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Abstract

The Internet of Things (1oT) has the potential to improve the complementary of communication,
control, and information processing within the public transportation system. The loT-enabled
Intelligent Transportation System (ITS) ensures that automated transportation is networked and
operated collaboratively. The loT-enabled ITS has revolutionized the transportation industry by
enabling the seamless integration of a wide range of devices and systems. It makes the strategic use of
networked devices, sensors, and data analytics to improve transportation network efficiency, safety,
and environmental friendliness. The usage of the 10T in the ITS has grown in popularity due to its
capacity to improve traffic control, reduce congestion, facilitate live monitoring, and optimize
transportation operations. The loT-enabled ITS systems and devices must be protected from cyber-
attacks for various reasons, including preserving sensitive data, guaranteeing privacy, preventing
unauthorized access, and protecting against the risk of interruptions or manipulations. Malware
attacks affect the working and performance of the deployed smart 10T devices. We propose a secure
deep learning- enabled malware attack detection for loT-enabled ITS (in short, SDLMA-IITS). The
approach of explainable artificial intelligence (XAI) has been utilized for the effective detection of
malware. A deep security analysis of the proposed SDLMA-IITS is presented to prove its security
against various potential attacks. The comparative performance analysis of SDLMA-IITS is given
with the other similar existing schemes. Finally, a practical implementation of SDLMA-IITS is
provided to measure its impact on the security of the loT-enabled ITS systems and devices.

Index Terms

Intelligent Transportation System (ITS), Internet of Things (1oT), Explainable artificial intelligence
(XALl), malware attacks, cybersecurity, deep learning.

I. INTRODUCTION

Cities, especially, metropolitan cities encounter a variety of difficulties as a result of their rising
metropolitan population. These difficulties include, but are not limited to, high traffic congestion,
decreasing air quality, an increase in road accidents, and a rapid increase in the number of private
vehicles [1]. At the same time, the proportion of people who take public transit is falling. The primary
cause of the problem is a lack of access to reliable public transportation infrastructure. As information
technology advances, the Internet of Things (1oT) has emerged as a real-world phenomenon. The
Internet of Things (10T) has the potential to improve the complementary of communication, control,
and information processing within the public transportation system. The phrase “intelligent transport
systems (ITS)” refers to an upgraded version of the Vehicle Ad-hoc Network (VANET) that offers
comprehensive assistance with all areas of road management operations. The loT-enabled ITS makes
the strategic use of networked devices, sensors, and data analytics to improve transportation network
efficiency, safety, and environmental friendliness [2]. Its usage has become popular due to its capacity
to improve traffic control, reduce congestion, facilitate live monitoring, and optimize transportation
operations [3], [4]. Regardless, the development of loT-enabled ITS is impeded by risk considerations
associated with risk factors such as data confidentiality, data integrity and privacy [5]. The 10T-
enabled ITS systems and devices must be protected from cyber-attacks for various reasons, including
preserving sensitive data, guaranteeing privacy, preventing unauthorized access, and protecting
against the risk of interruptions or manipulations. Cyber attacks (i.e., malware attacks) happening
worldwide are increasing and becoming trickier daily, which calls for better ways to find and stop
these attacks. Consumers indulging in illegal cyber practices are emerging and even changing their
tactics. These attacks also affect the operations and functionalities of consumer IoT devices.
Therefore, effective and efficient solutions (i.e., machine learning/ deep learning-based mechanisms)
are required to detect and defend against these attacks in consumer 10T devices [5], [14], [15].

This paper aims to design a secure deep learning-enabled malware attack detection mechanism for
loT-enabled ITS. It looks closely at how well the proposed solution detects threats efficiently. As



these attacks increase, the data available to research also increases. The end goal is to minimize the
loss and maximize the model’s accuracy. The model designed for this task can be based on numerous
algorithms, i.e., artificial neural network (ANN), logistic regression, and decision trees. This study has
been finalized after comparing some such algorithms and then concluding with the ones that perform
the best. The motive is to add to what cyber security already has and research the previously existing
technologies in-depth, analyzing how they can change cyberspace.

Some of the security issues of the loT-enabled ITS are given below [16], [17].

* Insufficient visibility: Many instances involve a lack of awareness among information technology
departments regarding the utilization of the smart 10T devices by users. This poses a challenge in
compiling a comprehensive inventory of all the elements that necessitate security and management
[18].

* Inadequate incorporation of security protocols: Integrating smart [oT devices with security systems
might be challenging or even unfeasible due to the wide variety and magnitude of these devices.
There exist some deficiencies with open-source software [19].

* Open-source software: Many smart 10T devices are susceptible to security flaws and vulnerabilities.
The firmware that they use is prone to various software bugs and other associated security
vulnerabilities.

* Significant quantities of information: The management of data protection, administration, and
monitoring poses significant challenges due to the substantial volume of data generated by smart loT
devices in the ITS environment. Therefore, essential security mechanisms, like strong user
authentication and robust access control, are required [20].

