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Abstract

Pear psyllid (Cacopsylla pyri) is the dominant pest of UK pear orchards, with an estimated cost of £5 million per annum.
Insecticide withdrawal and increased pesticide resistance of C. pyri have led many growers to depend more on natural enemies
for pest management, including earwigs. However, there is concern how phenological events may shift with future climate
change, which may result in phenological mismatches. This study aimed to determine shifts in timing of phenological events
within an agroecosystem and predict phenological mismatches or synchronies between trophic levels. We evaluated three
models: the C. pyri phenology model, the earwig degree day model and the PhenoFlex model (flowering time). Phenologi-
cal events predicted by models included: first, full and last flowering time for Pyrus communis; peak psyllid abundance date
for first-generation (G1) C. pyri nymphs and second-generation (G2) eggs, nymphs and adults; and peak abundance date
for stage 4 Forficula auricularia and adults. Findings indicated that the timing of phenological events was advancing for all
trophic levels, becoming significantly earlier under the current time period. Furthermore, predictions indicated that timing
events would continue to advance under the RCP8.5 scenario. However, not all phenological events advanced at the same
rate; the date of peak C. pyri G1 nymph abundance advanced at a higher rate than full flowering time, which could result
in a phenological mismatch by 2071. Conversely, C. pyri and F. auricularia showed phenological synchrony, with peak
abundance dates advancing at a similar rate, which could be beneficial for future biological control.

Keywords Biological control - Cacopsylla pyri - Climate change - Forficula auricularia - Phenological models - Multi-
trophic interactions

Introduction

There are over 4000 described species of psyllid globally
(Mauck et al. 2024) and 24 known species of pear psyl-
lid (Pyrus spp.) (Civolani et al. 2023). Cacopsylla pyri is
currently the dominant pear psyllid species in the UK and
is especially prevalent in Kent, whereas Cacopsylla pyri-
cola was previously more abundant during the 1970-1980s
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(Nagy et al. 2008; Reeves et al. 2024). These phloem feeding
insects cause significant damage to orchards: nymphs pro-
duce honeydew: a sugary secretion that encourages growth
of black sooty mould on fruit and leaves (Daniel et al. 2005),
and adults are a vector of the pathogen ‘pear decline’ (Can-
didatus Phytoplasma pyri), which can reduce shoot and fruit
growth and lead to tree death (Carraro et al. 2001; Kucerova
et al. 2007; Siile et al. 2007). The pear industry is economi-
cally important with 17.9 thousand tonnes of pears produced
in the UK (Defra 2023) and 26.3 million tonnes produced
globally in 2022 (FAOSTAT 2022); thus, changes to phenol-
ogy or control of C. pyri could have significant economic
impact.

Pear psyllids have demonstrated resistance to a range of
common pesticides (Erler 2004; Harries and Burts 1965; Sek
Kocourek and Stara 2006); furthermore, three insecticides
used in pear psyllid management have recently been with-
drawn from UK use (Reeves et al. 2024). Thus, integrated
pest management (IPM) has become a priority for managing
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pear psylla (Reeves et al. 2023; Shaw et al. 2021), main-
taining healthy crop growth whilst minimising disruption to
agroecosystems, focusing on enhancing biological control
(Moorthy and Kumar 2004). There are a wide range of pear
psyllid natural enemies (Civolani et al. 2023; Horton 2024).
The anthocorid Anthocoris nemoralis is a well-documented
biocontrol agent of C. pyri (Nagy et al. 2008; Sigsgaard
2010). Anthocoris nemoralis populations peak during
July—August, helping to control C. pyri populations (Fields
and Beirne 1973; Scutareanu et al. 1999). It has become
common practice for growers to mass release A. nemora-
lis into pear orchards (Reeves et al. 2024). In addition, the
European earwig Forficula auricularia (Linnaeus) is a key
natural enemy of pear psylla; stage four earwig nymphs are
arboreal, appearing in pear trees in late spring and peaking
in June, whilst adult populations peak in mid-July (Gobin
et al. 2008; Moerkens et al. 2011). Arboreal F. auricularia
nymphs can consume up to 1000 psylla eggs a day (Lenfant
et al. 1994). Although F. auricularia is not commonly reared
for mass release, enhancing earwig populations by providing
refugia is recommended (Shaw et al. 2021). Other C. pyri
natural enemies include ladybird adults and larvae (Coc-
cinellidae) (Fountain et al. 2013; Prodanovi¢ et al. 2010),
lacewing larvae (Neuroptera) (DuPont and Strohm 2020;
DuPont et al. 2023), spiders (Araneae) (Petrakova et al.
2016), other anthocorid species (Sigsgaard 2010; Vrancken
et al. 2014) and parasitoids (Prodanovi€ et al. 2010; Toug-
eron et al. 2021).

Cacopsylla pyri overwinter as adults in bark crevices
(Neaess 2016), during which reproductive diapause occurs
(Lyoussoufi et al. 1994; Schaub et al. 2005). By mid-late
winter, ovaries are fully developed (Schaub et al. 2005)
and egg laying starts in late February (Neess 2016; Oz and
Erler 2021). Pear psyllid eggs hatch in early spring, often
coinciding with bud opening, and there are five nymphal
stages, each ending in a mould (Civolani et al. 2023). The
first peak in the pear psyllid population is often seen around
April-May, followed by a second generation in early sum-
mer (Reeves et al. 2024). Subsequent generations overlap
throughout the summer and early autumn (Civolani et al.
2023), with an average of 3-5 generations per year (Siile
et al. 2007), although this can be temperature dependent
(Kapatos and Stratopoulou 1999).

Climate is predicted to change significantly over the next
80 years globally, whilst UK Climate Projections (UKCP18)
predict hotter, drier summers and warmer, wetter winters
(Lowe et al. 2018; Murphy et al. 2018). This will likely affect
psyllid development and interactions with natural enemies.
By 2070, summer temperatures could increase as much as
5.1 °C under the RCP8.5 scenario, whilst becoming up to
45% drier (MetOffice 2022). Representative Concentra-
tion Pathways (RCPs) are the concentrations of greenhouse
gases that will result in total radiative forcing increasing

@ Springer

by a certain threshold by 2100, compared to pre-industrial
levels. These scenarios are often used to model how future
climate will change with respect to different emissions sce-
narios, with RCP2.6 (low emissions scenarios) representing
a significant reduction in greenhouse gas emissions (Van
Vuuren et al. 2011), and RCP8.5 (high emissions scenario) is
a ‘business-as-usual’ scenario where greenhouse gas emis-
sions increase unchecked (MetOffice 2018).

