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Abstract:   
Various architecture frameworks for software, systems, and enterprises have been proposed in the literature. 
They identified several stakeholders and defined modeling perspectives, architecture viewpoints, and views to 
frame and address stake-holder concerns. However, the stakeholders with data science and Machine Learning 
(ML) related concerns, such as data scientists and data engineers, are yet to be included in existing architecture 
frameworks. Only this way can we envision a holistic system architecture description of an ML-enabled system. 
Note that the ML component behavior and functionalities are special and should be distinguished from traditional 
software system behavior and functionalities. The main reason is that the actual functionality should be 
inferred from data instead of being specified at design time. Additionally, the structural models of ML 
components, such as ML model architectures, are typically specified using different notations and formalisms 
from what the Software Engineering (SE) community uses for software structural models. Yet, these two aspects, 
namely ML and non-ML, are becoming so intertwined that it necessitates an extension of software architecture 
frameworks and modeling practices toward supporting ML-enabled system architectures. In this paper, we 
address this gap through an empirical study using an online survey instrument. We surveyed 61 subject matter 
experts from over 25 organizations in 10 countries. 
 
Index Terms—architecture frameworks, viewpoints, views, ma- chine learning, modeling, empirical research 
 
I. INTRODUCTION 
Architecture frameworks provide conventions, principles, and practices for architecture descriptions in a particular 
application domain or stakeholder community [1]. There exist several well-established examples, including The 
Open Group Architecture Framework (TOGAF) [2], [3], the U.S. Department of Defense Architecture Framework 
(DoDAF) [4], the Treasury Enterprise Architecture Framework (TEAF) [5], the British Ministry of Defence 
Architecture Framework (MODAF) [6], the Zachman Framework [7], the “4+1” View Model of Software 
Architecture [8] and its updated version with the Decision View (9), as well as the Reference Model of Open 
Distributed Process (RM-ODP) [10-13]. TOGAF, DoDAF, TEAF, and MODAF were primarily concerned with 
enterprise architectures. MODAF was replaced by the NATO Architecture Framework (NAF), which in its fourth 
version (NAFv4) [14] provided guidance not only on describing enterprise architectures but also system 
architectures for military and business use. Furthermore, the Zachman Framework, a generic framework for 
information systems and enterprise architectures, and the “4+1” View Model of Software Architecture were 
among the early works that offered the foundations for the more recent architecture frameworks. Last but not 
least, RM-ODP was not merely a reference model but a set of four international standards, including an 
architecture framework for distributed information processing in heterogeneous environments. Each of the 
above-mentioned architecture frameworks identified stakeholders, such as endusers, software developers, 
system integrators, system engineers, business domain experts, executives, and other corporate functions [3], [8]. 
Also, they defined architecture viewpoints and views. Section II provides some background on architectural 
artifacts, such as viewpoints and views. However, prior work in architecture frameworks did not recognize any 
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stakeholder with ML-related concerns, although ML is increasingly making software and information systems 
smart, and ML components are assuming a prominent role in many systems and organizations. Consequently, 
existing architecture frameworks lack any viewpoint or view dedicated to the stakeholders of ML artifacts. Hence, 
we argue that architecture descriptions of smart (i.e., ML-enabled) software systems, which need to reflect on 
their ML components and the interactions of the ML components with the non-ML components, cannot be 
adequately designed using state-of-the-art architecture frameworks. 
 
Essentially, ML is a separate field, a sub-discipline of Artificial Intelligence (AI) rather than Software Engineering 
(SE). Thus, it has its vocabulary, skill set, and know-how, which are different from the ones possessed by typical 
software developers. Recent research work, such as the interviews conducted by Nahar et al. [15], stressed 
the necessity of collaboration between software engineers and other specialists, such as data scientists, for 
building ML-enabled systems and the associated challenges. 
 
In particular, they emphasized the human factors of collaboration, including the need to separate the data science 
and SE work, as well as to coordinate between them, negotiate and document interfaces and responsibilities, and 
plan the system operation and evolution. According to them, those human collaboration challenges appeared to 
be the primary obstacles in developing ML-enabled systems. Additionally, past work mainly focused on ML 
models, such as the challenges of learning, testing, or serving ML models. They were rarely concerned with 
the entire system, with many non-ML parts into which the ML model is embedded as a component, which 
requires coordinating and integrating work from multiple experts or teams [15]. Similarly, Lewis et al. [16] 
elaborated on the so- called ML Mismatch problem that typically occurs in the process of development, 
integration, deployment, and operation of ML-enabled systems due to incorrect assumptions made about system 
elements by different stakeholders, such as data scientists, software engineers, and the operations team. 
 
