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Email: a.a.|.gresham@reading.ac.uk 1. Context: Deer (Cervidae) populations are increasing in many global regions, lead-
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2. Methodology: We studied the diet of fallow deer (Dama dama) in North Wales

(United Kingdom), using faecal DNA metabarcoding. Samples were collected

based management requires a detailed understanding of the dietary habits of
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monthly from three woodlands during 2019-2021. Tree surveys and seasonal
ground flora surveys were conducted in these woodlands and seven additional
woodlands. Preference analyses were used to assess the consumption of plant
taxa relative to their availability.

3. Results: The fallow deer consumed high proportions of bramble (Rubus fruticosus
agg.) across the seasons, especially in the winter months. Diet diversity was sig-
nificantly lower in winter compared to the other seasons, suggesting that the deer
were bulk foraging on a widely available, predictable resource to conserve energy
during winter. Grasses did not form a major component of the diet in any season.
The preference analysis showed that spatially clustered woody taxa (e.g. Betula
sp., Corylus sp. and Fraxinus sp.) occurred less often than expected in the diet,
while widespread woody species occurred in the diet more often than expected
(e.g. Rosa sp., Prunus sp. and Quercus sp.).

4. Practical implication: The expansion of deer populations in the United Kingdom
has occurred alongside the recovery and maturation of degraded or planted for-
ests since the middle of the 20th century. Despite reduced light availability in
these closed-canopy forests and increased herbivory pressure, bramble has re-

mained a dominant understory plant compared to other less herbivory-tolerant
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1 | INTRODUCTION

Deer (Cervidae) populations are expanding throughout the temper-
ate zone (Coté et al., 2004; Linnell et al., 2020). Reduced mortality
due to a warming climate, introductions of non-native species and
human modification of landscapes have facilitated range expansion
and population growth of deer species (Ramirez et al., 2018). While
deer population growth may be seen as a conservation success
story, this growth has led to unprecedented herbivory pressure in
these landscapes (Fuller & Gill, 2001; Jarnemo et al., 2022; Reimoser
& Putman, 2011; Takarabe & lijima, 2020). At elevated densities,
deer herbivory reduces the structural complexity of woodlands
(Eichhorn et al., 2017), diminishing habitat suitability for other
woodland fauna (Gill & Fuller, 2007). Intense herbivory pressure can
also reduce plant diversity by favouring herbivory-tolerant (Tamura
& Yamane, 2017), unpalatable (Ramirez et al., 2019) or more gen-
eralist (Boulanger et al., 2018) plant species. Additionally, the her-
bivory of leading shoots inhibits tree regeneration, sapling growth
and timber production (Reimoser, 2003), while intensive grazing re-
duces arable crop and pasture yield (Corgatelli et al., 2019; Putman
et al., 2011). Studying deer foraging behaviour and diet can improve
our understanding of the mechanisms by which increasing deer pop-
ulations are influencing, and being influenced by, human-modified
landscapes (Apollonio et al., 2017).

Unlike contiguous old-growth forests, human-modified land-
scapes are often characterised by forest fragments at varying
developmental stages. These fragments provide refuge from preda-
tion risk (Bonnot et al., 2013), shelter from adverse weather (Melin
et al., 2014), herbaceous grazing material and woody browse. These
forest fragments are often intermixed with crop fields and pasture,
which contain nutritious grazing material year-round and provide
productive edge habitats (Reiner et al., 2023). Whilst the presence
of alternative natural foraging resources can divert deer browsing
pressure away from tree saplings (Arnold et al., 2018), highly nu-
tritious arable crops build and sustain high deer densities as win-
ter mortality is reduced, and reproductive rates increase (Jarnemo
et al.,, 2022). The resulting herbivory pressure negatively impacts
biodiversity conservation, commercial forestry and agricultural

plant species. Perhaps as a consequence, bramble has become the winter survival
resource for this fallow deer population, remaining a prominent dietary compo-
nent throughout the year. With increasing disturbance from extreme weather
and tree diseases leading to a more open canopy structure, bramble cover is set
to increase in European forests, which could support further expansion of deer
populations. As we work to expand tree cover and enhance forest resilience and
biodiversity, we should seek to understand the dynamic interactions of increasing

deer populations with rapidly changing treescapes.

Cervidae, deer, diet analysis, faecal DNA metabarcoding, herbivory, resource availability,

productivity (Jarnemo et al., 2022; Putman et al., 2011; Takarabe
& lijima, 2020).

