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ARTICLE INFO ABSTRACT
Article history: We study the Hilbert matrix operator H and a related integral operator 1" acting
Received 9 October 2024 on the standard weighted Bergman spaces AE. We obtain an upper bound for T,
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which yields the smallest currently known explicit upper bound for the norm of H
Submitted by A. Baranov

for -1 < a<0and 2+ a<p<2(2+ «a). We also calculate the essential norm for
all p > 2+ a > 1, extending a part of the main result in [Adv. Math. 408 (2022)

gzgiiq?;d Hilbert matrix operator 108598] to the standard unbounded weights. It is worth mentioning that except for
Hilbert matrix operator an application of Minkowski’s inequality, the norm estimates obtained for T are
Operator norm sharp.

Weighted Bergman spaces © 2025 The Author. Published by Elsevier Inc. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Hilbert matrix operator on Banach spaces of analytic functions is defined, using the Taylor series,
as

ag
an 2" — )"
Sae e (X )
n>0 n>0 k>0
The norm of the Hilbert matrix operator H on Banach spaces of analytic functions on the unit disk is a
well studied topic. On Hardy spaces HP, the conjecture

7r
IH | 2oy = ma I<p<oo
p

was solved in the positive in [8]. The proof implies that the essential norm, |[H ||z z2), is the same value as
the norm. On classical Korenblum spaces H2° [3, Theorem 3.3|, it was proved that
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™
Hlpiypory = — 0<a<
| H[J(HQ sin(am) <as o
and that
T = <1+ (2a—1)2 —1)]—" ap <<l
sin(a) LUHE) sin(am)’ ’
where o €]3, 1] is the unique zero to o+ 2%-13(3,1 — o) — 1, where f3 is the classical beta function. The
explicit expression for the norm is [3, Theorem 3.1]
1
T't 2a0—1 p
H oy = (1 t.
[H | 200y = SUP +r) /ta 1_|_T) e
0

Replacing the weight (1 — |2|*)® by the equivalent weight wq(z) = (1 — |2|)®, it was proved in [13] that

™
HHHg(H;ca) = HHHe,L(Hgfa) =Hll. i) = sin(am)’ 0<a<l

Concerning the norm of H on the standard weighted Bergman spaces AP, the following conjecture was
stated in [11]:
Conjecture 1. If 1 < 2 + a < p, then
0

HHHL(AZ) = sin ((2+a)7r) :
p

The conjecture is still believed to hold true, although it has not been fully resolved yet. The first result
dates back to 2004 when it was proved in [5] that the previously known representation

1
(t)
/1—zt » Z€
0

for the operator acting on Hardy spaces [6] is still valid on Bergman spaces. This integral expression can
already be seen in [16], which was published in 1950. In [5] the author examined H: A2 — AP when a =0
(the unweighted case), and proved it to be bounded for p > 2 and that the value given in Conjecture 1

is an upper bound for ||H| ;42 when p > 4. In [8] the correct lower bound for the norm was found

and in [1] the conjecture was solved for the case o = 0. Around the same time, the boundedness of

H: A? — AP, p > 2+« > 1 was proved in [10]. About a year later, [11] it was proved that the value given

in Conjecture 1 is indeed a lower bound for |[H|[, 47, when 1 <2+ a < p extending earlier results on the

lower bound [8] and solving one side of Conjecture 1. Concerning the upper bound, progress has been made

n [5,8,10,11,15,12,7,4], but it is still open even in the Hilbert case when p = 2, in which case —1 < a < 0.
When « > 0, Conjecture 1 has been proved for p > 2 + « satisfying

p2a+2+\/(a+2)2— (f—%) (a+2),

see [12, Corollary 1.1], or

3« 3a 2 o+ 2
>22 19 4 o)
pz S iniy (B 0n) ok2
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see [7, Theorem 1.1] (see also [4, Theorem 3.2]). The constraint given in [7,4] solves the conjecture for new
pairs (p, a) compared to [12] when a > a &~ 5. Moreover, in [4, Section 5 and Theorem 4.1], the conjecture
was proved to hold whenever a =1or 0 < a < 4% and p > 2+ «. Among other results in [4], the conjecture
is also true when 2+ a < p < B4, a > 0, for some 2 + a < (B, < g + « [4, Theorem 3.8].