In this paper, we postulate that ML artifacts of smart systems deserve to be treated as having a separate 
identity, distinguished from software source code and raw data. Moreover, stakeholders should see ML aspects 
of systems in different ways (i.e., using tailored notations and at various detail levels) such that they can better 
understand architecture descriptions of ML-enabled systems. In this way, they should become capable of efficient 
communication with other stakeholders and collaborate to contribute to the system or its architecture 
description, for example, by rigorous requirement elicitation and tracing. For instance, a data scientist is often 
in charge of analytics modeling and is primarily concerned with ML performance metrics, such as Accuracy, 
Precision, and Recall of the ML model when faced with unseen test data.  However, a data engineer is responsible 
for analytics operations, thus ensuring scalable data processing [17]. By contrast, other stakeholders, such as 
software engineers, soft- ware architects, database engineers, and system engineers, consider other aspects of 
performance that might be affected by the performance of the ML component, for example, by the delay 
introduced as a result of the predictions of the ML model, or might be unrelated to the ML component. The same 
holds for security: software and system engineers might underestimate the potential vulnerability of ML-enabled 
systems through adversarial attacks on the ML models. Therefore, data scientists and software engineers often 
have different notions of security. There also exists other challenges, such as the need for versioning ML-artifacts, 
for example, ML models, or at least their parameters (in the case of parametric ML models) and hyperparameters, 
monitorability concerns for ML models, as well as new Ethical, Legal, and Social Implications (ELSI), for example, 
new privacy challenges, or the explainability, fairness, and trustworthiness of ML components. 
 
We argue that existing software system architecture perspectives and viewpoints cannot realize the above-
mentioned requirements. As opposed to classic deterministic or stochastic behavioral, functional, or logical 
models of software systems, ML models rely on inference on data. Apart from certain application scenarios, in 
most cases, ML models will need to be retrained on new data in the future or even continuously trained in an 
online learning scenario. For instance, they can become fooled, biased, or compromised through adversarial 
attacks carried out on the training data that are fed to them. While existing perspectives and viewpoints may 



provide model kinds and architecture views that enable data flow modeling, they essentially lack a systematic 
approach to inference models and mechanisms, such as mathematical formalisms that can capture the underlying 
statistical models or Data-Flow Graphs (DFGs), also known as Computational Graphs (CGs) [18]. Moreover, without 
using the model kinds, formalisms, and notations that are commonly used by ML experts and data scientists, 
architecture models cannot fully support a fruitful stakeholder discussion and communication, nor can they be  
used for system documentation or automated code generation. Those are key use cases for system architecture 
models. 
 
The contribution of this paper is the identification of ML, data science, and data engineering stakeholders and 
their concerns, as well as the division of modeling perspectives, viewpoints, and views that can frame and address 
those concerns to enable a sophisticated and thorough architecture description for ML-enabled systems.  The 
remainder of this paper is structured as follows: Section II provides a brief background, whereas Section III reviews 
the related work in the literature. Further, Section IV elaborates on the research design and methodology. 
Moreover, Section V proposes new stakeholders, viewpoints, and views. Also, Section VI points out possible 
threats to validity. Finally, Section VII concludes and suggests future work. 
 
II. BACKGROUND 
The ISO/IEC/IEEE 42010:2011 standard for architecture descriptions in systems and software engineering [1] 
defines the architecture of a system as fundamental concepts or properties of the ‘system in its environment 
embodied in its elements, relationships, and in the principles of its design and evolution’ [1]. An Architecture 
Description (AD) is a work product that expresses an architecture. Every system stakeholder has various concerns 
regarding the System under Consideration (SuC), also known as the System of Interest (SoI), in relation to its 
environment. Concerns arise throughout the life cycle of the system from the system requirements, design 
choices, implementation, and operations.  
 
Performance, reliability, security, privacy, distribution, openness, evolvability, modularity, cost, and regulatory 
compliance are a number of examples of concerns [1], [3]. Furthermore, Separation of Concerns (SoC), which is a 
vital design principle in SE, can be applied at different abstraction levels. At a lower level, it is interpreted as 
the modularity of the software system implementation, with information hiding and encapsulation in modules 
that have well-defined interfaces. However, at a higher level, it means describing the system architecture from 
the perspective of different sets of concerns (i.e., different architecture viewpoints).  
 