There is concern that climate change could alter trophic
interactions and phenological events within agroecosystems
(Harrington et al. 1999; Reeves et al. 2024; Renner and Zoh-
ner 2018; Wyver et al. 2023). Phenological mismatches are a
particular concern for agricultural ecosystems, where shifts
in other trophic levels do not match the corresponding shift
for pest species (Damien and Tougeron 2019). Phenological
synchrony is important within this agroecosystem; whether
peak natural enemy abundance corresponds to peak pear
psyllid abundance is central to pest management (Reeves
et al. 2024). Pear psyllid nymph emergence correspond-
ing with budburst can be beneficial, as they nymphs access
fleshly plant tissue when feeding; additionally, flower buds
can provide shelter for nymphs from adverse weather con-
ditions, agrochemical sprays and natural enemies (Derksen
et al. 2007; Reeves et al. 2022). All three trophic levels
(pear, pest and natural enemy) are likely to be influenced by
climate change. Pear flowering phenology is influenced by
chilling time (the time spent below a certain temperature)
and forcing time (the time spent above a certain temperature
post-chilling) (Cesaraccio et al. 2004; Drepper et al. 2020).
If higher temperatures are experienced during the forcing
period, but chilling requirements are still met, earlier flow-
ering is likely. In addition, pear psyllids have temperature-
dependent development (McMullen and Jong 1977; Schaub
et al. 2005); development rates of nymphs and eggs are lin-
early dependent on temperature, up to a certain threshold.
Higher temperatures are likely to advance pest emergence
and could impact voltinism (number of generations per year)
(Karuppaiah and Sujayanad 2012). Development rates of F.
auricularia have a nonlinear response to temperature, as a
sigmoidal curve (Moerkens et al. 2011). Therefore, compar-
ing whether pear psyllids and their natural enemies respond
to temperature at the same rate is important to understand
potential phenological mismatches and future pest control
scenarios.

The aim of this study was to: (1) combine the psyllid
phenology model developed by Schaub et al. (2005), the
Earwig phenological day degree model Moerkens et al.
(2011) and the PhenoFlex flowering time model Luedeling
(2023), applying the models to UK data to assess whether
they are relevant for UK predictions, (2) predict how all
three trophic levels (pear, pest and natural enemy) could
respond under future temperature scenarios and (3) observe
whether all three trophic levels are advancing at the same
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rate or whether phenological mismatches are likely. This
study provides a multi-trophic approach that can be easily
applied to other agroecosystems, highlighting its importance
within the scientific literature.

Materials and methods

An overview of the data inputs, outputs and processes used
within the paper can be found within the supplementary
material (Figure S1).

Long-term pear sucker and natural enemy
monitoring data

Long-term pear psyllid and natural enemy data were col-
lected by agronomists from 18 different sites in Kent, UK,
between 2011 and 2021. The method used for monitoring
pear psyllid and their natural enemies is adapted from Cross
and Berrie (2003); 30 trees were sampled in a W distribution
across the orchard. Pear psyllid abundance was calculated
by using beat tray sampling and collecting leaf material,
every week from mid-March to August each year. Adult pear
psyllid and natural enemy species: earwigs, ladybirds and
anthocorids (nymphs and adults), were monitored using beat
tray sampling; a white plastic tray (390 mm by 235 mm) was
held underneath a randomly selected tree branch on each tree
and total numbers were recorded. For monitoring nymphs
and eggs, six rosette and six young shoot leaves were ran-
domly selected; these were examined using a hand lens.
When leaves were not present, a bud with 6 cm of the branch
underneath was examined. Samples were collected from cv.
Conference pear (Pyrus communis) orchards. An average
abundance of each species (psyllids and natural enemies)
and stage (eggs, nymphs and adults) was calculated each
week, for each orchard. The peak abundance date was then
calculated for each species and stage in each orchard. This is
based on the date when average abundance was highest and
used as the observed peak abundance date. The size of each
orchard did vary, with an average size of 3.24 ha+0.57 (SE).

Pear flowering data

Historical data on pear flowering times were collated from
1960 to 2021 at NIAB (formerly East Malling Research,
51.2885° N, 0.4383° E) in Kent, UK (Reeves et al. 2022).

Phenological data on pear flowering were collected for
the following metrics:

e First (first flower opens on a tree or anthers are visible),
e Full (50% of flowers have opened on the tree) and
e Last (90% petal fall)

Phenological data were analysed for cv. Conference
pear trees (P. communis), as this cultivar was present in all
orchards used for monitoring. Based on the UK horticulture
statistics, Conference pear (P. communis cv. Conference) is
the most common pear cultivar in the UK (Defra 2023).
These data were used to calibrate and validate the PhenoFlex
model.

Temperature data and future scenarios

Hourly air temperature data were extracted from weather
stations across Kent from the CEDA data archive (CEDA
2023). The closest weather station was matched to each
orchard for monitoring data, and data were extracted
(2011-2021). This also occurred for weather data used
to calibrate and validate the PhenoFlex model, and data
were extracted from the East Malling weather station
(1959-2021). For unavailable temperature records, if gaps
were short (less than 3 days) then hourly temperatures were
generated using the interpolate_gaps function in chillR
(Luedeling 2023), averaging temperature before and after
the gap. For longer time periods, hourly temperatures were
used from the closest weather station in Kent. If hourly
temperatures were unavailable, then hourly temperatures
were generated from daily maximum and minimum mean
temperatures using the stack_hourly_temps function in the
chillR package (Luedeling 2023).

For predicting temperature data for Kent, maximum and
minimum daily air temperature (°C) above 1.5 m was gen-
erated from the UKCP18 (UK Climate Projections) for a
60 km by 60 km grid cell surrounding Kent (UKCP 2021).
Data were generated for RCP2.6 and RCP8.5 emissions sce-
narios (1960-2099), based on the 15-member Hadley Cen-
tre's Perturbed Physics ensemble (PPE-15). Hourly tempera-
tures were generated from daily maximum and minimum
mean temperatures using the stack_hourly_temps function
in the chillR package (Luedeling 2023). The RCP2.6 and
RCPS8.5 scenarios were chosen as Schwalm et al. (2020)
speculates that the RCP8.5 scenario is the optimal scenario
at tracking CO, emissions until 2050, and even by 2100,
RCP8.5 is still feasible, whilst the RCP2.6 scenario contrasts
strongly with this.

Data analyses

Flowering phenology

The chillR package was used to predict current and future
flowering phenology for first, full and last flowering times
for cv. Conference pear (Luedeling 2023), using the Pheno-

Flex model (Luedeling 2024; Luedeling et al. 2021). This
model looks at chilling (minimum exposure period to cold
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temperatures required for a tree to blossom) and forcing/
heating (minimum exposure period to warmer temperatures
required for a tree to blossom) periods in order to predict
fruit tree blossom date. The PhenolFlex model uses the
Dynamic model to calculate chill requirements (Fishman
et al. 1987) and the Growing Degree Hours (GDH) model
for forcing/heating requirements (Anderson et al. 1985),
and requires hourly air temperature. For model calibra-
tion and validation, the data were divided into two subsets,
with approximately 75% of the data for model calibra-
tion (46 years) and 25% of the data for model validation
(16 years), as demonstrated in Wyver et al. (2024). A gen-
eralised simulated annealing (GenSA) algorithm was then
used to optimise the parameters within the PhenoFlex model
and minimise the residual sum of squares (RSS) (Tsallis and
Stariolo 1996; Xiang et al. 2013). Up to 1000 iterations of
this algorithm were run, stopping when there was no addi-
tional improvement in model fit after 250 consecutive itera-
tions, as demonstrated in Wyver et al. (2024). Initial param-
eters were based on those established in other PhenoFlex
studies (Fernandez et al. 2022; Wyver et al. 2024). To evalu-
ate model performance, the root mean square error (RMSE)
and ratio of performance to interquartile (RPIQ) distance
were calculated. The parameter optimisation process was
run multiple times, with staring parameters changed to that
of the previous optimisation. This process was stopped after
there was no improvement found to RMSE or RPIQ. Stand-
ard errors of optimum parameters were calculated using
bootstrapping, using 10 iterations (Fernandez et al. 2022;
Luedeling et al. 2021; Wyver et al. 2024).