Additionally, for all p > 24 « > 2, the essential norm [13] is given by the conjectured value for the norm,
that is,

™

|H|| py = ———————. (1.1)
e, L(AL) sin ((2+a)7r)

When —1 < a < 0 and p > 2 + «, various upper bounds were obtained in [12,2]. Very recently, the
conjecture was solved in the positive [4, Theorem 6.5] for p > 2(2+ ), —1 < a < 0.

In this paper, we extend (1.1) to hold true for all 1 < 24« < p, see Theorem 1.2. For ae < 0 Conjecture 1
remains unsettled for 2+ o« < p < 2(2+ «), including all the weighted Hilbert Bergman spaces on which H
is bounded, but an improved upper bound, compared to [2] and [12], is obtained using a new approach, see
Theorem 1.1. The theorem is also an improvement of the previously known bounds for e.g. p = a4+ 3 when
a > 0 is large, see Remark 3.6.

Another interesting result is Theorem 3.8, which gives a lower bound for the norm of the extended Hilbert
matrix operator T' defined in (2.2). It is also worth noting that a new phenomenon occurs when examining
T compared to the classical Hilbert matrix operator H due to the extra singularity. The limit of the norm of
the operator acting on a weakly null sequence is not invariant under Minkowski’s inequality, see Remark 3.7.
Without this phenomenon, Conjecture 1 would likely have been solved by Theorem 1.1 due to the sharpness
of Theorem 3.4. The two main results are presented below:

Theorem 1.1. If p > 2+ « > 1, then

(g et
R _1 ™
1H| £ (azy < / T dt <2'7% —
2 (1—t2) " sin (w%)

Theorem 1.2. Forp > a+2 > 1,

™

1Hll¢ zcazy = m
p

sin
2. Preliminaries

For p > 1 and a > —1, the weighted Bergman space AP is the Banach space of holomorphic functions

f:D — C such that || f|| ;,» < oo, where
1L = ( [ 167 d,)
D

and dAq(z +iy) = (1+ a)(1 — |z + iy|*)> @. It is well known that the point evaluations are bounded on
AP more precisely,

o

F() S Q- o))", zeD. (2.1)
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We define the Hilbert matrix operator and the extended Hilbert matrix operator to be

1 1
:/1f_( der and T(f /1 zeD, (2.2)
0 21

respectively. Furthermore, we define the following automorphisms of D:

i—a . z+a 1 —la?)(1 |2
1 Y(z) = 1-
. vielding S;7(2) = 7 and 1Sa(2)|* = TR

Sa(z) == , a,zeD.

We also define f.p, 0 < ¢ < 2"”7"‘,9 € [0,1] to be the normalized version of the following convex
combination of approximate evaluation functions on AP,

fep:z=0(1+2) "+ (1-0)(1—2z2)"¢

For a given z € D, we can apply the change of variables t — S¢(z) to obtain

]fi_zt | 29

This can be justified by first considering real z, integration on | — r,7[,0 < r < 1 and using (2.1) to justify
the limit » — 1. Then expansion to arbitrary z € D by analytic expansion.

_ j{(— . /11f_(t)

it is clear that T' € £(AP) if and only if H € L(AE) and by [5] this happens if and only if p > a+2 > 1. It
also follows that

From

zeD

a _1\k+n
1)) - 3 (3 S

n>0 k>0

For more information on weighted Bergman spaces we refer the reader to the monograph [9]. Finally,
some more useful notations. If M C C and ¢ € C, then ¢M := {em : m € M}. Moreover,

1, ze€ M,
xm(z) = zeC.
u(z) {0, 2 eC\ M;

We also define Dpsg =D N {z € C : Rz > 0}, where > could be replaced by other inequalities. Also, for
functions A, B, the relation A(t) < B(t) means that there is a constant C' such that CA(t) < B(¢) for all ¢
in some explicitly mentioned set. If C' is not universal, dependencies will be written as subscripts.