* Limited security testing of smart devices in the ITS:The low emphasis on security among the
majority of the loT-enabled ITS developers results in a failure to conduct thorough vulnerability
testing, which is crucial for detecting the issues of the smart 10T devices and associated systems.
Hence, more security testing of smart 10T devices is required, where various fuzzing testing
techniques can play an important role [21].

* Unpatched vulnerabilities: Due to the lack of security testing of smart 10T devices, a lot of devices
are left with unpatched vulnerabilities, which is not good from a security point of view.

* Vulnerabilities in application programming interfaces (APIs): Exploiting insecure application
programming interfaces (APIs) as ports of access to command-and-control centers is a very famous
practice of hackers. The command-and-control centers serve as the primary source of various forms of
attacks, including cross-site scripting attacks, SQL injection, man-in-the-middle attacks (MITM),
distributed denial of service attacks (DDoS), and other forms of network breaches [22].

* Insecure passwords: Most devices in the IoT-enabled ITS environment come with default passwords
that users often neglect to change. Therefore, hackers can swiftly get access to these devices.
Furthermore, users may create passwords that are susceptible to being guessed. As they do not follow
the required security measures [23].

A. Motivation

The devices and systems in the loT-enabled ITS environment are equipped with sensors, actuators,
and software, have the capability to intelligently collect, analyze, and utilize data. This intelligence
aims to enhance the efficiency of decision- making processes and automate various procedures [3],
[6], [7]. Protecting loT-enabled ITS environment from cyberattacks is crucial for several reasons:
safeguarding sensitive information, ensuring privacy, preventing unauthorized access, and protecting
against the risks of disruptions or manipulations in connected devices. The necessity of securing 10T-
enabled ITS environment against cyber threats cannot be overstated, given their potential to cause
significant harm to individuals, businesses, and critical infrastructure. The functionality and
performance of the smart 10T devices is highly impacted by the malware attacks. Thus, it is essential
to detect and prevent these attacks. Hence, our focus is on designing a secure and efficient deep
learning-enabled mechanism for the detection of malware attacks in loT-enabled ITS environment.
The detection of malware can also become more effective through explainable artificial intelligence
(XAI). Therefore, XAl has been used to make the detection of malware more effective and accurate.



B. Research Contributions
The research contributions of the paper are provided below.

« In this paper, we propose a secure deep learning-enabled malware attack detection for a secure loT-
enabled ITS environment (in short, SDLMA-IITS). Explainable artificial intelligence (XAI) has been
used for the effective and accurate detection of malware.

* The details of the network and threat models, which belong to the proposed SDLMA-IITS are
provided. These models are helpful in understanding the working and usability of the proposed
SDLMA-IITS. Various important steps, like selection of dataset use of pre-processing, deployment of
machine learning and deep learning algorithms, and deployment of secure authentication and key
establishments, are also performed in the proposed SDLMA-IITS.

* A security analysis of the proposed SDLMA-IITS is presented to prove its security against various
potential attacks.

» The comparative performance analysis of the proposed SDLMA-IITS is given with the other similar
existing schemes. The proposed SDLMA-IITS outperformed the other existing schemes.

» Finally, a practical implementation of SDLMA-IITS is provided to measure its impact on real-world
scenarios.

C. Article Outline

The remainder of the paper is organized as follows. A literature review of existing schemes is given in
Section Il. Section Il contains different system models belonging to the proposed SDLMA-IITS.
Then, the proposed SDLMA-IITS is elaborated in Section IV. Section V contains a thorough security
analysis of SDLMA-IITS. Further, the practical implementation of SDLMA-IITS is conducted in
Section VI. Furthermore, the comparative performance analysis of different schemes is given in
Section VII. Finally, the paper is concluded in Section VIII.

Il. LITERATURE REVIEW

Gu et al. [3] presented an incentive mechanism that could potentially compensate raters for offering
frank ratings. They provided a consensus model that utilized the verified delay function (VDF) in the
trusted execution environment (TEE) to ensure the blockchain consortium’s maximum efficiency and
security. Prathiba et al. [5] introduced a cutting-edge approach known as stream-based blockchain-
powered malicious node detection (BMND) for the assessment and discovery any malicious activities
that might occur on the Internet of Autonomous Cars (IoAV) network, specifically autonomous
vehicles (AVs) that function as nodes. Javeed et al. [6] presented an intelligent intrusion detection
system (IDS) for smart consumer electronics (CE) with the help of deep learning (DL). The software-
defined networking (SDN) was also deployed. They separated the data plane and the control plane. It
used SDN architecture to enable reconfiguration over static network infrastructure. Then Anbalagan et
al. [7] used machine learning for IDS. The stochastic gradient descent was used to improve trust
evaluation in a 5G-V2X Internet of Vehicles (loV) environment. Haghighi et al. [8] proposed another
IDS. It seemed easy for automotive manufacturers for the integration of non-disruptive architecture.