Pear psyllid phenology

Pear psyllid phenology was predicted using the model by
Schaub et al. (2005) and R code generated by Belien et al.
(2017). This model relies on a time distributed delay and
uses hourly temperatures with a microclimate correction to
predict egg, nymph and adult percentage abundance for the
first two generations of pear psyllid, with a start date of 01
January. The termination of diapause in psyllid females was
based on a Weibull distribution and was dependent on the
time spent above the thermal threshold (3.5 °C) (Schaub
et al. 2005). For females where diapause was terminated,
oviposition began, and summerform females had a pre-ovi-
position period of 10 days. Oviposition was age-specific,
and the cumulative oviposition density was 1. Both egg and
nymph developmental rates and adult ageing were linearly
dependent on temperature based on slopes and thresholds
stated within Schaub et al. (2005). A microclimate correc-
tion was used, as demonstrated in Schaub et al. (2005). For
model calibration, predicted and observed peak egg, nymph
and adult pear psyllid abundance (first and second genera-
tions) were compared using a nonparametric Kruskal-Wallis
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test. If differences between observed and predicted were
significant, then abundances were shifted based on aver-
age peak difference. Future temperatures predicted under
RCP2.6 and RCP8.5 scenarios were then used to predict
psyllid percentage abundance from 1960 to 2080 based on
calibrated models. Predicted values were generated for each
orchard in comparison with observed values (between 2011
and 2021). Predicted values were also generated for the
whole of Kent between 1960 and 2080, using UKCP18 data.

Earwig phenology

Earwig phenology was predicted using the degree day model
developed by Moerkens et al. (2011), which was developed
into a management tool (Belien et al. 2012, 2013). The
degree day model predicts the first and peak appearance
dates of F. auricularia life stages and variation in devel-
opment time of earwig life stages in trees (Moerkens et al.
2011), with a start date of 01 January. Degree days were
summed between the minimum and maximum developmen-
tal temperature threshold, until the minimum number of day
degrees was reached for each life stage. For this model, day
degrees between 7|, and T,,,, were calculated using a sine
wave method. Variation in development time was modelled
using a using a two-parameter Weibull function, due to envi-
ronmental and individual variation within the population. A
daytime microclimate correction is not present within this
model as F. auricularia are nocturnal foragers (Kolliker
2007; Suckling et al. 2006), often found sheltering in dark
crevices during the daytime (Lame 1974), and thus are not
generally impacted by daytime tree microclimate (Moerkens
etal. 2011).

For model calibration, predicted and observed peak
stage 4 nymph abundance dates and peak adult abundance
dates, for single brood populations, were compared using a
Kruskal-Wallis test. Only these stages were compared, as
they are both arboreal stages that agronomists were likely to
observe in orchard trees and predate on pear psylla (Gobin
et al. 2008; Moerkens et al. 2011). If differences between
observed and predicted were significant, then abundances
were shifted based on average peak difference, based on
Kruskal-Wallis tests between predicted and observed values.
Observed data spanned from 2011 to 2021. Future tempera-
tures predicted under RCP2.6 and RCP8.5 scenarios were
used to predict earwig percentage abundance from 1960 to
2080 based on calibrated models.

Future climate scenarios and phenological
mismatches

This study tested for shifts in timing of phenological events,
including: flowering time (first, full and last), pear psyllid
phenology (peak egg and nymph and adult abundance)
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and earwig phenology (peak stage 4 and adult emergence)
depending on year (1960-2080). First, years were split
into 3 different categories: historical (1960-1982), cur-
rent (1983-2021) and future (2022-2080, for RCP2.6 and
RCP8.5 scenarios). Timing of events were predicted using
maximum and minimum temperatures generated from
UKCP18 (UK Climate Projections) for a 60 km by 60 km
grid cell surrounding Kent (UKCP 2021), using the three
models. The change in timing of phenological event depend-
ing on year was tested using generalised additive models
(GAMs); however, if the GAM had an edf <2 and did not
show a nonlinear relationship then a GLM was fitted, as
used in Wyver et al. (2023). To identify phenological mis-
matches, the slopes of two phenological events were com-
pared based on GAMs or GLMs generated. Phenological
comparisons included: (1) first C. pyri nymph emergence
and first flowering time, (2) peak first-generation (G1) C.
pyri nymph abundance and full flowering time, and (3) peak
second-generation (G2) C. pyri nymph abundance and 4th
instar F. auricularia peak abundance. These phenological
mismatches were chosen as they are relevant interactions
between trophic levels within the agroecosystem. For exam-
ple, G1 C. pyri nymphs shelter in flower buds, whilst 4th
instar F. auricularia nymphs are a key predator of C. pyri
nymphs during the summer; thus, these trophic levels are
likely to interact. Phenological mismatches between each
of these events were also calculated; this was calculated
by subtracting the date (Julian days) of one phenological
event from another, as demonstrated in Wyver et al. (2023).
A GAM or GLM of the mismatch depending on year was
plotted.

Results
Flowering phenology calibration and validation

From parameters optimised by the GenSA algorithm, the
average chilling requirement was 35.97 +0.18 chill units
for first flowering time, 47.69 +1.48 for full flowering and
41.56 +0.27 for last flowering, whilst the average forcing/
heating requirement was 237.67 +0.56 heat units for first
flowering, 287.11 +4.57 for full flowering and 227.88 +0.58
for last flowering (Table 1). Model quality was assessed
by RMSE and RPIQ for calibration and validation data-
sets (Fig. 1). On average, the observed flowering time
was 12 Apr+10.91 (first), 18 Apr+ 10.39 (full) and 30
Apr+9.75 (last), whilst the predicted flowering time was 12
Apr+ 11.96 (first), 19 Apr+11.72 (full) and 29 Apr+10.44
(last, Table 2). Kruskal-Wallis tests showed non-significant
differences between predicted and observed values for first
(#*=0.0150, df=1, p=0.903), full (4*=0.0637, df=1,
p»=0.801) and last (y*=0.0529, df=1, p=0.818) flowering

phenology. Chill tended to accumulate between October and
January, whilst heat accumulation was between January and
April, before the y, and z, thresholds were reached (Fig. 2).
For temperature response curves, optimal chill accumula-
tion was between 1 °C and 7.5 °C (Figure S2), with no chill
accumulation occurring above 11 °C, whilst optimal heat
accumulation was between 26 and 28 °C, with no heat accu-
mulation occurring above 37 °C.

Pear psyllid model validation

The peak abundance of G1 psylla nymphs was predicted
to be earlier than those observed within orchards (Table 2,
Fig. 3A); on average, predicted peak date was 14.36 +17.86
(SD) days earlier than observed values in orchards. A
Kruskal-Wallis test showed a significant difference between
observed and expected values (;(2 =33.84,df=1, p<0.001);
however, the difference between individual orchards was
non-significant (y>=15.70, df=17, p=0.546). The model
was therefore adjusted for G1 egg and nymph abundances,
shifting them both 14.36 days later. The peak abundance
of eggs was not compared, as orchards started monitoring
after the abundance of eggs had peaked; thus, egg abundance
peak was also shifted by 14 days.

