

Global atmospheric composition effects from marine isoprene emissions

Article

Accepted Version

Zhang, W. ORCID: <https://orcid.org/0000-0003-4694-4237>,
Weber, J. ORCID: <https://orcid.org/0000-0003-0643-2026>,
Archibald, A. T., Abraham, N. L. ORCID:
<https://orcid.org/0000-0003-3750-3544>, Booge, D. ORCID:
<https://orcid.org/0000-0003-0473-3343>, Yang, M. ORCID:
<https://orcid.org/0000-0002-8321-5984> and Gu, D. ORCID:
<https://orcid.org/0000-0002-5663-1675> (2025) Global
atmospheric composition effects from marine isoprene
emissions. *Environmental Science & Technology*, 59 (5).
pp. 2554-2564. ISSN 1520-5851 doi: 10.1021/acs.est.4c10657
Available at <https://centaur.reading.ac.uk/121220/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1021/acs.est.4c10657>

Publisher: American Chemical Society (ACS)

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Global atmospheric composition effects from marine isoprene emissions

Wentai Zhang,^{*,†,‡} James Weber,^{¶,§} Alex T. Archibald,^{*,‡,||} Nathan Luke

Abraham,^{‡,||} Dennis Booge,[⊥] Mingxi Yang,[#] and Dasa Gu^{*,†,®}

[†]*Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China*

[‡]*Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK*

[¶]*School of Biosciences, University of Sheffield, Sheffield, UK*

[§]*Department of Meteorology, University of Reading, Reading, UK*

^{||}*National Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK*

[⊥]*Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany*

[#]*Plymouth Marine Laboratory, Plymouth, UK*

[®]*Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Hong Kong University of Science and Technology, Hong Kong, China*

E-mail: wzhangcn@connect.ust.hk; ata27@cam.ac.uk; dasagu@ust.hk

² Abstract

³ Isoprene emissions, primarily of biogenic origin, play an important role in atmo-
⁴ spheric chemistry and climate. However, the atmospheric implications of marine iso-

5 prene emissions remain underexplored due to sparse in-situ measurements and the in-
6 tricate mechanisms governing isoprene in the upper ocean. This study uses 20 years
7 of MODIS satellite observations to upscale isoprene production and loss rates derived
8 from laboratory experiments, enabling global modeling of aqueous isoprene concentra-
9 tions and emissions. Earth system model simulations with integrated marine isoprene
10 emissions demonstrate substantial alterations in atmospheric composition over global
11 oceanic regions. Our investigation uncovers diurnal variation in the vertical profiles of
12 atmospheric isoprene, indicating that surface isoprene can ascend to the mid-to-upper
13 troposphere, where nitrogen monoxide (NO) influences isoprene epoxydiol (IEPOX)
14 production differently over selected oceanic and terrestrial regions. These findings pave
15 the way for future studies on the role of marine isoprene in climate models and ad-
16 vance our understanding of its broader implications for atmospheric chemistry under a
17 changing climate.

18 **Keywords:** Isoprene, Earth System Model, Atmospheric Chemistry, Ocean, Satellite Re-
19 mote Sensing

20 **Synopsis**

21 This study presents global marine isoprene emissions and evaluates their atmospheric chem-
22 istry effects using Earth system modeling. The findings reveal that marine isoprene signifi-
23 cantly influences atmospheric composition and associated chemical processes.

24 **1. Introduction**

25 Biogenic volatile organic compounds (BVOCs) are important components in atmospheric
26 chemistry, influencing air quality, the greenhouse gases ozone (O_3) and methane, secondary
27 organic aerosols (SOAs), and climate (e.g.,¹). Among BVOCs, isoprene (C_5H_8) is a major
28 contributor, accounting for approximately half of the global BVOC emissions.² Upon reacting

29 with the hydroxyl radical (OH), O₃, and the nitrate radical (NO₃), isoprene forms species that
30 can contribute to SOA production via reactive uptake^{3,4} or volatility driven condensation.⁵⁻⁸
31 Recent research has highlighted the significant role of cloud aqueous-phase reactions in SOA
32 production (accounts for about 20% of the total biogenic SOA burden), particularly in
33 the free troposphere.⁹ Due to its substantial production and reactivity, isoprene has been
34 identified as a key contributor to global SOA generation.¹⁰⁻¹³

35 Marine isoprene emissions have been identified for several decades.^{14,15} Despite terrestrial
36 vegetation contributing over 90% of global isoprene emissions,¹⁶ emissions directly from
37 the ocean surface dominate isoprene concentrations in the remote marine atmosphere due
38 to isoprene's short atmospheric lifetime (~hours).¹⁷ Marine isoprene emissions have the
39 potential to be important for SOA formation, especially in eutrophic regions^{18,19} and for the
40 organic aerosol marine background.

41 Phytoplankton is the primary source of isoprene in the upper ocean, and aqueous iso-
42 prene shows strong spatial correlations with chlorophyll-a (Chl-a) concentrations and sea
43 surface temperature (SST).^{20,21} Isoprene production rates vary with phytoplankton func-
44 tional types (PFTs),^{22,23} and environmental parameters including incident solar radiation
45 and water temperature.²³⁻²⁶ Isoprene loss processes in seawater include chemical oxidation,
46 microbial consumption, sea-to-air ventilation, and vertical diffusion to the deep ocean.²⁷ Ad-
47 ditionally, photochemical reactions occurring in the sea surface microlayer (SML) represent
48 a significant abiotic isoprene emission source.²⁸ Current global chemistry-climate models
49 reviewed in IPCC sixth assessment report do not account for marine isoprene emissions, in-
50 cluding both biotic (i.e., air-sea exchange driven by isoprene concentration in bulk seawater)
51 and abiotic (e.g., photochemical reactions at the ocean-atmosphere interface) sources.²⁸ The
52 relative significance of abiotic versus biotic sources remains a topic of ongoing investigation,
53 and a comprehensive understanding of marine isoprene emissions is still a matter of scientific
54 exploration.

55 The quantification of global marine isoprene emissions faces challenges due to incomplete

56 knowledge of marine isoprene production mechanisms, uncertainties in laboratory-based pro-
57 duction rates, and limited direct flux measurements. Current estimation methods involve
58 bottom-up and top-down approaches. While the bottom-up method focuses on modelling the
59 upper ocean's underlying mechanisms controlling isoprene emissions, the top-down method
60 constrains the model-derived emissions to match atmospheric observations. The two meth-
61 ods yield notably different results, with top-down^{29,30} estimates ($1.5 - 11.6 \text{ Tg C yr}^{-1}$) being
62 remarkably higher than bottom-up²⁹⁻³³ estimates ($0.1 - 1.2 \text{ Tg C yr}^{-1}$). The discovery of
63 photochemical production³⁴ at the ocean surface may partially explain these discrepancies.³⁵

64 Previous model simulations (e.g., CMAQ and GEOS-Chem) have demonstrated the im-
65 pact of marine isoprene emissions on air quality in coastal and inland regions.^{29,30,36,37} How-
66 ever, they have not considered abiotic emissions (e.g., SML emissions) or constrained isoprene
67 concentrations in the bulk seawater, leading to uncertainties in assessing marine isoprene im-
68 pacts.

69 This study offers a comprehensive investigation of global marine isoprene emissions and
70 their implications for atmospheric chemistry. We first calculate aqueous isoprene concentra-
71 tions by employing a recently developed emission scheme³⁸ with satellite-based data from
72 the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach incorporates
73 a PFT-specific isoprene production module that accounts for both light and temperature
74 dependency in the vertical aqueous profile. Monthly aqueous isoprene concentrations are
75 derived by balancing phytoplankton production with losses in the water column, assuming
76 a steady-state condition. From these aqueous concentrations, we then calculate marine iso-
77 prene emissions and apply these into the United Kingdom Earth System Model (UKESM1)
78 to examine their impact on simulated atmospheric composition.

79 We validate MODIS-derived seawater isoprene concentrations and UKESM1-simulated
80 atmospheric isoprene mixing ratios by comparison with observations collected during 18
81 cruise campaigns. Our research explores the ramifications of incorporating these marine
82 isoprene emission schemes on atmospheric chemistry, shedding new light on the important

⁸³ role of marine isoprene in affecting the Earth's atmosphere.

⁸⁴ 2. Materials and Methods

⁸⁵ 2.1 MODIS and satellite products

⁸⁶ The MODIS instrument, launched aboard NASA's Earth Observing Satellites (EOS), offers
⁸⁷ extensive global coverage with a broad swath width of 2330 km in a single day. It oper-
⁸⁸ ates in 36 high spectral resolution channels spanning wavelengths from 0.415 to 14.235 μm ,
⁸⁹ providing spatial resolutions of 250 m (2 channels), 500 m (5 channels), and 1000 m (29
⁹⁰ channels). MODIS radiance measurements at high spatial resolution provide valuable infor-
⁹¹ mation about the Earth's atmosphere and surface structure.³⁹ This study utilized monthly
⁹² MODIS products, including Chl-a, SST, and Photosynthetically Active Radiation (PAR),
⁹³ as well as near-real-time Mixed Layer Depth (MLD) products^{40,41} and wind speed from
⁹⁴ the European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis,⁴²
⁹⁵ spanning from July 2002 to December 2021. Global PFT distributions during the same
⁹⁶ period were retrieved using the PHYSTWO method, derived from MODIS products: the
⁹⁷ Chl-a concentration, the aerosol optical thickness (AOT) at 865nm, and remote sensing re-
⁹⁸ flectances at 412 nm, 443 nm, 469 nm, 490 nm, 531 nm, 547 nm, 555 nm.⁴³ Monthly global
⁹⁹ seawater isoprene concentrations and emission fluxes from July 2002 to December 2021 were
¹⁰⁰ calculated using the emission scheme based on MODIS data. These results were then used
¹⁰¹ to establish climatologies of aqueous isoprene and emission fluxes.

¹⁰² 2.2 Marine isoprene emission scheme

¹⁰³ The emission scheme employed here uses a set of parameters, including Chl-a, SST, PAR,
¹⁰⁴ MLD, PFT, and wind speed, to derive marine isoprene fluxes.