3. Improved norm estimates for the Hilbert matrix operator

Before we proceed, we have the following approximate evaluation type lemma:
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Lemma 3.1. Forp > 1 and o > —1, let (f,) be a sequence of functions with unit AL -norm satisfying: For all
€ > 0 it holds that limy, Sup_ep\ (1,6 fn(z) = 0. Given any function g, with existing limit at 1 from within
the disk and such that f,g € AP for every n, it holds that

lim | gy, = lo(1)]
The version of this lemma that we will use is the following

Lemma 3.2. Letp > a+2 > 1 and let g € AL, for which the limit exists at 1 and —1 when taken from within
the disk. It holds that

. - 6P p (1_9)p P %
i, Ifeollag = (G ir—ay DI + G =g L)

Proof. Note that f. ¢ and z — f.1(—2) satisfies the given conditions in 3.1 when the limit with respect to c is

changed to the appropriate limit with respect to n. Moreover, fc,()’ i ’ fc,l P fcﬂ = qul +(1- 9)]‘170
and : :
L P JOTY . P
fc,G AP, = HXD%SOfCﬂ AP + HXDU?>(Jf079 AR .
The statement follows from
p P
HfC,Gg”ig = ||XD9%§0fC,99HAg =+ ||XD§R>ofC799||AP
. p . .
HXDB‘E<Of50g ar HefCJ AP HX]DER>O H( H)fao‘ »
= — P
Hﬁfc 1‘ AP, fc,G‘ AP, H(l B 9)fc,o‘ AP, fc,@‘ AP,

and letting ¢ — HTO‘. |

Remark 3.3. The demand on existence of limit from inside the disk can be reduced to only demanding
nontangential limits. This is due to the function z + |1 — 2|~ having height curves that are circles viewed
from the mass/height concentration point 1.

=2} +(1-9) ( 1?) , the nontangential

limits of g give no information about the limit in the lemma. In fact, if the tangential limits of g at +1 are
zero, the limit in Lemma 3.2 is also zero.

Next, we present one of the crucial results, in order to obtain Theorem 1.1.

Theorem 3.4. For4+2a>p>a+2>1,

D=

1 l 1 1
p 3 4 o=y T 4f2a—p
. /( HEION ) / 3 | s i D
D -1 P

rebay J. [T — 2t|” (1) 5"

Proof. The upper bound
By substituting z — S; !(2), we have for every —1 <t < 1
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£ (S ()" [fIP L+ t2)” (1= 22)2 (1= t2)*
(D 1= =t el > </ (L=t 142t 1+ 2t dAa(Z))
_ 42)24+a-p %
( / [f(2)” | 11+ tﬂ)ma — dAa(z)> (3.1)

< (1 —tZ)H—“— < Lﬁ_dAa(z)) 5_

O
D

D=

Using

P 1+ a)

o(z) = / f(@+iy) (1—a® — ) dy,

we have

T l=

1 l 1
|f(S / 2y / (z)dx
dt < [ (1-1¢%) —_— dt.
/1</ 1—Zt|p |1+(Et|4+2a D

-1

It is clear that g > 0 (is continuous) and

1
[oteraz =11t
21

and hence,
1

1
1 1 _ lg(z)|dx )5
v (s
1 (1 4+2a
sup / /f p An(z) | dt < sup / (et) 2+: dt.
fEBAP 1- t| gEBLl(],ll) 1—t2

-1

Every real valued function g with domain ] —1, 1] can be uniquely written as the sum of an even function,
ge, and an odd function, g,. For a given g € L', let |g| = g + go and note that g. > |g,|. Define

