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strength, and prediction error

Jia Hoong Ong'", Lei Zhang®** and Fang Liu®

Abstract

Background According to recent models of autism, autistic individuals may find learning probabilistic cue-outcome
associations more challenging than deterministic learning, though empirical evidence for this is mixed. Here we
examined the mechanism of probabilistic learning more closely by comparing autistic and non-autistic adults on
inferring a target cue from multiple cues or integrating multiple target cues and learning from associations with
various predictive strengths.

Methods 52 autistic and 52 non-autistic participants completed three tasks: (i) single-cue probabilistic learning,

in which they had to infer a single target cue from multiple cues to learn cue-outcome associations; (i) multi-

cue probabilistic learning, in which they had to learn associations of various predictive strengths via integration

of multiple cues; and (iii) reinforcement learning, which required learning the contingencies of two stimuli with a
probabilistic reinforcement schedule. Accuracy on the two probabilistic learning tasks was modelled separately using
a binomial mixed effects model whereas computational modelling was performed on the reinforcement learning
data to obtain a model parameter on prediction error integration (i.e., learning rate).

Results No group differences were found in the single-cue probabilistic learning task. Group differences were
evident for the multi-cue probabilistic learning task for associations that are weakly predictive (between 40 and 60%)
but not when they are strongly predictive (10-20% or 80-90%). Computational modelling on the reinforcement
learning task revealed that, as a group, autistic individuals had a higher learning rate than non-autistic individuals.

Limitations Due to the online nature of the study, we could not confirm the diagnosis of our autistic sample. The
autistic participants were likely to have typical intelligence, and so our findings may not be generalisable to the
entire autistic population. The learning tasks are constrained by a relatively small number of trials, and so it is unclear
whether group differences will still be seen when given more trials.

Conclusions Autistic adults showed similar performance as non-autistic adults in learning associations by inferring
a single cue or integrating multiple cues when the predictive strength was strong. However, non-autistic adults
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learning

outperformed autistic adults when the predictive strength was weak, but only in the later phase. Autistic individuals
were also more likely to incorporate prediction errors during decision making, which may explain their atypical
performance on the weakly predictive associations. Our findings have implications for understanding differences in
social cognition, which is often noisy and weakly predictive, among autistic individuals.

Keywords Probabilistic learning, Associative learning, Prediction errors, Bayesian, Predictive coding, Reinforcement

Introduction

Imagine you are from a culture that does not have the
concept of ‘sadness, and your new friend from a different
culture is trying to demonstrate how sadness is expressed
in their culture. They might show you a photograph of
someone wailing and another photograph of someone
weeping silently. In both photographs, you noticed that
the expressers are shedding tears. Based on your limited
experience with sad expressions, you might hypothesise
that when someone is shedding tears, they are expressing
sadness. You share your hypothesis with your new friend,
and they show you a third photograph of someone hold-
ing a trophy while shedding tears, and your new friend
tells you that person is expressing happiness and is cry-
ing ‘tears of joy! You then update your hypothesis: when
someone is shedding tears, they are expressing sadness
sometimes. In other words, you update your belief that
the presence of tears (the cue) is probabilistically asso-
ciated with the expression of sadness (the outcome). Of
course, learning to recognise emotion expressions in real
life is a lot more complex than learning a simple one-to-
one cue-outcome association. The example nonetheless
demonstrates the idea that probabilistic learning, that is,
learning cue-outcome associations that are probabilistic
in nature, may be important for certain aspects of social
cognition [1, 2].

Autistic individuals may find probabilistic learning to
be challenging, according to recent theoretical models of
autism that use Bayesian or predictive coding principles
to understand characteristics of autism [3, 4]. Compared
to non-autistic individuals, autistic individuals make
less use of priors, that is, top-down knowledge acquired
before the inference [5]. In the case of probabilistic learn-
ing, this may manifest as not taking advantage of similar
past experiences with a particular cue to make an infer-
ence. Others have suggested that autistic individuals are
more likely to incorporate feedback of the mismatch
between top-down expectations and the outcome (‘pre-
diction errors’) into their subsequent decision, even
when the feedback should be ignored due to its unreli-
ability or noise [6, 7]. The notion of prediction errors is
also used in reinforcement learning models, which has
been successful in accounting for learning behaviours
in a probabilistic context [8]. Some claimed that autistic
individuals have atypical learning of statistical regulari-
ties in the environment (‘statistical learning’) [9], such

as the transitional probabilities of external events over
time (for example, learning that Event B follows Event A
80% of the time). It has been further proposed that het-
erogeneity in autism may be partly due to individual dif-
ferences in learning the strength of statistical regularities
and temporal separation between events among autistic
individuals [9].

While those models are theoretically sound, empiri-
cal evidence for them is mixed. In support of the mod-
els, some studies found group differences in learning
transitional probabilities: after being presented with a
sequence of stimuli, autistic children and adults were less
likely to show behavioural and neural differences to prob-
able vs. less probable sequences compared to non-autistic
children and adults [10, 11]. Some evidence of group dif-
ferences was also reported in studies using a probabilistic
reversal learning task, which is commonly used to assess
participants’ ability to learn cue-outcome contingen-
cies in stable vs. volatile learning environment. In such
a task, participants first learn the probabilistic associa-
tions of two cues and their outcomes over several trials
(stable phase) and then the contingencies switch between
the two cues such that the cue that was predictive of the
reward is now less predictive (reversal phase). While no
group differences between autistic and non-autistic par-
ticipants were typically observed in the stable phase [12,
13], the reversal phase affected autistic participants more.
Specifically, autistic participants tended to commit more
perseverative errors (i.e., selecting the cue that was pre-
viously reinforced) as well as were less accurate and less
likely to reach successful criterion threshold in the vola-
tile phase [14—16]. When there were multiple reversal
phases across the task, autistic participants were found
to show smaller behavioural differences in expected vs.
unexpected events compared to non-autistic participants
[17]. Crucially, the authors demonstrated using compu-
tational modelling (i.e., using mathematical models to
understand behaviour) that autistic individuals relative
to non-autistic individuals tend to overestimate the vola-
tility of the environment, compromising their ability to
develop expectations even for highly predictive (i.e., 84%
predictive) associations [17].