This is what an architecture view does. It is a work product that expresses ‘the architecture of a system from the 
perspective of specific system concerns’ [1]. Additionally, an architecture viewpoint is a work product that 
establishes ‘the conventions for the construction, interpretation, and use of architecture views to frame specific 
system concerns’ [1]. In other words, a view is what a stakeholder can see, whereas a viewpoint is where the 
stakeholder is looking from (i.e., the perspective or template that determines what they should see). A viewpoint 
is generic and can be stored in a library for reuse.  However, a view is specific to the architecture for which it 
is created [3]. For instance, Table I and Figure 1 illustrate a sample architecture viewpoint and its corresponding 
architecture view, respectively, based on the TOGAF architecture framework. The view describes the architecture 
of a Cyber-Physical System (CPS) concerning the physical location of the sensors in the distributed system. 

 
TABLE I 

 
A SAMPLE ARCHITECTURE VIEWPOINT IN TOGAF [3] 

 
 

Element Description 

Stakeholders 

Concerns 

Modeling tech- 
nique 

Chief Technology Officer, system engineer, system integrator. 
 
Show the top-level relationships between geographical sites and deployed sensors. 
Nested boxes diagram. Outer boxes = locations; inner boxes = sensors. The semantics of 
nesting = sensors deployed at the locations. 

 



 
Fig. 1. A sample architecture view in TOGAF [3] governed by the viewpoint of Table I 

           
The “4+1” View Model of Software Architecture [8], which was proposed in 1995 and updated in 2009 [9], 
considers the following architecture viewpoints1 for software systems: i) The logical viewpoint concentrates on 
the functionality of the software system. The key stakeholder group whose concerns are framed by this viewpoint 
is the end-user group. Moreover, the components in the views associated with this viewpoint are often classes. 
ii) The process viewpoint focuses on the non-functional aspects, such as performance, availability, fault tolerance, 
integrity, and scalability. This viewpoint is considered primarily for system integrators and system engineers. 
Furthermore, the components in the views associated with this viewpoint are typically tasks. iii) The development 
viewpoint is concerned with the software development and management aspects, such as the subsystems and 
modules’ organization, reuse, and portability. The main stakeholder groups here are the programmer group (i.e., 
software developers) as well as software managers. Also, the components in the views associated with this 
viewpoint are usually modules and subsystems. 

 

iv) The physical viewpoint deals with scalability, performance, and availability on the physical layer, thus 
considering the network communications, distribution, topology, and the mapping of software onto the hardware. 
The main stakeholder group here is the system engineer group. Moreover, the components in the views 
associated with this viewpoint are often nodes. 
 

v) The scenarios viewpoint ensures understandability and includes a small set of use case scenarios that can 
show how the elements of the above-mentioned viewpoints can work together. In fact, this viewpoint is an 
abstraction of the system requirements. It is worth mentioning that this viewpoint is in some sense redundant 
from the other ones. This is why the name contains ‘+1’. However, it serves the important purpose of being a 
driver to discover the architectural elements during the design phase and playing a validation and illustration 
role after the completion of the design for the test of an initial system prototype. This viewpoint is mainly 
intended for end-users and software developers. Lastly, the components of the views associated with this 
viewpoint are steps and scripts. vi) The decision viewpoint: Architects have various design choices and make a lot 
of design decisions. These decisions must be rigorously documented. The focus of this new viewpoint in the 
revised version of the original ‘4+1’ model is on design decisions. 

 
Further, the aforementioned standard [1] defined a model kind as a set of conventions for a type of modeling. An 
architecture viewpoint comprises one or more model kinds. Similarly, an architecture view comprises one or more 
architecture models. Additionally, each and every architecture viewpoint governs one or more architecture views; 
also, each and every model kind governs one or more architecture models. For instance, ‘data flow diagrams, class 
diagrams, Petri nets, balance sheets, organization charts, and state transition models’ are model kinds [1]. Finally, 
architecting is the ‘process of conceiving, defining, expressing, documenting, communicating, certifying proper 
implementation of, maintaining, and improving an architecture throughout a system life cycle’ [1]. It is typically 
conducted in the context of a project or an organization. 
1Note that they used the term view in their work, which corresponded to the notion of viewpoint as defined by ISO/IEC/IEEE 42010:2011 [1]. 
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III. RELATED WORK 
The “4+1” View Model of Software Architecture, as explained in Section II, was an early but leading work 
concerned with the architecture of software systems. Other architecture frameworks, such as the Zachman 
Framework [7], which preceded this, or the other ones that succeeded it (see Section I), had also identified a 
number of stakeholders, as well as several viewpoints and views. In the following, we refer to DoDAF [4] and 
TOGAF [2], [3] whose latest versions were published in 2010 and 2018, respectively, as two representative 
examples. In particular, we highlight their data-related aspects since those are the most related ones to the target 
of this study.  
 
