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Abstract  31 

Insects dominate animal species diversity yet face many threats from anthropogenic drivers of 32 

change. Many features of insect ecology make them a challenging group, and the fragmented state 33 

of knowledge compromises our ability to make general statements about their status. Here, we 34 

discuss the challenges of assessing insect biodiversity change. We describe how multiple lines of 35 

evidence – time series, spatial comparisons, experiments, and expert opinion – can be integrated to 36 

provide a synthesis overview of how insect biodiversity responds to drivers. Applying this approach 37 

will generate testable predictions of insect biodiversity across space, time, and changing drivers. 38 

Given the urgency of accelerating human impacts across the environment, this approach could yield 39 

a much-needed rapid assessment of insect biodiversity change.   40 



Introduction 41 

Insects are an extraordinarily diverse and abundant group of animals (1, 2), and are essential to 42 

terrestrial and freshwater ecosystem functioning (3, 4) that is critical to human wellbeing (5). Most 43 

of the world’s flowering plant species depend on animal pollinators to reproduce, with an estimated 44 

82% of species pollinated exclusively by insects (6, 7). Moreover, insects are a crucial trophic node 45 

linking primary production to higher trophic levels: insects comprise the bulk of food sources for 46 

many birds, bats, reptiles, freshwater fishes, and other vertebrates (8).  47 

There is overwhelming evidence of changes in insect communities in recent decades. These changes 48 

include rapid local and regional declines in abundance, occupancy, biomass, and diversity, as well as 49 

the reorganization of communities (9–17). Concern over these changes has permeated across 50 

scientific, public and policy sectors (11, 15–18). While some narratives have likely exaggerated the 51 

extent of insect declines (22, 23), insects are clearly threatened by a combination of widespread 52 

anthropogenic drivers, including land-use change, climate change, agricultural intensification, 53 

pollution, and introduced species (14, 24). 54 

Despite the growing recognition of the ecological and economic importance of insects (14, 25–28) 55 

research on insect biodiversity has been limited (29, 30) and under-funded (31). As a result, the 56 

available evidence describing insect trends is spatially, temporally, and taxonomically 57 

unrepresentative (32, 33), such that the overall magnitude of the problem remains unclear (11, 23). 58 

Current evidence is biased towards human-dominated landscapes in Europe and North America (13, 59 

34, 35). Taxonomic bias favors easily observed or identified groups, such as butterflies, bees, and 60 

dragonflies, while more taxonomically intractable or geographically isolated groups (e.g., parasitoid 61 

wasps, earwigs, or icebugs) have been neglected (33). Available time series are generally short, 62 

leading to extreme and potentially spurious inferences (36). The high interannual volatility of insect 63 

populations means that long-term trends and historical drivers of insect biodiversity change are 64 

particularly poorly captured by short time series (37). New approaches are required to understand 65 

and quantify changes in insect biodiversity and its drivers, to better support global policy 66 

recommendations and to target resources effectively to mitigate threats to insects. However, these 67 

challenges are exacerbated by the fact that insects are hyper-diverse, have complex lifecycles, and 68 

experience substantial population fluctuations. 69 

For these reasons, a detailed global perspective of insect biodiversity change and its drivers remains 70 

elusive (21), making it challenging to develop specific measurable targets and goals for insects in 71 

large-scale biodiversity discussions and strategies (38). For example, Goal A of the Kunming-72 

Montreal Global Biodiversity Framework refers to metrics such as population abundance and 73 

extinction risk, for which there are excellent data for vertebrates (39). In contrast, a mere ~1.2% of 74 

insect species (12,100 species out of ~1 million described insect species (1)) have undergone the 75 

International Union for Conservation of Nature (IUCN) Red List assessments necessary to calculate 76 

extinction risk, of which approximately a quarter (3,107 species) were evaluated as Data Deficient 77 

(40). An even smaller fraction has been assessed more than once, undermining any ability to 78 

understand changes in extinction risk (40).   79 

These shortfalls underline the need for new approaches to deliver a more comprehensive, globally 80 

representative picture of the state of insects to inform scientific research, public understanding, and 81 

biodiversity policies. Sparked by reports of unexpectedly large insect declines (9), there has been a 82 

surge in the compilation and analysis of insect time-series data. While this effort has led to valuable 83 

insights, disagreement remains as to whether, where and why insects are declining. The ‘why’ 84 

question is particularly important because any attempts to reverse declines will need to address the 85 



drivers of change. Moreover, a synoptic overview of insect biodiversity change and its drivers is a 86 