On the other hand, some studies have failed to find
support for the Bayesian and predictive coding models
of autism. Autistic and non-autistic children and adults
learned repeated pattern sequences equally well [18—-20]
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and showed similar performance on various statistical
learning tasks [21]. A meta-analysis that examined statis-
tical learning ability among autistic vs. non-autistic indi-
viduals found no evidence of group differences [23-25].
On the probabilistic reversal learning tasks, some stud-
ies reported that autistic individuals do not always show
poorer performance after reversal [26]. These mixed find-
ings may be due to methodological differences (e.g., task
requirement and measurement) and heterogeneity of the
participants (e.g., children or adult participants; whether
autistic participants were matched with the non-autistic
participants on cognitive or verbal abilities). It is thus dif-
ficult to pinpoint exactly why these mixed findings exist.

The past studies reviewed above revealed at least two
gaps that limit the generalisability of the findings. Firstly,
the previous studies often used simple cues (e.g., choos-
ing between two coloured boxes) to learn their associa-
tions, which is often not the case in real life situations.
Learners instead may have to infer a single target cue
from a range of cues (e.g., presence of a smile despite
variations in the other facial features usually expresses
happiness) or integrate multiple cues (e.g., presence of
furrowed brows, wide eyes, and loud and fast speech
typically signals that the expresser is angry) to learn their
associations with the outcome. While this has not been
examined in detail, learning of such complex cue-out-
come associations may be more challenging for autistic
individuals for two reasons: autistic individuals’ tendency
to (i) learn a reductive form of complex cue-outcome
associations (the so-called ‘stimulus overselectivity’ phe-
nomenon) [27]; and (ii) direct their focus to a small atten-
tion tunnel at the expense of processing stimuli outside
the tunnel (‘monotropism’) [28]. One previous study
partly examined this gap by investigating whether adults
with varying levels of autistic traits would infer a target
cue from multiple auditory cues (e.g., pitch, number of
nonsense syllables, etc.) to learn cue-outcome associa-
tions, and the authors found no influence of autistic traits
on such learning [29]. However, the task used in that
study may have been too difficult, as it is reliant on one’s
auditory memory to infer the target cue correctly, and
there were only a small number of autistic participants in
the sample.

In addition to the use of simple cues, most of the past
studies also neglected to examine the learning of asso-
ciations across a range of predictive strengths within the
same sample. For instance, only one level of (typically
high) predictive strength is examined in most proba-
bilistic reversal learning tasks [13], even though most
cue-outcomes associations in real life are weak given
the complexity of the relationship particularly in social
situations [1]. Some evidence suggests that group differ-
ences may be more pronounced for associations that are
weakly predictive: in a task where participants learned
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the relationship between high vs. low tones and their
associations with dots rotating clockwise vs. anticlock-
wise, both autistic and non-autistic participants showed
improvement in learning the associations when the out-
come contingency was 72.5% [24] but only the non-autis-
tic participants did when the contingency was 62.5% [30].
The participants, however, were not the same across both
studies, and so it remains to be seen whether the findings
above were due to sampling differences or reflected genu-
ine group differences.

The current study addressed both those gaps to exam-
ine several crucial aspects of probabilistic learning within
the same sample of autistic and non-autistic adults. That
is, we examine whether differential probabilistic learning
performance between autistic and non-autistic individu-
als may be due to the complexity of the target cue (i.e.,
whether learners infer a single cue or integrate multiple
cues to learn the association), the predictive strength of
the association to be learned (i.e., whether the outcome
contingency is weak vs. strong), and/or the incorporation
of prediction error in their decision, as suggested by some
models [6, 7]. Thus, participants completed three tasks in
this study to examine whether autistic individuals show
atypical probabilistic learning compared to non-autistic
individuals, and if so, why this might be the case: (i) a sin-
gle-cue probabilistic learning task, to examine whether
they could learn to infer a single target cue from multi-
ple cues to learn cue-outcome associations; (ii) a multi-
cue probabilistic learning task, which compares learning
associations of various predictive strengths by integrat-
ing multiple cues; and (iii) a reinforcement learning task,
which requires learning the contingencies of two stimuli
that have a probabilistic reinforcement schedule, from
which we will use computational modelling to compare
the model parameter on integrating prediction errors in
decision making.