Conversely, the peak abundance of summerform adults
was similar for predicted and observed values (Table 2,
Fig. 3B). On average, the predicted peak date was 2.34 +9.74
(SD) days later than observed values in orchards, but this
was not significant (Kruskal-Wallis: )(2: 1.903, df=1,
p=0.168). The difference between individual orchards was
also non-significant (Kruskal-Wallis: )(2= 13.75, df=117,
p=0.685). The peak abundance of generation 2 eggs was
also closer for predicted and observed values (Table 2,
Fig. 3C). The mean predicted peak date was 0.63 +17.11
(SD) days earlier than observed values in orchards which
was not significant (Kruskal-Wallis: ;(2= 0.121, df=1,
p=0.728), and the difference between individual orchards
was also non-significant (Kruskal-Wallis: y*>=14.64,
df=17, p=0.745). Finally, the peak abundance of genera-
tion 2 nymphs was close for predicted and observed val-
ues (Table 2, Fig. 3D). On average, the predicted peak date
was 0.42+12.74 (SD) days later than observed values in
orchards (Kruskal-Wallis: ;(2 =0.924, df=1, p=0.336), and
the difference between orchards was also non-significant
(x*=20.86, df=17, p=0.233). Summerform adult, G2 egg
or G2 nymph values were not shifted within the model.

Earwig model validation
The predicted and observed dates of peak F. auricularia
stage 4 nymph abundance did not significantly differ from

each other (Kruskal-Wallis: ;(2: 1.15,df=1, p=0.284,
Table 2, Fig. 3E). On average, the predicted date for peak
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Table 1 Parameters used within the PhenoFlex model, including the initial start values and upper and lower bounds used for calibration

Parameters Description

Initial value (lower,
upper)

Optimal parameters for flowering stage

First

Full

Last

Ye

Sy

T, (°C)

Ey (K)

E; (K)

Ay (h7h

A; (h7h

7;(°C)

T, (°C)

T, (°C)

s (K

Chill requirement (defines
the end of the chilling
period)

Heat requirement (defines
the end of the forcing
period)

Slope parameter, defining
the transition between
chilling and forcing
periods

Optimal temperature for
the GDH model

Activation energy
required to form
the precursor to the
dormancy-breaking fac-
tor (PDBF) within the
Dynamic model

Activation energy
required to destroy
the precursor to the
dormancy-breaking fac-
tor (PDBF) within the
Dynamic model

Amplitude for compound
formation of PDBF
within the Dynamic
model

Amplitude for compound
destruction of PDBF
within the Dynamic
model

Transition temperature of
the sigmoidal function
within the Dynamic
model

Upper temperature
threshold for the GDH
model

Base temperature for the
GDH model

Sigmoidal function slope
within the Dynamic
model producing Chill
Portions

40 (20, 80)

190 (100, 500)

0.5 (0.1, 1.0)

25 (0, 30)

3372.8
(3000.0, 4000.0)

9900.3 (9000.0,
10,000.0)

6319.5 (6000.0, 7000.0)

5.939917¢13
(5e13, 6e13)

40, 10)

36 (0, 40)

4 (0, 10)

1.60 (0.05, 50.00)

35.97+0.18

237.67+0.56

0.989+0.231

28.04+0.00

3373.12+0.00

9898.92+0.32

6090.75+20.41

5.939915¢e13
+6.12 e07

4.56+0.58

38.58 +1.88

0.691+0.022

1.79+2.56

47.69+1.48

287.11+4.57

0.211+0.233

26.73+0.320

3324.80+0.00

9853.98+0.439

6218.27+66.87

5.939902¢13
+9.56 e07

0.0589+2.11

27.24+£3.50

1.21+0.00

22.00+15.12

41.56+0.27

227.88+0.58

0.29+0.18

28.53+0.00

3371.86+0.00

9901.74+0.33

6008.99+0.036

5.939898e13
+1.34e08

0.507+£1.08

32.55+£4.05

2.72+0.02

8.92+11.26

As well as the optimal parameters for each flowering stage (first, full and last) for cv. Conference pear trees (Pyrus communis) after bootstrap-

ping

4th instar emergence was the 21 Jun+7.39 (SD) whilst
the observed date was the 18 Jun+ 17.09 (SD). This was
also true for peak adult emergence (Table 2, Fig. 3F); pre-
dicted and observed values did not differ significantly from
each other (Kruskal-Wallis: y*>=2.06, df=1, p=0.151).
On average, the predicted date for peak adult emergence
was 17 Aug+7.33 (SD), whilst the average observed value

@ Springer

was 15 Aug +16.43 (SD). Observed peak dates did not
significantly differ from each other depending on orchard,
for both 4th instar (Kruskal-Wallis: ;(2= 15.87, df=17,
p=0.666) and adult F. auricularia (Kruskal-Wallis:
2°=8.67, df=17, p=0.926). Due to the non-significant
differences, the model was not shifted for F. auricularia.
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Fig. 1 Observed and predicted flowering dates (Julian days) from cal-
ibration and validation datasets, generated from the PhenoFlex model,
for first, full and last flowering stages for cv. Conference pear trees

Table2 Average predicted and observed (data collected from
orchards) peak abundance dates and difference between predicted and
observed values, for cv. Conference pear (Pyrus communis) flower-

(Pyrus communis). With the root mean square error (RMSE) and
ratio of performance to interquartile (RPIQ) distance for predicted
and observed values

ing time (first, full and last), peak abundance of Cacopsylla pyri eggs,
nymphs and adults and peak abundance of Forficula auricularia arbo-
real nymphs and adults

Phenological stage Species Predicted peak date Observed peak date Difference (days) P value RMSE
First flowering Pyrus communis 12 Apr+1.24 12 Apr+1.52 0.57+0.71 0.903 4.67
Full flowering Pyrus communis 19 Apr+1.32 18 Apr+1.49 0.57+0.63 0.801 4.46
Last flowering Pyrus communis 29 Apr+1.23 30 Apr+1.33 -0.62+0.64 0.818 5.33
G1 nymphs Cacopsylla pyri 24 Apr+1.13 09 May +1.95 —-1436+1.94 <0.001 22.84
Summerform adults Cacopsylla pyri 25 May +0.80 23 May+1.13 2.34+1.06 0.168 9.97
G2 eggs Cacopsylla pyri 02 Jun+0.83 02 Jun+1.88 -0.63+1.84 0.728  17.03
G2 nymphs Cacopsylla pyri 25 Jun=+0.77 25 Jun+1.38 0.42+1.38 0.336 12.68
4th instar nymphs Forficula auricularia 21 Jun+0.85 18 Jun+1.96 2.54+2.12 0.284  18.56
Adults Forficula auricularia 17 Aug+0.92 15 Aug+2.05 2.68 +1.81 0.151 14.61