Ge(t) ::/(‘geﬂ and Go(t) ::/ go(x) dx

1+ xt)4+2a p (1 + xt)4+2047p'
-1 -1

Notice that G.(t) and G,(t) are even and odd, respectively, and that Ge(t) > G,(t). It follows that

1 1 1 1 1
/(1—152)2*—“— (/%) dt:/(1—t2)”7“— (Ge(t)+Go(t)> dt

—1 -1

:/ (1—2)5" (Ge(t) +Go(t)> g (Ge(t) - Go(t)> ] dt.
0

Using the fact that
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227 > (z+y) +(x—y), x>y >0,7€0,1],

we obtain

-

1 1 EN 1
2+7a_ g| dz ! 2+7a_ 1
/(1—t2) (/Mm) dté2/(1—t2) 'Ge(t)7 dt.
—1 0

—1

with equality if and only if g, = 0. We have now obtained

sup /( HCIC) g dAa(z)> dt< su /l—t ) TGt dt (3.2)
D

_ p
feBAg,1 |1 Zt| QEBLl(] 1Dy

where L1(] — 1,1]) is the subspace of L'(] — 1, 1[) consisting of nonnegative, even functions.
Next, we examine the function G.(t). Using the fact that g is a nonnegative, even function and

I+te) "+ 1 —tx) " <A+t)"+1 -7, x,t €] —-1,1[, v >0,

we obtain

h 1 1
Ge(t) = /g(:c) (1 +xt)4+2(x—p + (1 _ xt)éH—Za—P] dz
0

_ Nl
- 2

1 1
(1 + t)4+2o¢—p + (1 _ t)4+2a—p] '
This together with (3.2) provides the upper bound.

The lower bound
By (3.1), we have

c St P ! 1_ t2 rame %
( |fl’f(——z(tzli’”dAa(Z)) </|fc |p\1+ tl)“”a pdAa(Z)> |
D

=

Next, define

and note that h, o (t) € L' and

p 1_t2)2+a D %
/ e s A4a() ) < a0

Therefore, by dominated convergence and Lemma 3.2, we obtain

=

1 1 1 0’ 1-6'
p » == T o=
lim WeoGCDE 4y () ar = (fmerfs + o e ) dt, (3.3)
11— 2t (1—2)= 5"

—1 D

—1
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where 6/ = 67/(6” + (1 — 6)). Letting 6 = 1, we obtain the statement of the theorem. O
Remark 3.5. If we put 0 € {0,1} in (3.3), the right-hand side is

1 2+a 1 24« 1

(1—t)"» ~ t e
/ e dt:/iﬂadt: #, (3.4)
2ta ) (1—t)» sin <W2+_a)

-1 p

where the first equality is the substitution ¢ — 2t — 1 and the second is Euler’s reflection formula. If § = 1,
the one can use the substitution ¢ — —¢ to obtain the left-hand side in (3.4) from the right-hand side in
(3.3).

Choosing 0 = % in (3.3) maximizes the right-hand side. The expression is in fact increasing w.r.t. 0 €]0, %[
and symmetric around 6 = % This follows from the simple fact that

1
1-6 P

1 1 1
YiFZa—p + IT2a— p 24a—p 2+a—p\ »
ot i) (e gy

2)177 1+4t)2t+o—p (1 —t)2ta-p

-1 0
(1 t)2+a P ( ,t)2+afp P
0 1-4 dt
+ ( (]_ t)2+a p +( )(1 +t)2+a—p

and by differentiation
A+ (1—-0)B)" + (0B + (1 —6)A)”

is increasing w.r.t. 6 on ]0, [ whenever v €]0,1[, 4, B > 0.
Finally, on the one hand we have by Jensen’s inequality

1
(s ] >3 )
2 (1 + t>4+2(x—p (1 _ t)4+2a—p 2 (1 4 t) 2(2;:&) (1 B t) 2(2;rcx)

On the other hand, since (x + y)” < 27 + ¢ for z,y > 0 and ~ €]0, 1], we have

;

1 1 » 1 1 1
e T L B N

_ol- 11 1 " 1
2 (1 + t) ;r ) (1 B t) 2(2:&)
Using 6/ = 0P /(0P 4+ (1 — 0)P), (3.4) yields
! (1 )4+z + (1 1)43; )i
+t a—p t a—p s _1
/ - dt € . [1,2'77] (3.5)
7l (1—1¢2) sin (W%)

for any 6 € [0, 1] with the lower bound obtained when § € {0, 1} and the upper bound obtained when 6 = 3.