Methods

Participants

A total of 52 autistic adults (M,,, = 29.08, SD,,, = 6.75,
Range = 18-43; Gender: Female n =20, Male n=27, Non-
binary n=>5) and 52 non-autistic adults (M,, = 30.77,
SD,qe = 7.95, Range = 19-45; Gender: Female n=24, Male
n=25, Non-binary n=3), all of whom were recruited
from Prolific, participated in the study and completed all
three tasks in two sessions. The inclusion criteria for the
autistic group were that they needed to have a confirmed
diagnosis of autism (but due to the General Data Pro-
tection Regulation, GDPR, and the anonymity of online
experiments, this could not be verified) and that they
needed to have normal or corrected-to-normal vision.
The inclusion criteria for the non-autistic group were that
they must not have received a diagnosis of autism, have
normal or corrected-to-normal vision, and that their
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Autism-Spectrum Quotient (AQ) score, which measures
their levels of autistic traits, must be less than 32, the cut-
off score recommended to distinguish autistic from non-
autistic individuals [31]. The autistic group scored higher
than the non-autistic group in AQ, as expected partly due
to our inclusion criteria (£(102)=12.15, p<.001), but the
two groups did not differ in age (£(102) =1.17, p=.245).

An additional five participants (Autistic #=2; Non-
autistic n=3) completed Session 1 of the study but not
Session 2; their data were excluded in the main analy-
sis. One additional autistic participant completed both
sessions but were ultimately excluded due to poor per-
formance on the catch trials across the tasks (i.e., scor-
ing less than 75% correct). Participants provided their
informed consent at the start of the study and received
monetary compensation for their participation. The
study protocol was reviewed and approved by the Uni-
versity Research Ethics Committee (UREC) at the Uni-
versity of Reading.

Materials & tasks

Single-cue probabilistic learning task

We adapted this task from a previous study [29], in which
participants were presented with multiple auditory cues
and they had to learn to infer which cue is the most pre-
dictive of an outcome. Visual cues were used in the cur-
rent study instead. Participants were informed that they
would learn to judge to which of two art periods each art
piece belongs. Two different sets of art pieces were used,
and each art piece consisted of four features (Set 1: dot
colour, distribution, background colour, size; Set 2: shape,
distribution, background colour, size). Unbeknown to the
participants, only one feature in each set was predictive
of the outcome (majority dot colour (black or white) in
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Set 1 and majority shape (x or o) in Set 2). No two stim-
uli were identical, and so participants needed to learn
to abstract the features and learn the associative rela-
tionship between the feature and the outcome (i.e., art
period). Each stimulus set was assigned to a condition:
Deterministic (i.e., the target feature is 100% predictive
of an art period) or Probabilistic (i.e., the target feature
is 75% predictive of an art period). The assignment of
stimulus set to condition was randomised for each par-
ticipant, and participants completed both conditions in a
randomised order.

On every trial, participants were presented with the
stimulus (an art piece) for 1.5s, and then a response
screen appeared with the two art periods (e.g., “Londs”
and “Grakes”), during which they had to respond within
2.5s. Feedback was provided for 1s immediately after
their response (see Fig. 1a). There were 100 experimental
trials in each condition, with 50 trials for each art period.
For each condition, we divided the trials into the two
halves to examine learning over time (Early vs. Late). To
ensure participants were paying attention, in each condi-
tion, participants were presented with eight catch trials,
in which the art period label was presented as the stimu-
lus and participants were instructed to select that label.
Each condition was preceded by six practice trials with
uninformative feedback (i.e., they were presented with
“#####” as feedback). Each condition took approximately
10 min to complete.

Similar to the previous study [29], we also presented
participants with a control discrimination task after com-
pleting the main task to ensure that participants could
perceptually discriminate the target feature (i.e., differen-
tiate whether the majority of the dots were black/white
or x/o). Participants were presented with the stimulus

A B

High '

: . Low

C

nas

Londs  Grakes

\ Correct!

+ Correct!

\ The answer is
Londs

t

Correct! +

t t

Fig. 1 Trial structure for the (A) single-cue probabilistic learning task; (B) multi-cue probabilistic learning task; and (C) reinforcement learning task. In the
single-cue probabilistic learning task (A), participants are first shown a stimulus for 1.5s. Then a response screen depicting two art periods (e.g., “Londs”
and “Grakes") is shown, during which participants have to respond within 2.5s. Feedback is then provided for 1s, followed by a fixation cross to signal the
next trial. In the multi-cue probabilistic learning task (B), participants are first shown a stimulus, and they are asked to predict if the stimulus will receive a
high or low rating within 5s. Then a red fixation cross to signal incoming feedback was presented for 1s, and the feedback was presented for 1.5s. The trial
ends with a black fixation cross for a randomly jittered inter-trial interval (ITl) between 1.5s and 4.5s. In the reinforcement learning task (C), two stimuli are
presented, and participants have to decide which has a higher value for a given year within 2.5s. This is followed by feedback for 1s, and then a fixation
cross to signal the next trial
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for 1.5s, just as they were in the main task, but they had
unlimited time to respond whether the majority of the
dots were black/white or x/o and they were not provided
with any feedback. A subset of 10 stimuli for each cat-
egory (e.g., majority black dots and majority white dots)
were presented, resulting in a 20 trials per set. The pre-
sentation order for set was randomised. Two catch trials
were included in each set, and prior to the start of each
set, participants completed four practice trials. The entire
control discrimination task took approximately 4 min to
complete.