DoDAF [4] defined several viewpoints including the Data and Information Viewpoint 1 (DIV-1, called conceptual 
data model), DIV-2 (called logical data model), and DIV-3 (called physical data model). DIV-1 was mainly 
intended for non- technical stakeholders and showed the high-level data concepts and their relationships. 
Relationships at this level would be simple (i.e., not attributed). However, DIV-2 bridged the gap between the 
conceptual and physical levels by introducing the attributes and structural business process (activity) rules 
that formed the data structure. This viewpoint was intended for system architects and analysts. For example, 
an Entity- Relationship (ER) diagram or a Class diagram could be deployed as a candidate model kind for this 
viewpoint. Lastly, DIV-3 provided the physical schema for the data and information and was close to the actual 
implementation level. This could often be represented by tables, records, and keys in a relational database 
management system or through objects in an object-oriented data model. The physical data model (i.e., DIV-
3) was intended for database engineers, software developers, and system engineers.   
 
Moreover, the TOGAF standard [2], [3] is closely related to the Zachman Framework [7]2. In its 2006 version (i.e., 
v8.1.1), TOGAF [2] adopted the data flow viewpoint3, which was intended for database engineers, ‘concerned with 
the storage, retrieval, processing, archiving, and security of data’, thus ‘assuring ubiquitous access to high-quality 
data’ [2]. Further, the latest version of TOGAF (v9.2) from 2018 [3] promoted a set of data-related viewpoints 
(which they called data diagrams): i) The conceptual data viewpoint had the key purpose of depicting the 
relationships between the critical data entities of an enterprise. This viewpoint was intended for business 
stakeholders. ER diagrams or simplified UML Class diagrams could be deployed as the model kinds supporting this 
viewpoint. ii) The logical data viewpoint was intended for application developers and database designers and 
showed the logical views of the relationships between the critical data entities within an enterprise. iii) The data 
dissemination viewpoint illustrated the relationship between data entity, business service, and application 
components. It showed how the logical entities were physically realized by application components. iv) The data 
security viewpoint intended to depict which actor (i.e., person, organization, or system) has access to which enterprise 
data. This could be demonstrated in a matrix form or as a mapping. Moreover, it could show compliance with data 
privacy laws and other applicable regulations. v) The data migration viewpoint showed the flow of data between the 
source and target applications when implementing a package or packaged service-based solution, for example, if a 
legacy application was to be replaced. Packages might have their own data model. Thus, data transformation might be 
necessary. The transformation could include data quality processes, namely data cleansing, matching, merging, and 
consolidating data from different sources, as well as sourceto-target mappings. This viewpoint could be deployed for 
data auditing and establishing traceability. The detailed level of the supporting views could vary. vi) The data life cycle 
viewpoint enabled managing business data throughout their life cycle from conception until disposal. Each change in 
the state of data should be shown through the views supporting this viewpoint. The data were considered entities in 
their own rights, decoupled from business processes and activities. This allowed common data requirements to be 
identified.  It is evident that none of the architecture frameworks included any stakeholders, perspectives, 
viewpoints, views, or model kinds that support data scientists and their collaboration and communication with 
other stakeholders in the course of system architecture design for ML-enabled systems, which is required in 
Artificial Intelligence (AI) Engineering.  Recently, various works have pointed out the need for upgrading 
architecture frameworks to support  

2In fact, there exists a mapping [2] between the TOGAF Architecture Development Method (ADM) and the Zachman Framework. 
3Note that they used the term view in their work, which corresponded to the notion of viewpoint as defined by ISO/IEC/IEEE 42010:2011 [1]. 