prerequisite for making testable predictions about the effects of conservation or policy actions. For 87 

example, how much would insects benefit if we reduced global pesticide usage. Indeed, prediction is 88 

essential for demonstrating scientific understanding (41). A predictive understanding of insect 89 

biodiversity change would make it possible to project the potential future state of insect biodiversity 90 

and the consequences for ecosystems (e.g., the risk of reduced pollination services) and, thus, 91 

inform evidence-based policy recommendations and conservation action. 92 

Here, we address the grand challenge of understanding insect biodiversity change from fragmentary 93 

data. Recent reviews on insect biodiversity have focused on the state of insects (2, 42), the drivers of 94 

insect declines (13, 14), and advocated priorities for data generation (18, 37, 43). In this paper we lay 95 

out the principles by which a more comprehensive understanding is possible via the integration of 96 

multiple imperfect lines of evidence that are already available. 97 

We first outline the features of insect biology that make them challenging to study. We then explore 98 

the strengths and weaknesses of different evidence types for understanding how and why insect 99 

biodiversity is changing. Finally, we identify what is required to harness the breadth of currently 100 

available evidence to build a better understanding of the state of insect biodiversity. Our approach 101 

provides a basis for advances in understanding the drivers of insect biodiversity change that are not 102 

constrained by the limitations of only one evidence type. Our overall goal is to lay a roadmap toward 103 

a solid understanding of insect biodiversity change on which conservation policies can be built, 104 

without having to wait decades for comprehensive monitoring data.  105 

The challenge of understanding insect biodiversity change 106 

Insects are hyper-diverse, comprising up to 90% of all multicellular animal species, with the majority 107 

still undescribed (1, 2). Beyond the numbers lie a staggering diversity of ecological adaptations and 108 

functional roles, from eusocial pollinators, to specialized parasitoids, to scavenging detritivores (3, 4, 109 

44), in addition to highly complex lifecycles (45). Thus, we should expect insect biodiversity change 110 

to be extremely heterogeneous. Moreover, insect population sizes are more stochastic than for 111 

other taxonomic groups, so more datapoints are required to capture fluctuations than for 112 

vertebrates (46, 47). Stochasticity is high both within and between years, with even small differences 113 

in the timing of annual monitoring resulting in dramatic differences in reported species abundance 114 

(20, 21). 115 

The complexity of insect biodiversity change is further compounded by a system of interacting 116 

drivers (48, 49). At the local to landscape scale, there is strong evidence for land use, climate change, 117 

pesticides, disease, and invasive species as key drivers of insect biodiversity change (2, 14, 50, 51). 118 

What is lacking is a quantitative assessment of the relative importance of the various drivers across 119 

scales, as well as knowledge on how these drivers interact to cause change. It is only by 120 

understanding these complex and dynamic driver-response relationships that it will be possible to 121 

identify when and where declines in insect biodiversity may be reversible (52) and deliver a synoptic 122 

view of insect biodiversity change and its consequences. 123 

Ecology and Traits 124 

The impact of direct drivers of change is mediated by insect ecology and evolution. Species traits 125 

have long been used to provide mechanistic insights into how biodiversity responds to drivers (53). 126 

Traits are likely to be especially valuable for understanding differential responses to drivers in 127 

insects, given the diversity of insect life histories and dearth of high-quality data. Indeed, as many 128 

insects undergo metamorphosis, their ecological niche changes dramatically during their lifecycle, 129 



such that environmental constraints on one life stage can be quite different to those on another 130 

(54). Thus, insect life histories are highly variable, encompassing inherent differences in life stages 131 

(e.g., larva vs adult), as well as in longevity, dormancy, synchronization (55), and reproductive 132 

strategies (sexual vs asexual; egg laying vs viviparity). Moreover, understanding how species with 133 

shared traits respond to drivers provides insights about the whole trait group, even when specific 134 

data are not available for all (which is often the case for insects). For example, whether forest-135 

dwelling insects prefer open glades, closed understory, or forest canopy will influence how they 136 

respond to deforestation (56, 57), and species preferences combined with rates of deforestation 137 

could be used to infer insect trends.  138 

Species’ ecology can also interact with characteristics of the surrounding landscape to increase 139 

susceptibility to decline (Fig. 1), with poorly dispersing or wingless species (58, 59) or those unable to 140 

persist in certain habitat matrices (e.g. intensive agriculture) unable to survive (60). Better evidence 141 

on how insect traits and life stages mediate the impact of drivers is crucial to understanding their 142 

ongoing and future responses to global change (61).  143 

Evolution and Plasticity 144 

Global drivers subject insects to changing, and often strong, selection pressures, leading to 145 

evolutionary responses that also mediate the effects of drivers on insect diversity (62). Thus, 146 

understanding and predicting insect responses to environmental change is complicated by 147 

evolutionary dynamics and vice versa (63, 64). For instance, dispersal, driven by land-use change, 148 

can shape the spatial pattern of insect genetics (65). Similarly, crop domestication has selected for 149 

some insects to become agricultural ‘pests’ (66, 67).  150 

Insects exhibit various examples of beneficial adaptive plasticity in response to environmental 151 

change, including diapause induction or suppression of reproductive output under harsh conditions 152 