Multi-cue probabilistic learning task

We adapted the multi-cue probabilistic learning task
from a previous study [32]. Unlike the single-cue prob-
abilistic learning task, the multi-cue version requires
learners to integrate multiple cues to determine their
association with one of two outcomes. In our version,
participants were asked to predict whether each art piece
will receive a high or low rating from an art critic. They
were specifically told that the art critic will base their rat-
ing on four binary cues: background colour (orange/pur-
ple), orientation (left/right), dot colour (black/white), and
number of dots (3/6). The combination of all four cues
resulted in 16 unique stimuli (or art pieces), with each
stimulus associated with a probability that it will receive
a high rating (see Table 1). On every trial, the probability
is compared with a random number ranging from 0 to 1;
if the probability is higher than the random number, then
that art piece will receive a high rating for that trial. Thus,
the relationship between each art piece and its rating are
probabilistic in nature. To examine whether learning dif-
fers based on the predictive strength of the outcome, the
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high rating probability is divided into two conditions:
unambiguous (those between 0.1 and 0.2 and 0.8-0.9)
and ambiguous (those between 0.4 and 0.6). Across par-
ticipants, cue assignment was randomised such that the
importance of each cue would differ. For example, the cue
‘background colour’ may be assigned to the first cue (C1
in Table 1) for Participant A, but the same cue may be
assigned to the second cue (C2) for Participant B. Given
that the 16 stimuli are highly distinct, we anticipate that
all participants should be able to discriminate the stimuli
easily, and so we do not include a control discrimination
task unlike in the single-cue probabilistic learning task.

The trial structure for this task is displayed in Fig. 1B.
The stimulus was presented, and participants were
required to make a response within 5s. Then a red fixa-
tion cross to signal incoming feedback was presented for
1s, and the feedback was presented for 1.5s. The trial ends
with a black fixation cross for a randomly jittered inter-
trial interval (ITI) between 1.5s and 4.5s. The 16 stimuli
constituted a set, which were repeated eight times, for
a total of 128 trials. The presentation order was blocked
by and randomised within each set. The 128 trials were
divided into two blocks (Early vs. Late) to examine learn-
ing over time. Eight catch trials were randomly presented
throughout the task to ensure attentiveness, during
which participants were presented with a label of “high”
or “low” and were instructed to press the corresponding
button. Prior to the experimental task, participants were
given six practice trials with uninformative feedback
(i.e., “#####” as feedback). The task took approximately
20 min to complete.

Table 1 Probability associated with high rating (p(high)) for the 16 stimuli, each made up of the four binary cues (C1, C2, C3 and C4),
in the multi-cue probabilistic learning task. Based on their p(high), the stimuli are further divided into two conditions: unambiguous

and ambiguous

Stimulus c1 2 c c4 p(High) Condition

1 0 0 0 0 0.100 Unambiguous
2 0 0 0 1 0.133 Unambiguous
3 0 0 1 0 0.166 Unambiguous
4 0 1 0 0 0.200 Unambiguous
5 1 0 0 0 0400 Ambiguous
6 1 0 0 1 0429 Ambiguous
7 1 0 1 0 0458 Ambiguous
8 1 1 0 0 0.487 Ambiguous
9 1 1 0 1 0.516 Ambiguous
10 1 1 1 0 0.545 Ambiguous
1 0 0 1 1 0.574 Ambiguous
12 1 0 1 1 0.600 Ambiguous
13 0 1 1 0 0.800 Unambiguous
14 0 1 0 1 0.833 Unambiguous
15 0 1 1 1 0.866 Unambiguous
16 1 1 1 1 0.900 Unambiguous
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Reinforcement learning task

The reinforcement learning task in the present study
is similar to a two-armed bandit task [33]. Participants
were told to judge which of two art pieces has a higher
value for a given year, with the same two stimuli were
presented on every trial (see Fig. 1C), within 2.5s. One
of the stimuli was associated with a higher value 70% of
the time, which was determined randomly at the start of
the task for each participant. Immediately after response,
feedback was displayed for 1s, and then a fixation cross
for 0.5s before the next trial began. The reward contin-
gencies stayed constant across the experiment and there
were no reversals. There were 20 experimental trials plus
two catch trials randomly interspersed among the experi-
mental trials. Four practice trials preceded the task, with
uninformative feedback. The task took about 2 min to
complete.

Procedure

Participants first completed a screening questionnaire, in
which they answered questions about their demographic
information (including whether they have received a
clinical diagnosis of autism) and completed the Autism
Spectrum Quotient [31]. Eligible participants were then
invited to the two-session study hosted on the Gorilla
platform [34]. We decided to split the study into two ses-
sions of less than 30 min each rather than a single session
of just under an hour to prevent fatigue and boredom
among participants and therefore minimise dropout rates
in line with good practice suggestions for online research
[35]. In the first session, they completed the single-cue
probabilistic learning task and the reinforcement learn-
ing task. In the second session, to which they were invited
only after completing the first session, participants com-
pleted the multi-cue probabilistic learning task. On top
of receiving monetary reimbursement for each session, a
completion monetary bonus was offered to participants
who successfully completed both sessions.

Data analysis
Data analysis was conducted in R (version: 4.1.2) [36].

Single-cue probabilistic learning task
For the control task, we calculated d-prime (d’) scores
according to the signal detection theory where d’ =
z(Hit)— z(False Alarm), separately for black/white and
x/o discrimination for each participant. Extreme values
of 0 and 1 for Hit and False Alarm rates were adjusted
upwards and downwards by 0.01, respectively [37].
Groups were compared on their d’ scores using indepen-
dent t-tests, and above-chance performance was deter-
mined by comparing their d’ scores against 0.