Fallow deer (Dama dama) are geographically widespread and
increasing in number across their range (Esattore et al.,, 2022).
They have been described as intermediate grazers, primarily con-
suming low-quality bulk roughage, such as grasses (Borkowski &
Obidzinski, 2003; Kerridge & Bullock, 1991; Putman et al., 1993).
They also consume broadleaved and coniferous tree and shrub
browse, climbing lianas such as ivy (Hedera helix) and honeysuckle
(Lonicera spp.), scrambling shrubs such as bramble (Rubus fruti-
cosus agg.), and herbs (Bruno & Apollonio, 1991; Jackson, 1977;
Nugent, 1990). A recent review of fallow deer feeding ecology and
distribution found it to be one of the most widespread and adapt-
able deer species (Esattore et al., 2022). Because of their dietary
flexibility and potential for herding at high densities, fallow deer can
substantially impact woodland vegetation (Putman et al., 2011).

DNA metabarcoding offers ecologists an effective method to
explore the diet of ungulates, including deer (Erickson et al., 2017;
Spitzer et al., 2020). DNA metabarcoding uses high-throughput se-
quencing with universal primers that bind to conserved DNA regions
within a taxonomic group. These regions have enough variation to
allow the identification of different taxa within the group (Deiner
et al., 2017). For plants, combining the rbcL and ITS2 regions ensures
a wide range of detection and good taxonomic discrimination, re-
spectively (Brennan et al., 2019; Hollingsworth, 2011). The Barcode
UK database (Jones et al., 2021) has improved the reliability of these
markers for accurate taxonomic identification of UK plants, making
them ideal for studying the diet of herbivores.

Our study aimed to characterise seasonal variation in the diet of a
fallow deer population in North Wales (United Kingdom) using DNA
metabarcoding of faecal samples. The study landscape was a mosaic of
arable land, livestock pasture and woodlands. Typical land management
objectives include livestock farming, nature conservation and amenity
woodland, with some large-scale commercial forestry, although many
woodlands were also unmanaged. Due to high grass availability within
this landscape, we hypothesised that the fallow deer would bulk-graze
on grassland species for much of the year (Kerridge & Bullock, 1991).
We expected that the winter diet would be most diverse compared
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to other seasons, as the deer would feed on a wider variety of plants
to meet their nutritional and energetic requirements (Jackson, 1977,
Nakahama et al., 2021). To investigate dietary preference and the rel-
ative vulnerability of different plant species to herbivory pressure, we
collected deer faecal samples alongside surveys of seasonal and spatial
variation in resource availability. If certain plant species were positively
selected by the deer, they should be overrepresented in the diet rela-

tive to their availability.

2 | METHODS
2.1 | Study sites

The Elwy Valley area is a mosaic landscape, with patches of wood-
land surrounded by a matrix of pastoral and agricultural farmland.
Three woodlands were surveyed for fallow deer faeces once per
month for 2years (September 2019 to August 2021), excluding
April to June 2020 due to the COVID-19 pandemic (Figure 1). These
woodlands are known to be regularly used by fallow deer, with
no effective barriers to their movement (Barton, 2023). No other

deer species were detected in the study area during the period of

5
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data collection, and sheep were absent from the surveyed wood-
lands (Barton, 2023). Fallow deer home ranges vary between 1
and 10km?, depending on sex, season and landscape configuration
(Borkowski & Pudetko, 2007; Davini et al., 2004), while their gut re-
tention time is approximately 31 h (Ramanzin et al., 1997). Therefore,
deer are likely to enter and leave woodlands multiple times during
feeding and digestion, so faecal samples will include plants that deer
consume within the woodlands and in the surrounding landscape.
As such, the three woodlands sampled for faeces (Figure 1) should
be considered as sampling points, not exclusive foraging locations
(Jayakody et al., 2011).

To explore how deer diet in a woodland-pasture landscape com-
pared with deer foraging on grassland only, six faecal samples were
also collected in December 2020 from the fallow deer enclosure (ap-
prox. 200 x 70 metres in size, location: 53.295370N, -3.749937 W)
at the Welsh Mountain Zoo, Colwyn Bay, North Wales.

2.2 | Faecal sample collection

Deer faeces were collected opportunistically from the three wood-

lands, following established deer pathways. Only distinct faecal
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FIGURE 1 The Elwy Valley study area in North Wales within the context of the United Kingdom (marked by the cyan blue box on the
inset map), and at the landscape scale. Locations of the 10 surveyed woodlands are shown by points, with survey type indicated by point

colour. Points are labelled by site number.