 
ML-enabled systems. Almost around the same time that we conducted our empirical study (2021), Muccini 
and Vaidhyanathan [19] published a related research paper based on their experience in architecting an ML-
based software system. They identified the following stakeholders with ML-related concerns: data scientists, ML 
developers, ethics experts, and data engineers.  
 
Moreover, they envisioned the following concerns for them: ML model accuracy, model versioning, data quality, 
privacy, ethics, framework, and algorithmic choice. Our empirical results confirmed their identified stakeholders 
and had some overlap with their stated concerns.  Additionally, Lewis et al. [20] illustrated the role of architects 
in ML-enabled systems and highlighted some new challenges faced by architects and other stakeholders in 
devising software architecture of ML-enabled software systems, namely software systems that rely on one or more 
ML components (including ML models) to provide their capabilities. Their study was also published in 2021 when 
we conducted our survey. Their work emphasized the importance of bringing the SE and data science 
communities together to address the concerns of both stakeholder groups holistically. They also agreed with 
our understanding that ML artifacts must be treated as special software artifacts, and existing principles and 
practices in architecture frameworks must be updated to address new concerns emerging from these artifacts. 
 
We started from our own experience to identify the gap in the literature and formulate the research questions. 
However, unlike most of the related work, we conducted an empirical study that referred to domain experts and 
asked them for their input, positions, and preferences on the matter. Note that Lewis et al. [16] also conducted 
practitioner interviews as part of their work. They showed that the development and deployment of ML-enabled 
systems involve three different perspectives, which include data science, software engineering, and operations. If 
they are misaligned due to incorrect assumptions, they cause ML mismatches, which can result in failed systems. 
Their study was also published in 2021 when we surveyed our experts. 

 
IV.  RESEARCH DESIGN AND METHODOLOGY 
While literature review surveys, systematic literature re- views, and meta-analyses are valuable, we lack 
sufficient qualitative and quantitative empirical studies that offer expert visions and open up new horizons for 
software engineering research.  Therefore, given the new nature of the topic at the intersection of software 
system architecture frameworks and ML, we decided to carry out such a study with 65 subject matter experts 
from more than 25 organizations in over 10 countries4 (Belgium, Canada, Denmark, France, Germany, Serbia, 
Switzerland, Turkey, the United Kingdom, and the United States) to devise and validate the proposed 
framework. We postulated the following Research Questions (RQs): RQ1) Who has a stake in ML-enabled 
software systems and their architecture design? RQ2) What are the preferred formalisms, notations, and, in 
general, model kinds supporting viewpoints and their corresponding views for each stakeholder group, in 
particular, for collaborating with those in the data science domain, who often use different model kinds from 
what the Software Engineering (SE) community uses? 
 
We conducted research in two steps: 1) We interviewed four selected domain experts to gain some insight into 
the problem domain and validate the interview questions. To this aim, we deployed the Qualitative Surveys 
(Interview Studies) empirical research method [21]. 2) We adopted the quantitative empirical research method, 
called Questionnaire Surveys [22] and carried out an online survey with 61 participants. 
 
Step 1: We interviewed four experts from the authors’ networks from May to June 2021. The interviewee selection 
was based on convenience sampling (i.e., not random). The interviewee profiles were as described in Table II. The 
numbers in parentheses denote the frequencies. The interviews were semi-structured with open questions. 
 
Step 2: We carried out a survey study from July to September 2021 to answer RQ1 and RQ2 above. The survey 
questionnaire was offered through a link (URL) as an online5, self-administered survey, with the option of fully 



anonymous participation in the study. However, we collected the IP addresses to prevent any possible redundant 
participation. The questionnaire had four sections and a total of 25 questions. The order of the questions in 
each section and the order of the choices in the case of multiple-choice questions would be set on a random 
basis for each participant. We had a total of 121 participants, out of which 60 participants did not answer the 
questionnaire at all. Therefore, we took the results of the remaining 61 participants into account.   The selection 
process for the invitation of the subject matter experts to participate in this study was again based on 
convenience sampling (i.e., not random) through the authors’ networks, for example, by direct invitation of peers 
via email and sharing the URL on LinkedIn. Part of the participants’ demographic information is summarized in 
Table III (the numbers in parentheses de- note the frequencies). The average participation time was 14 minutes, 
whereas the median was 11 minutes. All questions were optional to answer except for the two questions regarding 
the consent of the survey participants with respect to their anonymity and receiving a pre-print of the study in 
the future. 