P values in bold show significant differences between predicted and observed values based on Kruskal-Wallis tests. The RMSE (root mean

square error) of model prediction is also presented

Climate predictions and phenological shifts

All flowering stages (first, full and last) showed significant
advancement in flowering time depending on year, becom-
ing significantly earlier between 1983 and 2021 (Table 3).
However, this advancement was not significant for the his-
torical time period (1960-1982), suggesting the advance-
ment began in the 1980s. Based on the PhenoFlex model,
average first flowering time was predicted to advance from
the 04 May +4.66 SD (1960-1983) to 19 Apr+4.63 SD
(2011-2021), becoming 15 days earlier, whilst full flowering

time shifted from 13 May +3.99 SD (1960-1983) to 29
Apr+4.05 SD (2011-2021), a 14-day advancement. This
shift was predicted to continue under future emissions sce-
narios, a GLM predicted earlier first flowering time depend-
ing on year (2022-2080, Table 4), at a rate of —0.177 days
per year under the RCP8.5 (high) emissions scenario. On
average, the first flowering date was predicted to be 07
Apr+2.69 SD between 2060 and 2080, under RCPS.5.
However, this was non-significant for the RCP2.6 scenario
(Table 4). For full flowering time, flowering phenology
advanced significantly under RCP2.6 and RCP8.5 emissions
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Fig.2 Chill and heat accumulation curves for cv. Conference pear
trees (Pyrus communis), for first, full and last flowering phenology,
during 2021. The blue solid line represents chill accumulation and the

scenarios, at a rate of —0.053 days and —0.197 days per
year, with an average full flowering date predicted as 20
Apr+2.21 SD (RCP2.6) and 16 Apr+2.31 SD (RCP8.5).
Cacopsylla pyri phenology peak G1 nymph abundance
changed significantly depending on year (1983-2021).
Once again, this change was non-significant for the histori-
cal time period (1960-1982). The mean peak G1 nymph
abundance date was 25 May +8.37 SD (1960-1982) and 11
May + 14.52 (2011-2021). This phenological shift was pre-
dicted to continue under future emissions scenarios, a GLM
predicted earlier G1 peak C. pyri nymph abundance depend-
ing on year (2022-2080, Table 3), at a rate of —0.413 days
per year (RCP8.5 scenario). On average, the G1 peak nymph
abundance date was predicted to be 16 Apr+11.37 SD
between 2060 and 2080, under RCP8.5. However, this was
non-significant for the RCP2.6 scenario (Table 3, Fig. 4). For
first G1 peak C. pyri nymph emergence, phenology did not
significantly change depending on year for historic, current
or RCP2.6 emissions scenarios. Only under the RCP8.5 sce-
nario did emergence times become significantly earlier (Fig-
ure S4), at a rate of —0.125 days per year (Fig. 5). For G2
C. pyri nymphs, peak abundance also differed significantly
depending on year under the current time period, shifting
at rate of —0.403 days per year (Fig. 6). The mean peak
abundance date was 11 Jul +4.47 SD for the historical time
period (1960-1982) and 26 Jun+11.10 SD for 2011-2021.
Peak abundance for G2 nymphs was predicted to continue
to shift under the RCP8.5 emissions scenario (2022-2080)

@ Springer

red solid line represents heat accumulation. The blue dashed line rep-
resents yc (the threshold for end of chill accumulation) and the red
dashed line represents zc (the threshold for end of heat accumulation)

at a rate of —0.315 days per year; however, this shift was
non-significant for the RCP2.6 scenario (Table 3).

Forficula auricularia stage 4 nymph peak abundance date
changed significantly depending on year (1983-2021), at a
rate of —0.375 days per year (Table 3). The mean peak F.
auricularia nymph abundance date was 08 Jul +4.59 SD
(1960-1982) and 22 Jun=+10.11 SD (2011-2021). Peak
abundance for F. auricularia nymphs was predicted to con-
tinue to shift under the RCP8.5 scenario (2022-2080) at a
rate of —0.288 days per year (Fig. 7); however, this shift
was non-significant for RCP2.6 (Table 3). This was similar
for the peak abundance date of F. auricularia adults, under
the current time period peak abundance date advanced sig-
nificantly, at a rate of —0.508 days per year (Table 3). Peak
abundance date shifted from an average of 06 Sep +8.97
(1960-1982) to 12 Aug +10.56 (2011-2021). Peak abun-
dance for F. auricularia adults was predicted to continue to
shift under RCP8.5 (2022-2080) at a rate of —0.224 days
per year; however, this shift was non-significant for RCP2.6
(Table 3).

Phenological differences and mismatches

The phenological difference between full flowering time
and G1 peak C. pyri nymph abundance date was not
significant depending on year for historical, current or
RCP2.6 scenarios (Table 5). However, the phenological
difference did significantly change at a rate of 0.216 days
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peak nymph abundance, B. peak Cacopsylla pyri G2 peak nymph
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per year under the RCP8.5 scenario, shifting from a mean
difference of —11.74 +13.01 SD days (2011-2021), to
0.349 +12.40 SD days between the two trophic levels.
The average advancement in phenology for C. pyri Gl
peak nymph abundance is predicted to shift at a faster rate
(—0.413) compared to full flowering time (—0.197) under
RCPS8.5. This could potentially lead to a phenological mis-
match, where peak nymph abundance occurs before full
flowering time after 2071 (Fig. 4). For all other phenologi-
cal events, no significant relationship was found between
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peak Cacopsylla pyri peak summerform adult abundance, E. peak
Forficula auricularia stage 4 nymph abundance and F. peak Forfic-
ula auricularia adult abundance. The black line has a gradient=1,
intercept=0, to show where the points should be if predicted and
observed values matched each other

the phenological difference and year, for all other pairs of
trophic levels (Table 5). The rate of change for G2 C. pyri
peak nymph emergence and F. auricularia peak stage 4
nymph abundance dates was similar (Fig. 6), under current
(—=0.403 and —0.375) and RCP8.5 (—0.315 and —0.288)
scenarios. Furthermore, there was a large amount of over-
lap between C. pyri and F. auricularia nymph abundance
peaks for all scenarios (Fig. 8), highlighting phenological
synchrony.
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Table 3 Model parameters for each phenological event and scenario, based on the relationship between event date (Julian days) and year

Stage Scenario Model Type Gradient SE Edf Intercept F statistic R”adjusted p-value
First flowering Pyrus communis Historical GLM -0.254  0.140 1.00 624.62 3.32 9.53 0.0828
Current GAM ~ 0.621 281 11390 15.61 58.50 <0.001
RCP2.6 GLM —-0.0443 0.0226 1.00 193.20 3.87 4.71 0.0540

RCP8.5 GLM -0.177 0.0206 1.00 46422 7442 55.87 <0.001
Full flowering Pyrus communis Historical GLM —-0.1998 0.123 1.00 526.77 2.62 11.09 0.120
Current GAM ~ 0542 282 12356 16.71 63.23 <0.001