85UB01 T SUOWIWIOD BA 181D 3|qeol(dde 8y} Aq peusenob afe Sae YO 9SN Jo SajnJ 0} ARIq1T8UIUQ AS]IA UO (SUOTIPUOD-PUE-SWSY/LI0O"AB | 1M ARe.d [ulUO//:SdNL) SUONIPUOD pue SWis | 8u1 89S *[5202/£0/90] Uo Akeiqiauljuo A8]iM ‘91 A 8000/ 6TES-8892/200T OT/I0P/LI0Y"A8| M Ale.q1jpul[UOS feuIN0 fsagy//sdny Wwolj pepeojumod ‘T ‘GZ0Z ‘6TE8889Z



GRESHAM ET AL.

4of14 BRITISH 5 o .
dofta | Eggg}ggm _Ecological Solutions and Evidence

mounds of six or more pellets were collected. Fresh faeces were pri-
oritised for collection, identified as darker in colour. Faecal samples
were placed in labelled 50-ml Falcon tubes using clean nitrile gloves.
Up to six faecal samples were collected from each woodland per
monthly survey, totalling 353 samples. Seasons were defined: win-
ter=December to February, spring=March to May, summer=June
to August and autumn=September to November. The number of
samples collected per sampling occasion is shown in Table S1.

The same approach was used to collect a further six samples from
the captive deer enclosure at the Welsh Mountain Zoo in December
2020. All samples were double-bagged and stored at -20°C within
8h of collection.

2.3 | Plantresource availability surveys

In addition to the three woodlands surveyed for faecal samples,
seven other woodlands in the landscape were surveyed for their
resource availability (Figure 1; Table S2). Woodland ground veg-
etation cover was surveyed once every 3 months across the 10
woodland sites, from September 2019 to July 2021 (Figure 1;
Figure S3). This involved surveying permanent circular sampling
plots (15-m radius) containing randomly positioned 0.25-m?
qguadrats. Bramble was surveyed as ground vegetation, as it is a
scrambling shrub that can cover a large area. Similarly, lianas—ivy
and honeysuckle—were surveyed as ground flora. See Supporting
Information, Methodology section for full survey protocol. To
sample woody browse availability, the total number of tree and
shrub stems >30cm tall were counted once in each sampling plot
across all ten sites (Figure S4).

2.4 | Dietary metabarcoding

DNA was extracted from faecal samples using the Qiagen DNA
Plant Mini kit, following a modified protocol. The target ITS2 and
rbcL fragments were amplified using a two-step PCR protocol—see
Table S5 for primer sequences. PCR libraries were visualised via
gel electrophoresis, pooled at approximately equimolar concentra-
tions (Tables S6 and S7) and sequenced on an lllumina MiSeq using
a MiSeq Reagent Kit v3 (600-cycle). See Supporting Information,
Methodology section for full laboratory protocols.

Data processing was carried out in R version 4.1.0 (R Core
Team, 2021) using the Supercomputing Wales (SCW) facil-
ity. Cutadapt (Martin, 2011) and the DADA2 pipeline (Callahan
et al., 2016) were used for data pre-processing (primer removal, read
filtering, error correction, read merging and Amplicon Sequence
Variant [ASV] generation [Supporting Information, Methodology
section]). The ASVs from each sample were then blasted against
a curated ITS2 and rbclL plant database from Barcode UK (Jones
et al., 2021) using the blastn function (Madden & Camacho, 2008)
with a percentage identity threshold of 97% and E value of 0.00001.
Any matches that did not meet the 97% threshold were discarded.

The top 20 genus hits for each ASV were manually inspected to en-
sure that the best match was assigned by comparing the E value, bit
score, percentage identity match, frequency of occurrence of the
genus in the top 20 hits, and the likelihood that taxa would have
occurred in the study area. Where multiple genus assignments per-
formed equally well or there was no clear best match at genus level,
the ASV was resolved to family level. For rbcl, 14 ASVs were dis-
counted from the analysis, as there was no clear best match at genus
or family level. All grasses were resolved to family, as rbcL performs
poorly when identifying grasses to genus (Doebley et al., 1990).
After taxonomy assignment, downstream processing was car-
ried out using the phyloseq R package (McMurdie & Holmes, 2013).
Rarefaction curves were inspected to quantify the coverage of both
markers. Samples with less than 100 reads were removed before
further analysis. After raw read processing of the ITS2 dataset, no
negative extraction or PCR control samples retained enough reads
to be considered further. For rbcL, three blanks contained one re-
spective ASV in sufficient number that they remained post-filtering.
These three ASVs were removed from the final ASV table. The reads
from ITS2 and rbcL were then joined to give a consensus dataset
whereby taxa were assigned to the highest taxonomic level reached
by both markers, following methodology from Lowe et al. (2023).
For each sample, the number of reads for each consensus taxon was
summed for both markers. The proportion of reads per taxon was
then used as a measure of relative read abundance per sample (Lowe
et al., 2023). For each consensus taxon, we examined the relation-
ship between the percentage of reads per sample for ITS2 and rbcL
using a Spearman's rank test with Holm correction for multiple test-
ing (Lowe et al., 2023). We treated the metabarcoding data as ‘semi-
quantitative’, acknowledging inherent biases in species detection
and DNA extraction, PCR and sequencing (Jones et al., 2022; Lamb
et al.,, 2019; Lowe et al., 2023). Recent work has shown that me-
tabarcoding can be quantitative (Lowe et al., 2022), with Wizenberg
et al. (2023) demonstrating relative accuracy in quantitative char-
acterisation through a multi-locus approach using rbcL and ITS2.
Therefore, we used proportional read abundance data to assess diet
composition and diversity. We also filtered the consensus dataset