TABLE II 
SUMMARY OF THE DEMOGRAPHIC INFORMATION OF THE INTERVIEW PARTNERS 

 

Type Breakdown 

Sex or gender (4) 
Age group (4) 
Highest degree (4) 
Field of expertise 
(4) Job or 
occupation (4) 

female (1), male (3), other (0), no answer (0) 
below 18 (0), 18-24 (0), 25-39 (4), 40-60 (0), 
60 plus (0), no answer (0) 
Bachelor’s (1), Master’s (1), Ph.D. (2), No aca- 
demic degree (0), Other (0), no answer (0) 
ML & SSE (1), Model-Driven Engineering (2), general SSE (1) 
researcher (1), senior software engineer (1), sales software engineer (1), data scientist (1) 

 
TABLE III 

SUMMARY OF THE SURVEY PARTICIPANTS’ DEMOGRAPHIC INFORMATION 
 

Type Breakdown 

Sex or gen der 
(61) 

female (5), male (31), other (0), no answer (25) 

Age group (61) below 18 (0), 18-24 (2), 25-39 (30), 40-60 (6), 60 plus 
 (1), no answer (22) 
 
Highest degree 
(61) 

 
Bachelor’s (3), Master’s (21), Ph.D. (17), No academic degree (0), Other (0), no answer (20) 
 
 
beginner (6), medium level (18), expert (16), no self-estimation (i.e., don’t know) (2), no 
answer (19) 

 

DEA and ML 
expertise 
(61) 
 
SE expertise (61) 

 
beginner (7), medium level (14), expert (18), no self 
estimation (i.e., don’t know) (2), no answer (20)  

 
Job or 
occupation (61) 

 

data scientist & ML engineer (12), data engineer (1), soft-ware engineer (6),  

software architect (4), system engineer 

(4), data science & ML researcher (3), SE researcher (2), 

CS student (1), software community manager (1), CTO 

(1), software tester (1), no answer (25) 

 

4The employment location of each expert at the interview or survey time was taken into account. 



5We used the open-source Lime Survey software [23] on our own server. 

V. ENHANCING ARCHITECTURE FRAMEWORKS 
Existing software system architecture frameworks fall short of supporting a holistic architecture description for 
ML- enabled systems. Some members of the Software Engineering 
 

TABLE IV 
SUMMARY OF THE DEMOGRAPHIC INFORMATION OF THE INTERVIEW PARTNERS 

 IN THE SECOND ROUND OF EXPERT INTERVIEWS 
 

Type Breakdown 

Sex or gender (12) 
Age group (12) 
 
Highest degree 
(12)  
Field of expertise 
(12) 
Job or 
occupation (12) 

female (1), male (11), other (0), no answer (0) 
below 18 (0), 18-24 (0), 25-39 (5), 40-60 (7), 
60 plus (0), no answer (0) 
Bachelor’s (0), Master’s (2), Ph.D. (10), No 
academic degree (0), Other (0), no answer (0) 
ML (3), CPSs (3), MDE (2), MDE & CPSs (2), 
general SSE (2) 
professor (6), researcher (2), industrial practitioner 
(1), company co-founder (2), project 
manager (1) 

 
(SE) community may argue that the ML-related functionality might be specified using existing functional, 
behavioral, or logical model kinds, and perhaps the structure of ML models might be specified using existing 
structural model kinds. However, looking at the reality and state of practice in ML, data science, and data 
engineering, as well as the expectations of the subject matter experts in those fields, it is evident that this wish is 
simply not feasible. ML components are indeed software artifacts, but they are very special ones. As also stated 
by Lewis et al. [20], besides the data-dependent behavior of ML models, the necessity of detecting and responding 
to drift over time and timely capture of ground truth to inform retraining are among some of the unique 
characteristics of ML components that pose new challenges to software architects of ML-enabled systems and 
bring new quality attribute concerns (e.g., with respect to monitorability). Hence, we have to extend our software 
architecture frameworks if we want our software system architecture descriptions to include this vital aspect of 
ML-enabled systems, which is affecting the software systems’ behaviors and even structures in an unprecedented 
manner. 
 
In this section, we enhance architecture frameworks by proposing new stakeholders, viewpoints, and views, as 
explained below. 
 
A. Identified stakeholders 
In the following, we present the list of identified stakeholder groups for modern systems, software, and 
enterprises. In particular, we concentrate on the recently emerged ones who may have ML-related concerns, such 
as data scientists and data engineers. 
 
