done to conclude that

lim
c→c0

∣∣∣∣∣∣
1 ∫

−1

g
(−1)
c,t h

(−1)
c,t − g

(−1)
c0,t h

(−1)
c0,t dt

∣∣∣∣∣∣ = 0,

and hence, (3.11) holds. Combining this with (3.9) and (3.10) yields the lower bound for ‖T‖L(Ap
α). �

4. Essential norm of the Hilbert matrix operator on weighted Bergman spaces

Proof of Theorem 1.2. In [11, Proof of Theorem 1.2] it is stated that

‖Ttf‖Ap
α

= ψp,α(t)

⎛
⎜⎝(α + 1)

∫
B(ct,ρt)

|w|p−4−2α |f(w)|p gt,α(w) dA(w)

⎞
⎟⎠

1 
p

where

ct = 1 
2 − t

ρt = 1 − t

2 − t
ψp,α(t) = t

2+α
p −1

(1 − t)
2+α
p 

and
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gt,α(w) =
(
ρ2
t − |w − ct|2

ρt

)α

.

As in [13, Section 4] we partition B(ct, ρt) = D>R,t∪D≤R,t, where D≤R,t = B(ct, ρt)∩B(0, R), D>R,t =
B(ct, ρt) \B(0, R) and R > 1

2 .
On the one hand, we have

ψp,α(t)p(α + 1)
∫

D≤R,t

|w|p−4−2α |f(w)|p gt,α(w) dA(w) ≤ ‖Tt(1)‖pAp
α

sup 
|z|≤R

|f(z)|p

and by [9, Theorem 1.7] we have

‖Tt(1)‖pAp
α
�α

∫
D

∣∣∣∣ 1 
1 − (1 − t)z

∣∣∣∣
p

(1 − |z|2)αdA(z) ≲p,α t2+α−p, t ∈]0, 1[. (4.1)

On the other hand, we have
∫

D>R,t

|w|p−4−2α |f(w)|p gt,α(w) dA(w) ≤ max{1, Rp−4−2α}
∫

D>R,t

|f(w)|p gt,α(w) dA(w),

and continuing as in [4, Proof of Theorem 6.5], we obtain

ψp,α(t)p(α + 1)
∫

D>R,t

|w|p−4−2α |f(w)|p gt,α(w) dA(w) ≤ ψp,α(t)p max{1, Rp−4−2α} ‖f‖pAp
α
.

Together with (4.1), we have now obtained

‖Hf‖Ap
α
≤

1 ∫
0 

‖Ttf‖Ap
α
dt ≤ Cp,α sup 

|z|≤R

|f(z)| + max{1, R1− 2(2+α)
p } ‖f‖Ap

α

1 ∫
0 

ψp,α(t) dt

for some Cp,α > 0. Let (Ln) ⊂ L(Ap
α) be the sequence of compact operators given in [13, Lemma 3.2] (see 

also [14]). It follows that

lim
n→∞

‖H −HLn‖Ap
α
≤

1 ∫
0 

ψp,α(t) dt = max{1, R1− 2(2+α)
p } π

sin
(
π 2+α

p 

) ,
for all 0 < R < 1. Let R → 1 to obtain the upper bound for the essential norm.

In [11] a lower bound for the norm was calculated considering the sequence (fc,0) as c → (2 + α)/p. The 
sequence converges weakly to zero since it converges to zero on compact subsets of D and Ap

α is rflexive 
for p > 1. Therefore, ‖K(fc,0)‖Ap

α
= 0 and hence,

‖H‖e,L(Ap
α) ≥ inf

K
lim
c 

‖(H −K)(fc,0)‖Ap
α
≥ lim

c 
‖H(fc,0)‖Ap

α
− sup

K
lim
c 

‖K(fc,0)‖Ap
α

= lim
c 

‖H(fc,0)‖Ap
α

= π

sin
(
π 2+α

p 

) ,
where infK and supK means ifimum and supremum respectively, over compact operators K; the last 
equality is found in the proof of Theorem 1.1 [11]. �
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Remark 4.1. We have now obtained an extension of [13, Corollary 9.4]. Let p > α + 2 > 1. If H : Ap
α → Ap

α

is not norm attaining, then

‖H‖L(Ap
α) = π

sin
(
π 2+α

p 

) .
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