¹⁰⁵ As the isoprene concentrations in the mixed layer do not change significantly on a weekly
¹⁰⁶ basis,⁴⁴ the monthly mean isoprene concentration C_w can be estimated by solving the mass

107 balance in the steady-state water column of the upper ocean:

108

$$P - (k_{bio} + k_{chem}) \cdot C_w - \frac{F_{ocean}}{D_{ML}} - L_{mix} = 0 \quad (1)$$

109 where P is the isoprene variation rate induced by the phytoplankton production, k_{bio} and
110 k_{chem} is the biological loss rate (day^{-1}) and chemical rate constant (day^{-1}) for all possible
111 loss pathways. D_{ML} is the surface mixed layer depth (m), and L_{mix} is the loss due to the
112 diffusion downward to the deep ocean ($\text{pmol L}^{-1} \text{ day}^{-1}$). P can be derived by integrating
113 the isoprene production rate within the depth H :

114

$$P = \frac{\beta}{D_{ML}} \cdot \overline{[Chla]} \cdot \int_0^H p \, dh \quad (2)$$

115 where β is the acclimation prefactor, $\overline{[Chla]}$ is the mean Chl-a concentration (mg m^{-3}) within
116 the euphotic layer (depth H_{max}), H is the minimum of H_{max} and D_{ML} both in meters, and
117 p is the isoprene production rate ($\mu\text{mol gChla}^{-1} \text{ h}^{-1}$). This production rate incorporates the
118 PFT-specific emission factor, water temperature, and ambient solar radiation.³⁸ The emis-
119 sion factor for each PFT is derived using a log-squared fit to relate the [Chl-a]-normalized
120 isoprene production rates measured during the incubation experiments to incident radiation
121 levels.^{21,45} Light dependence follows the log-squared relationship proposed by Gantt et al.⁴⁵,
122 with radiation at various seawater depths estimated using the Beer-Lambert's Law applied
123 to solar radiation at the sea surface. The temperature-dependence factor is derived empir-
124 ically from temperature-dependent experiments and is adjusted according to the optimum
125 temperature, which is a function of latitude. To enhance the practical applicability of our
126 scheme in oceanic environments, β was calibrated by aligning the mean value of estimated
127 C_w with that of measurements obtained during the AMT22 campaign (see Figure 1 and
128 Table S1). For validation purposes, our analysis exclusively considered atmospheric isoprene
129 collected in open ocean regions (defined in Figure S1), as coastal zones may be subject to
130 influence from terrestrial sources.²⁹

¹³¹ The marine isoprene emission flux, F (in $\text{nmol m}^{-2} \text{hour}^{-1}$), is described as the sum of
¹³² ocean-atmosphere exchange flux F_{ocean} and SML flux F_{SML} :

$$F = F_{ocean} + F_{SML} \quad (3)$$

¹³⁴ F_{ocean} (in $\text{nmol m}^{-2} \text{hour}^{-1}$) can be estimated from the isoprene concentration (in pmol L^{-1})
¹³⁵ in the bulk seawater:³¹

$$F_{ocean} = k_{AS} \cdot (C_w - C_a \cdot H^{-1}) \quad (4)$$

¹³⁷ where k_{AS} is the air-sea gas transfer coefficient (in $\text{m} \cdot \text{s}^{-1}$) which considers the loss processes
¹³⁸ due to air-sea gas exchange, C_a is the atmospheric isoprene concentration, and H is the
¹³⁹ dimensionless Henry's law constant for isoprene (i.e., the ratio of C_a to C_w at equilibrium).
¹⁴⁰ The parameterization reported by Wanninkhof⁴⁶ is used to compute k_{AS} (in $\text{cm} \cdot \text{h}^{-1}$):

$$k_{AS} = 0.251 \cdot \overline{U_{10}^2} \cdot \left(\frac{660}{S_C} \right)^{0.5} \quad (5)$$

¹⁴² where U_{10} (in $\text{m} \cdot \text{s}^{-1}$) represents the wind speed at 10 meters above the surface, and $\overline{U_{10}^2}$
¹⁴³ is the average of the squared U_{10} . Following Rodríguez-Ros et al.⁴⁷, this study uses the
¹⁴⁴ square of the monthly mean wind speed due to the lack of hourly wind speed data in the
¹⁴⁵ UKESM1 CMIP6 archive and for faster computation. The average difference between $\overline{U_{10}^2}$
¹⁴⁶ and $\overline{U_{10}}^2$ in our analysis is 10.85% (see Section S3). The Schmidt number (Sc , dimensionless)
¹⁴⁷ is calculated using the relationship given by Palmer and Shaw³¹:

$$S_c = 3913.15 - 162.13 \cdot T + 2.67 \cdot T^2 - 0.012 \cdot T^3 \quad (6)$$

¹⁴⁹ where T is the SST in degree Celsius ($^{\circ}\text{C}$).

¹⁵⁰ Photochemical experiments have been conducted in the laboratory on both synthetic
¹⁵¹ and authentic SML samples.³⁴ The SML isoprene flux, F_{SML} (in $\text{nmol m}^{-2} \text{hour}^{-1}$), can be

152 estimated by scaling up the net photochemical emission rate of isoprene per unit power
153 measured in the laboratory, F_{lab} (in molecules of isoprene $\text{mW}^{-1} \cdot \text{s}^{-1}$), using a scaling factor
154 μ_{photo} :

155

$$F_{SML} = \mu_{photo} \cdot F_{lab} \quad (7)$$

156 Here, μ_{photo} (in $\text{mW} \cdot \text{m}^{-2}$) is the photochemical emission potential.³⁵ For this study, F_{lab}
157 is set to 4.95×10^7 molecules $\text{mW}^{-1} \cdot \text{s}^{-1}$, which is the mean value of the reported range
158 $3.71 - 6.19 \times 10^7$ molecules $\text{mW}^{-1} \text{s}^{-1}$.³³

159 The photochemical emission potential is used to calibrate the oceanic conditions to the
160 standard laboratory environment by incorporating three key parameters: surfactant concen-
161 tration in the SML, wind speed, and ultraviolet (UV) solar radiation (280–400 nm). Other
162 potential factors, such as the specific identity of surfactant and the thickness of the SML,
163 are not included in this study due to the absence of established parameterizations. The net
164 photochemical isoprene flux is assumed to have a linear relationship with solar radiation.⁴⁸
165 Laboratory studies typically use the 280–400 nm wavelength range to determine the net pho-
166 tochemical emission rate per unit power.⁴⁸ This wavelength range is chosen because shorter
167 wavelengths may induce photolysis, while longer wavelengths lack sufficient energy to drive
168 photochemical reactions. The photochemical emission potential, μ_{photo} , is expressed as the
169 product of these three parameters, as shown in the following equation:

170

$$\mu_{photo} = F_{surf} \cdot k_{SML} \cdot E_{280-400} \quad (8)$$

171 where $E_{280-400}$ represents the ultraviolet solar radiation (280–400 nm) reaching the sea sur-
172 face. In this study, $E_{280-400}$ is set to a constant proportion (4.3%) of the surface downwelling
173 solar radiation due to the lack of diagnostic variable for UV radiation from UKESM1 CMIP6
174 archive.⁴⁹ F_{surf} is a correction factor accounting for spatial variations in surfactant concen-
175 trations within the SML. It is based on the logarithmic relationship between the isoprene

176 yield and surfactant concentrations found in laboratory experiments.^{34,35,50}

177

$$F_{surf} = \frac{\ln(c_{surf})}{\ln(c_{max,surf})} \quad (9)$$

178 Here, c_{surf} denotes the surfactant concentration in the SML, assigned to the mean values
179 observed in three trophic states of the sampling areas, as reported by Wurl et al.⁵¹. For oligo-
180 trophic waters, $c_{surf} = 320 \mu\text{g Teq} \cdot \text{L}^{-1}$; for mesotrophic waters, $c_{surf} = 502 \mu\text{g Teq} \cdot \text{L}^{-1}$;
181 and for eutrophic waters, $c_{surf} = 663 \mu\text{g Teq} \cdot \text{L}^{-1}$. Trophic states are classified based
182 on net primary production (NPP): oligotrophic waters have $\text{NPP} < 0.4 \text{ g C m}^{-2} \cdot \text{day}^{-1}$;
183 mesotrophic waters have NPP between 0.4 and $1.2 \text{ g C m}^{-2} \cdot \text{day}^{-1}$; and eutrophic waters
184 have $\text{NPP} > 1.2 \text{ g C m}^{-2} \cdot \text{day}^{-1}$. The maximum surfactant concentration, $c_{max,surf}$, is set
185 at $663 \mu\text{g Teq} \cdot \text{L}^{-1}$. NPP values were calculated following the method described in Wurl
186 et al.⁵¹.

187 The gas transfer coefficient, k_{SML} , varies with wind speed and is normalized to laboratory
188 conditions by using the parameterization of McGillis et al.⁵² as follows³⁵:

189

$$k_{SML} = \frac{8.2 + 0.014 \cdot U_{10}^3}{8.2 + 0.014 \cdot U_{lab}^3} \cdot H(U_{10}) \quad (10)$$

190 where U_{10} is the wind speed at 10 meters above the sea surface, and U_{lab} is the sample
191 flow speed under laboratory conditions, set at $U_{lab} = 5.31 \times 10^{-2} \text{ m} \cdot \text{s}^{-1}$. It should be
192 noted that the surfactant in the SML is photochemically active at moderate wind speeds
193 below $13 \text{ m} \cdot \text{s}^{-1}$ ⁵³. Above this threshold, the SML disperses, rendering the SML emissions
194 negligible. To account for the presence or absence of the SML at a given U_{10} , we define the
195 step function $H(U_{10})$ as follows:

196

$$H(U_{10}) = \begin{cases} 1, & \text{if } U_{10} \leq 13 \text{ m} \cdot \text{s}^{-1} \\ 0, & \text{if } U_{10} > 13 \text{ m} \cdot \text{s}^{-1} \end{cases} \quad (11)$$

¹⁹⁷ This parameterization ensures that the isoprene photochemical emissions is restricted to
¹⁹⁸ conditions where SML is physically present.