for taxa which represented 1% or more of reads from a given sample.

2.5 | Data analysis

The Shannon Diversity Index (SDI) was calculated for the taxonomic
composition of the faecal samples collected from the wild deer pop-
ulation (Shannon, 1948). A Generalised Linear Mixed Model (GLMM)
using the package Ime4 (Bolker et al., 2009) in R was conducted
to test how diet diversity (SDI) varied with season using a binary
presence/absence matrix of taxa. The model was fitted with the re-
sponse variable SDI, a fixed effect of season and a random intercept
for woodland site, using the restricted maximum likelihood (REML)
method.

To visualise the relative contributions of different plant groups
to wild deer diet each month, bipartite networks were constructed
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using the proportion of sequences as a measure of relative abun-
dance using the geom_alluvium function in the ggplot2 R package
(Wickham, 2016). See Table S8 for classifications of plant taxa into
groups (herbaceous, ferns, grasses, bulrushes, rushes, scrambling
shrub, sedge, lianas, broadleaf trees, coniferous trees, shrubs).

To test the specificity of the diet of the wild deer relative to
resource availability, a preference analysis was carried out using
the econullnetr package in R (Vaughan et al., 2018). A preference
analysis involves comparing the proportion of plant taxa in diet
samples with the relative availability of taxa in the environment.
If consumption of a species is outside the central 95% of values
from the simulations from the null model, this indicates higher or
lower percentage content in the diet than expected given its avail-
ability (Vaughan et al., 2018). We used presence/absence data,
rather than relative read abundance, in our preference analysis,
while acknowledging the potential biases associated with pres-
ence/absence data from DNA metabarcoding (Cuff et al., 2024).
Ground flora was surveyed multiple times to capture seasonal
variation, while woody vegetation was surveyed only once. As a
result, we only had spatial information for woody vegetation, but
spatiotemporal information for the ground flora. Therefore, the
preference analysis methodology was applied to subsets of the
sequencing data separately for ground flora (herbaceous, ferns,
grasses, bulrushes, rushes, scrambling shrub, sedge and liana) and
woody plants (broadleaf trees, coniferous trees and shrubs). For
the ground flora preference analysis, the diet data were aligned
with the plant percentage cover data according to survey month
(October 2019, November 2019, etc.).

We used ground flora survey data from all 10 woodland study
sites to quantify resource availability. A null model was generated
using the econullnetr function generate_null_net with 500 iterations
(Vaughan et al., 2018). This model used two matrices: (1) a consumer
matrix, which contained presence/absence data for all plant taxa
that were present in the diet (representing >1% of reads in a sample)
and ground flora surveys and (2) a resource matrix with proportional
data of the total ground flora cover, split by survey month, across all
10 woodland sites for each ground flora taxon that was present in
both the diet (representing >1% of reads in a sample) and vegetation
surveys.

For the woody plant preference analysis, each woodland site had
only been surveyed once for stem number by taxon, therefore we
were unable to temporally link the diet data to woody plant avail-
ability. Instead, the proportional availabilities of woody plant taxa
were calculated using the total number of stems >30cm tall counted
in all the surveys across all 10 sites. Two matrices were used for this
null model: (1) a consumer matrix with presence/absence data for all
woody plant taxa present in the diet (representing 21% of reads in a
sample) and field surveys and (2) a resource matrix containing a sin-
gle row of proportional data per taxon calculated relative to the total
number of recorded stems across all woody taxa that were present
in the diet (representing 21% of reads in a sample) and field surveys.