(68). However, insects may also pursue maladaptive pathways (i.e., developmental traps). For 153 

example, climate change in the temperate zone is causing insects to complete their lifecycles more 154 

quickly, leading some to attempt additional generations (and often fail) before winter sets in (69). 155 

These short-term changes in turn impact insect population dynamics and can be translated into long-156 

term adaptation. Temperature changes are a key driver of evolutionary adaptation in insects, and as 157 

suitable climates shift, insects are challenged with adapting to new conditions or tracking suitable 158 

ones (72). Conversely, pesticide resistance may actively select for certain species in agricultural 159 

settings, increasing their abundance while the majority are adversely affected (73). We must 160 

therefore consider adaptive capacity and plasticity in response to environmental drivers, since 161 

evolutionary rescue effects will be more apparent for insects than for longer-lived organisms (76, 162 

77). 163 

Interaction networks 164 

Insect populations are influenced by a range of antagonistic (e.g., predation or herbivory) and 165 

facilitative (e.g., pollination) interactions (Fig. 1). The consequences of environmental change for 166 

insects depend both on how they interact with other species and the structure of the whole 167 

network. Insect species often have specialized interactions, including as parasitoids, herbivores, or 168 

pollinators (78, 79). For example, 27% of tropical herbivorous insects feed exclusively on a single 169 

host plant species, while 48% feed on plants within one genus and 60% within one family (80). 170 

Holometabolous insects (those with complete metamorphosis) experience shifting interactions 171 

throughout their lifecycles (e.g., many hoverflies change from predatory larvae to facultative 172 

pollinators as adults). This makes insects especially vulnerable to co-extinctions with their 173 

interaction partners (81, 82). Furthermore, the loss of generalist insect species may have wide 174 



ranging consequences on network resilience and robustness through cascading extinctions (63), 175 

potentially resulting in coextinction of species with no direct interaction (84). These complexities 176 

mean that drivers that may superficially appear unimportant for certain species may still have 177 

consequences through indirect effects (82). 178 

<FIGURE 1 HERE> 

 

Emerging questions 179 

These layers of complexity highlight the magnitude of the challenge in modeling insect biodiversity 180 

change from fragmentary data, but also suggest some emerging questions: which drivers are most 181 

important, for which insects, and what is the form and timing of the response? Can we extract 182 

sufficient signal to understand – broadly, if not precisely – the drivers of global change in insects, in 183 

models that are good enough to be useful for informing policy change or mitigation measures? 184 

Given the urgent need to address insect declines (85), we need to make better use of the data that is 185 

currently available. 186 

Time series are not enough 187 

Time series are comparable estimates of a biodiversity metric (e.g., population abundance, biomass) 188 

at a location at multiple points in time. Time series are therefore a direct form of evidence for 189 

biodiversity change, capturing the actual temporal dynamics of interest, and evidence from time 190 

series has formed a major part of current knowledge on insect change (11, 86). Individual time series 191 

vary in their temporal, spatial, and taxonomic coverage, while time series are undertaken for diverse 192 

reasons, including monitoring associated with recovery following restoration, post pollution or 193 

weather events, or in habitats known to be under threat. Collectively, the portfolio of existing insect 194 

time series is neither spatially nor taxonomically representative (35). These issues hinder our ability 195 

to use time series to quantify how insect biodiversity is changing at global and regional scales, and 196 

limit how well we can identify the causes of change (43).  197 

The temporal coverage of individual time series varies in terms of the frequency (number of 198 

sampling occasions) and the span (the length of time between the first and last samples) of the 199 

period assessed (Fig. 2). Ideally, the frequency of data collection would be sufficient to capture 200 

change from one generation to another, whilst accounting for within-season variation (e.g., as adults 201 

emerge and then die). Instead, most insect time series contain gaps (35, 37), and many represent 202 

‘snapshot’ resurveys of locations sampled once in the past (13% of studies analyzed in van Klink et al. 203 