¹⁹⁹ 2.3 UKESM1 model description and setup

²⁰⁰ All simulations in this study utilized UKESM1 and were conducted using the atmospheric
²⁰¹ component of the model within the Atmospheric Model Intercomparison Project (AMIP)
²⁰² configuration. The model was configured at a horizontal resolution $1.25^\circ \times 1.875^\circ$ with
²⁰³ 85 vertical levels extending up to 85 km. These simulations incorporated fully interactive
²⁰⁴ stratospheric and tropospheric chemistry, including interactive oxidants, using the CRI-Strat
²⁰⁵ 2 (CS2) mechanism,⁵⁴ which implements updated isoprene chemistry.⁵⁵ The GLOMAP-mode
²⁰⁶ aerosol scheme was employed to represent various aerosol types, including sulfate (SO_4^{2-}),
²⁰⁷ sea-salt, black carbon, primary organic aerosol (POA), SOA and dust. The yield of SOA
²⁰⁸ from monoterpane was enhanced from 13% in Mann et al.⁵⁶ to 26% to account for the lack of
²⁰⁹ SOA, as was done in UKESM1 simulations conducted for CMIP6.⁵⁷ It is important to note
²¹⁰ that nitrate aerosol was not included in these simulations.⁵⁸ To prevent diverging meteorol-
²¹¹ ogy from adding to the differences resulting from the chemical mechanisms and to replicate
²¹² the atmospheric conditions experienced when the observations were recorded as closely as
²¹³ possible, temperature and horizontal wind fields were nudged in all model runs.⁵⁹ Nudg-
²¹⁴ ing was implemented using atmospheric reanalysis data from ECMWF⁶⁰ and was confined
²¹⁵ to altitudes above approximately 1200 meters. A more comprehensive description of the
²¹⁶ model's mechanisms and configurations are provided by Mulcahy et al.⁶¹. The details on
²¹⁷ the UKESM1 simulations are available in Section S1.

₂₁₈ **3. Results and discussion**

₂₁₉ **3.1 Isoprene pool in the upper ocean**

₂₂₀ Estimated isoprene concentrations within the upper ocean display pronounced seasonality
₂₂₁ and latitudinal gradients (Figure S2). Notably, the tropical ocean consistently maintains
₂₂₂ higher aqueous isoprene levels throughout the year. In particular, the eastern equatorial
₂₂₃ Pacific Ocean experiences the highest isoprene levels between February and April. Similarly,
₂₂₄ the Arabian Sea near Oman has elevated concentrations in March. During the northern
₂₂₅ hemisphere (NH) summer, isoprene concentrations reach their peak in the Arctic and along
₂₂₆ the middle-to-high northern latitude coastal areas. Conversely, the Southern Ocean has
₂₂₇ the lowest isoprene concentrations during this season and much higher concentrations in
₂₂₈ the austral summer. Detailed methodologies for deriving isoprene concentrations in bulk
₂₂₉ seawater can be found in the Methods section.

230 **3.2 Evaluation of aqueous isoprene**

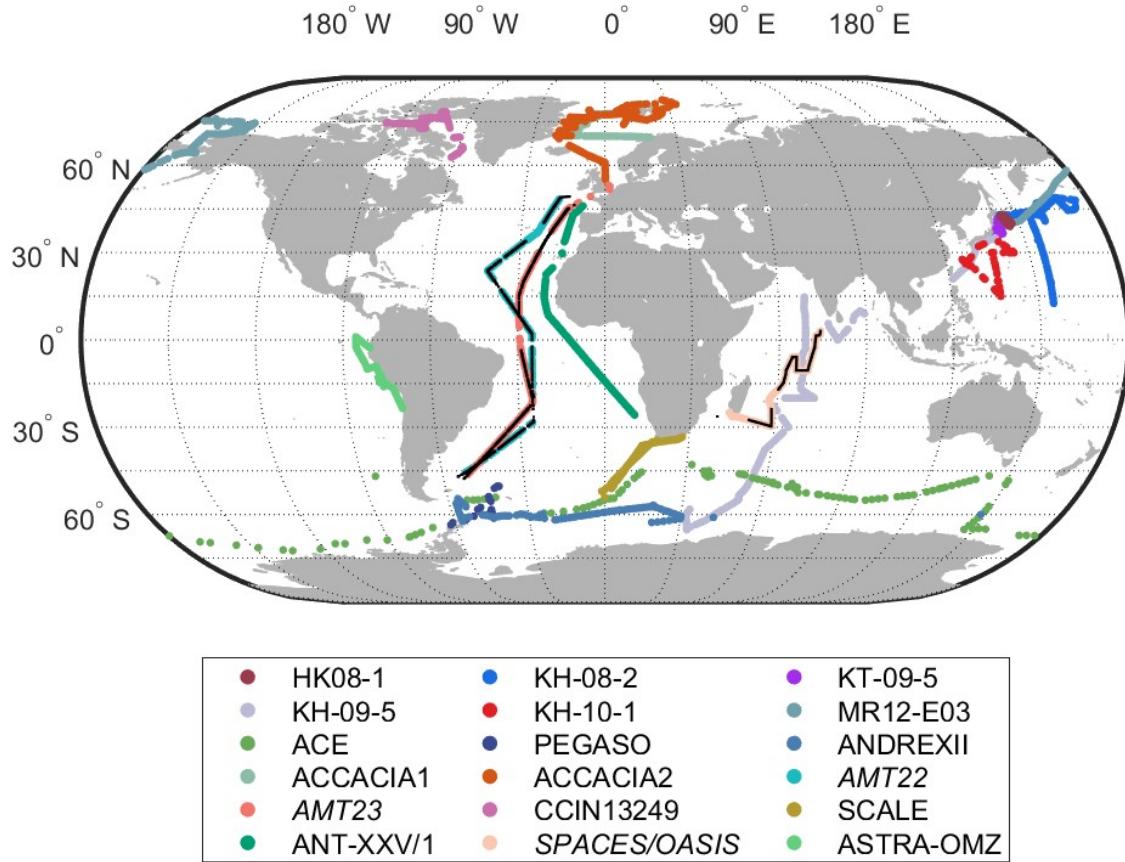


Figure 1: Sampling sites of seawater (dots in color) and marine air (dots in black) during the cruise campaigns used in this study. The cruise IDs in italics denote the availability of atmospheric measurements. The black dots over colored dots represent the air sampling sites of the cruise in the open ocean, as defined in Figure S1. Further information about the cruises is provided in Table S1.

231 Our marine isoprene emission scheme underwent a rigorous validation process using cruise
232 measurements from various oceanic regions. Figure S3 presents a density scatter plot illus-
233 trating the scheme's performance in estimating isoprene concentrations in the upper ocean.
234 Our scheme achieved a significant correlation, with an R-squared value of 0.47 and a slope of
235 0.92 (*p*-value: 0). This analysis was based on a dataset of 6839 valid seawater measurements
236 collected during 18 cruise campaigns (Figure 1). The measurements were taken at depths
237 of 2-7 meters across a diverse range of oceanic environments and analyzed using various
238 instruments, forming the foundation of our evaluation. This emission scheme was then used

²³⁹ to generate marine isoprene emissions which were included in UKESM1 simulations. For a
²⁴⁰ more in-depth examination of the scheme's performance during each individual cruise cam-
²⁴¹ paign, we invite readers to refer to the detailed comparisons presented in Figure S4, S5, and
²⁴² S6.

²⁴³ 3.3 Marine isoprene emission fluxes

²⁴⁴ The average annual marine isoprene emission from 2003 to 2021 is $0.8943 \pm 0.0114 \text{ Tg C yr}^{-1}$,
²⁴⁵ with ocean-atmosphere exchange flux at $0.2681 \pm 0.0052 \text{ Tg C yr}^{-1}$ and SML emission flux at
²⁴⁶ $0.6340 \pm 0.0067 \text{ Tg C yr}^{-1}$. Seawater isoprene fluxes and SML fluxes from the global ocean
²⁴⁷ exhibit distinct seasonal patterns (Figure 2A-H). Emissions are lowest in June and peak in
²⁴⁸ January (Figure 2I), highlighting the Southern Hemisphere's crucial contribution to annual
²⁴⁹ global emissions (Figure S7). The highest flux occurs between 45°S to 65°S during December
²⁵⁰ to January (austral summer). Several other high-emission areas are notable during this
²⁵¹ period: the near-shore region of Western Australia, the eastern equatorial Pacific Ocean,
²⁵² the Southern Atlantic Ocean near southern Africa, and waters off Somalia. The Norwegian
²⁵³ Sea shows elevated emissions from May to August, which aligns with the broader seasonal
²⁵⁴ patterns observed.¹⁵ Detailed methodologies for calculating emission fluxes can be found in
²⁵⁵ the Methods section.