The following stakeholder groups have already been considered in prior architecture frameworks: 1) end-users, 
2) business stakeholders, 3) database designers and engineers, 4) software architects and engineers (i.e., 
developers), 5) system designers, engineers, and integrators. Additionally, we believe that 6) network engineers 
and 7) security experts should be distinguished from system engineers and software engineers, respectively, given 
the sophisticated level of knowledge and skills that are required for designing and managing secured, pervasive 
technologies of modern systems and organizations. Furthermore, we noticed the stakeholder groups below during 
the interviews: 8) safety and regulatory compliance engineers, 9) data protection (privacy) officers, and 10) ethics 



committees or boards. Also, the online survey participants pointed out the following stakeholder groups: 11) 
quality assurance (test) engineers and 12) maintenance managers. Last but not least, we propose counting 13) 
data scientists (including ML engineers) and 14) data engineers among the stakeholders of mod- ern systems, 
software, and enterprises, which often contain ML components or ML-enabled (sub-)systems. The proposed 
stakeholder groups were validated through the interviews and the online survey. 
 
Data scientists are responsible for analytics modeling. In fact, the task of developing methods for building efficient 
Data Analytics (DA) models (including ML models) to enable systems that can analyze data and learn from data 
lies at the core of data science. However, there is also a need for technologies regarding the deployment 
of DA models in products, services, and operational systems. This part is known as analytics operations. Data 
engineers are typically concerned with this part, which is also called Data Engineering (DE) [17]. Together, DA 
(i.e., data science) and DE are called Data Engineering and Analytics (DEA) [24] or Data Science and Engineering 
(DSE) [25]. The typical workflow comprises analytics modeling (e.g., training ML models) by data scientists, 
followed by the integration and deployment of the data analytics artifacts (e.g., the trained ML models) in 
the data analytics and ML components, as well as in the larger systems (i.e., ML-enabled systems) by data 
engineers in collaboration with software engineers, database engineers, system engineers, etc. Afterward, the 
system should be handed over to the operations team [16]. 
 
Lastly, it is clear that DA models should not be confused with data models, datasets, or data instances. For 
instance, a DA (e.g., ML) model can be a Probabilistic Graphical Model (PGM), an Artificial Neural Network (ANN), 
or a Hidden Markov Model (HMM), which may enable inference on data. By contrast, raw data in datasets or data 
streams have a different nature. For example, one can use raw data to train an ML model. Also, a data model 
refers to an abstract model of the entities and their relationships in a database. Therefore, data models must be 
distinguished from DA models. Similarly, data scientists and data engineers should not be confused with database 
engineers. 
 
B. Proposed viewpoints and views 
We propose two new architecture viewpoint categories to frame the concerns of data scientists and data 
engineers in the architecture frameworks of systems, software, and enterprises. We call the new viewpoint 
categories analytics modeling (alternatively DA or data science) and analytics operations (or DE), respectively 
[17]. Moreover, we propose adopting and adapting existing notations and model kinds to realize corresponding 
views for the new viewpoints, as well as new views for the viewpoints of other stakeholders communicating and 
collaborating with data scientists and data engineers. 
 
According to our own knowledge about the state of practice in the field of DEA (or DSE), we envisioned the 
mathematical notations commonly used in DA and ML, as well as the graphical notation of PGMs [26], and the 
Data-Flow Graphs (DFGs), also known as Computational Graphs (CGs) [18] for ANNs, as potentially adequate 
candidates for providing the necessary model kinds that should serve the architecture views required for 
supporting the proposed new architecture view- points. In addition, we assumed that existing UML diagrams could 
be adopted for adapting the viewpoints of other stake- holders in order to enable their appropriate 
communication and collaboration with data scientists and data engineers. The empirical study through the survey 
questionnaire confirmed these assumptions and helped us devise new viewpoints and views using existing 
notations and model kinds, as illustrated in Table V. The list of notations and model kinds in each row of the table 
is ordered based on the opinions of the survey participants concerning the suitability of each option for the specific 
purpose. The radar diagrams in Figures 2 and 3 show this for the collaboration of data scientists with their peers, 
whereas the ones in Figures 4 and 5 demonstrate this for the collaboration of data engineers with their peers. In 
fact, we asked the same question from each stakeholder group in two different ways: what is the best model kind 
and notation for their collaboration; and what is the most suitable model kind and notation for describing the 
system architecture from their viewpoint? 