We have now obtained an upper bound for the Hilbert matrix operator on A2, p > 2+« > 1 and we
proceed with a proof of Theorem 1.1.
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Proof of Theorem 1.1. We have

f(t)
1—tz

dt <

H(f)(2)] < / ]
0

m—

Applying Minkowski’s inequality and Theorem 3.4, we obtain

1

p 1 1 1
|£(Se(2))] ! |f(Se(2)I” '
||H||L(A§;) < fglépp (/ W dt dA(x(Z)) < sup / < W dAa(z)> dt
D K1 D

Aa

=

171 1 1
. (5 [(1+t)4+2a—p + (1_75)44—2@_,]}) ”
- — g\1-ZEe .
) (1 t ) P

The rest of the proof follows from (3.5) in Remark 3.5. O

Remark 3.6. Theorem 1.1 yields an improved upper bound for |[H| 4z, when —1 < a < 0 and a+2 <
p < 2(2 4 ). The previously proved bounds, which are given in [12, Theorem 1.3 (ii)] and [2, Theorem 1.1
(ii)] are

2 (14225 ) — T~ and 25 (142250 ) —
sin (—(Hpa)’r) sin (—(%po‘)”)

respectively. To see that Theorem 1.1 is an improvement, it suffices to notice that the constants in front
of m/sin((2 + a)n/p) are decreasing w.r.t. p, while 2177 s increasing. Comparing the constants when
p = 2(2+ a) yield the statement. It is also worth noticing that lim,_,; 275 = 1, so0 in some limit sense the
new bound is sharp, which is to be expected when comparing Minkowski’s inequality with Fubini-Tonelli’s
theorem. The bound given in Theorem 1.1 is also the smallest known upper bound when p = o+ M for any
fixed M > 5 and a > 0 is large enough (depending on M). In [11, Theorem 1.2 (iii)] the explicit bound for
24+ a < p<2a+3is given by

2+

(14225 ul

p

For such (p,a), we have p < 2(2 + «), and hence,

(1 + 22“7‘“1) >2— lim 2177 > 2177,
p—00

which proves Theorem 1.1 is an improvement of the result in [11, Theorem 1.2 (iii)], which is the best explicit
upper bound found, except for the pairs (p, ) for which Conjecture 1 has been proved (the relevant results
are contained in [12,7] and [4]). We will prove that the conjecture has not been proved when p = ao+ M for
any fixed M > % and a > 0 large enough (depending on M). For such (p, @) we can assume 2+a < p < 2a+3
holds. Moreover, considering the asymptotics of the bounds of p w.r.t. a for which the conjecture has been
proved, it is easy to see that as long as a > 0 is large enough, we obtain some new results, except for if the
pair (p, @) is contained in the assumption of [12, Theorem 1.2] or [4, Theorem 3.2 (b)]. However, considering
the left-hand side of the extra condition given in [12, Theorem 1.2] and more precisely, the function
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1
Epalt) = / eE2 (1 ) de,
(z5)?
we see that the exponent & —a —2 = % — a — 2 can be made arbitrarily small by choosing o > 0
large enough, making the left-hand side of the extra condition diverge while the right-hand side remains
finite. Concerning [4, Theorem 3.2 (b)], it is enough to see that by e.g. Stirling’s formula, 5(1 + «,2 + §)
tends exponentially to zero as a — oo, while the other factors tend at most linearly to either 0 or co. The

assumption M > g assures that the assumptions of [4, Theorem 3.8] are not fulfilled.