(11); Fig. 2). Snapshot surveys are particularly problematic for insects, where year-to-year population 204 

variation can be much higher than for plants or vertebrates (20), creating substantial noise in the 205 

trend estimate and extreme sensitivity to the baseline conditions (21, 55). This noise can introduce 206 

bias if there is any non-randomness in the circumstances of either the original or repeat survey (87). 207 

As a result, intermittently sampled (i.e., less frequent than annual sampling) time series spanning 208 

fewer than ten years are unlikely to provide reliable estimates of change in insect populations (21, 209 

46, 87). But with little support for long-term monitoring (20), data are more typically collected over 210 

much shorter periods. Even for longer time series, the frequency and span of available time series 211 

(Fig. 2) means they often lack the statistical power to detect trends (21, 36, 52, 88) or isolate 212 

associated drivers (43). 213 

<FIGURE 2 HERE> 

 



An essential quality for time-series data is that the sampling protocol should be consistent over time, 214 

so that comparable estimates of biodiversity are obtained (or that variation, e.g., due to surveyor 215 

identity, can be statistically accounted for). However, consistency is not sufficient for producing data 216 

that can inform the wider question of why insect biodiversity is changing. Collections of time-series 217 

data will only provide such information if they are representative of environmental gradients and 218 

the range of exposure to threats (90). Instead, site selection is often non-random, with many time 219 

series located at field stations or other areas likely to be buffered from ongoing threats (35, 87) (e.g., 220 

34% of plots in the meta-analysis by van Klink et al. (11) are located in protected areas). By contrast, 221 

other time series may have been initiated in response to an environmental perturbation, either 222 

natural (such as a weather event), catastrophic (e.g., pollution) or artificial (e.g., experimental, 223 

restoration or changing management). In the absence of matching controls, these data have the 224 

potential to skew our perception of how and why insect biodiversity is changing (32). Resource 225 

limitation typical to long-term sampling strategies may also mean that sampling effort is limited, 226 

raising questions as to the power to identify trends in some populations.   227 

A further issue is that most time series lack scale-relevant information on external drivers and how 228 

they changed over time. Where this information is available, these drivers are often correlated and 229 

difficult to disentangle, which limits the ability of time-series data to attribute the causes of 230 

biodiversity change (10, 91, 92). Without quantification of how drivers affect insect diversity (e.g., 231 

driver decomposition; (93, 94)) we cannot hope to predict how alternative policies and actions will 232 

affect future trends. 233 

Sparked by the debate on insect biodiversity change, there have been calls to address the issues 234 

outlined above by greatly expanding the network of insect monitoring schemes (18, 37, 52). For 235 

instance, Didham et al. (21) suggested that intensive annual monitoring (e.g., (95)) could be 236 

complemented by extensive but infrequent occupancy surveys at large numbers of sites. A step-237 

change in insect monitoring is indeed urgently required, and well-designed, long time series will 238 

ultimately provide the best quantification of biodiversity change (although attribution to drivers will 239 

remain difficult). However, the cost of ongoing inaction will be high, and we cannot wait decades to 240 

accumulate these data (17, 34, 86); there is enough evidence about insect declines in some regions 241 

to demand immediate remedial action (85). To target action where it is most needed, we require a 242 

rapid synthesis on the causes of insect biodiversity change using data from a broad range of 243 

evidence types, not from just time series. 244 

Evidence beyond time series: developing threat-response models 245 

Time series provide the best evidence that change has happened but struggle to tell us why that 246 

change occurred. Understanding why biodiversity has changed is critical if we are to reverse 247 

declines, prevent extinctions, and maintain ecosystem function into the future (41, 96). To build a 248 

predictive understanding of insect biodiversity change we need to first model the relationships 249 

between biodiversity metrics and direct drivers. We refer to these relationships as threat-response 250 

models (TRMs; sensu (97), also known as pressure-impact relationships (98)). By quantifying the 251 

relationships between drivers and biodiversity metrics, it becomes possible to project the 252 

biodiversity response across spatial domains where the driver intensity is known. In this way, TRMs 253 

can be used to summarize the total impact of a driver within a given domain, and to make testable 254 

predictions for regions where no biodiversity data exists. Projecting TRMs in time makes it possible 255 

to re-evaluate historical baseline conditions (99) and compare biodiversity trends under a range of 256 

plausible futures of climate and socioeconomic change (96). 257 



Well-established TRMs, such as those developed as part of the GLOBIO (98) and PREDICTS (100) 258 

projects, are parameterized largely using data from vertebrates. However, the ability of TRMs to 259 

simplify multidimensional responses using trait-based approaches makes them particularly valuable 260 

for insects (and other hyper-diverse groups). The notion of using models to link insect biodiversity 261 

with threat gradients has been gaining traction in recent years, with insights from studies at local 262 