A total of 127 wild deer faecal samples contained DNA from
taxa found in the ground vegetation survey at 21% of reads for any
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sample. Of the 19 taxa that were present in the ground vegetation
survey data (Figure S3), 11 were present in the consensus diet data-
set at 21% of reads in one or more samples. Therefore, the prefer-
ence analysis was carried out on these 11 taxa only.

A total of 258 wild deer faecal samples contained DNA from taxa
found in the tree and shrub survey at >1% of reads for any sample.
Of the 37 taxa that were present in the tree and shrub survey data
(Figure S4), 22 were present in the consensus diet dataset at 21% of
reads in one or more faecal samples. The preference analysis was

therefore limited to these 22 taxa.

3 | RESULTS
3.1 | Sequencing products (wild deer)

Following the removal of primers and reads that did not contain
primer sequences, 6,337,650 forward reads were obtained for ITS2
from 309 faecal samples and 4,868,694 forward reads were ob-
tained for rbcL from 319 faecal samples.

A total of 3,273,487 merged reads for ITS2 and 2,384,805 for-
ward reads for rbcL survived fastqc quality control. Only forward
reads were used for rbcL due to poor quality of the reverse reads re-
sulting in heavy losses during the filtering stage. For ITS2, the mean
number of sequences per sample was 10,594 + 537 (SE), with a range
of 126 to 41,544. For rbcL, the mean number of sequences per sam-
ple was 7523 +408 (SE), with a range of 107 to 33,444. After taxo-
nomic assignment, a total of 8195 ASVs remained for rbcL, resulting
in a total of 119 identified genera and 66 identified families. A total
of 1386 ASVs remained for ITS2, resulting in a total of 68 identified
genera and 35 identified families.

There was a significant positive correlation between the per-
centage read content of consensus taxa in faecal samples from ITS2
and rbclL (p=0.43, df=48,897, p<0.001). The consensus dataset
of the ITS2 and rbcL sequences from 339 wild deer faecal samples
consisted of 151 unique identified taxa at family or genus level. The
dataset contained 5,658,370 reads with a mean of 16,691 + 796 (SE)
per sample with a range of 107 to 71,491 reads.

3.2 | Sequencing products (zoo deer)

Of the six faecal samples collected from the fallow deer population
at the Welsh Mountain Zoo, all but one survived filtering for at least
one marker and three survived filtering for both markers. The ITS2
marker gave a total of 11,491 reads with a mean of 2873 +1986
(SE) reads per sample with a range of 663 to 8823 (n=4). The rbcL
marker gave a total of 12,265 reads, with a mean of 3066 +2283 (SE)
reads per sample with a range of 372 to 9898 (n=4). The consensus
dataset for the zoo samples contained a total of 23,756 reads with
a mean of 5368 +(SE) reads per sample with a range of 372 to 9898
(n=5). The consensus dataset consisted of 11 plant taxa identified to
genus level and one to family level (Poaceae).
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3.3 | Wild fallow deer seasonal diet diversity

The results from the GLMM showed meteorological season was a sig-
nificant predictor of the taxonomic diversity of the diet of the wild fallow
deer (Table 1). Faecal samples from the winter months had a significantly
lower SDI compared to samples from the other seasons (Figure 2). The

conditional R? for the model was 0.16, and the marginal R?was 0.12.

3.4 | Wild fallow deer seasonal diet composition

We identified a dominance of bramble in the diet of the wild fallow
deer throughout the year. It contributed 81% of the diet in winter,
71% in spring, 66% in summer and 52% in autumn (Figure 3). Oak
(Quercus spp.) peaked in autumn (7% of the diet), indicating acorn
consumption (Figure 3). Other notable woody components included
maple (Acer spp., 4% of spring diet) and rose (Rosa spp., 8% of the
summer diet). lvy peaked in winter (7% of diet). Grasses (Poaceae)

remained relatively scarce in the diet compared with woody taxa
but were most abundant in the diet in autumn (6%) and winter (4%)
(Figures 3 and 4). Coniferous trees did not make up a substantial part

of the diet in any season (Figure 4).

3.5 | Wild fallow deer diet preference analyses

Three ground vegetation taxa were consumed at a higher proportion
than expected given their availability, most notably bramble (Rubus
spp.) (Figure 5). vy (Hedera sp.), nettle (Urtica sp.) and grasses (Poaceae
spp.) were recorded less often than expected in the diet. Bramble and
ivy were the most abundant resources in the ground vegetation cover,
making up 17% and 23%, respectively See Table S9 for the full results
table.