Im et al. [9] presented a one-dimensional IDS that utilized WaveGAN for training by converting
normal data into waveforms without any malicious activities. Their technique utilized unsupervised
learning to detect attacks conducted by untrained individuals. Dib et al. [25] introduced a deep
learning framework for 10T malware classification and family attribution, analyzing malware binaries
to overcome the limitations of traditional machine learning classifiers that rely heavily on static and
dynamic analysis. However, a key drawback of this framework was its reliance on a single
representation of malware data, potentially limiting the learning process. Future research could



develop a more holistic approach, integrating various data representations and types to improve
adaptability and accuracy, especially in detecting and classifying new and evolving malware families.

Qureshi et al. [26] proposed a deep learning approach for network malware analysis using LSTM,
CNN, and DNN models, integrating these algorithms at the core switch of network architecture for
efficient malware family classification. Such a hybrid system’s complexity and high resource
demands pose significant challenges. Future work could look into streamlining the architecture by
developing more efficient algorithms or leveraging cloud computing resources to make the system
more viable for real-world network environments.

Usman et al. [27] presented a hybrid approach using honeypots and machine learning to dynamically
detect malware focusing on capturing malicious activities and analyzing malware samples in a
sandbox environment. While innovative, the method’s reliance on sandbox detection might lead to
evasion by sophisticated malware. Future research should enhance the detection mechanisms, perhaps
by incorporating advanced behavioral analysis and anomaly detection techniques, to counter evasion
strategies used by advanced malware.

Ashiku and Dagli [28] introduced a CNN-based deep learning model for network intrusion detection,
emphasizing convolutional operations over traditional neural network architectures. The model’s
complexity in tuning hyperparameters and handling tensor dimensions was a key challenge. Future
work could explore automated hyperparameter optimization techniques and advanced network
architectures that can more efficiently process and analyze network traffic, potentially improving the
system’s accuracy and adaptability to various cyber threats.

Thamilaras et al. [29] focused on developing an intrusion detection system for medical 10T devices,
addressing the unique challenges of securing sensitive medical data. One obvious downside was the
difficulty in striking a balance between the two competing goals of implementing robust security
measures and protecting the privacy and integrity of patients’ personal information. To make sure that
medical 10T networks are secure and private, particularly in low-resource settings, researchers may
look into developing better security schemes and machine learning algorithms.

Dutt et al. [30] presented an Intrusion Detection System (IDS) concept that was inspired by the human
immune system. The model centered on two layers, which were compared to the innate and adaptive
immune systems. Several noteworthy downsides include the model’s complexity and the possibility of
producing false positive results. Further research is needed to improve the method’s precision, lower
the number of inaccurate positive outcomes, and tailor the model to other network scenarios. Kasongo
and Sun [31] effectively detected wireless network intrusions using a deep learning model based on
feature extraction. The model’s generalizability and resistance to overfitting are not particularly
strong. “Graph- based convolution neural network (CNN)” was the name of the technique of Nguyen
et al. [37]. Their technique was used to discover the 10T botnets. In the testing and analysis, it has
been identified that their mechanism had the potential for the detection of various malware attacks.
However, the malware detection accuracy of their scheme was low.

In the domain of 10T, Su et al. [38] developed a technique for identifying malicious software that is
accountable for distributed denial-of-service attacks (DDoS). It was necessary to carry out the
transformation to get the malware images, such as a grayscale image with a single channel, which was
derived from a binary viral code. In the subsequent step, a lightweight “convolutional neural network
(CNN)” was utilized to categorize the families of malicious software. They reached an accuracy of
approximately 94.0% percent using the method they gave regarding classifying the malicious files.
Abbas et al. [39] built multiple models for intrusion detection. It included “deep neural networks
(DNN), convolutional neural networks (CNN), and recurrent neural networks (RNN).” They used the
CICDI0T2023 dataset for analyses of 10T device network traffic belonging to intrusion attacks. Again
Jony et al. [40] proposed a long short-term memory (LSTM) model for developing an IDS.



In delivering explainability to intrusion detection, Chinaechetam et al. [41] proposed a mechanism to
counter intrusion attacks in a Metaverse environment. They used “Shapley Additive Explanations
(SHAP) and local interpretable model-agnostic explanation (LIME)” explainability techniques to gain
a comprehensive understanding of differentiating the behavior of an intrusion attack from legitimate
benign network behavior.

Leveraging a Federated Learning framework, Abbas et al. [42] developed an edge learning Intrusion
Detection System prototype with a two-client, one-server architecture. This aimed to achieve
distributed training, helping to reduce the server’s computational load and incorporating privacy
mechanisms.

Another approach to explainability was undertaken by Le et al. [43], who introduced an ensemble
blending model to detect intrusion attacks in dynamic loT environments using the CICloT2023 and
10TID20 datasets. Within their framework, they employed the Local Interpretable Model-Agnostic
Explanations (LIME) technique to provide human-interpretable explanations for the model’s
classification of different attacks.