RCP2.6 GLM —-0.0528 0.0197 1.00 220.17 7.18 9.63 0.00961

RCP8.5 GLM -0.197 0.0181 1.00 51420 119.20 67.09 <0.001
Last flowering Pyrus communis Historical GLM —0.161 0.101 1.00 459.39 2.54 6.55 0.126
Current GAM ~ 0487 536 13478 1048 63.20 0.0004
RCP2.6 GLM —0.0657 0.0174 1.00 257.50 14.27 18.61 <0.001
RCP8.5 GLM -0.222  0.0160 1.00 57545 191.77 76.68 <0.001
G1 Cacopsylla pyri first nymph emergence Historical GLM —-0.152 0.500 1.00 339.37 0.0925 -4.30 0.764
Current GLM -0.328 0212 1.00 696.86 2.40 3.55 0.130
RCP2.6 GAM ~ 1.36  4.30 3541 1.12 5.43 0.408
RCP8.5 GLM —0.125  0.0524 1.45 287.87 5.71 7.52 0.0202
G1 Cacopsylla pyri nymph peak abundance  Historical GLM —-0.0524 0.269 1.00 248.65 0.0379 -4.57 0.848
Current GAM ~ 210 292 138.00 243 17.64 0.0138
RCP2.6 GLM 0.0710 0.109 1.00 -22.44 0422 -1.01 0.519
RCP8.5 GLM -0.413 0.0908 1.00 961.42  20.70 25.36 <0.001
G1 Cacopsylla pyri summerform adults peak Historical GLM 0.0464 0.197 1.00 70.46 0.0558 4.48 0.816
abundance Current GAM ~ 1.61 2.67 15441 3.26 20.50 0.0263
RCP2.6 GLM 0.0499 0.0787 1.00  39.22 0.402 1.04 0.528
RCP8.5 GLM -0.362  0.0754 1.00 87578 23.12 28.85 <0.001
G2 Cacopsylla pyri egg peak abundance Historical GLM 0.0652 0.190 1.00 41.02 0.118  -4.17 0.734
Current ~GLM —-0428  0.140 1.00 1018.14 9.28 17.90 0.004
RCP2.6 GLM 0.0421 0.0750 1.00  62.69 0315 -1.20 0.577
RCP8.5 GLM —0.353 0.0727 1.00 86554 23.62 28.06 <0.001
G2 Cacopsylla pyri nymph peak abundance  Historical GLM —0.00988 0.144 1.00 211.56 0.00472 4.74 0.946
Current GLM —0.403 0.130 1.00 990.79 9.67 18.57 0.004
RCP2.6 GLM 0.0140 0.0669 1.00 142.72 0.0437 1.68 0.835
RCP8.5 GLM -0.315 0.0627 1.00 81054 25.29 29.52 <0.001

Forficula auricularia stage 4 peak nymph Historical GLM -0.0148 0.148 1.00 218.08 0.0101 -0.0471 0.921
abundance Current GLM -0.375 0.120 1.00 930.24 9.75 18.72 0.003
RCP2.6 GLM —0.00625 0.0611 1.00 181.11 0.0105 -1.74 0.919
RCP8.5 GLM —0.288 0.0629 1.00 752.88  20.99 25.63 <0.001
Forficula auricularia peak adult abundance  Historical GLM -0.132 0.287 1.00 510.20 0.212 3.71 0.650
Current GLM —0.508 0.138 1.00 1251.01 13.61 24.92 0.001
RCP2.6 GLM —-0.025 0.0595 1.00 268.90 0.177 1.44 0.676
RCP8.5 GLM -0.224  0.0608 1.57 67254 13.57 19.23 0.001

GLMs were fitted if the edf of the GAM was < 2, p-values in bold show a significant relationship

Discussion has become earlier in the year as a result of climate change.
This is supported by multiple studies, suggesting that tem-
Phenological shifts over time perature significantly influences budburst and flowering
phenology (Amano et al. 2010; Auffret 2021; Fitter and
Our analyses suggest that the timing of at least one phe-  Fitter 2002). Pear trees are heavily influenced by tempera-

nological event has changed for each trophic level. Firstly,  ture, entering endodormancy during late autumn where
flowering time for first, full and last phenological stages ~ growth is inhibited (Atkinson et al. 2013, 2004; Drepper
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Table 4 Average predicted dates + standard error for phenological events depending on scenario (historic, current, RCP2.6 and RCP8.5)

Phenological stage

Species

Historical (1960-1983) Current (2011-2021) RCP 2.6 (2060-2080) RCP 8.5 (2060-2080)

First flowering
Full flowering
Last flowering

G1 nympbhs (First emer-
gence)

G1 nymphs (Peak emer-
gence)

Summerform adults
G2 eggs

G2 nymphs

4th instar nymphs
Adults

Pyrus communis
Pyrus communis
Pyrus communis

Cacopsylla pyri
Cacopsylla pyri

Cacopsylla pyri
Cacopsylla pyri
Cacopsylla pyri
Forficula auricularia

Forficula auricularia

04 May +0.97
13 May +0.85
23 May +0.69
08 Feb+3.13

25 May +1.75

11 Jun+1.28
19 Jun+1.23
11 Jul+0.93
08 Jul+0.96
06 Sep+1.79

19 Apr+1.39 11 Apr+0.54 07 Apr+0.59
29 Apr+1.22 20 Apr+0.48 16 Apr+0.50
10 May +1.09 01 May +0.50 25 Apr+0.48
07 Feb+3.89 07 Feb +2.65 28 Jan+0.83
11 May 4.38 06 May +3.15 16 Apr+2.48
27 May +3.40 23 May +2.37 05 May +1.94
04 Jun+3.39 31 May +2.28 14 May +1.91
26 Jun+3.35 21 Jun+2.03 08 Jun+1.43
22 Jun=+3.05 18 Jun=+1.90 06 Jun=+1.38
12 Aug+3.19 06 Aug+1.92 28 Jul+1.82

Events include cv. Conference pear (Pyrus communis) flowering time (first, full and last), peak abundance of C. pyri eggs, nymphs and adults
and first emergence of Cacopsylla pyri nymphs and peak abundance of Forficula auricularia arboreal nymphs and adults
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Fig.4 Phenological shift in full flowering time (Julian days) for cv. Conference pear trees (Pyrus communis) and Cacopsylla pyri G1 peak
nymph abundance date, depending on year (1960-2080) and RCP scenario (RCP2.6 and RCP8.5)

et al. 2020), until the chill requirement (hours below a
certain temperature) is met. Once the chilling requirement
has been reached, ecodormancy begins, where growing
degree hours are accumulated; thus, elevated temperatures
can lead to earlier flowering times (Drepper et al. 2020;
Fadoén et al. 2023). Studies have documented phenological
advancements in pear flowering time depending on year
and temperature (Drepper et al. 2020; Reeves et al. 2022;
Sparks et al. 2005); Sparks et al. (2005) found that average
first flowering time of pear had shifted to 15 Apr compared

to 23 Apr for the historical time period, advancing at a rate
of —0.306 days per year.