For the main probabilistic learning task, we fitted a
binomial mixed effects model, with a binary dependent
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variable Correct (correct/incorrect, with ‘correct’ defined
as the most probable outcome) using the glmer() function
from the /me4 package [38]. As fixed effects, we entered
Phase (Early vs. Late), Condition (Deterministic vs. Prob-
abilistic), and Group (Autistic vs. Non-Autistic) and all
the possible interactions. We also entered the d’ scores of
the control task as fixed effects, to account for perceptual
differences among participants. All categorical predictors
were effect-coded whereas continuous predictors were
mean-centred. As random effects, random by-participant
and by-item intercepts and random by-participant slope
for Phase and Condition as well as random by-item slope
for Group was included. Statistical significance of each
fixed effect was determined using the Anova() function
from the car package [39]. Pairwise comparisons were
conducted using the emmeans package [40].

Multi-cue probabilistic learning task

Similar to the single-cue probabilistic learning task, we
fitted a binomial mixed effects model, with Correct as
the binary dependent variable (‘correct’ defined as the
most probable outcome) using the glmer() function from
the /me4 package [38]. We entered the following as fixed
effects: Phase (Early vs. Late), Condition (Ambiguous vs.
Unambiguous), Group (Autistic vs. Non-Autistic) and
all the possible interactions. Categorical predictors were
effect-coded. p-values for the predictors were determined
using the Anova() function from the car package [39],
and subsequent pairwise comparisons were conducted
using the emmeans package [40].

Reinforcement learning task
We use the hBayesDM package [41] to fit three different
reinforcement learning models. Reinforcement learning
models are widely used in social neuroscience and deci-
sion making [2] and are suitable given that learners use
feedback to guide decision making through the modifica-
tion of the expected reward.

The first model we fitted was a simple Rescorla-Wagner
model [42], which is expressed by the equations below:

Valueupdate: V; =V, 14+ a d4_1

Predictionerror: 6,1 = Ry_1 — Vi1

where the expected value of a chosen option in the cur-
rent trial (V) is informed by the expected value of the
previous trial (V,_;) and the prediction error (§, or the dif-
ference between the reward (R) and the expected value)
of the previous trial, scaled by the learning rate (0<a<1).
The learning rate thus dictates how much of the predic-
tion error should be considered in the value update: the
higher the learning rate, the more the prediction error is
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weighted. This model was implemented using the bandi-
t2arm_delta() function.

The second reinforcement learning model we fitted was
a positive/negative Rescorla-Wagner model [43], a vari-
ant of the simple Rescorla-Wagner model, and is formu-
lated as below:

Ly

Vi
The positive/negative Rescorla-Wagner model is simi-
lar to the simple version, with the exception that there
are two separate learning rates: one that scales positive
(including zero-difference) prediction errors (a*) and
one that scales negative prediction errors (a”). A positive
prediction error would occur if the expected value were
smaller than the reward (e.g., when one does not expect
a reward but receives one) whereas a negative prediction
error would occur if the expected value were larger than
the reward (e.g., when one does expect a reward but does
not receive one). This model thus considers that learning
may be different when one receives rewards or punish-
ments. We used the pri_rp() function to implement this
model.

The third and final model we fitted was a counterfac-
tual Rescorla-Wagner model [44], another variant of the
simple Rescorla-Wagner model. The model is formulated
as below:

=Vioi+ atd,q,
=Vii+ a7 b1,

if 04120
if 5,4<0

Valueupdate : V=V, + a d7 4
VISV a ol

Table 2 Mean (standard deviation in parathesis) performance
for the single-cue probabilistic learning task and the multi-cue
probabilistic learning task as well as mean learning rate (standard
deviation in parenthesis) for the reinforcement learning task by
group. Asterisks indicate above chance performance (50%) for
the single-cue and multi-cue learning tasks based on one-
sample t-tests (this was not conducted for the reinforcement
learning task as learning rate cannot be determined by chance)
Autistic (n=52) Non-autistic (n=52)

Single-cue task

Deterministic  Early 0.63 (0.19)*** 0.62 (0.19)***
Late 0.72 (0.24)%** 0.70 (0.24)***
Probabilistic  Early 0.58 (0.15)*** 0.58 (0.16)**
Late 61 (0.18)*** 61 (0.18)***
Multi-cue task
Unambiguous  Early 61 (0.12)*** 0.64 (0.13)***
Late 0.63 (0.13)** 0.64 (0.12)***
Ambiguous Early 0.58 (0.12)%** 0.56 (0.11)%**
Late 0.55 (0.10)** 0.59 (0.10)***
Reinforcement learning task
Learning Rate  0.39 (0.05) 0.34 (0.06)

Note: *p <.05, **p <.01, ***p <.001
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Whereas the simple Rescorla-Wagner model only
updates the value for the chosen option, the counterfac-
tual Rescorla-Wagner model does value-updating for the
chosen option (V°) and the unchosen option (V™). Given
that the task has anti-correlated choice values (e.g., if the
chosen option is rewarded, then the unchosen option is
not rewarded), learners can thus learn from the counter-
factual outcome. This model was implemented using the
prl_fictitious() function.

The three reinforcement learning models were fitted
to each participant’s trial-by-trial data. Timed out trials
were excluded in the analysis. For each group, we then
used the leave-one-out cross-validation information cri-
terion (LOOIC) to find the best fitting model where the
lower the LOOIC, the better the model fit. We then com-
pared the groups on the learning rates (a) obtained from
the best fitting model to examine whether autistic indi-
viduals have atypical weighting on the predictions errors
relative to non-autistic individuals.