Remark 3.7. The left-hand side of the expression in Theorem 3.4 is exactly the result of Minkowski’s
inequality applied to supsep ,, |Tf|| oz - More generally, assume that K : Dx]—1,1[— C is such that

_ feolSi(2))

Get.0(2) o) K(z,t), z€eD

is dominated by a function g: ] —1,1[— R in L?, that is, |gc+,0(2)| < g(t) for ¢ < (2+a)/p, 0 € [0,1],z € D
and ¢t €] —1,1[. Put ¢g = (2+ «)/p and 6’ = 67 /(67 + (1 — 0)P) and note that by Minkowski’s inequality, we
have

1

1
/fc,@Qc,t,@ dt S/chﬁgc,t,a
Z1

1 AP,

Under some reasonable assumptions (a concrete example is given at the end of this remark), we have by
dominated convergence

1 1
1
tim [ feagesallaz dt = [ (& geea(-1P + (1= 8)lgeca)”) " de (36)
Z1 Z1
and
1 1 1
Clinclo /fcﬁgc,t,é dt =0 / gc(“t,g(*l) dt + (1 — 0/) /gco,t,f)(l) dt. (37)
1 AP ] 21

The right-hand sides of (3.6) and (3.7) are equal iff g¢, 1,0(—1) = ge,,,0(1) or 6 € {0, 1} by Jensen’s inequality,
because p > 1. Minkowski’s inequality is, therefore, most likely too rough of an estimate to be applied in
this manner in order to obtain the exact value of the norm of T'. Indeed, compare (3.6) with the proof of
the lower bound in Theorem 3.4, and (3.7) with Theorem 3.8. The values of the limits can be compared
using (3.5) in Remark 3.5.

In a response to the remark above, we state the following conjecture:

Conjecture 2. For 1 < 2+ a < p,

T
1Tl gazy = —F——~-
(A=) sin (WHTO‘)

The equality in the following theorem justifies Conjecture 2:
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Theorem 3.8. For p > a+2 > 1, and any 6 € [0, 1],

T
sin (7r2+—a>
p

Before we prove the theorem, we state the following useful lemmas:

Ml = T, [ heolar =

Lemma 3.9. If v €]0,1] and § < 1 —max{y,1 — v}, then

1

/SUP
zeD
—1

(1 —2t)Y"1(1 — 22

1
6/ 1— t max{'y,l y}+6°
0

(1 —Jt])r+e
Proof. First,
[ |a—ayia a2y [ =i -2y
— zt —z —2t)7™ — 2z
dt =2 dt.
/ bl (1) / i N (A
21 0
Let ¢ > 0. We have
(1 — 2t)771(1 — 22)7 2
dt < ———.
seDaey| (-0 = (1=t

With the aid of some pictures, we obtain that for z € Dy~

1o G 2 () ~ (eos (ME2)) T < VB,

sup < sup < —
tejoap 11— 2t = egoap 11— t(2/ 12])] sin(arg 2) 2
which yields that for ¢ €]0, 1[ we have

(1—2t)7=1(1 = 22)7 e L R s < 2v/2

dt <27 sup

sup
z€DR>o

(1 —¢)r+o 1—zt| (1—t)r+o = (1 — tymax{yi-a}+s

z€DR>0o

We can conclude that

/ (1—2t)7 (1 — 22

1
6/ 1—1t) max{v& Y6 =
0

sup <
/1 i B
Proof of Theorem 3.8. We have
1— zt)¢ 1— zt)¢
P05 [ k2SS ) N Lk

(I—t)(1+2)° (L+1)e(l —2)

(1= 201+ )°(1 — 2)° + (1 — 6)(1 — £)°(1 + 2)°)