In addition, the timing of C. pyri phenological events has
shifted over time. G1 and G2 C. pyri peak nymph abun-
dance, G2 peak egg abundance and peak summerform adult
abundance, have all advanced significantly by approximately
14-15 days (current compared to historical time periods).
Pear psylla are poikilothermic (Kapatos and Stratopoulou
1999; McMullen and Jong 1977), and so, elevated temper-
atures can have a significant impact on their metabolism,
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Fig.6 Phenological shift in Cacopsylla pyri G2 peak nymph abundance date (Julian days) and Forficula auricularia stage 4 peak nymph abun-
dance date, depending on year (1960-2080) and RCP scenario (RCP2.6 and RCP8.5)

especially in increasing the rate of enzymatically catalysed
reactions (Neven 2000). McMullen and Jong (1977) found
that the development rate of C. pyricola eggs and nymphs
was significantly slower at lower temperatures; on average,

@ Springer

taking 61.8 days to complete development at 10 °C, com-
pared to 27.0 days at 27 °C, development rate reached a
critical thermal maximum at 32.2 °C, as psyllid mortality
was 100%. Earwigs are also poikilothermic (Moerkens et al.
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Fig.7 Phenological difference between Cacopsylla pyri G2 peak nymph abundance date (Julian days) and Forficula auricularia stage 4 peak
nymph abundance, depending on year (1960-2080) and RCP scenario (RCP2.6 and RCP8.5)

Table 5 Model parameters for the difference between two phenological events, depending on scenario, based on the relationship between pheno-

logical difference (Julian days) and year

Difference Scenario  Model type Gradient SE Edf Intercept F statistic R’ adjusted p-value
First flowering and First Cacopsylla pyri nymph Historical GLM —-0.102 0.577 1.00 28524 0.0312 —-4.61 0.862
emergence Current GLM —0.0625 0.194 1.00 198.45 0.104 242 0.749
RCP2.6 GAM ~ 135 439  66.84 135 7.30 0.296
RCPS.5 GLM —0.0519 0.0566 1.58 176.35 0.841 —0275 0363
Full flowering and Peak Cacopsylla pyri G1 Historical GLM —0.147 0294 1.00 278.12 0.251 -352 0.621
nymph emergence Current GLM 0.133 0169 1.00 —291.45 0.674 -0.866 0417
RCP2.6 GLM -0.123 0107 1.00 242.61 1.35 0.605  0.250

RCP8.5 GLM 0216  0.0937 1.00 —447.22 531 6.92 0.0248
Peak G2 Cacopsylla pyri egg abundance and Historical GLM 0.0800 0.145 1.00 —177.06 0.305 —-3.26 0.587
Peak Forficula auricularia stage 4 nymph Current  GAM - 0.832 3.06 -18.28 1.03 7.69 0.344
abundance RCP2.6 GLM 0.0483  0.0389 1.00 —118.42 1.54 2.64 0.219

RCP8.5 GLM —0.0652 0.0365 1.00 112.66 3.20 3.65 0.0790
Peak G2 Cacopsylla pyri nymph emergence Historical GLM 0.00494 0.0823 1.64 —6.52 0.00361 —4.74 0.953
and Peak Forficula auricularia stage 4 nymph  Cyrrent  GAM ~ 0.600 3.03 4.615 0.543 2.87 0.626
abundance RCP2.6 GLM 0.0202  0.0261 1.00 -38.39 0.603 —0.690  0.441
RCP8.5 GLM —0.0270 0.0202 1.00  57.65 1.79 1.34 0.186

GLMs were fitted if the edf of the GAM was < 2, p-values in bold show a significant relationship

2011), and development is highly temperature dependent
(Belien et al. 2012; Helsen et al. 1998; Moerkens et al.
2011). Similar to C. pyri, F. auricularia peak abundance
dates have advanced, with stage 4 nymphs becoming 16 days
earlier and adults becoming 25 days earlier (current com-
pared to historical predictions).

Phenological synchrony and mismatches

Based on the analyses from this study, G1 and G2 peak
C. pyri nymph emergence date, first, full and last flower-
ing times and F. auricularia stage 4 nymph and adult peak
emergence date were all predicted to advance (2022-2080),
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Fig.8 Average percentage abundance of Cacopsylla pyri: G1 adults
(red), G1 eggs (green), G1 nymphs (blue), G2 adults (orange), G2
eggs (purple), G2 nymphs (pink) and Forficula auricularia stage 4
nymphs (light brown) and adults (dark brown) depending on month,
for each scenario. The light blue rectangle represents the flower-
ing spread of Pyrus communis (from first flowering to last flower-

under the RCP8.5 scenario. Phenological shifts have been
predicted for multiple pest species under future tempera-
ture scenarios (Ju et al. 2017; Lee et al. 2016; Stoeckli et al.
2012). One study by Stoeckli et al. (2012) looked at peak
larval emergence for G1 and G2 of the Lepidoptera orchard
pest, codling moth (Cydia pomonella) under current and
predicted future climate scenarios (2045-2074). Findings
indicated a significant two-week advancement, for multiple
phenological events including adult flight date, oviposition
and larval emergence, supporting our predictions in pheno-
logical shifts. There was a significant increase in risk of a
third generation of C. pomonella, as Switzerland currently
only experiences two generations. This increase in voltinism
is pertinent, as the number of generations of C. pyri per year
is also climate dependent (Kapatos and Stratopoulou 1999;
Reeves et al. 2024), with an average of 3—5 generations per
year in the UK (Reeves et al. 2024). However, warmer cli-
mates such as Greece C. pyri produce 5-6 generations (Stra-
topoulou and Kapatos 1992), whilst cooler climates such as
Norway produce 2 generations (Neass 2016). Therefore, a
psyllid phenology model that considers generations through-
out the year would be ideal, to allow researchers to consider
voltinism.

There are concerns that not all trophic levels are advanc-
ing at the same rate, which can result in trophic mismatches
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RCP 8.5 (2060-2080)
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ing), solid grey line the average full flowering time and dotted grey
lines the standard errors. Black arrows represent key times for spray
application or biological control including average Kaolin applica-
tion time, average ANTHOPAK application (artificial mass release of
anthocorid adults) and average anthocorid peak within orchards

and increased challenges for pest management (Harrington
et al. 1999; Reeves et al. 2024; Renner and Zohner 2018;
Wyver et al. 2023). One significant phenological difference
within our study was between full flowering time and G1 C.
pyri peak nymph abundance date; on average, full flowering
time was significantly earlier than peak G1 C. pyri nymph
abundance for current and historical scenarios. Under the
RCP8.5 scenario, peak flowering time and nymph emergence
began to overlap, and by 2071, peak nymph emergence date
becomes earlier than full flowering time. Availability of
open flower buds may be important to C. pyri; nymphs often
shelter inside them (Solomon et al. 1989), providing protec-
tion from harsh weather conditions, agrochemical sprays and
natural enemies (Reeves et al. 2022, 2024). This may be
especially beneficial for younger softshell nymphs earlier in
the season (L1-L3), which are smaller and more vulnerable.
Thus, phenological synchrony between C. pyri nymphs and
full flowering time may be sub-optimal for growers. Instead,
nymph emergence that peaks before budburst may be more
manageable when applying crop protection products. This is
relevant for the application of kaolin, a non-toxic clay par-
ticle film that can be sprayed onto plant surfaces, creating a
barrier that can deter oviposition and reduced movement of
C. pyri (Erler and Cetin 2007; Saour et al. 2010). Pasqualini
et al. 2002 initially investigated kaolin spray; kaolin was
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applied before the onset of egg laying during overwinter-
ing. There was a 99% reduction in nymphs and eggs, during
March and April compared to untreated control trees. Cover-
age of this spray is improved when it is applied pre-bloom
(February to early April), as there is less foliage (DuPont
et al. 2021; Nottingham and Beers 2020). Currently aver-
age kaolin application for the 18 orchards assessed was 30
March, which is still within the pre-bloom stage under the
future RCP8.5 emissions scenario.