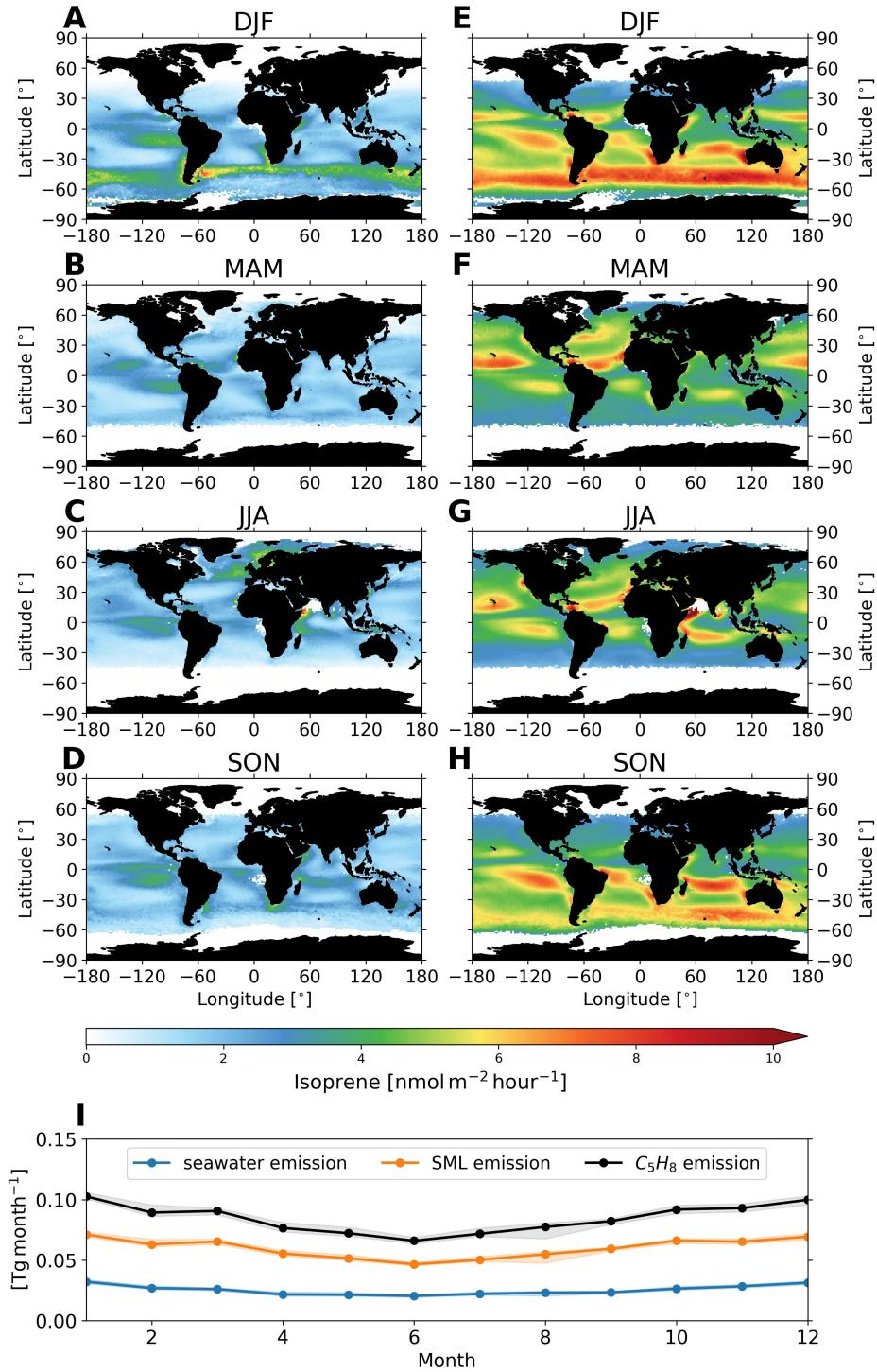


Figure 2: Marine isoprene emission fluxes by season, calculated from MODIS data (July 2002 - December 2021). Seawater fluxes: (A) Dec-Feb, (B) Mar-May, (C) Jun-Aug, (D) Sep-Nov. SML fluxes: (E) Dec-Feb, (F) Mar-May, (G) Jun-Aug, (H) Sep-Nov. (I) climatological global emissions, with shaded areas showing monthly flux maxima and minima.

256 **3.4 Evaluation of atmospheric isoprene**

257 To evaluate the simulated atmospheric isoprene, we conducted two UKESM1 simulations,
258 named “cruise_comparison” and “cruise_10×comparison”. These simulations included “bottom-
259 up” and “10-scaled” marine isoprene emissions, respectively (Table S2). The sole difference
260 between the two simulations is that “cruise_10×comparison” used marine isoprene emissions
261 scaled to ten times those in the “cruise_comparison” simulation. We extracted the hourly
262 atmospheric isoprene mixing ratios at the grid points closest to the atmospheric sampling
263 sites of the three cruise campaigns (AMT22, AMT23, SPACES/OASIS) (see Figure 1) at
264 corresponding times for our evaluation.

265 We performed a linear regression analysis of the surface atmospheric isoprene mixing
266 ratios from the “cruise_comparison” and “cruise_10×comparison” simulations against mea-
267 surements from the three cruises, incorporating 742 valid atmospheric measurements. To
268 ensure the reliability of our comparison, we restricted the analysis to measurements taken
269 in the open ocean (as defined in Figure S1), thereby mitigating the influence of terres-
270 trial isoprene. The analysis for the “cruise_comparison” simulation revealed a strong cor-
271 relation, with an R-squared value of 0.58 and a slope of 0.104 (*p*-value: 6.95e-137). This
272 indicates a consistent underestimation of isoprene mixing ratios by the simulation, approx-
273 imately by a factor of 10, when compared to atmospheric measurements (Figure S8). The
274 “cruise_10×comparison” simulation also showed a strong correlation, with an R-squared
275 value of 0.51 and a slope of 1.083 (*p*-value: 8.09e-160). This demonstrated that the ten-
276 fold scaling in the “cruise_10×comparison” simulation effectively addressed the low bias of
277 atmospheric isoprene found in the “cruise_comparison” simulation.

278 It is crucial to note that Figure S3 addresses the parameterization of isoprene concen-
279 tration in bulk seawater, driven by biotic sources and is unaffected by the SML source.
280 Conversely, Figure S8 reflects the combined influence of both biotic and SML emissions from
281 the surface ocean.

282 **3.5 Atmospheric implications**

283 To assess the impact of including marine isoprene emissions on atmospheric chemical compo-
284 sition, simulations were performed with the UKESM1 (Table S2). Specifically, a simulation
285 with isoprene emissions solely from terrestrial sources (“land_only”) served as the control
286 and as a point of comparison for multiple simulations with different approaches to model ma-
287 rine isoprene emissions. Simulated surface atmospheric isoprene concentrations in UKESM1
288 simulations using bottom-up emissions (“land_marine”) were low-biased by around a factor
289 of 10 (Figure S8). Multiplying the bottom-up emissions by 10 makes the simulated surface
290 isoprene level \sim 10 times higher (Table S3), generating a “top-down” emissions. Therefore,
291 a further run (“land_10 \times marine”) was performed with the “top-down” emissions and this
292 served as the primary point of comparison with the “land_only” control.

293 Surface atmospheric isoprene increases of up to 40 ppt are simulated during 2006 in the
294 latitude range of 45°S – 65°S (Figure 3A), highlighting the large contribution of isoprene
295 emissions in this region to the surface atmospheric burden. Surface levels of OH decrease
296 in oceanic areas (Figure 3B). This decrease signifies a reduction in oxidative capacity in the
297 surface atmosphere, primarily due to the reaction of marine isoprene with OH. In contrast,
298 surface O₃ levels exhibit slight increases across most oceanic regions (Figure 3C and Figure
299 S9A). This is likely due to the reduced reaction of OH with O₃, leading to an increase in
300 O₃ concentrations.⁶² Although isoprene can react directly with O₃, reducing its atmospheric
301 levels, the high reaction rate of isoprene with OH and the coincidence of peak in OH and
302 isoprene concentrations during the day suggest that the OH-pathway is the more important
303 isoprene oxidation pathway.⁶³ Surface formaldehyde (HCHO) and methanol (CH₃OH) levels
304 also increase in most oceanic areas (Figure 3D&E and Figure S9B&C), highlighting their
305 roles as products in the isoprene oxidation pathway. Simulated changes in surface isoprene
306 epoxydiols (IEPOX) **mixing ratios exhibit values that are** three orders of magnitude lower
307 than those of isoprene (Figure 3, A and F), suggesting that other chemical pathways, such
308 as RO₂ isomerization and RO₂ + RO₂ reactions, dominate the fate of isoprene RO₂ radicals

309 (ISOPPO₂) under low-NO_x conditions.⁶⁴ Furthermore, relative changes in IEPOX mixing
 310 ratios indicate that marine IEPOX dominates over the transported IEPOX from terrestrial
 311 isoprene sources in the open ocean (Figure S9D).

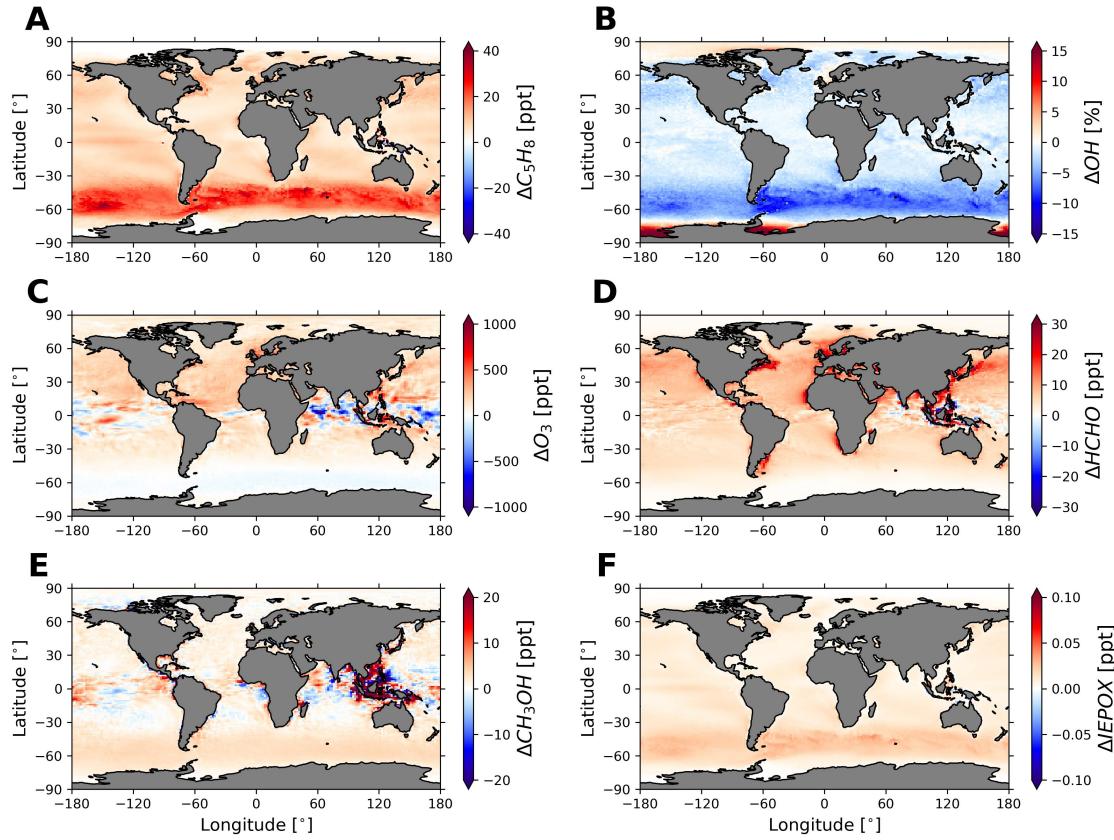


Figure 3: The averaged change in surface atmospheric components in 2006, derived from the simulation “land_10×marine” and “land_only”. (A) change in surface C₅H₈ mixing ratio (in pptv), (B) change in surface OH mixing ratio (in percentage), (C) change in surface O₃ mixing ratio (in pptv), (D) change in surface HCHO mixing ratio (in pptv), (E) change in surface CH₃OH mixing ratio (in pptv), (F) change in surface IEPOX mixing ratio (in pptv).