B (1 —2)e(1 — 22)e

(oL 00+ (= 2+ (L= 01— (1 2
— et T 2)e 01— 2)c+ (1—0)(1+ 2)° ‘

Define
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(1= 2) 1 01 +1)°(1 — 2)¢ + (1 — 0)(1 — £)°(1 + 2)°
1—2)c 01— 2)c + (1—6)(1 1 2)°

geyt 0t 2 —

and g¢.0 = g(2+a)/p,t.0-
The branch cuts of (1 4 z)° are chosen to lie outside of D. We want to compute

1

i, T feallag = T, |feo / Gero dt
C—>
0 Aﬁ

It is easy to see that for fixed 6 € [0,1], ¢ €] — 1,1[ and 0 < ¢ < (2 + «)/p the limits lim, , 11 gc¢.0(2)
exist from within the disk, more precisely,

Ve>030>0:]1—z2<dand z€D = |gc1,0(2) — gero(l)| <€
and
Ve>030>0:|-1—z2|<dand z€D = |gc1.0(2) — gero(—1)| <e.

First, we assume 0 €]0,1[. Then for 0 < ¢ < (2 4+ a)/p it holds that inf,ep R((1 £ 2)¢) > 0 and since
z—2z°maps {z € C:1<|z] <2and |argz| < 7} into itself, we have

Ze%ligo R((1—2)°) > g and 26%131:20 R((1+2)°) > g
It follows that
V2 o
01 —2)°4+ (1 =0)(1+2)°>R((A-2))+1-OR((1+2)°) > - min{6,1 — 0}. (3.8)

Now, Lemma 3.9 grants the existence of a dominating function gs(t) > |gie(2)|, hence, the dominated
convergence theorem yields that

1 2+a

1
lim * /9t,9 ) dt —/gtﬁ( 1)dt = /( f > s dt
z——1 J (1—t)T

1

and

1 1 | — e 1 -1
lim * /gt’g(z)dt :/%dtz/%d@
z—1 i J 1+t)> 4 (1—t)»

where lim* are limits taken within the disk D. Since the limits exists and |g; 9| € L, we can apply
Lemma 3.2 to obtain

1 1 1
lim fcg/gtgdt :t‘)lim*/gtg()dtJr (1-0 hm /gtg
c— 2t ’ ’ z——1 ’
P -1 AP 1 1
“ (3.9)
1 2o
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Since
1 1
1T fe0ll 4o — fc,e/gt,a dt <\ feo /(gc,t,O — gt dt) , (3.10)
0 AR 0 AR
it remains to show that
1
hm / o0 — grodt)||  =0. (3.11)
0 AP,

To this end, put ¢y = (2 + «)/p and partition g0 = gt )( )hgt)( )+ gct ( )h( 1)( ), where

C k)

1,y @—zt) (1 —2)° —1, (=211 +2)°
c,t (Z) - (1 _ t)c ’ gc,t (Z) - (1 4 t)c ’
0 (1-6)
O(1—2)c+(1—6)(1+2)° (1 —z)c+(1—0)(1+2z2)c

Wil (z) = and  h{,V(z) =

Now
1 1 1
1,0 1 1 1 1 1 1
/gg t)hgt) g§0 thco)t dt = /(gg,t) - ggo?t)h( ) dt + /gﬁo?t(hg,t) - hgo? ) dt.
—1 -1 -1

For the last integral, Lemma 3.9 yields

1
sup / a2 () (2) - hPy(2)) dt
ze

1

) (3.12)

<sup sup [H0)() =0, 2| [ sup
zeD se]-1,1[!

glh(w)| dt < oo,

and so the right-hand side tends to zero as ¢ — ¢p. Moreover, for z € D using (3.8)

1
() gt —_— — dt
/ gcot h‘ct — m1n{9 1— gcgt
1
1
_ B géo?t dt
min{#, gé}t)

and

(1 —2t)0¢(1 — z)%0¢
(1—t)eo—c

gcg t

1— 1-— dt

1
e /‘1—215011—2)
1—-1¢)c
1 1
(1—zt) (1 —2)°

1
S (sup sup |(1 _ S)cofc _ (1 _ ’ZUS)CO c _ Co c /‘ 1 _t prw— dt
-1

weD se]—1,1]
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Furthermore, for ¢ €]2¢y, co|, we have by Lemma 3.9,
1
(1—zt)71(1 - 2)°
]_ _ t c+co c
21