Jayalaxmi et al. [44] provided a survey on a hybrid frame-work proposal for an effective security
model, which was applicable for intrusion detection and/or prevention. It was available in conjunction
with research on risk factor analysis through a mapping approach. Their study aimed to examine the
significance of various approaches, instruments, and tactics based on Artificial Intelligence (Al) that
were employed in the detection and/or prevention schemes of intrusion detection in the loT.
Benkhelifa et al. [45] addressed the security problems of 10T by concentrating on the creation of
technologies that could identify intrusions in the 10T. Their study offered a thorough analysis of the
latest intrusion detection systems (IDSs) designed for the 10T. Their specific emphasis was on various
architectural approaches. Subsequently, a proposal for prospective advancements in the 10T intrusion
detection systems was formulated and assessed. Their demonstration illustrated how the intrinsic
attributes of conventional methods lead to inadequate coverage of the 10T field, making them
unsuitable for their uses in 10T security. Arisdakessian et al. [46] offered a thorough examination of
the IDS methods for the 10T ecosystem. This ecological framework encompassed smart 10T devices,
along with the intercommunications that transpired among the tiers of cloud computing, fog
computing, and loT. Sisodia et al. [47] presented “TWINKLE, ” a security architecture that operated
in two modes, i.e., regular mode and attentive mode. In normal mode, the IoT network consumed
fewer resources, while in attentive mode, it only consumed additional resources when suspicious
activity was discovered. Irfan Simsek [48] presented an innovative methodology that facilitates
authentication, authorization, access control, and key exchange for secure device-to-device
communication. The objective of their approach was to streamline the administration of cloud/fog-
based and blockchain-based technological systems. Further, their scheme integrated zero-knowledge
and identity-based strategies to address the demands of 10T security while also fulfilling these security
objectives in a harmonious manner.

The summary and analysis of existing techniques are provided in Table I.
Il. SYSTEM MODEL

In this section, the network and threat models are associated with the proposed SDLMA-IITS. The
details are given below.

A. Network Model

The network model of the proposed SDLMA-IITS is given in Fig. 1. This diagram shows the flow of
data from acquisition to analysis and decision-making at the cloud servers, which are used for
malware sample analysis, detection, and predictions. The network model consists of the arrangement
of smart 10T devices, users, and cloud servers connected to the network [10], [11]. The cloud servers
constantly communicate with the devices and then analyze them. The loT-enabled ITS devices and
systems are prone to various cyber-attacks [5]. Implementing a robust intrusion detection system is



necessary to secure the network from potential threats and invasion. The system proposed in this
study comprises multiple steps, starting with data pre-processing. This includes collecting data from
the above-mentioned devices. The data pre-processing is also responsible for data quality issues by
dealing with missing values through data cleaning. The next step is for feature selection to identify
relevant attributes for detecting malware [12]. After that, data transformation is done by normalizing
numerical values or encoding certain variables. Then, certain features are added or dropped according
to their relevance. After this, the deployed machine learning/deep learning algorithms are used for
malware detection [13]. These algorithms learn from the pre-processed data to accurately predict
malware entities. The deployed algorithms aim to detect and neutralize threats posed by attackers,
strengthening the consumer loT system’s cybersecurity defenses [14].

B. Threat Model

In this paper, we follow the widely-accepted DolevYao (DY) model. Under this model, the parties
communicating communicate with one another through the general open channel, which is understood
to be the Internet. It is not safe to use this channel. Consequently, the possible attacker is afforded a
few opportunities to delete, view, or edit the messages that have been trading hands [33]. In addition
to that, we have adhered to the principles that are outlined in the CK-adversary model [34]. The
attacker is said to possess all of the capabilities that are present in the DY model. Furthermore, it is
worth noting that the attacker has the capability to steal the session states and the information that is
linked with them [49], [50]. In other words, session keys can be disclosed to the attacker if they are
not handled appropriately. Furthermore, loT-enabled ITS devices and systems are also vulnerable to
various malware (i.e., spyware, ransomware, trojan horse, rootkit, etc.). Therefore, threats caused by
malware attacks should also be considered to design an effective security mechanism [15], [24].

TABLE |

SUMMARY OF EXISTING TECHNIQUES: METHODS APPLIED, THEIR
DRAWBACKS/LIMITATIONS AND FUTURE WORKS

Technique

Methods applied

Drawbacks/Limitations

Possible future works

Dib et al. [25]

Deep learning framework for loT mal-
ware classification, analyzing malware
binaries.

Reliance on a single representation of
malware data, potentially limiting learning|

Develop a more holistic approach
integrating various data representations.

Qureshi et al. [26]

Deep learning approach using LSTM,
CNN, DNN models for network malware
analysis.

Complexity and high resource demands of
the hybrid system.

Streamline the architecture and develop
more efficient algorithms or leverage
cloud computing.

Usman et al. [27]

Hybrid approach using honeypots and
machine learning for dynamic malware
detection.

Reliance on sandbox detection may lead
to evasion by sophisticated malware.

Enhance detection mechanisms with
advanced behavioral analysis and anomaly
detection.

Ashiku and Dagli
[28]

CNN-based deep learning model for net-
work intrusion detection.

Complexity in tuning hyperparameters
and handling tensor dimensions.

Explore automated hyperparameter
optimization techniques and advanced
net- work architectures.

Thamilaras et al.
[29]

Intrusion detection system for medical
10T devices, securing sensitive medical
data.

Balancing between ensuring robust
security and maintaining data privacy.