312 Zonally, isoprene concentrations exhibit increases over the open ocean (defined in Figure
 313 S5) within the lowest ~ 1 km (Figure 4A). O₃ changes are more pronounced in tropical
 314 regions (Figure 4C), while the changes in HCHO mirror those of OH (Figure 4, B and D).
 315 IEPOX increases at the surface and also in the tropical upper troposphere (Figure 4E).
 316 Additionally, CH₃OH shows large increases throughout most of the troposphere (Figure 4F).
 317 Further discussion on how emission uncertainties affect atmospheric composition is provided

318 in Section S2 and Figure S10-S15.

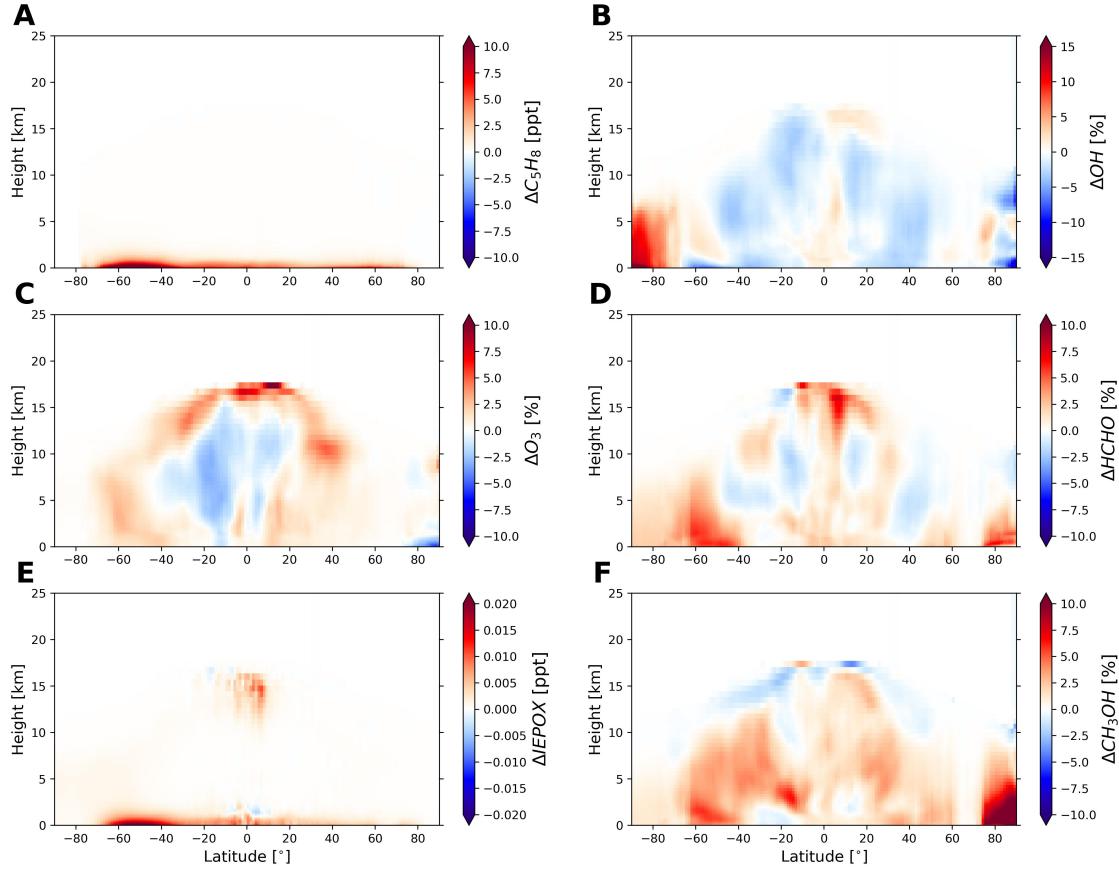


Figure 4: Model-simulated zonal mean change of atmospheric components in the troposphere over the open ocean in 2006, derived from the simulation “land $_10 \times$ marine” and “land $_only$ ”. (A) change in C_5H_8 mixing ratio (in pptv), (B) change in OH mixing ratio (in percentage), (C) change in O_3 mixing ratio (in percentage), (D) change in $HCHO$ mixing ratio (in percentage), (E) change in $IEPOX$ mixing ratio (in pptv), (F) change in CH_3OH mixing ratio (in percentage).

319 To gain insight into the vertical distribution of isoprene and its oxidation products, we
 320 examined their mean vertical profiles in a selected oceanic and land region, as defined in
 321 Figure S16. Hourly profiles from April 2014 (shown in Figure 5 for the oceanic region and
 322 Figure S18 for the land region) were averaged to derive daily diurnal variations (Figure S19
 323 for the oceanic region and Figure S20 for the land region).

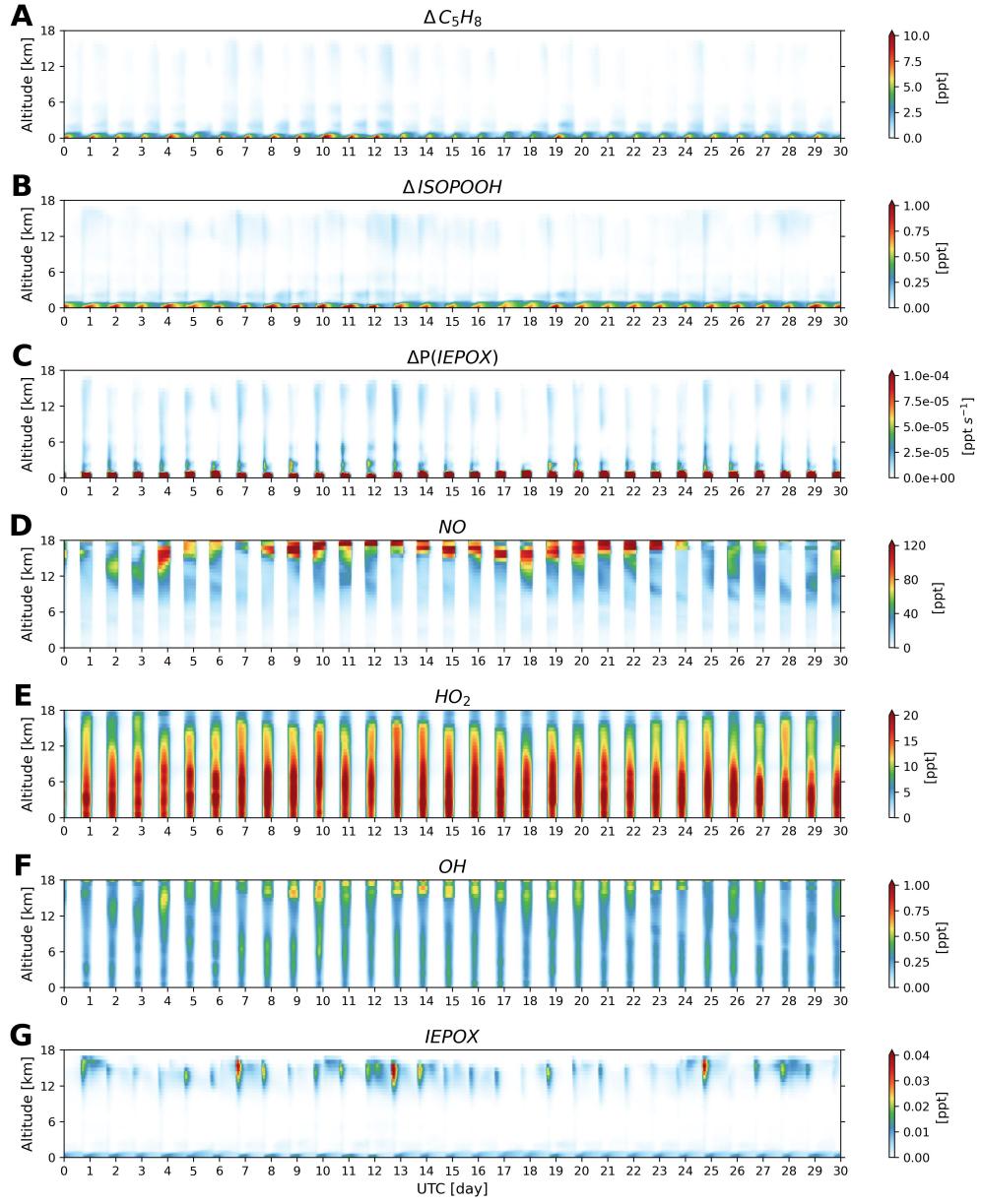


Figure 5: UKESM1 hourly analysis of the profile of marine isoprene, and selected gas-phase oxidation products, NO, HO₂, and OH over the selected ocean region during April 2014. The region is defined as 150°W to 145°W and 12°S to 6°S and is denoted by the rectangle in Figure S10. (A) ΔC_5H_8 (pptv). (B) $\Delta ISOOPOOH$ (pptv). (C) Δ Production rate of IEPOX (ppt s⁻¹). (D) NO (pptv). (E) HO₂ (pptv). (F) OH (pptv). (G) IEPOX (pptv). Time is indicated as days of April in Coordinated Universal Time (UTC). Profiles in (A-C) are derived from the difference (Δ) between the simulation “hourly_profile” and “hourly_land_only”, while profiles in (D-G) stem solely from the “hourly_profile” simulation. It is noteworthy that the profile changes in (A-C) are positive and IEPOX in “hourly_land_only” is negligible over this region (see Figure S17).