Results

Descriptive statistics for all three tasks along with results
of the one-sample ¢-tests to determine above chance per-
formance for the single-cue and multi-cue tasks are pre-
sented in Table 2.

Single-cue probabilistic learning task

We first compared the groups on their discrimination of
the two target cues in the single-cue probabilistic learn-
ing task. Independent ¢-tests on the d’ scores revealed
that the two groups did not differ in the black/white dis-
crimination task (£(102) =0, p = 1) but autistic participants
had higher d’ scores than non-autistic participants on the
x/o discrimination task (£(102)=2.37, p=.020). The two
groups, crucially, could reliably discriminate the target
features, with their d’ scores well above chance (Autis-
tic: black/white, t(51) =104.39, p<.001; x/o, £(51)=38.29,
p<.001. Non-autistic: black/white, £(51)=87.28, p<.001;
x/o, t(51) = 31.77, p<.001).

For the main single-cue probabilistic learning task,
participants showed above chance performance in all
conditions and phases suggesting that learning has
occurred even in the Early phase (see Table 2). Results on
the mixed effects model are displayed in Table 3. There
was a main effect of Discrimination of x/o on accuracy
of the single-cue probabilistic learning task such that
higher d’ scores were related to better performance over-
all (x’(1)=6.18, p=.013). There were also main effects of
Phase (x*(1) = 48.54, p <.001) and Condition (x*(1) =21.87,
p<.001), which were qualified by a Phase x Condition
interaction (x*(1) =36.59, p<.001). Pairwise comparisons
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Table 3 Output of the mixed effects model for the single-cue
probabilistic learning task

X df p
Intercept 69.00 1 <0.001
Phase 48.54 1 <0.001
Condition 21.87 1 <0.001
Group 0.00 1 0973
d'black/white 0.09 1 0.762
d'x/o 6.18 1 0013
Phase x Condition 36.59 1 <0.001
Phase x Group 0.35 1 0.553
Condition x Group 0.16 1 0.693
Phase x Condition x Group 048 1 0491

Note: Phase: Early vs. Late; Condition: Deterministic vs. Probabilistic; Group:
Autistic vs. Non-autistic. The final model: Correct ~ Phase*Condition*Group +d’
black/white +d’ x/o + (1 + Condition + Phase|participant) + (1 + Group|image)

—e— Autistic Non-Autistic

Deterministic Probabilistic

80% 4 +

70% 4 |

60% 4

Correct

50% 4

early late early late
phase

Fig. 2 Mean proportion correct for the single-cue probabilistic learning
task as a function of group, phase, and condition. Error bars represent 95%
confidence intervals

Table 4 Output of the mixed effects model for the multi-cue
probabilistic learning task

X df P
Intercept 20.51 1 <0.001
Group 0.80 1 0370
Phase 0.36 1 0.550
Condition 16.49 1 <0.001
Group X Phase 0.64 1 0423
Group x Condition 0.02 1 0.876
Phase x Condition 0.07 1 0.791
Group X Phase x Condition 6.37 1 0.012

Note:Group:Autisticvs.Non-autistic; Phase: Early vs. Late; Condition: Ambiguous
vs. Unambiguous. The final model: Correct~Group*Phase*Condition +
(1+Condition + Phase|participant) + (1+ Group|image)

revealed that the performance was significantly bet-
ter on the Deterministic condition than the Probabilis-
tic condition, but the difference between the conditions
was larger in the Late phase (z=6.02, p<.001) than in the
Early phase (z=2.99, p=.003), as shown in Fig. 2. Com-
parison between Early vs. Late phases for each Condition
showed that although participants showed significant
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Unambiguous Ambiguous

65% 4
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Correct
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Fig. 3 Mean proportion correct for the multi-cue probabilistic learning
task as a function of Group, Phase, and Condition. Error bars represent 95%
confidence intervals

improvement, the improvement was larger for the Deter-
ministic condition (z=8.74, p <.001) than for the Probabi-
listic condition (z=3.43, p=.001). Importantly, there were
no significant effects or interactions involving Group,
suggesting that performance among autistic and non-
autistic participants was similar in the single-cue proba-
bilistic learning task, and the improvement was similar
across both groups.

Multi-cue probabilistic learning task

Participants showed above chance performance in all
conditions and phases suggesting that learning has
occurred even in the Early phase (see Table 2). Table 4
shows the output of the mixed effects model for the
multi-cue probabilistic learning task. There was a sig-
nificant effect of Condition (x*(1)=16.49, p<.001), and
a significant interaction between Group x Phase x Con-
dition (x*(1)=6.37, p=.012). Figure 3 displays the three-
way interaction. Pairwise comparisons between Phases
for each Group and Condition revealed only a margin-
ally significant improvement from Early vs. Late phases
for non-autistic participants in the Ambiguous condi-
tion (z=1.83, p=.067). Pairwise comparisons between
Groups, however, revealed that for the Unambiguous
condition, performance was similar between autistic
and non-autistic participants in both the Early (z=1.16,
p=.246) and Late (z=0.17, p=.862) phases, whereas for
the Ambiguous condition, there was no group differ-
ence in the Early phase (z=0.60, p =.552) but non-autistic
participants had higher performance than autistic par-
ticipants in the Late phase (z=2.09, p=.037). Thus, taken
together with the results from the one-sample ¢-tests,
this suggests that while participants learned during the
Early phase itself, they did not demonstrate significant
improvement during the task from Early to Late phases.
However, group differences do emerge in the Late phase
only for the Ambiguous condition.
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Reinforcement learning task

Table 5 shows the LOOIC values for each of the three
reinforcement learning models— simple Rescorla-Wag-
ner, positive/negative Rescorla-Wagner, and counterfac-
tual Rescorla-Wagner— by group. For both autistic and
non-autistic groups, model comparisons showed that
the counterfactual model had the best fit (i.e., the lowest
LOOIC value). We then compared the groups on their
learning rates obtained from the counterfactual model
using an independent ¢-test. We found that the learning
rate for the autistic participants as a group were signifi-
cantly higher than that for the non-autistic participants
(£#102)=4.92, p<.001), as shown in Fig. 4. The group
difference remains significant even after excluding the
two outliers among autistic participants (£(100)=4.64,
p<.001).