Seven tree and shrub taxa were consumed more often than expected
given their availability across the 10 woodland sites. The ‘preferred’ taxa
were roses, cherry (Prunus spp.), oak, elm (Ulmus spp.), maple and willow

TABLE 1 Output table from the Generalised Linear Mixed Model of Shannon Diversity Index (SDI) generated using the jtools R package
(Long, 2022), showing the model estimates for each season, standard error, t value, degrees of freedom and p value. *Significance level of
<0.01. The model was fitted with the response variable SDI, a fixed effect of season, and a random intercept for woodland site, using the
restricted maximum likelihood method. Winter (December to February)=92 samples. Spring (March to May)=61 samples, summer (June to
August)=84 samples and autumn (September to November)=102 samples. Winter was the reference level (intercept).

Term Estimate SE
Intercept (Winter) 0.59 0.08

Spring 0.34 0.08

Summer 0.43 0.07

Autumn 0.43 0.07
2

Shannon Diversity Index
QO

T

t df p

7.04 3.79 <0.01*
4.14 333.26 <0.01*
5.78 333.04 <0.01*
6.04 383127, <0.01*

N FIGURE 2 The Shannon Diversity

Index (SDI) of wild fallow deer faecal
n samples, plotted against season. The

g grey dots show the raw SDI scores within
‘ seasons, the violins show the distribution

: of these raw data points and the
. boxplots show the fitted values from the
) Generalised Linear Mixed Model. Seasons
. with the same letter (a or b) are not
; significantly different from one another
in their fitted values, while seasons with

Winter Spring Summer

Season

Auturmnn different letters are significantly different
from one another.
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FIGURE 3 Proportion of reads obtained from wild fallow deer faeces using DNA metabarcoding of plant taxa, expressed as proportions
of the whole plant community detected in the diet. These data are from the ITS2/rbcL consensus dataset, filtered for major taxa (made up
>10% of reads from any month). The category ‘Minor taxa’ represents the remaining 106 taxa which represented less than 10% of reads per
month. Each column shows samples pooled for each meteorological season. Winter (December to February)=92 samples, spring (March to
May) =61 samples, summer (June to August)=_84 samples and autumn (September to November)=102 samples.

(Salix spp.). Horse chestnut (Aesculus sp.) was labelled as preferred, but
no confidence intervals could be generated due to its scarcity in the diet
and vegetation survey. Six taxa were recorded less often than expected
in faecal samples given their availability, with birch (Betula spp.), hazel
(Corylus sp.) and ash (Fraxinus sp.) having the most negative preference
scores (Figure 6). See Table S10 for the full results table.

3.6 | Fallow deer faecal samples from Welsh
Mountain zoo

The consensus dataset consisted of 12 plant taxa (Figure 7). In con-
trast to the diet samples from wild deer, the zoo samples were mostly

dominated by grasses (Poaceae) and small quantities of other plants
typically associated with grasslands, such as thistles (Cirsium spp.),
yarrow (Achillea spp.) and vetch (Vicia spp.) The woody taxa—bram-
ble and cherry—are likely to have come from hedges adjacent to the

enclosure fence.

4 | DISCUSSION

We characterised the diet of a fallow deer population and explored
how this varied with landscape-scale resource availability. Overall,
bramble was the dominant dietary component throughout the year.
The preference analysis for ground vegetation indicated that the deer
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FIGURE 4 Bipartite plots showing the identity and proportion of plant groups (labels in the left panel) present in the wild fallow deer
faecal samples for each month (right panel). These data are from the ITS2/rbcL consensus dataset, filtered for taxa which made up >1% reads

of any sample. The plant taxa in each group can be found in Table S8.

disproportionately consumed bramble relative to its availability in the
environment. The remainder of the diet was a mix of broadleaf trees
and some shrubs, with grasses forming a surprisingly small component
of the diet across seasons, despite the widespread availability of live-
stock pasture. In contrast, the zoo samples contained proportionally
much more grass, as the deer resided in a paddock.

The lack of grass in the diet of the wild fallow deer contradicts
our hypothesis and the findings of previous studies, which have char-
acterised the species as an intermediate grazer that mainly utilises
woody browse in winter (Borkowski & Obidzinski, 2003; Caldwell
et al., 1983; Kerridge & Bullock, 1991; Putman et al., 1993). Notably,
some of these studies were conducted where grass availability was
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likely to be relatively high compared with woodland resources, and
human activity was more predictable, such as deer parks (Caldwell
etal., 1983; Kerridge & Bullock, 1991) and where deer were fed sup-
plementary hay (Borkowski & Obidzinski, 2003). The diet of these
deer populations is likely to be more similar to our zoo samples—
which mainly consisted of grasses and grassland-associated spe-
cies—than to the wild deer samples.