324 Our results indicate that marine isoprene can accumulate in the planetary boundary layer
325 (PBL) post-sunset, ascending to the free troposphere during the nighttime (Figure 5A and
326 Figure S19A). The nighttime lifetime of isoprene is largely influenced by reactions with O₃
327 and NO₃, while isoprene in daytime conditions is primarily governed by OH oxidation. The
328 extended lifetime of isoprene during the nighttime leads to elevated isoprene levels in the
329 troposphere. Furthermore, isoprene hydroxyl hydroperoxide (ISOPOOH) levels in the PBL
330 follow a distinct diurnal pattern, increasing at sunrise, peaking at sunset, and subsequently
331 declining, reflecting a close relationship with OH levels (Figure 5B and Figure S19B). At sun-
332 rise, the isoprene that survived the night initiates the formation of ISOPOOH and IEPOX,
333 influenced in part by hydroperoxyl radicals (HO₂). Elevated nitrogen oxide (NO) levels
334 correlate with reduced IEPOX production in the upper troposphere (Figure 5, C and D)
335 due to the competition between the reactions of NO and HO₂ with isoprene peroxy radicals
336 (ISOPO₂),⁶⁵ both of which occur throughout most of the global atmosphere.⁶⁴ Only the reac-
337 tion with HO₂ produces ISOPOOH, leading to IEPOX formation. When NO concentrations
338 are low, HO₂ predominantly reacts with ISOPO₂, enhancing ISOPOOH and subsequently
339 IEPOX production (Figure S19). Given that OH concentrations in this region are higher
340 than ISOPOOH (Figure 5, B and F), the OH formed from NO reactions does not significantly
341 affect IEPOX formation. This indicates that NO primarily influences IEPOX formation by
342 reacting with ISOPO₂, offering a competitive pathway that can suppress IEPOX formation.
343 The prolonged lifetime of isoprene oxidation products, such as IEPOX (Figure 5G), enable
344 long-range transport, which can lead to wider impacts for atmospheric chemistry and the
345 formation of SOAs in remote regions.

346 Similarly, terrestrial isoprene in selected land regions (as defined in Figure S16) maintains
347 high levels in the PBL, exceeding 10 ppb, and ascends to the mid-to-upper troposphere
348 during nighttime (Figure S18A and Figure S20A). Enhanced upper tropospheric NO leads
349 to increased IEPOX mixing ratios at corresponding altitudes (Figure S18C-G and Figure
350 S20C-F). In this region, ISOPOOH concentrations are three orders of magnitude higher than

351 OH concentrations (Figure S18, B and F), allowing OH formed from NO to significantly
352 facilitate the oxidation of ISOPOOH, thereby generating IEPOX.⁶⁶ The highest level of
353 upper tropospheric ISOPOOH are observed right before sunrise, likely due to the transport
354 of isoprene from the boundary layer during the nighttime (Figure S20A&B). The distinct
355 relationship between NO and IEPOX abundance in the upper troposphere over the selected
356 ocean and land regions suggests the nonlinear effects of NO_x on the formation of isoprene-
357 derived SOA in the ambient atmosphere.⁶⁵

358 **3.6 Missing isoprene source at the air-sea interface?**

359 The three cruises (AMT22, AMT23, and SPACES/OASIS) have yielded comprehensive data
360 on both seawater and atmospheric concentrations of isoprene. Our estimations of seawater
361 isoprene concentrations demonstrate strong agreement with measurements gathered during
362 these cruises. However, despite incorporating a bottom-up emission—comprising seawater
363 emission flux and SML emission flux—we note a conspicuous disparity between simulated
364 and observed atmospheric isoprene concentrations across each individual cruise campaign.

365 The distinction between a point location (representing measurement) and a grid cell,
366 potentially rendering cruise air measurements unrepresentative, should be acknowledged as
367 potential contributor to the observed low bias. However, the difference between measurement
368 height and UKESM1 model surface level does not fully explain the observed discrepancies.
369 The sampling elevation during all three cruises (18-20 m above sea level) falls well within
370 the model surface layer (0-36 m over the ocean) and closely aligns with the height of the
371 first model level (20 m over the ocean). Comparisons between simulated outputs and ATOM
372 aircraft campaign measurements at altitudes below 1 km show good agreement in O₃ mixing
373 ratios, but simulated OH levels are approximately twice the observed values. Additionally,
374 the underestimation of isoprene may be related to challenges in accurately simulating marine
375 boundary layer height and mixing processes.

376 The well-matched aqueous isoprene concentrations suggest that the seawater flux esti-

377 mates are likely robust. In contrast, the SML flux estimates, upscaled from laboratory
378 measurements of both artificial samples and authentic SML samples,³⁴ require further con-
379 straints through in-situ measurements. Analysis of the ratio between modeled and observed
380 isoprene mixing ratios against seawater and SML fluxes during the three cruise campaigns
381 indicates that the potential missing isoprene source is more influenced by the SML flux.
382 This is evidenced by the larger slope and lower y-intercept of the regression line for SML
383 flux compared to seawater flux (see Figure S21). Notably, improving SML emission estimates
384 may depend critically on accurate measurements of the UV radiation fraction over oceanic
385 regions. Uncertainty analysis shows that the UV fraction is the largest source of uncertainty
386 in marine isoprene emission estimations (see Table S4). The UV fractions used for SML
387 flux calculations (4.3% as stated in the methods section, and 2.9% \sim 7.7% in sensitivity
388 tests) were derived from land-based measurements due to the lack of ocean-specific data.
389 However, it is possible that oceanic UV fractions are higher, as water vapor—abundant
390 in marine environments—absorbs UV radiation less efficiently than aerosols,⁴⁹ which are
391 generally more concentrated over terrestrial regions.

392 Therefore, our UKESM1 simulations reveal that marine isoprene emissions could exceed
393 our bottom-up emission estimates. The atmospheric isoprene levels from the two simula-
394 tions, “land_marine” and “cruise_comparison”, should be considered as minimum mixing
395 ratios, very likely being higher in reality and therefore having more profound implications
396 for atmospheric chemistry.

397 3.7 Potential climate impacts

398 While prior GEOS-Chem simulations including 2% SOA gas-phase yield from bottom-up
399 (0.31 Tg yr^{-1}) and top-down (1.9 Tg yr^{-1}) emissions have shown that marine isoprene plays
400 an insignificant role in remote marine aerosol abundances,²⁹ the higher marine isoprene
401 emissions reported in our study (bottom-up emissions 0.89 Tg Cyr^{-1} , top-down emissions
402 8.9 Tg Cyr^{-1}) and the larger multiphasic SOA yield values ($\sim 4\%$) revealed by a recent

403 chamber experiment and modeling study⁹ collectively suggest a larger contribution to ma-
404 rine aerosols. The transport of **surface** isoprene and its oxidation products to the upper
405 troposphere highlighted in Figure 5 and **Figure S18** could lead to interactions with cirrus
406 clouds which play an important role in the Earth's radiation budget.^{9,67} Both chamber
407 experiments⁶⁸ and aircraft measurements⁶⁹ have revealed upper tropospheric new particle
408 formation, which represents a globally important source of atmospheric aerosols. Our sen-
409 sitivity experiments further reveal that uncertainties in marine isoprene emissions result in
410 variations in the ratio of tropospheric IEPOX burden over open ocean to that over land,
411 ranging from 0.38% to 1.94% (see Table S5). This sensitivity also suggests that marine
412 IEPOX could be at least comparable to terrestrial IEPOX over open ocean, with OH oxida-
413 tion being the dominant pathway for IEPOX loss in the low-NO_x marine atmosphere. Such
414 uncertainties hinder the use of organic compounds in ice cores as reliable marine biomark-
415 ers for reconstructing past environmental conditions.⁷⁰ Therefore, more accurate estimates
416 of marine BVOC emissions are crucial for correctly interpreting ice core records. As the
417 isoprene-derived SOAs (e.g., IEPOX SOAs) have been identified to play a role in the nu-
418 cleation of ice particles,⁶⁷ marine isoprene emissions could affect weather and climate by
419 influencing precipitation efficiency and cloud formation. It would be very valuable to per-
420 form studies that address the climate feedback parameter of marine isoprene emissions, as
421 it may differ in size and sign from those derived for terrestrial emissions.^{1,71}

422 Author Information

423 Author Contributions

424 Conceptualization: W.Z., J.W., A.A., D.G. Methodology: W.Z., J.W., A.A. Software: W.Z.,
425 J.W., A.A., N.L.A. Formal Analysis: W.Z., J.W. Data Curation: W.Z., J.W., D.B., M.Y.
426 Visualization: W.Z. Writing – original draft: W.Z. Writing – review & Editing: W.Z., J.W.,
427 A.A., N.L.A., D.B., M.Y., D.G. Funding Acquisition: W.Z., A.A., D.G.

428 **Acknowledgement**

429 The research was supported by the Hong Kong Research Grants Council (26304921), Hong
430 Kong Innovation and Technology Fund (ITS/193/20FP), and the Department of Science
431 and Technology of Guangdong Province in China (2019B121205004). J.W. was funded by
432 the UKRI Future Leaders Fellowship Programme (MR/T019867/1) awarded to Dr. Maria
433 Val Martin while at the University of Sheffield. This study contains data supplied by the
434 Natural Environment Research Council. We extend thanks to the British Oceanographic
435 Data Center, Lucy Carpenter, and Monica Hanley for providing isoprene measurements from
436 the cruises AMT22, AMT23, ACCACIA 1, and ACCACIA 2. This work used Monsoon2
437 (a collaborative High-Performance Computing facility funded by the Met Office and the
438 Natural Environment Research Council) and JASMIN (the UK collaborative data analysis
439 facility).