0
/ (1—2zt)° 1—z)c
<
(1—1t)e
1

dt

1
(1 —2t)71(1 — 2)°
dt + (XD§R>O (Z) + XDR<0 / ’ 1 _ t c+co c dt
0

0 1 1
< dt
/(1 +6/ l_tmax{cl ct+co— c+/ 1_t
—1 0 0
0 1
< .
ey == (1—|—t 8/ =9 T TR
—1 0

We can, therefore, by the dominated convergence theorem conclude that

c—Co

1
lim / ) — g pn) atl =0
1

and with (3.12), we obtain

1
lim /gg}gth gDnd, dt| = 0.

c—Co co,t
1

Similar calculations can be done to conclude that
1

lim /gﬁt”f% D gCDnDar =,

e c,t rot co,t
1

and hence, (3.11) holds. Combining this with (3.9) and (3.10) yields the lower bound for [|T'|;(4z). O
4. Essential norm of the Hilbert matrix operator on weighted Bergman spaces

Proof of Theorem 1.2. In [11, Proof of Theorem 1.2] it is stated that

Sl

ITf 1Lz = na®) | (0t 1) / 0?42 | F ) g1 o () dA(w)

B(ct,pt)
where
2ta g
1 1—t P
= — = — t e —
C 2—t Pt 2—t d)p,oc() (1_t)2+Ta

and
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Pf - |w—Ct|2 “
Gta(w) = ———| .
Pt

As in [13, Section 4] we partition B(cy, pi) = D>t UD<pg,, where D<py = B(ct, p) N B(0,R), D> =
B(ct,pt) \ B(0,R) and R > 3.
On the one hand, we have

@@+ 1) [l ) g () dAW) < T s (5P

D<rt

and by [9, Theorem 1.7] we have

T =e [ [ ’
nlaL e T (1 =12
D

On the other hand, we have

(1= |2)%dA(2) Spa 2797, 1 €]0, 1] (4.1)

/ "™ 72 £ ()| gr,0(w) dA(w) < max{1, RP~H72) / w)|” gt,o(w) dA(w),

D> r.¢ D>p.t
and continuing as in [4, Proof of Theorem 6.5], we obtain
Upa(t)(a+1) / [P 172 F (W) [” g1, (w) dA(w) < Wy 0 () max{1, RFT2L | £,
D> r.¢

Together with (4.1), we have now obtained

_2(2+
1Ly < [ 17l dt < G stp 1)+ max{1, R

1
o)
B VIl / palt) dt

for some Cp o > 0. Let (L,,) C L(A2) be the sequence of compact operators given in [13, Lemma 3.2] (see
also [14]). Tt follows that

2(24a) T

lim | H — HLy |l 4 </¢pa t) dt = max{1, lei}ﬁ,
sin (WT“)

for all 0 < R < 1. Let R — 1 to obtain the upper bound for the essential norm.

In [11] a lower bound for the norm was calculated considering the sequence (f. ) as ¢ = (2 + «)/p. The
sequence converges weakly to zero since it converges to zero on compact subsets of D and AP is reflexive
for p > 1. Therefore, |[K(fc,0)[l 4» = 0 and hence,

1 1le,£any = mflim [[(H = K)(feo)ll ap = lim [|H (fe0)ll ap — Slll(phin”K(fc,O)HAg

T
)
sin (77”—“)
p

where infx and supy means infimum and supremum respectively, over compact operators K; the last

= liin [ H (fe,0)ll 4o =

equality is found in the proof of Theorem 1.1 [11]. O
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Remark 4.1. We have now obtained an extension of [13, Corollary 9.4]. Let p > a+2 > 1. If H: AP — AP
is not norm attaining, then

™

1Hllzan) = —F——
(4% sin (71'2"’7“)
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