Discussion
Proponents of Bayesian and predictive coding models
of autism theorised that autistic individuals may find
probabilistic learning, that is, learning cue-outcome
associations that have some degree of noise, to be more
challenging than non-autistic individuals [5-7, 9, 45].
Empirical evidence for this, however, is mixed. To clar-
ify the mixed findings and to better understand whether
probabilistic learning is indeed atypical among autis-
tic individuals, we examined in the present study three
crucial aspects of probabilistic learning—(i) inferring or
integrating target cues, (ii) learning from a range of pre-
dictive strengths, and (iii) incorporation of prediction
error—within the same sample to determine whether
group differences exist in any (or all) of the aspects.
Extending previous work that used simpler stimuli
[12, 13, 24, 25], we found that autistic adults showed
comparable performance as non-autistic adults in infer-
ring either a single cue from multiple cues or integrating
multiple cues to learn associations that are at least 70%
predictive. On inferring from a single cue, our finding
is similar to that of a previous study that used auditory
stimuli [29], suggesting that there are no group differ-
ences regardless of stimulus modality. We are not aware
of any studies that have examined group differences in
learning associations that require integrating multiple
cues, but we reasoned that this may be more challeng-
ing for autistic participants based on certain character-
istics of autism. Two examples of such characteristics
are stimulus overselectivity, or the tendency to associ-
ate one aspect of a complex cue to an outcome [27], and
monotropism, or the tendency to only focus on one thing
at a time [28]. Our findings suggest that, despite those
characteristics, autistic individuals showed comparable
learning by integrating multiple cues as non-autistic
individuals when the associations are strongly predic-
tive. Note, though, that the multiple cues to be integrated
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Table 5 Comparison of model fit using LOOIC values for the
three reinforcement learning models by group

Group Simple Positive/Negative Counterfactual
Autistic 1023.29 94358 907.32
Non-autistic 1021.73 973.98 970.17
0.554 X
0.504
@ 0.454
©
j=))
c
‘c 0404
®
S
0.354 |
0.304
Autistic Non-autistic
group

Fig. 4 Boxplots of the learning rates obtained from the counterfactual
model by group

in this study are within the same modality, and thus it is
not clear whether this would be generalisable when the
cues are from different modalities. Indeed, autistic indi-
viduals have been reported to show atypical multisensory
integration (e.g., audio and visual cues) [46], and so it
remains to be seen whether there are any group differ-
ences when learning associations from integrating mul-
tiple cues across different modalities.

While no group differences were found when associa-
tions are strongly predictive, we found that autistic par-
ticipants showed lower performance than non-autistic
participants when they had to integrate multiple cues
to learn weakly predictive associations (i.e., that are
40-60% predictive) towards the latter end of the learn-
ing task. Additionally, in a separate task through compu-
tational modelling, we found that autistic individuals had
higher learning rates—that is, autistic individuals were
more likely incorporate prediction errors during deci-
sion making—than non-autistic individuals. Our find-
ing of higher learning rates among autistic individuals is
consistent with the High, Inflexible Precision of Predic-
tion Error in Autism (HIPPEA) hypothesis [7], in which
it is stated that autistic individuals may find it more dif-
ficult to ignore noisy or unreliable prediction errors than
non-autistic individuals. We speculate that having higher
learning rates may also explain autistic individuals’ atypi-
cal performance on learning associations with weak
predictive strength, which would have noisier errors
than associations with strong predictive strength. One
study demonstrated computationally that individuals
with higher learning rates are more reliant on the most
immediate past trials to inform value updating on the
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current trial [2]. In other words, those with higher learn-
ing rates would be placing less importance on older than
recent past trials to inform their current decision. Thus,
in a situation where there is frequent noisy, unreliable
feedback (i.e., when learning associations with weak pre-
dictive strength), those with higher learning rates essen-
tially sample from a smaller prior window of past trials
to inform their decision compared to those with lower
learning rates. The small window is likely to have more
variance or dissimilar outcomes among the past trials
given the weak predictive strength, leading to a less ‘accu-
rate’ or ‘complete’ estimate relative to those who sample
from a larger window of past trials (i.e., those with lower
learning rates). The difference among those with high vs.
low learning rates is less apparent when learning associa-
tions with strong predictive strength because there would
be less variance in the past trials sampled, regardless of
the window size, as the feedback would be more consis-
tent. Due to task and methodology differences, we are
unable to compare how learning rates obtained in the
reinforcement learning task is directly involved in learn-
ing associations of various predictive strengths, and so
this remains a speculation, which should be examined in
future research.