440 **Supporting Information Available**

441 Section S1: UKESM1 simulations
442 Section S2: Impact of emission uncertainty on atmospheric composition
443 Section S3: Uncertainty analysis of marine isoprene emissions
444 Figure S1 to S21
445 Table S1 to S5

446 **References**

447 (1) Weber, J.; Archer-Nicholls, S.; Abraham, N. L.; Shin, Y. M.; Griffiths, P.;
448 Grosvenor, D. P.; Scott, C. E.; Archibald, A. T. Chemistry-driven changes strongly
449 influence climate forcing from vegetation emissions. *Nat. Commun.* **2022**, *13*, 7202.

450 (2) Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Em-

451 mons, L. K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature
452 version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic
453 emissions. *Geosci. Model Dev.* **2012**, *5*, 1471–1492.

454 (3) Gaston, C. J.; Riedel, T. P.; Zhang, Z.; Gold, A.; Surratt, J. D.; Thornton, J. A.
455 Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles.
456 *Environ. Sci. Technol.* **2014**, *48*, 11178–11186.

457 (4) Nguyen, T. B.; Coggon, M. M.; Bates, K. H.; Zhang, X.; Schwantes, R. H.;
458 Schilling, K. A.; Loza, C. L.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Or-
459 ganic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto
460 non-acidified inorganic seeds. *Atmos. Chem. Phys.* **2014**, *14*, 3497–3510.

461 (5) Claeys, M.; others Formation of Secondary Organic Aerosols Through Photooxidation
462 of Isoprene. *Science* **2004**, *303*, 1173–1176.

463 (6) Kroll, J. H.; Seinfeld, J. H. Chemistry of secondary organic aerosol: formation and
464 evolution of low-volatility organics in the atmosphere. *Atmos. Environ.* **2008**, *42*, 3593–
465 3624.

466 (7) Krechmer, J. E. et al. Formation of Low Volatility Organic Compounds and Secondary
467 Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. *Environ.*
468 *Sci. Technol.* **2015**, *49*, 10330–10339.

469 (8) Schwantes, R. H.; Charan, S. M.; Bates, K. H.; Huang, Y.; Nguyen, T. B.; Mai, H.;
470 Kong, W.; Flagan, R. C.; Seinfeld, J. H. Low-volatility compounds contribute signifi-
471 cantly to isoprene secondary organic aerosol (SOA) under high-NO_x conditions. *Atmos.*
472 *Chem. Phys.* **2019**, *19*, 7255–7278.

473 (9) Lamkaddam, H.; Dommen, J.; Ranjithkumar, A.; Gordon, H.; Wehrle, G.; Krech-
474 mer, J.; Majluf, F.; Salionov, D.; Schmale, J.; Bjelić, S.; Carslaw, K. S.; El Haddad, I.;

475 Baltensperger, U. Large contribution to secondary organic aerosol from isoprene cloud
476 chemistry. *Sci. Adv.* **2021**, *7*, eabe2952.

477 (10) Henze, D. K.; Seinfeld, J. H. Global secondary organic aerosol from isoprene oxidation.
478 *Geophys. Res. Lett.* **2006**, *33*, L09812.

479 (11) Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A. Secondary organic aerosol in
480 the global aerosol – chemical transport model Oslo CTM2. *Atmos. Chem. Phys.* **2007**,
481 *7*, 5675–5694.

482 (12) Stadtler, S.; Kühn, T.; Schröder, S.; Taraborrelli, D.; Schultz, M. G.; Kokkola, H.
483 Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate
484 model ECHAM6.3.0–HAM2.3–MOZ1.0. *Geosci. Model Dev.* **2018**, *11*, 3235–3260.

485 (13) Bates, K. H.; Jacob, D. J. A new model mechanism for atmospheric oxidation of iso-
486 prene: global effects on oxidants, nitrogen oxides, organic products, and secondary
487 organic aerosol. *Atmos. Chem. Phys.* **2019**, *19*, 9613–9640.

488 (14) Bonsang, B.; Polle, C.; Lambert, G. Evidence for marine production of isoprene. *Geo-
489 phys. Res. Lett.* **1992**, *19*, 1129–1132.

490 (15) Broadgate, W. J.; Liss, P. S.; Penkett, S. A. Seasonal emissions of isoprene and other
491 reactive hydrocarbon gases from the ocean. *Geophys. Res. Lett.* **1997**, *24*, 2675–2678.

492 (16) Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P. I.; Geron, C. Estimates
493 of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases
494 and Aerosols from Nature). *Atmos. Chem. Phys.* **2006**, *6*, 3181–3210.

495 (17) Kameyama, S.; Yoshida, S.; Tanimoto, H.; Inomata, S.; Suzuki, K.; Yoshikawa-Inoue, H.
496 High-resolution observations of dissolved isoprene in surface seawater in the Southern
497 Ocean during austral summer 2010–2011. *J. Oceanogr.* **2014**, *70*, 225–239.

498 (18) Meskhidze, N.; Nenes, A. Phytoplankton and Cloudiness in the Southern Ocean. *Science*
499 **2006**, *314*, 1419–1423.

500 (19) Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; He, Q.; Zhang, P. Secondary organic aerosols over
501 oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. *Sci Rep*
502 **2013**, *3*, 2280.

503 (20) Hackenberg, S. C. et al. Potential controls of isoprene in the surface ocean: isoprene
504 Controls in the Surface Ocean. *Glob. Biogeochem. Cycle* **2017**, *31*, 644–662.

505 (21) Booge, D.; Schlundt, C.; Bracher, A.; Endres, S.; Zäncker, B.; Marandino, C. A. Marine
506 isoprene production and consumption in the mixed layer of the surface ocean – a field
507 study over two oceanic regions. *Biogeosciences* **2018**, *15*, 649–667.

508 (22) Colomb, A.; Yassaa, N.; Williams, J.; Peeken, I.; Lochte, K. Screening volatile organic
509 compounds (VOCs) emissions from five marine phytoplankton species by head space
510 gas chromatography/mass spectrometry (HS-GC/MS). *J. Environ. Monit.* **2008**, *10*,
511 325.

512 (23) Exton, D. A.; Suggett, D. J.; McGenity, T. J.; Steinke, M. Chlorophyll-normalized
513 isoprene production in laboratory cultures of marine microalgae and implications for
514 global models. *Limnol. Oceanogr.* **2013**, *58*, 1301–1311.

515 (24) Shaw, S. L.; Chisholm, S. W.; Prinn, R. G. Isoprene production by *Prochlorococcus*, a
516 marine cyanobacterium, and other phytoplankton. *Mar. Chem.* **2003**, *80*, 227–245.

517 (25) Broadgate, W. J.; Malin, G.; Küpper, F. C.; Thompson, A.; Liss, P. Isoprene and other
518 non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the
519 atmosphere. *Mar. Chem.* **2004**, *88*, 61–73.

520 (26) Meskhidze, N.; Sabolis, A.; Reed, R.; Kamykowski, D. Quantifying environmental

521 stress-induced emissions of algal isoprene and monoterpenes using laboratory measure-
522 ments. *Biogeosciences* **2015**, *12*, 637–651.

523 (27) Simó, R.; Cortés-Greus, P.; Rodríguez-Ros, P.; Masdeu-Navarro, M. Substantial loss of
524 isoprene in the surface ocean due to chemical and biological consumption. *Commun.*
525 *Earth Environ.* **2022**, *3*, 20.

526 (28) Novak, G. A.; Bertram, T. H. Reactive VOC Production from Photochemical and
527 Heterogeneous Reactions Occurring at the Air–Ocean Interface. *Accounts Chem. Res.*
528 **2020**, *53*, 1014–1023.

529 (29) Arnold, S. R.; Spracklen, D. V.; Williams, J.; Yassaa, N.; Sciare, J.; Bonsang, B.;
530 Gros, V.; Peeken, I.; Lewis, A. C.; Alvain, S.; Moulin, C. Evaluation of the global
531 oceanic isoprene source and its impacts on marine organic carbon aerosol. *Atmos. Chem.*
532 *Phys.* **2009**, *9*, 1253–1262.

533 (30) Luo, G.; Yu, F. A numerical evaluation of global oceanic emissions of α -pinene and
534 isoprene. *Atmos. Chem. Phys.* **2010**, *10*, 2007–2015.

535 (31) Palmer, P. I.; Shaw, S. L. Quantifying global marine isoprene fluxes using MODIS
536 chlorophyll observations. *Geophys. Res. Lett.* **2005**, *32*, L09805.

537 (32) Booge, D.; Marandino, C. A.; Schlundt, C.; Palmer, P. I.; Schlundt, M.; Atlas, E. L.;
538 Bracher, A.; Saltzman, E. S.; Wallace, D. W. R. Can simple models predict large-scale
539 surface ocean isoprene concentrations? *Atmos. Chem. Phys.* **2016**, *16*, 11807–11821.

540 (33) Conte, L.; Szopa, S.; Aumont, O.; Gros, V.; Bopp, L. Sources and Sinks of Isoprene
541 in the Global Open Ocean: Simulated Patterns and Emissions to the Atmosphere. *J.*
542 *Geophys. Res.-Oceans* **2020**, *125*, e2019JC015946.

543 (34) Ciuraru, R.; Fine, L.; Pinxteren, M. V.; D’Anna, B.; Herrmann, H.; George, C. Un-

544 ravelling New Processes at Interfaces: photochemical Isoprene Production at the Sea
545 Surface. *Environ. Sci. Technol.* **2015**, *49*, 13199–13205.

546 (35) Brüggemann, M.; Hayeck, N.; George, C. Interfacial photochemistry at the ocean sur-
547 face is a global source of organic vapors and aerosols. *Nat. Commun.* **2018**, *9*, 2101.