(101), regional (102) and global (48) scales. More broadly, insect conservation biologists have argued 263 

that experimentation (43) or spatial comparisons (52) can be employed to build models and reveal 264 

the most important drivers of insect biodiversity change. Where rigorous data is lacking, models 265 

linking insect populations with threats can also be derived from eliciting the opinion of taxon 266 

experts, using techniques from the social sciences (51, 103). Such approaches are particularly 267 

valuable for understudied taxa or geographic regions where structured expert opinion processes can 268 

provide key insights about population declines in the absence of quantitative data. These and other 269 

types of approaches all provide useful evidence, in the form of TRMs, to augment what can be 270 

learned from population time series. 271 

The ideal dataset for building TRMs would measure change over a long period, have broad 272 

taxonomic and spatial coverage, and represent the full range of drivers. In reality, few biodiversity 273 

datasets come close to this ideal, although for well-studied groups such as birds and mammals they 274 

are sufficient for building useful TRMs. The evidence streams available for insects occupy different 275 

spaces along these three axes (Fig. 3): in other words, the available evidence types have 276 

complementary strengths and weaknesses.  277 

<FIGURE 3 HERE> 278 

 279 
To illustrate these complementarities, we evaluate each evidence type against six ‘ideal properties’ 280 

(Fig. 4) for understanding and predicting insect biodiversity change. These are 1) the ability to 281 

describe long-term trends, 2) the ability to capture transient dynamics, 3) whether the results of 282 

analyzes using the evidence type can be decomposed or aggregated across taxonomic and spatial 283 

scales, 4) whether the results of analyzes using the evidence type can be generalized and 284 

transferred, 5) whether corresponding driver information is available at the same scale as the 285 

evidence type, and 6) whether the evidence type can unpick mechanistic or causal threat-response 286 

relationships, including interacting (e.g., antagonistic, synergistic, additive) drivers. 287 

 

<FIGURE 4 HERE> 

 

Experiments 288 

The strength of experiments lies in their ability to confirm causal links between drivers and 289 

biodiversity metrics (43). Experiments vary along a spectrum from lab-based, to plot or semi-field 290 

studies, up to more challenging landscape-scale manipulations (104). Whilst experiments deliver 291 

strong evidence, it is difficult to translate the outcomes to real world spatial and temporal scales 292 

(91). For instance, lab-based experiments are often targeted at individual species (minimal 293 

taxonomic breadth; Fig. 3) to characterize their response to a single factor e.g., thermal optima or 294 

agrochemical exposure (49, 105), and are often short-term (106) (low temporal breadth; Fig. 3).  295 

Whilst experiments provide an opportunity to identify casual relationships, the scope of 296 

environmental drivers manipulated is typically limited (i.e., low environmental breadth; Fig 3) and so 297 

may only partially capture causes of declines. Moreover, experiments often fail to capture how 298 



responses to drivers change when species are embedded in real interaction networks (Fig. 1) 299 

(although natural experiments are increasingly common (107)). Thus, simply scaling up the results of 300 

small-scale experiments may not be informative (108).   301 

Ultimately, while experiments are common, there are few at a large enough spatial and temporal 302 

scale to fully capture real-world effects (91), reflecting practical and financial constraints (109). 303 

These limitations can be partially mitigated in distributed collaborative experiments (99) or 304 

transcended by synthesizing results across multiple experiments using meta-analysis. Combining 305 

multiple experiments provides a means to quantify generalized relationships between 306 

anthropogenic threats and insect diversity (90). Still, meta-analyses are subject to their own 307 

limitations, such as publication bias (110), inferential errors (111) and lack of data availability (112, 308 

113). Nevertheless, meta-analytic approaches have already been effective in assessing the average 309 

response of insects to drivers including urbanization (114), dams (115), and nutrient enrichment 310 