Develop advanced encryption techniques
and machine learning algorithms for
medical l0T networks.

Dutt et al. [30]

IDS model inspired by the human
immune system, focusing on two-layer
defense.

Complexity of the model and potential for
false positives.

Refine the algorithm to enhance accuracy,
reduce false positives, and adapt to various
network scenarios.

Kasongo and Sun
[31]

Deep learning model with feature
extraction for detecting intrusions in
wireless networks.

Model’s ability to generalize and avoid
overfitting.

Explore advanced feature selection and
extraction techniques to improve model
adaptability.

Nguyen et al. [37]

Graph-based convolution neural network
(CNN)

Accuracy value is low.

Accuracy should be improved. Proper
security analysis should be provided.

Abbas et al. [39]

Multiple deep learning models (DNN,
CNN, and RNN)

Performance metrics has a lot of potential
for improvement

Feature Extraction could be improved.
Proper security analysis should be pro-
vided.

Jony et al. [40]

Long Short-term memory models

The proposed scheme is limited and may
not work effectively with biased and com-
plex data

Explore more models and feature
extraction to improve scheme’s
effectiveness

Chinaechetam et al.
[41]

Dense Neural Network

No discussion of Metaverse cyber attack
threat model

Proper security analysis should be pro-
vided. The proposed scheme’s connection
to the metaverse should be clarified and
worked upon more.

Abbas et al. [42]

Federated edge learning with Dense Neural
Networks

Federated learning’s benefit in
Computational load was not evaluated

Privacy proper security analysis should be
provided establishment has to be
practically tested with validation

Le et al. [43]

Ensemble blending model

No proper justification for machine learning
model selection. Ensemble still contains|
machine learning models as solo
components which are less efficient af]
feature extraction than deep learning models

Ensemble can be built with deep learning
models to make more domain adaptive
and generalized framework




IV. SDLMA-IITS: THE PROPOSED SCHEME

The proposed SDLMA-IITS is designed through various steps, i.e., selection of dataset use of pre-
processing, deployment of machine learning and deep learning algorithms, and deployment of secure
authentication and key establishments.

A. Dataset Selection

To practically validate our scheme, we selected CICloT2023 [32] as our dataset on which we
evaluated the performance of our scheme. This loT attack dataset captures 33 different attacks,
comprising 7 major categories and benign data. All data were collected from 105 loT devices. For our
evaluation purposes, we consider the problem to be a binary (benign/attack) scenario. The dataset
provides important insights into the behavior of cyber threats, including the Duration of the packet’s
flow, Fin flag value, Rate of outbound packets, Protocol type, and Header length. These features offer
information for analyzing and understanding cyber-attack methods on practical consumer-centric 10T
devices. This dataset is a key resource for training and testing machine learning and deep learning
algorithms for detecting and preventing cyber threats. The study performs various algorithms on the
dataset, including ANN, CNN, CNN, and LSTM hybrid model, and CNN-Gated recurrent unit (GRU)
ensemble model.

B. Pre-processing and Dataset Exploration

There is a huge amount of data around malware to analyze. This data can be in the form of tables,
charts, or graphs. One such tabular dataset has been considered for studying the malicious entities’
patterns. Data preprocessing is the most important step before applying any algorithms to it. The
biggest reason for this is the data quality, which includes missing values, lack of consistency, or
wrong entries. Solving these issues makes the training and testing foolproof and thus leads to better
results. Data preprocessing also plays an important role in selecting only the necessary features. This
makes it easy for the model to get trained and decreases the chances of data overfitting. The whole
process involves cleaning, making relevant changes, adding or dropping some values, and then
splitting to make it suitable for training and testing. The steps are also elaborated in Algorithm 1.

We also undertook data exploration to obtain a better visualization of the processed dataset. Fig. 2
provides an elaborate visualization of the 34 attack and benign classes present in the dataset. After
applying categorical encoding, we calculated the correlation between all the input features and
visualized it as a Heatmap in Fig. 3. From the inference, we observe that (“min,” “avg,” “tot size,”
“number,” “radius,” “syn_flag_number,” “psh_flag number,” and “ece flag number”) have the most

positive correlation among themselves.
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Further exploration and analysis led to further interesting observations about the dataset. Fig. 4
showcases the protocol usage frequency in the traffic. Internet Protocol (IP) and Logical Link Control
(LLC) protocol’s frequency is the highest, followed by Transmission Control Protocol (TCP) as
having third most frequency.
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Fig. 3. Correlation matrix heatmap of input features
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C. Machine Learning and Deep Learning Algorithms Deployment

The following machine learning and deep learning algorithms have been utilized for malware
detection. All these machine learning algorithms need to be deployed at the resource-rich cloud
servers as they have enormous amounts of computation, storage, and communication capabilities,
which are essentially required for the task of malware detection. The outcome of this phase is in the
form of the prediction about the detected malicious malware programs if they exist in the system. The
details of the machine learning and deep learning algorithms according to their uses are provided
below.



Algorithm 1 Preprocessing
1: for each attribute in the dataset do
2:  Eliminate the outliers and deal with the values that are
missing.