548 (36) Gantt, B.; Meskhidze, N.; Zhang, Y.; Xu, J. The effect of marine isoprene emissions
549 on secondary organic aerosol and ozone formation in the coastal United States. *Atmos.*
550 *Environ.* **2010**, *44*, 115–121.

551 (37) Gantt, B.; Meskhidze, N.; Carlton, A. G. The contribution of marine organics to the
552 air quality of the western United States. *Atmos. Chem. Phys.* **2010**, *10*, 7415–7423.

553 (38) Zhang, W.; Gu, D. Geostationary satellite reveals increasing marine isoprene emissions
554 in the center of the equatorial Pacific Ocean. *npj Clim. Atmos. Sci.* **2022**, *5*, 83.

555 (39) Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nick-
556 less, D. Terra and Aqua MODIS products available from NASA GES DAAC. *Adv. Space*
557 *Res.* **2004**, *34*, 710–714.

558 (40) Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R. A new estimate of the
559 global 3D geostrophic ocean circulation based on satellite data and in-situ measure-
560 ments. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **2012**, *77-80*, 70–81.

561 (41) Guinehut, S.; Dhomps, A.-L.; Larnicol, G.; Le Traon, P.-Y. High resolution 3-D tem-
562 perature and salinity fields derived from in situ and satellite observations. *Ocean Sci.*
563 **2012**, *8*, 845–857.

564 (42) Hersbach, H. et al. The ERA5 global reanalysis. *Q. J. R. Meteorol. Soc.* **2020**, *146*,
565 1999–2049.

566 (43) Correa-Ramirez, M.; Morales, C.; Letelier, R.; Anabalón, V.; Hormazabal, S. Improving
567 the Remote Sensing Retrieval of Phytoplankton Functional Types (PFT) Using Em-

568 pirical Orthogonal Functions: A Case Study in a Coastal Upwelling Region. *Remote*
569 *Sens.* **2018**, *10*, 498.

570 (44) Moore, R. M.; Wang, L. The influence of iron fertilization on the fluxes of methyl
571 halides and isoprene from ocean to atmosphere in the SERIES experiment. *Deep Sea*
572 *Res. Part II Top. Stud. Oceanogr.* **2006**, *53*, 2398–2409.

573 (45) Gantt, B.; Meskhidze, N.; Kamykowski, D. A new physically-based quantification of
574 marine isoprene and primary organic aerosol emissions. *Atmos. Chem. Phys.* **2009**, *9*,
575 4915–4927.

576 (46) Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean
577 revisited: gas exchange and wind speed over the ocean. *Limnol. Oceanogr. Meth.* **2014**,
578 *12*, 351–362.

579 (47) Rodríguez-Ros, P.; Galí, M.; Cortés, P.; Robinson, C. M.; Antoine, D.; Wohl, C.;
580 Yang, M.; Simó, R. Remote Sensing Retrieval of Isoprene Concentrations in the South-
581 ern Ocean. *Geophys. Res. Lett.* **2020**, *47*, e2020GL087888.

582 (48) Brüggemann, M.; Hayeck, N.; Bonnneau, C.; Pesce, S.; Alpert, P. A.; Perrier, S.;
583 Zuth, C.; Hoffmann, T.; Chen, J.; George, C. Interfacial photochemistry of biogenic
584 surfactants: a major source of abiotic volatile organic compounds. *Faraday Discuss.*
585 **2017**, *200*, 59–74.

586 (49) Escobedo, J. F.; Gomes, E. N.; Oliveira, A. P.; Soares, J. Ratios of UV, PAR and
587 NIR components to global solar radiation measured at Botucatu site in Brazil. *Renew.*
588 *Energy* **2011**, *36*, 169–178.

589 (50) Ciuraru, R.; Fine, L.; van Pinxteren, M.; D'Anna, B.; Herrmann, H.; George, C. Photo-
590 tosensitized production of functionalized and unsaturated organic compounds at the
591 air-sea interface. *Sci Rep* **2015**, *5*, 12741.

592 (51) Wurl, O.; Wurl, E.; Miller, L.; Johnson, K.; Vagle, S. Formation and global distribution
593 of sea-surface microlayers. *Biogeosciences* **2011**, *8*, 121–135.

594 (52) McGillis, W. R.; Edson, J. B.; Zappa, C. J.; Ware, J. D.; McKenna, S. P.; Terray, E. A.;
595 Hare, J. E.; Fairall, C. W.; Drennan, W.; Donelan, M.; DeGrandpre, M. D.; Wan-
596 ninkhof, R.; Feely, R. A. Air-sea CO_2 exchange in the equatorial Pacific. *J. Geophys.*
597 *Res.: Oceans* **2004**, *109*, 2003JC002256.

598 (53) Sabbaghzadeh, B.; Upstill-Goddard, R. C.; Beale, R.; Pereira, R.; Nightingale, P. D.
599 The Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in
600 surfactants at wind speeds up to 13 m s^{-1} . *Geophys. Res. Lett.* **2017**, *44*, 2852–2858.

601 (54) Weber, J.; Archer-Nicholls, S.; Abraham, N. L.; Shin, Y. M.; Bannan, T. J.; Per-
602 cival, C. J.; Bacak, A.; Artaxo, P.; Jenkin, M.; Khan, M. A. H.; Shallcross, D. E.;
603 Schwantes, R. H.; Williams, J.; Archibald, A. T. Improvements to the representation
604 of BVOC chemistry–climate interactions in UKCA (v11.5) with the CRI-Strat 2 mech-
605 anism: incorporation and evaluation. *Geosci. Model Dev.* **2021**, *14*, 5239–5268.

606 (55) Jenkin, M.; Khan, M.; Shallcross, D.; Bergström, R.; Simpson, D.; Murphy, K.;
607 Rickard, A. The CRI v2.2 reduced degradation scheme for isoprene. *Atmos. Environ.*
608 **2019**, *212*, 172–182.

609 (56) Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chip-
610 perfield, M. P.; Pickering, S. J.; Johnson, C. E. Description and evaluation of GLOMAP-
611 mode: a modal global aerosol microphysics model for the UKCA composition-climate
612 model. *Geosci. Model Dev.* **2010**, *3*, 519–551.

613 (57) Mulcahy, J. P. et al. Description and evaluation of aerosol in UKESM1 and HadGEM3-
614 GC3.1 CMIP6 historical simulations. *Geosci. Model Dev.* **2020**, *13*, 6383–6423.

615 (58) Archibald, A. T. et al. Description and evaluation of the UKCA strato-

616 sphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1.

617 *Geosci. Model Dev.* **2020**, *13*, 1223–1266.

618 (59) Telford, P. J.; Braesicke, P.; Morgenstern, O.; Pyle, J. A. Technical Note: Description
619 and assessment of a nudged version of the new dynamics Unified Model. *Atmos. Chem.*
620 *Phys.* **2008**, *8*, 1701–1712.

621 (60) Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the
622 data assimilation system. *Q. J. R. Meteorol. Soc.* **2011**, *137*, 553–597.

623 (61) Mulcahy, J. P. et al. UKESM1.1: development and evaluation of an updated configu-
624 ration of the UK Earth System Model. *Geosci. Model Dev.* **2023**, *16*, 1569–1600.

625 (62) Archibald, A. T. et al. Tropospheric Ozone Assessment Report. *Elementa-Sci. Anthropol.*
626 **2020**, *8*, 034.

627 (63) Pacifico, F.; Harrison, S.; Jones, C.; Sitch, S. Isoprene emissions and climate. *Atmos.*
628 *Environ.* **2009**, *43*, 6121–6135.

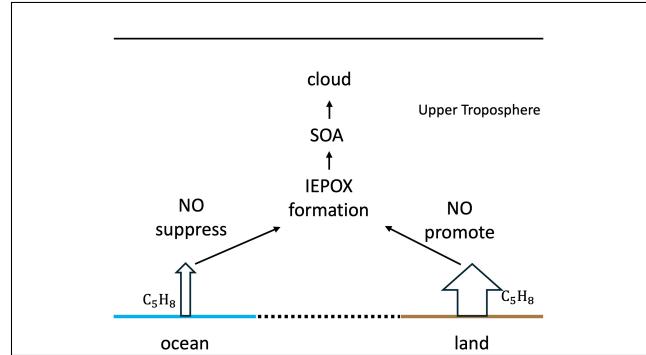
629 (64) Kenagy, H. S.; Heald, C. L.; Tahsini, N.; Goss, M. B.; Kroll, J. H. Can we achieve atmo-
630 spheric chemical environments in the laboratory? An integrated model-measurement
631 approach to chamber SOA studies. *Sci. Adv.* **2024**, *10*, eado1482.

632 (65) Shrivastava, M. et al. Recent advances in understanding secondary organic aerosol:
633 implications for global climate forcing. *Rev. Geophys.* **2017**, *55*, 509–559.

634 (66) Bardakov, R.; Thornton, J. A.; Riipinen, I.; Krejci, R.; Ekman, A. M. L. Transport
635 and chemistry of isoprene and its oxidation products in deep convective clouds. *Tellus*
636 *Ser. B-Chem. Phys. Meteorol.* **2021**, *73*, 1979856.

637 (67) Wolf, M. J. et al. A biogenic secondary organic aerosol source of cirrus ice nucleating
638 particles. *Nat. Commun.* **2020**, *11*, 4834.

639 (68) Shen, J. et al. New particle formation from isoprene under upper-tropospheric condi-
640 tions. *Nature* **2024**, *636*, 115–123.


641 (69) Curtius, J. et al. Isoprene nitrates drive new particle formation in Amazon's upper
642 troposphere. *Nature* **2024**, *636*, 124–130.

643 (70) King, A. C. F.; Thomas, E. R.; Pedro, J. B.; Markle, B.; Potocki, M.; Jackson, S. L.;
644 Wolff, E.; Kalberer, M. Organic Compounds in a Sub-Antarctic Ice Core: A Potential
645 Suite of Sea Ice Markers. *Geophys. Res. Lett.* **2019**, *46*, 9930–9939.

646 (71) Thornhill, G. et al. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth
647 system models. *Atmos. Chem. Phys.* **2021**, *21*, 1105–1126.

648 TOC Graphic

649