(116, 117). 311 

Spatial comparisons 312 

Spatial comparisons – the comparison of biodiversity across sites – are often used to investigate 313 

insect biodiversity change (48, 118, 119). Their use assumes that patterns in space can shed light on 314 

patterns over time (120, 121). For example, Hallmann et al. (9) synthesized data from 63 sites within 315 

protected areas in Germany – most visited only once – to infer a 27-year time series of flying insect 316 

biomass. 317 

Spatial comparisons have high statistical power to identify relationships between drivers and 318 

biodiversity declines and quantify their potential impact (52). Indeed, comparisons across whole 319 

landscapes allow sites to be compared across multiple driver gradients, e.g. (118). In addition, larger-320 

scale changes can be modeled by bringing such comparisons together. For example, the PREDICTS 321 

project has compiled a global database of hundreds of studies comparing sites differing in land use 322 

types and intensity (122). TRMs built with these data have estimated average responses of 323 

biodiversity metrics across land-use gradients, including for insects (48, 123), and projected these 324 

responses in space and time (100).  325 

Spatial comparisons have limitations for assessing changes in insect biodiversity (91, 124). They are 326 

correlative, limiting causal inference, since correlation between drivers makes their effects hard to 327 

separate (although see (125)). By taking snapshots in time they risk being confounded by transient 328 

dynamics and legacies of site history, and they overlook gains or losses in the regional species pool 329 

(an aspect of ‘shifting baseline syndrome’ (126)). The advantage, however, lies in the relative 330 

simplicity of assembling the evidence base: they often sample more sites, can be undertaken in 331 

more locations (91) and, given the statistical power with which they link spatial variation in 332 

biodiversity and drivers, have so far been undervalued as evidence of insect biodiversity change (52). 333 

Perhaps most importantly, their collection can be achieved in very short time scales and can be 334 

reactive in terms of their focus, including under-represented regions, habitats, or taxonomic groups. 335 

Expert elicitation 336 

Information from experts (including scientists, indigenous people, and other non-scientist 337 

specialists) reflects their accumulated knowledge and experience. Expert elicitation around 338 

biodiversity trends, and the drivers thereof, is particularly valuable for poorly studied insect groups, 339 

in the absence of more direct forms of evidence. Expert elicitation may also provide insights into the 340 

impact of multiple interacting drivers on better-studied groups, which may be difficult to disentangle 341 

quantitatively but can be teased apart conceptually (127, 128). A major limitation is the subjective 342 

nature of expert knowledge, which makes assessing the reliability and repeatability of results 343 



challenging, especially when very few experts are available (14, 30). Similarly, the process of expert 344 

elicitation may introduce its own bias through survey design and choice of questions as well as 345 

interactions between participants in group meetings, although approaches such as the Delphi 346 

technique can be used to reduce some of these issues (129). 347 

Given sufficient expertise, expert elicitation has the potential for high taxonomic and geographic 348 

coverage. It provides information that may be costly to gather in other ways (e.g. large-scale, long-349 

term monitoring), although detailed species assessments (e.g., IUCN Red List assessments) can be 350 

time, data and cost intensive. At a broader scale, Miličić et al. (51) used a top-down expert elicitation 351 

process to gather information from 413 respondents on the most relevant threats to insect 352 

biodiversity in general, highlighting key differences between regions and taxa. This indirect evidence 353 

can be used to link the state of insect biodiversity with specific threats, especially where direct 354 

evidence is not available, or as a comparison to other types of evidence.  355 

Harnessing the breadth of evidence  356 

We have explored how TRMs based on experiments, spatial comparisons and expert elicitation 357 

provide alternative and complementary sources of evidence linking insect biodiversity change with 358 

drivers. Crucially, none of these evidence types alone can cover the full taxonomic, spatial, or 359 

temporal dimensions required for a synoptic and predictive understanding of insect biodiversity 360 

change (Figs. 3 and 4). Thus, there is an urgent need to harness this breadth of evidence, to 361 

synthesize the inferences from each evidence type in ways that maximize the complementarities and 362 

overcome the limitations of individual evidence types. To do this, we need to understand how to 363 

integrate diverse evidence streams and explore the limits to which we can combine TRMs and 364 

extend their inferences to different taxonomic, spatial, or temporal settings. Without attempts to 365 

generalize, the literature could become a descriptive ‘stamp collection’ of case studies (90). 366 

One avenue for combining evidence is through model-based data integration, in which the 367 

relationship between data types is defined in terms of model parameters (130, 131). Integrated 368 

modeling is particularly well developed in the context of species distribution models. For instance, 369 

Kotta et al. (132) combined experimentally defined tolerance levels with spatial data to model 370 

climate change effects on a macroalgal species and its herbivore. Domisch et al. (133) combined 371 

freshwater species occurrence information with expert range data leading to improved spatial 372 

predictions. Whilst integrated modeling is conceptually attractive, there are analytical challenges, 373 

particularly when combining data that differ in both quality and quantity (134) and where there are 374 

mismatches in spatial scale among data types (135). As a result, formal data integration may 375 

currently only be possible for well-studied regions and taxa where data availability is highest. This 376 

starting point, however, is fertile ground for new modelling tools to be developed (136). 377 