In contrast, the wild Elwy Valley fallow deer population ex-
ists in a mosaic of woodlands and farmland where deer can move
freely, but human activity is less predictable across the landscape
(Barton, 2023). Forests may offer safe refuge from disturbance by
humans and livestock (Gaudiano et al., 2021; Uzal et al., 2013), lead-
ing to lower feeding rates in open areas and reduced grass content
in the diet. The findings of our study support those of a larger-scale
study of the Elwy Valley fallow deer, which found a positive effect
of tree cover and negligible effects of hunting on deer woodland
use at the landscape scale (Barton, 2023). The consistent consump-
tion by deer of woodland plants is likely to hamper any efforts to re-
store understory vegetation cover and broadleaf tree regeneration
despite current deer management efforts. Conversely, the lack of
grasses and arable crops in the diet may indicate minimal impacts on
agricultural and pastoral activity, but further investigation is needed
to confirm this. Similarly, the lack of coniferous trees in the diet in-
dicates that the deer are not likely to have significant impacts on
coniferous forestry in the area.

Dietary diversity was lowest in the winter months, contradict-
ing our initial prediction. Bramble remained a key resource; indeed,
the ground flora preference analysis showed a strong overall pref-
erence for bramble across all seasons. The legacy effect of brows-
ing across the Elwy Valley has led to an open understory structure
in many woodlands, with bramble being one of the only palatable,
evergreen plant species to persist at relatively high abundance. In
addition to being widespread, bramble is highly palatable to deer

Number of samples containing taxa

(Harmer et al., 2010; Obidzinski et al., 2013). New leaves contain
high concentrations of nitrogen, potassium and phosphorus, while
older leaves have notable concentrations of calcium and magnesium
(Taylor, 1982). Perhaps this combination of high availability and nu-
tritional quality is what has made bramble such an important winter
resource.

From the perspective of optimal foraging theory (Emlen, 1968;
MacArthur & Pianka, 1966), the fallow deer may bulk browse on
bramble during winter to optimise energy efficiency whilst re-
sources are limited, as the energy cost of foraging could outweigh
the benefits of diversifying their diet. During the plant-growing
season, available resources increase in diversity and abundance,
and temperatures are milder. These generalist herbivores can
then afford to forage over larger spatial scales. As a result, the
diversity of their diet increases. Whilst ungulates often increase
their home range size to compensate for low resource availabil-
ity (Morellet et al., 2013; Wagler et al., 2024), they may reduce
their home range size where resources are sufficient and stable
in availability (Borowik et al., 2021; Viana et al., 2018). Indeed,
a landscape-scale study in the Elwy Valley found that detection
rates on camera traps were noticeably lower post-rut (January to
March) compared to the rut (September to November) and birth-
ing period (May to July), perhaps indicating reduced rates of move-
ment (Barton, 2023). The deer may decrease their travel distance
during foraging bouts in winter to conserve energy and recover
post-rut (Simoneaux et al., 2016), consuming bramble as the most
convenient, widely available and relatively nutritious resource.
In the plant-growing season, the deer took advantage of the in-
creased diversity and abundance of other plants, whilst continuing
to utilise bramble as a bulk-forage resource.

The tree and shrub preference analysis indicated that taxa
with a patchy distribution across the landscape and high-localised
stem densities were under-represented in the diet relative to their

85UB01 T SUOWIWIOD BA 181D 3|qeol(dde 8y} Aq peusenob afe Sae YO 9SN Jo SajnJ 0} ARIq1T8UIUQ AS]IA UO (SUOTIPUOD-PUE-SWSY/LI0O"AB | 1M ARe.d [ulUO//:SdNL) SUONIPUOD pue SWis | 8u1 89S *[5202/£0/90] Uo Akeiqiauljuo A8]iM ‘91 A 8000/ 6TES-8892/200T OT/I0P/LI0Y"A8| M Ale.q1jpul[UOS feuIN0 fsagy//sdny Wwolj pepeojumod ‘T ‘GZ0Z ‘6TE8889Z



GRESHAM ET AL.