If autistic individuals are less likely to ignore noisy pre-
diction errors and find learning weakly predictive asso-
ciations to be more challenging as found in the present
study, might this explain autistic individuals’ differences
in social cognition? Some have conceptualised social
cognitive processes in terms of a cue integration frame-
work [1]—for example, to recognise someone’s emotion,
one needs to integrate many social cues across different
modalities and contexts. These social cues and contexts
are often complex and sometimes contradictory, and so
the predictive strength of the associations between the
cues and the emotion will likely be weak. Given the often-
reported atypical performance in emotion recognition
among autistic individuals compared to non-autistic indi-
viduals [47-50], it is thus tempting to surmise that autis-
tic individuals’ emotion perception (and potentially any
atypical social cognitive processes) may be partly related
to their ability to ignore noisy prediction errors and learn
weakly predictive associations. Whether there is such a
direct link should be determined in future research to
fully understand the mechanisms underlying the differ-
ences in social cognition among autistic individuals.

Limitations

There are several limitations in this study that should be
noted. The first concerns the autistic sample. Due to the
nature of the online platform used in this study (i.e., Pro-
lific), we could only recruit adults, and we were unable
to confirm whether the autistic participants have truly
received a clinical diagnosis of autism. While verification
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is not possible for this study, we are somewhat reassured
by the fact that the majority of participants on Prolific
are generally quite honest in their response (i.e., they do
not claim a reward for something that they did not do)
[51]. Moreover, the adults on Prolific are likely to be well-
educated and have typical intelligence—one study found
that the median response for the highest level of educa-
tion attained among Prolific respondents was a bachelor’s
degree [52]. So, it is unclear whether our findings would
be generalisable to the entire autistic population.

Another limitation concerns the task— while we found
group differences in integrating multiple cues with low
predictive strength (i.e., in the multi-cue probabilistic
learning task), we did not examine whether similar group
differences would be found in the weakly predictive asso-
ciations in single-cue probabilistic learning task, in which
participants infer a single target cue from many cues. If
indeed the reason for group difference in learning asso-
ciations with low predictive strength is related to autistic
individuals’ higher precision in their prediction errors,
then we can expect that it is likely to be the case.

The lack of a significant effect of phase for the non-
autistic participants in the multi-cue task is indeed
puzzling, particularly since there is a significant group
difference in the later phase only for the ambiguous asso-
ciations (i.e., the three-way interaction). Even though
both groups showed above-chance performance even
in the Early phase, suggesting that they learned to some
degree, they did not show significant improvement
from the first half to the second half of the task. This
may be the a result of an arbitrary division of trials into
phases coupled with the relatively small number of tri-
als. Indeed, participants have to learn 16 associations,
with only 8 repetitions per association in the multi-cue
task. It may be that significant improvement may only
be seen with more trials given the difficult nature of the
task. We explored the data using Generalised Additive
Mixed Models (GAMM) to examine whether the trajec-
tories between the groups were different, particularly for
the ambiguous condition in the multi-cue task (see Addi-
tional Material 1). In summary, we found that, similar to
the results reported in the manuscript, the overall per-
formance among the non-autistic group was not signifi-
cantly different from the autistic group for the ambiguous
condition in the multi-cue task. However, their trajecto-
ries were significantly different: whereas the non-autistic
group appears to be improving over time, the autistic
group appears to be performing worse. Towards the end
of the task, performance among both groups diverged,
though not quite completely. This supports the idea that
with more trials, a clearer group difference may emerge.
It is of course also possible that autistic individuals may
eventually ‘catch up’ with more trials, revealing similar
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performance as non-autistic individuals. This could be
examined in future research.

The final limitation concerns the interpretation of the
single-cue task findings. In the single-cue task, autis-
tic individuals discriminated the x/o stimuli better than
non-autistic individuals (though both groups performed
above chance), and probabilistic learning performance
was related to perceptual ability—that is, how well one
discriminated the stimuli (x/0). While participants’ per-
ceptual ability was accounted for in the model to mini-
mize its impact, this may have obscured any potential
group effects in the model. Our findings in the multi-cue
task somewhat address this issue: the stimuli presented in
the multi-cue task are easily discriminable, and we found
no group difference when the predictive strength of the
stimulus is strong (i.e., at least 80% predictive), similar to
the single-cue task (i.e., either 75% or 100% predictive).
Thus, it is unlikely that the lack of a group difference in
the single-cue task is entirely due to group effects being
obscured by their perceptual ability. Nonetheless, future
studies should attempt to replicate the single-cue task
using more easily discriminable stimuli to prevent any
potential confounding effects of perceptual ability on
probabilistic learning.

Conclusion

This study found that autistic adults showed similar per-
formance as non-autistic adults in learning associations
by inferring a single cue or integrating multiple cues
when the predictive strength was strong. However, non-
autistic adults outperformed autistic adults when the
predictive strength was weak, but only in the later phase.
Given the relatively small number of trials for an argu-
ably difficult task, this finding needs to be confirmed with
better methodological refinement. We also found that
autistic individuals were more inclined to incorporate
prediction errors during decision making, which may
explain their atypical performance on learning weakly
predictive associations. Overall, then, this suggests that
atypical probabilistic learning is observed among autis-
tic individuals when learning associations that are weakly
predictive, presumably due to their difficulty ignoring
noisy or unreliable feedback. Our findings have implica-
tions for understanding differences in social cognition,
which is often noisy and weakly predictive, among autis-
tic individuals.

Supplementary Information
The online version contains supplementary material available at https://doi.or
9/10.1186/513229-025-00651-7.
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