3:  if The values of the attributes are not numeric then

4 Convert them into numerical flags.

5:  else

6: Continue with the existing values.

7:  end if

8: if The values of the property are redundant or the
attribute only has a single consistent value then

9: The attribute should be removed.

10:  else

11: Continue with the existing values.

12z end if

13:  if It is required then

14: Normalize the data by inserting appropriate values

and formats.

15:  else

16: Continue with the existing values and formats.

17:  end if

18: end for

1) Logistic Regression: When it comes to classification, logistic regression is a straightforward and
efficient approach. It creates a model of the relationship between the variables that are dependent and
unrelated. This algorithm is simple to comprehend and put into practice. This leads to its widespread
adoption and makes it a good choice for complex binary classification problems. The required steps of
logistic regression are given in Algorithm 2.

Algorithm 2 Deployed logistic regression algorithm

1: for each attribute in the dataset do

1:  Import necessary libraries, like Scikit-learn.

1:  Import the dataset.

1:  Perform data preprocessing, a. handle missing values,
b. encode categorical data, and c. feature scaling.
for £ =1 to 10 do

k-fold cross-validation.

Split dataset into 90% training and 10% test set.
end for
Initialize the logistic regression model and set its pa-
rameters: a. solver, b. regularization strength.
5 Fit the model with the training set.
5 Make predictions on the test set.
6:  for Evaluation and assessment do
7 Compute accuracy and F1-score comparing predicted
output and ground truth.
8. end for
9: end for

2) Artificial Neural Networks (ANN): An artificial neural network (ANN) is a strong machine-learning
model that is made up of layers of neurons that are connected and process information. These are
capable of managing intricate data patterns. The steps of the deployed artificial neural networks
(ANN) algorithm are elaborated in Algorithm 3.



Algorithm 3 Deployed artificial neural networks (ANN) al-
gorithm

1: for each attribute in the dataset do

2 Import necessary libraries: TensorFlow, and Keras.

3:  Import the dataset.

4:  Perform data preprocessing, a. handle missing values,
b. encode categorical data, and c. feature scaling.
for £k =1 to 10 do

k-fold cross-validation.
Split dataset into 90% training and 10% test set.
end for
Define ANN model, a. input layer, b. hidden layers,
c. dropout layer, d. output layer, and e. activation
functions.
10:  Compile the ANN model, a. select optimizer, b. loss
function, and c. metrics.
11:  Fit the model on the training set.
122 Make predictions on the test set.
13:  for Evaluation and assessment do
14: Compute accuracy and F1-score comparing predicted
output and ground truth.

15:  end for
16: end for

R

3) Convolution Neural Networks (CNN): Convolution neural network (CNN) is a very strong method
of deep learning. It uses the convolution filters. That helps to extract different features. The collected
temporal information is further used in conjunction with neurons of artificial neural network layers.
The required steps of the CNN algorithm are given in Algorithm 4.

Algorithm 2 Deployed logistic regression algorithm

1: for each attribute in the dataset do
1:  Import necessary libraries, like Scikit-learn.
I:  Import the dataset.
1. Perform data preprocessing, a. handle missing values,
b. encode categorical data, and c. feature scaling.
for £ =1 to 10 do
k-fold cross-validation.
Split dataset into 90% training and 10% test set.
end for
Initialize the logistic regression model and set its pa-
rameters: a. solver, b. regularization strength.
Fit the model with the training set.
Make predictions on the test set.
for Evaluation and assessment do
Compute accuracy and F1-score comparing predicted
output and ground truth.
8:  end for
9: end for
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4) Convolution Neural Network Long-short Term Memory (CNN-LSTM): Long Short-Term Memory
(LSTM) is a specialized version of the Recurrent Neural Network. It includes dedicated memory cells
for maintaining sequential information. Consequently, they are highly optimized for extracting
temporal dependencies from the input data. These powerful models can be combined with CNN layers
to create a hybrid CNN-LSTM model, enabling the extraction of features and the gathering of
information about the data’s nature in a more generalized manner. The steps of the CNN-LSTM
algorithm are elaborated in Algorithm 5.



Algorithm 5 Deployed Convolution Neural Network Long-
short Term Memory (CNN-LSTM) algorithm

1: for each attribute in the dataset do

2:
3:
4:

16:

© ® 3 o W

Import necessary libraries: TensorFlow, and Keras.
Import the dataset.
Perform data preprocessing, a. handle missing values,
b. encode categorical data, and c. feature scaling.
for £ =1 to 10 do
k-fold cross-validation.
Split dataset into 90% training and 10% test set.
end for
Define CNN model, a. input layer, b. convolution layer
filter size, c. pooling layer, d. flatten layer, e. dropout
layer, f. hidden dense layers, g. output layer, and h.
activation functions.
Define LSTM layer, a. resizing layer. LSTM layer
size, c. flatten layer, d. dropout layer, and e. activation
functions.
Compile the CNN-LSTM model, a. select optimizer, b.
loss function, and c. metrics.
Fit the model on the training set.
Make predictions on the test set.
for Evaluation and assessment do
Compute accuracy, and F1-score comparing predicted
output and ground truth.
end for