No significant differences between any other key trophic
interactions were detected. This may be beneficial for pear
growers, as the interaction between G2 C. pyri nymphs and
earwigs remained unchanged. In historical and current sce-
narios, the phenological difference between peak G2 C. pyri
nymph abundance and peak stage 4 earwig abundance dates
was small, suggesting phenological synchrony. This pheno-
logical difference did not significantly change under future
climate scenarios; under the RCP 8.5 scenario, the average
difference was 2 days. However, there is still the question
of how other natural enemies will react to rising tempera-
tures, especially the key biological control agent A. nemora-
lis. Anthocorids show temperature-dependent development
(Bonte et al. 2012; Martinez-Garcia et al. 2018; Yanik and
Unlu 2011); a study by Yanik and Unlu (2011) found that
Anthocoris minki nymphs took 18.6 days to develop under
20 °C and 11.8 days under 30 °C. A study by Civolani and
Pasqualini 2003 has evaluated the population dynamics of
A. nemoralis with respect to C. pyri, in pear orchards in Italy
during September—December. However, degree day models
are yet to be developed for A. nemoralis. Based on the 18
orchards assessed, on average A. nemoralis were released
on 04 May and adult populations peaked 04 July. Therefore,
whether this biocontrol agent needs to be released earlier in
the year requires future research.

Model evaluation

Observed and predicted results did not significantly differ
from each other for the PhenoFlex model, C. pyri phenol-
ogy model and F. auricularia degree day model, with the
exception of G1 C. pyri peak nymph abundance date, which
was on average 14 days later than predicted. There may mul-
tiple reasons for the difference between the predicted and
observed values; firstly, the pear psyllid phenology model
was originally optimised based on data from Switzerland
(Schaub et al. 2005), potentially differing compared to UK
climate. The accuracy of the weather station itself could
explain the difference; most orchards were a few miles away
from their corresponding weather stations; thus, tempera-
tures experienced in orchards may not be exact. Moreover,
the pear psyllid model is sensitive to small systematic errors;
for example, a change of 1, 2 °C produced simulations that
were 5 or 10 days earlier in Schaub et al. (2005), this could

be more apparent in March—May when temperatures are
more variable. Therefore, this study recommends the col-
lection of temperature data within orchards alongside phe-
nological monitoring data.

Data from this study were collected weekly, so perhaps
more regular sampling is required, as phenological peaks can
be easily missed. Furthermore, pear psyllid nymphs are more
visible when shoot growth has started after flowering; before
flowering, nymphs often hide in the buds or bud scales and
L1-L3 nymphs are much smaller (Chang 1977). It may be
more difficult for growers to observe smaller instars earlier
in the season, especially using a hand lens. To help mitigate
this bias of ‘hidden nymphs’, the ‘wash down’ method is
recommended: washing-down foliage and budwood using
water containing 1% detergent, then straining through fil-
ter paper to concentrate the nymphs and using a binocular
dissecting microscope for counts (Jenser et al. 2010). This
could be used to evaluate bias, but it is more labour-intensive
and requires specialist equipment. Finally, the heterogeneity
of the landscape could explain the later nymph peak; adult
psyllids often disperse over the winter away from the host
plant; however, the proportion of an orchard’s population
that overwinters in the orchard rather than dispersing is not
known and appears to vary between years and regions (Hor-
ton 1999). One theory is that large pear monocultures see
lower rates of dispersal, and thus may have earlier peaks for
egg laying and G1 nymph abundance. However, the orchards
used within our study were surrounded by a heterogenous
landscape compared to those used in Schaub et al. (2005);
therefore, more time may be required for re-entry into the
orchard, resulting in later peaks.

For the earwig degree day model, a previous study found
significant differences between observed and predicted
emergence dates, for all life stages within apple orchards in
Spain (Lordan et al. 2015); on average, peak abundance date
was predicted as 29 Apr for stage 4 F. auricularia nymphs,
but observed date was 13 May. Thus, this model may be
sub-optimal for Mediterranean orchards. However, for UK
orchards, observed and predicted dates for F. auricularia
stage 4 nymphs and adults did not differ significantly. There-
fore, the use of this model within UK pear orchards may be
effective at predicting emergence dates; however, egg hatch-
ing and stage 1-3 peak abundance dates need to be evalu-
ated. Another limitation within the study is the tempera-
ture data used within the F. auricularia degree day model.
Moerkens et al. (2011) recommend the use of soil tempera-
ture (5—10 cm below the soil surface) to predict development
and emergence for earlier egg and nymph stages (egg, L1
and L2); however, hourly soil temperature was not available
between 2011 and 2021 for the majority of weather stations
in Kent or for UKCP18 temperature predictions. This is
especially important for double-brood populations due to a
higher proportion of time spent within the soil throughout
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the year (due to two broods in the soil a year); therefore, the
collection of hourly soil temperature is recommended.

It should also be noted that the earwig degree day model
and C. pyri phenology model are independent of each other.
However, it is likely models would interact, as F. auricu-
laria, can significantly reduce pear psyllid populations,
although earwigs are unlikely to migrate into orchards based
on psyllid density (Lenfant et al. 1994). Thus, a time dis-
tributed delay model that considers predator—prey interac-
tions, such as those seen in the stagePop package in R may
be beneficial to growers, alongside phenological models for
other natural enemy species such as A. nemoralis, as this
may alter decisions on agrochemical sprays or the further
release of biological control agents. In addition, the model
did not take into account management methods within the
orchard or the size of the orchard, which have the potential
to impact phenology. For example, tree shape, and pruning
intensity and timing can affect canopy microclimate (Van
den Dool 2006; Sansavini and Musacchi 2000), which can
impact pest and natural enemy development times. Thus,
with a larger sample size with a range of different orchard
sizes and management practises these differences could be
accounted for in future models.

Conclusion

To conclude the PhenoFlex model, C. pyri phenology
model and F. auricularia degree day model were reason-
ably accurate in predicting key phenological events in UK
pear orchards. Observed and predicted results did not sig-
nificantly differ from each other, with the exception of G1
C. pyri peak nymph abundance date. All phenological events
were predicted to advance under the RCP8.5 scenario, but
only pear flowering time (full and last) was predicted to
significantly advance under the RCP2.6 scenario. However,
there was only a significant change in phenological differ-
ence between C. pyri peak G1 nymph abundance and full
flowering time, as nymph abundance date was advancing at
a faster rate. The phenological synchrony between stage 4
earwig nymphs and C. pyri G2 nymphs was evident in all
scenarios, due to a minimal phenological difference that did
not significantly change over time. However, the pear psyllid
phenology model only included the first two generations, so
we could not assess mismatches later in the year. In addition,
a degree day model has not been developed for A. nemora-
lis, which is a key biological control agent for C. pyri. This
study is relevant within the field of integrated pest manage-
ment, linking models of crops, pests and natural enemies to
better predict trophic interactions and optimise timing of
management methods with respect to peak abundance dates.
The PhenoFlex model can be easily optimised to multiple
tree fruit crops, whilst phenological degree day models can

@ Springer

be adapted to other pest and natural enemy development
times. Thus, we recommend the long-term collection of phe-
nological monitoring data for multiple agroecosystems, to
help validate and develop a range of phenological models
for key crop, pest and natural enemy species.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10340-025-01874-6.
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