A tractable alternative is to compare the predictions from different types of TRM against one 378 

another, by projecting the models across space (e.g., using spatial data layers) and taxa (e.g., using 379 

species traits). Regions of parameter space where the model projections agree about the direction 380 

and/or magnitude of biodiversity change indicate higher confidence in the state of insect 381 

biodiversity. Regions where they disagree highlight priority research gaps or model inadequacies. 382 

Regions where direct evidence of biodiversity change is available (i.e., time series) provide an 383 

opportunity for external validation (90, 137) and a chance to demonstrate predictive understanding 384 

(41). This opens up a range of options for iterative model refinement to achieve the best fit to 385 

empirical data (known as a ‘digital twin’ (138)). For example, one could apply weights to each 386 

evidence type (139), then solve for the weights that optimize fit to the observed time-series trends, 387 

or test for lagged responses to increases in threat intensity (140). Similarly, when integrating TRMs 388 



for different threat types, one could compare models that assume additivity among threats with 389 

those in which the threats act synergistically or antagonistically.  390 

Synthetic TRMs integrating evidence types and drivers would provide a starting point to answer 391 

some of the biggest questions about insect biodiversity change (Fig. 5). Projecting the model in space 392 

would make it possible to assess the magnitude of insect biodiversity change across large scales and 393 

to identify probable hotspots of decline. Projecting the model in time would make it possible to 394 

explore plausible future scenarios for insect biodiversity (96). Aggregating insects by functional traits 395 

(e.g., body size, diet, fecundity, etc.) (141) that underpin ecosystem processes would make it 396 

possible to explore the consequences of insect biodiversity change for higher trophic levels 397 

(especially insectivorous bats and birds) and on benefits that people derive from insects (including 398 

pollination, pest control and nutrient cycling, amongst others (3, 4)). The modeling framework 399 

described here is also easily extensible to incorporate indirect drivers and the effects of mitigation 400 

strategies such as protected areas (96, 142). Based on these principles, a broad-brush quasi-global 401 

model of insect responses to land-use is within reach (sensu (48, 100)), as are regional models of 402 

multiple threats for well-studied Orders.  403 

<FIGURE 5 HERE> 

 
Whilst powerful, models have limitations. We see four major challenges for the development of 404 

large-scale and credible TRMs for insects. The first is around the technical aspects of model-fitting. 405 

There are well-known difficulties of modeling biodiversity using heterogenous data (144), especially 406 

where the scale of inference is different from the scale of the data (135) or where there is context-407 

dependency (111). A second challenge is around scale: TRMs built to address global questions (e.g. 408 

about the net magnitude of change) will not be suitable for addressing local questions (e.g. about 409 

the effect of a given intervention). Thus, TRMs at different scales will be appropriate for addressing 410 

different questions, but identifying the appropriate level of detail for a particular application may 411 

not always be obvious. The third challenge is around communication: it will be important for models 412 

to capture and convey the many forms of uncertainty and validity (90, 145). However, inferences 413 

around biodiversity change are often confounded by temporal, spatial and phylogenetic clustering 414 

within the data. Capturing all these uncertainties risks rendering the model uninformative for 415 

decision-making (145, 146). Similarly, it will be important to avoid making unwarranted claims about 416 

generality (90), particularly when presenting models as being of global relevance (147). Formal 417 

analysis of the degree to which models can be validly extended (i.e., transferability) is useful to place 418 

limits on the potential inference and should become standard (148, 149). Finally, there are ecological 419 

challenges that will be hard to overcome: certain aspects of insect ecology will be especially hard to 420 

model (as noted in Section 2). Early generations of insect biodiversity projection models will be 421 

unable to capture complex life histories or species interactions, but these and other processes could 422 

be added later (143). There are taxonomic groups and parts of the world where almost nothing is 423 

known about the insect fauna. Thus, one of the goals for the first generation of synthetic insect 424 

TRMs would be to highlight the remaining gaps (gaps not covered by data or by valid model 425 

inferences) where new data are urgently needed. 426 

Outlook 427 

Even with the caveats outlined above, there is sufficient evidence of changes in insect biodiversity to 428 

demand urgent action (85). This action needs to be informed and directed by a strong evidence base 429 