17: end for

5) Ensemble Model (CNN-GRU || CNN-LSTM): To leverage the benefits of multiple models, we
constructed an ensemble model comprising two hybrid models: CNN-GRU and CNN-LSTM. This
ensemble model extracted features and relations from the input network traffic separately through the
two submodels, yielding two output vectors. These output vectors were subsequently fused together
using a concatenation function to obtain a combined output. Finally, this output vector was passed
through multiple dense layers to generate a final prediction. By harnessing the strengths of multiple
models, we were able to capture various aspects of the data, resulting in reduced variance, improved
generalization, and state-of-the-art performance. The steps of the Ensemble model (CNN-GRU ||

CNN-LSTM) algorithm are elaborated in Algorithm 6.



Algorithm 6 Deployed Ensemble Model (CNN-GRU Il CNN-
LSTM) algorithm

1: for each attribute in the dataset do

2:  Import necessary libraries: TensorFlow, and Keras.

3:  Import the dataset.

Perform data preprocessing, a. handle missing values,

b. encode categorical data, and c. feature scaling.

for £ =1 to 10 do

k-fold cross-validation.
Split dataset into 90% training and 10% test set.
end for

9:  Define CNN-GRU model «, a. input layer, b. convolu-
tion layer filter size, c. GRU layer size d. pooling layer,
e. flatten layer, f. dropout layer, g. hidden dense layers,
h. output layer, and i. activation functions.

10:  Define CNN-LSTM model 3, a. input layer, b. convo-
lution layer filter size, c. LSTM layer size d. pooling
layer, e. flatten layer, f. dropout layer, g. hidden dense
layers, h. output layer, and i. activation functions.

11:  Define Fusion layer and Output model, which will fuse
both the output layers from model a and 5 using
concatenation ¢ function and connect to more dense
layers to get a combined output layer.

12:  Compile the Ensemble Model model, a. select opti-
mizer, b. loss function, and ¢. metrics.

13:  Fit the model on the training set.

14:  Make predictions on the test set.

15:  for Evaluation and assessment do

16: Compute accuracy, and F1-score comparing predicted

output and ground truth.

17:  end for

18: end for
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D. Secure Authentication and Key Establishment

In the proposed SDLMA-IITS, authentication and key establishments are provided among the various
cloud servers and computing devices. This procedure is required due to their secure data
transmissions. To accomplish secure authentication and key establishments, some standard
mechanisms have been presented by Wazid et al. [35], and Srinivas et al. [36] that can be used. After
completing the required steps of an authentication and key establishment procedure, the cloud server
SRV; and computing device CD;jestablish the session key say SKsrvi,coj (=SKcpjsrvi) for their secure
communication. For example, CD; can send its data Dtcp; to SRVj after performing the encryption
with SKcpj srvi, 1.€., MSGlcpj srvi = Eskepj, srvi(Dicpj). At the arrival of MSG1CDj,SRVi, SRVi
performs decryption as DSKSR ,CD (MSG1CDj,SRVi ) and retrieves DtCDj for its further processing
and storage.

E. Process flow diagram of the proposed SDLMA-IITS

The process flow diagram gives a view of the flow of execution of the various phases of a scheme. By
the following these phases the detection of malware programs is performed in the proposed SDLMA-
IITS. The flow of execution of multiple processes operating as part of the proposed SDLMA- IITS is
given in Fig. 5. The details are also given below.

* Registration of 10T devices takes place by initializing the ad-hoc device. There is also the
authentication between smart I0T devices and the cloud server, as well as with the daemon engine.

* The attacker tries to attack smart [oT device by manipulation, interruptions, unauthorized access, or
phishing attempts. Simultaneously the proxy device collects malware-infected data posing as real 10T
devices.



* Network traffic files are sniffed and extracted continuously from the IoT devices by the daemon
engine. Meanwhile, the data collected by honeypotting by the proxy devices are given to the deployed
model for its continuous finetuning.

* Extracted network traffic data is preprocessed using deployed scripts by the daemon engine.

» Daemon engine delivers the preprocessed data to the cloud server for predictive analysis.

* The pre-processed data is evaluated, and the behavior is analyzed by the deployed ML and DL
models.

* The generated prediction report and findings are sent back to the Daemon engine.

+ Based on the severity of the threat, the consumer is alerted, and the results are conveyed
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Fig. 5. Process flow diagram of the proposed SDLMA-IITS

V. SECURITY ANALYSIS
In this section, we provide the security analysis of the proposed SDLMA-IITS.
A. Security against Malware Attacks

The proposed SDLMA-IITS has the ability to defend against malware attacks through the mechanism
given in Section IV-C. Due to the provided steps, i.e., “use of pre-processing” and “deployment of
machine learning and deep learning algorithms,” SDLMA-IITS detects and predicts the potential
malware if it exists in the system