100f14 BRITISH 5 o .
Emwmw _Ecological Solutions and Evidence

SOCIETY

Rosa E— °
Prunus
Aesculus
Quercus
Ulmus

Acer

Salix

Taxus
Euonymus
Crataegus
Ribes

Fagus
Symphoricarpos
Pinus
Sorbus
Pseudotsuga
Carpinus
Sambucus
llex

Betula
Corylus
Fraxinus

N h CRR O R e e s L s o

Ty

[ d

°
°
o ® ‘

FIGURE 6 Preference plot for the 22
woody plant taxa that were present at
21% content in one or more of the wild
fallow deer faecal samples (n=258) and
were also present in the tree and shrub
surveys. Lines indicate 95% confidence
intervals for expected consumption given
the null model. The coloured dots indicate
the observed number of faecal samples
in which each taxon was present. White
dots show the taxon was consumed in
proportion to its availability; blue shows
the taxon was consumed less than
expected and orange indicates the taxon
was consumed more than expected given
the null model in the preference analysis.

T T
50 100

Number of samples containing taxa

e TR S O (NS (SR U L

overall availability. This included ash, birch, hornbeam (Carpinus
sp.) and hazel. In contrast, taxa that were more widespread but
less clustered were a preferred resource in the diet, such as oak,
rose, cherry, maple and elm. This pattern is indicative of a gener-
alist herbivore. Indeed, it is likely that the deer did not seek out
the ‘preferred’ species but were simply more likely to encounter
them compared to the more highly clustered species (Duparc
et al., 2020; Wang et al,, 2010). It is also important to note that the
results from our field survey may overestimate foliage availabil-
ity from trees with a higher crown base, leading to woody plants
with a lower crown base being deemed a preferred resource. We
measured availability as the number of stems present for each
woody species and did not account for the presence of foliage
at deer browsing height. Blackthorn (Prunus spinosa) and dogrose
(Rosa canina) are typically low shrubs, while elm and sycamore can
produce suckers from the main stem (Bleay, 1987). These growth
forms are more likely to present available foliage at browsing
height, compared to more light-demanding species such as birch
and ash, which typically have a higher crown base.

Deer populations in Britain have been experiencing rapid landscape
changes over recent decades. The general trend across British wood-
lands since 1971 has been an increase in tree canopy density and shade
(Smart et al., 2024). Although bramble is typically associated with can-
opy gaps, it can also tolerate shade (Balandier et al., 2013). As a result,
bramble has retained its considerable dominance of around 10% ground
cover in British forests during this period (Smart et al., 2024). However, in
the last 10years, there has been a rapid reduction in canopy density due
to disturbances such as extreme weather events (Halstead et al., 2024),
and widespread mortality from ash dieback (Mitchell et al., 2014; Smart
et al., 2024). Ash dieback is already resulting in a notable increase in
bramble cover in some affected woodlands (J. Healey pers. obs.; K. Kirby
pers. comm., September 2024). Smart et al. (2024) showed that bramble
has noticeably increased in ‘low deer risk’ areas, which could support the

150

expansion of deer populations. In addition, bramble has remained stable
in medium and high deer-risk areas, indicating that it can persist despite
heavy browsing pressure, as seems to be the case in our study system.
While there is concern for the impacts that increasing deer populations
are having on woodlands, deer may be an important source of distur-
bance to maintain heterogeneous understory habitats in canopy gaps.
Increasing bramble cover in northern temperate forests may provide
a physical barrier to sapling browsing and increase tree regeneration
(Jensen et al., 2012). while deer browsing may simultaneously serve to
regulate bramble growth and prevent it from outcompeting saplings and
other understory vegetation (Laurent et al., 2017; Walters et al., 2020).
There is, therefore, a complex nexus of forest disturbance, abundance of
bramble and levels of deer browsing, together influencing the potential
for tree regeneration and conservation of ground vegetation biodiver-
sity. These interactions must be given careful attention in predicting the
full impacts of management interventions such as tree felling, bramble

cutting or control of deer populations.

5 | CONCLUSIONS

We characterised the dietary composition of an expanding fallow deer
population using DNA metabarcoding and identified how the diet var-
ied with resource availability. Contrary to expectations, grasses were
not a dominant component of the diet and diet diversity was lowest in
winter compared to the other seasons. Bramble was an important di-
etary component throughout the year, especially in the winter months.
Bramble cover is set to increase with more frequent disturbances to
forests across northern Europe. As we strive to increase tree cover and
improve woodland resilience in the face of rapid environmental change,
we must also understand the concurrent role that growing deer popu-
lations will play in shaping forest dynamics. There is great potential
in the use of metabarcoding to strengthen our understanding of this
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data only, as they did not survive filtering through both pipelines.

context-specific variation in the diets of generalist herbivores such as
the fallow deer. The complex interactions between deer, woodland
ground vegetation and landscape change will resist simplistic solutions
to the challenge posed by growing deer populations.
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