(i.e., sufficient extent, depth, and representativeness of evidence across time, space, and taxonomy, 430 

with levels of uncertainty that allow for clear decisions). Intergovernmental commitments to avert 431 



biodiversity loss will always be limited, so resources must be used effectively. Even when 432 

commitments are made, the historic track record of meeting such goals has been less than 433 

impressive (150). The recent Global Biodiversity Framework provides new impetus for action, with 434 

an ambitious target for the reduction of pressures on natural systems by 2030, and a goal (amongst 435 

others) to achieve healthy and resilient populations of wild species by 2050. There is an urgent need 436 

for the biodiversity modeling community to evaluate whether the scale of ambition defined in the 437 

targets is sufficient to put us on a pathway toward the 2050 goal, i.e. to ‘bend the curve’ (96). Due to 438 

the sheer number of insects, their vast ecological diversity and the paucity of available data, the 439 

challenge of understanding global insect biodiversity change is an immense task. To date, limited 440 

resources have been directed toward this task. We are not the first to point out that time series of 441 

insect populations alone are insufficient to address this problem (43, 52). We have gone further in 442 

arguing that a broad suite of evidence types, brought into a common analytical framework, is 443 

required to evaluate the scale of the problem facing insect biodiversity, as well as providing a triage 444 

system to identify the highest priority taxa, places, and threats, and thus leverage points where 445 

mitigation can be most effective. Only through harnessing the full breadth of available evidence can 446 

we piece together the fragmentary data into a coherent picture. It is a small but important first step 447 

toward an insect-positive future. 448 
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Figure Legends 914 

Fig. 1. The complexity of insects in a changing world and the role of interactions. The center ring 915 

shows an example insect lifecycle, with curved arrows between life stages (here, larva, pupa, adult). 916 

Connected to the lifecycle are a simplified number of interacting species including a variety of 917 

taxonomic groups. The middle ring represents the landscape in which this lifecycle and the local 918 

interactions occur, often incorporating multiple habitat types and land uses. The outer ring shows 919 

some of the major drivers that act across the landscape and local scales, affecting the species found 920 

in those areas. These can act alone but can also interact. 921 

Fig. 2. Frequency vs span of time series in a large insect time series database. The points represent 922 

the 1,657 sites (i.e., time series) included in the InsectChange database (89), which underpins a 923 

large-scale meta-analysis on insect trends (11). Note that only time series covering ~10 or more 924 

years were included in this database. The color underneath the points reflects the density of time 925 

series across the plot (red = highest density, white = lowest density). The lines represent 926 

approximately annual sampling (i.e., 10 sample events for a 10-year time series), ~seasonal sampling 927 

(i.e., 40 sample events for a 10-year time series), ~monthly sampling (i.e., 120 sample events for a 928 

10-year time series), ~weekly sampling (i.e., 520 sample events for a 10-year time series). 929 

Fig. 3. The power of attribution and breadth of coverage of different evidence types for insect 930 

biodiversity change across temporal, spatial/environmental, and taxonomic dimensions. Power of 931 

attribution refers to the potential for evidence types to identify causal links between insect 932 

biodiversity change and any external driver based on existing data. Experiments have high power 933 

because they are designed to quantify specific effects, whereas time series are typically set up 934 

without regard to the drivers present. Coverage captures the extent, depth, and representativeness 935 

of the evidence type in the three dimensions of time, space, and taxonomy. For example, taxonomic 936 

coverage reflects the number of insect Orders included (extent), the number of species within 937 

Orders (depth), and the representation of species across Orders (representativeness). Although 938 

inherently subjective, positioning of the shapes illustrates our interpretation of the strengths and 939 

weaknesses of the four evidence types; the size of each shape indicates the approximate variation in 940 

power of attribution and coverage within each evidence type. N.B. Evidence types are not mutually 941 

exclusive, e.g., some studies can be both experiments and time series, depending on how data were 942 

collected and analyzed. 943 

Fig. 4. Properties of available data for understanding insect biodiversity change and underlying 944 

drivers. Grades and shading (A – greatest, dark to D – least, light) reflect the fulfilment of the ideal 945 

property for each evidence type. Each box contains our rationale for the assignment of grades to 946 

each property and evidence type.  947 

Fig. 5. Establishing a synoptic overview of insect biodiversity change to inform policy and 948 

conservation action. Integrating multiple evidence types on the state of and changes in insect 949 

biodiversity with information on the drivers of this change can provide a synoptic overview of 950 

current patterns. This overview would underpin projections of insect biodiversity change across 951 

space and through time, as well as of the potential consequences of insect biodiversity change. 952 