B. Security against Other Potential Attacks

Due to the presence of the “deployment of secure authentication and key establishments” phase given
in Section 1V-D, SDLMA-IITS has the ability to defend against other potential attacks, i.e., it can
mitigate replay attacks due to the use of freshly generated timestamp values, which are verified at the
receivers end. Moreover, in all exchanged messages, we use “short-term secret values, i.e., random
nonce/ number values” and “long-term secret values, i.e., various identities and secret keys.” These



values are also used in the creation of the session keys. Because of that, we get the secured session
keys without the possibility of any disclosure attacks on them. It also provides different messages in
different sessions. Therefore, traceability of the messages is not possible. In all messages, there is the
provision to use pseudo identities in place of original identity. Hence, the entire communication
becomes anonymous. These mechanisms also protect SDLMA-IITS against other potential attacks,
i.e., man-in-them-middle at- tacks, impersonation, stolen verifier, etc. As per the given discussion, it
is clear that SDLMA-IITS has the ability to defend against potential attacks on the system.

V1. PRACTICAL IMPLEMENTATION

In this section, we provide the details of the practical implementation of the proposed SDLMA-IITS.
A. Simulation Environment and Setting

In the practical implementation of SDLMA-IITS, we have used the following simulation environment
and setting. The programming platform was Jupyter Notebook, along with the Python programming

language. The packages/libraries were TensorFlow, Keras, NumPy, Pandas, Scikit-learn, Matplotlib
and Seaborn. The details of simulation parameters, along with their values, are given in Table II.

TABLE 11
SIMULATION PARAMETERS AND THEIR VALUES
| Parameter | Explanation

Programming platform Jupyter notebook

Programming language Python

Dataset Malware dataset [32]

Packages/libraries TensorFlow, Keras, NumPy,
Pandas, Scikit-learn,
Matplotlib, Seaborn

B. Results and Discussion

The results from the evaluation of different models for malware detection show different levels of
effectiveness. CNN-LSTM hybrid model performed the best among the four tested algorithms with an
accuracy of 99.28% and an F1 score of 0.986. This showcases the Hybrid model’s ability to classify
and identify malicious entity patterns accurately in a generalized manner. The plain CNN model
showed a similar result with a 99.25% accuracy and an F1 score of 0.974. The baseline ANN model
also delivered great performance with an accuracy of 97.63% and an F1 score of 0.95. The obtained
results are given in Table Ill, Fig. 6, and Fig. 7.
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C. Explainable Al

In a bid to infer understanding from the built models and extract valuable findings about the features,
we used an explainable artificial intelligence (XAl) algorithm on the deployed Machine learning
models. In particular, we used the “SHapley Additive exPlanations (SHAP) algorithm” for
explainability on top of a random forest-based model and generated a summary plot. The plot
visualized in Fig. 8 showcases the feature importance for the top features based on the nature of the
sample (attack/ benign). We can infer that the “rst_count” and “IAT” features have almost the
maximum importance in the sample prediction by the model. It was followed by “urg counter,” i.e.,
the number of packets with urg flag set in the same flow. Interestingly, the number of packets with the
urg flag set in the same flow (Strate) has the lowest impact among the top features on the model’s
prediction. In this way, XAl helps us to make the detection of malware programs more accurate.



VIl. COMPARATIVE STUDY

This section provides a comparative performance analysis of the existing and proposed SDLMA-10T
on the CICloT2023. The accuracy values of the schemes of Abbas et al. [39], Jony et al. [40],
Chinaechetam et al. [41], Abbas et al. [42], and Le et al. [43] are 96.52%, 98.75%, 99.10%, 99.15%,
and 99.51% respectively. Whereas the proposed SDLMA-IITS has achieved an accuracy of 99.63%,
which is better than the other existing schemes. The comparison of accuracy values of various
schemes is given in Table IV.

TABLE III
OBTAINED RESULTS
| Method | Accuracy | F1-Score
Logistic Regression 96.57% 0.929
ANN 97.63% 0.95
CNN 99.24% 0.974
CNN-LSTM 99.28% 0.986
Ensemble (CNN-GRU |l CNN-LSTM) 99.65% 0.991
TABLE 1V
COMPARISON OF ACCURACY VALUES AMONG VARIOUS SCHEMES
| Method | Accuracy
Abbas et al. [39] 96.52%
Jony et al. [40] 98.75%
Chinaechetam et al. [41] 99.10%
Abbas et al. [42] 99.15%
Le et al. [43] 99.51%
Proposed SDLMA-IITS 99.65%
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VIIl. CONCLUSION AND FUTURE WORK

Malware attacks can disrupt the functioning and performance of devices and systems in the loT-
enabled ITS environment. Detecting and mitigating such attacks is crucial. We presented a secure
deep learning-based mechanism for detecting malware attacks in loT-enabled ITS environment (in
short, SDLMA-IITS). XAl was used to detect malware programs effectively and accurately. A
security analysis was provided to validate its effectiveness against potential threats. Comparative
performance analysis with existing schemes demonstrated the proposed SDLMA-IITS’s superiority in
essential performance parameters. Finally, we provided the practical implementation of SDLMA-IITS
to assess its impact on the security of consumer 10T devices.

In the future, we would like to add more functionality features to the presented scheme. We also want
to enhance the accuracy of the presented scheme further.
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