 
 

 
 
Fig. 2. Model kinds and notations for the collaboration of data scientists with their peers. Choices (clockwise): a) Computational Graphs 
(CG), also known as Data-Flow Graphs (DFG). b) UML class diagrams. c) Mathematical notation showing the mathematical model (e.g., 
probability distributions, as well as objective or loss function). d) Data flow diagrams (e.g., using the UML Activity diagram notation) showing 
the upstream and downstream components in the pipeline. e) Charts, diagrams, or plots (e.g., histograms, pie charts, and scatter plots). f) 
Entity-Relationship (ER) diagrams. g) Probabilistic Graphical Models (PGMs). h) Topic maps, knowledge graphs (e.g., RDF graphs), or 
Ontologies. i) Others (please specify). 

 
VI. THREATS TO VALIDITY 
Notwithstanding the limitations in this study arising from the difficulty of ensuring large-scale participation and 
the concomitant constraints with respect to the sampling choices that had to be made, it is evident that in 
achieving the elicitation of the opinions and insights of a relatively significant number of expert practitioners, 
the study has formalized a useful addition to the existing software architecture frameworks to support ML-
enabled systems. Below, we point out a number of potential internal and external threats to the validity of this 
study. 
 
First, not all interview discussion topics and questions were the same. We deliberately matched the topics and 
questions to the experts’ backgrounds and fields of expertise. Also, the expert interviews had various 
durations (30-60 minutes). The different settings might have affected the results achieved through the 
interviews. 
 
Second, the sampled participant distribution may not be representative enough to make generalizations with 
certainty. Furthermore, we deployed neither a randomized method to select the study participants nor could 
we manage to have all stakeholder groups, roles, jobs, disciplines, or under-represented populations in this 
field in academia and in the industry well represented here. For instance, some of the chosen experts had served 
as the advisors, advisees, or colleagues of some other participants in the study. 
 
Last but not least, similar to other quantitative studies, there could be some construct validity concerns, for 
example, regarding the use of indicators to measure concepts that were not directly measurable, the choice 
of metrics, and the assumption on the validity of the interviews and the survey questionnaire, as well as the 
opinions of the participants. 
 



 
 
Fig. 3. Architecture description from the perspective of data scientists. Choices (clockwise): i) The computational operations and the flow 
of data among them. ii) The processes or components and the flow of data among them. iii) The processes or components and the 
flow of control among them. iv) The underlying mathematical model. v) The data visualization. The workflow or pipeline for data 
analytics and machine learning. vii) The problem (use case) domain concepts and their relationships. viii) Others (please specify). 

 
 

 
 
Fig. 4. Model kinds and notations for the collaboration of data engineers with their peers. The choices were the same as in Figure 2. 

 

 
 
 
Fig. 5. Architecture description from the perspective of data engineers. The choices were the same as in Figure 3. 

 
TABLE V 



NOTATIONS AND MODEL KINDS SUPPORTING THE VIEWPOINTS AND VIEWS OF ML-ENABLED ARCHITECTURE FRAMEWORKS FOR 

FRAMING AND ADDRESSING STAKEHOLDER CONCERNS WITH RESPECT TO ML 
 

Stakeholders communicating or 
collaborating 

Notations and model kinds supporting the viewpoints and views 

Data scientists with their peers i) mathematical notations, ii) charts, diagrams, or plots, iii) DFGs or 
CGs [18], iv) 
PGMs [26], v) data flow diagrams (or UML activity diagrams showing 
the flow of data rather than the flow of control), for example, for the 
data analytics pipeline 

Data engineers with their peers i) data flow diagrams, ii) UML class diagrams, iii) DFGs or CGs [18], 
iv) Entity- 
Relationship (ER) diagrams, v) mathematical notations 

End-users with data scientists and 
engineers 

i) text documents, ii) charts, diagrams, or plots, iii) tables or 
matrices, iv) data flow 
diagrams, v) UML use case diagrams 

  

Business stakeholders with data 
scientists and engineers 
 

i) charts, diagrams, or plots, ii) text documents, iii) tables or 
matrices, iv) UML use 
case diagrams 

Database designers and engineers with 
data scientists 
and engineers 

i) ER diagrams, ii) UML class diagrams, iii) data flow diagrams, iv) 
UML use case 
diagrams, v) tables or matrices 

Software architects and engineers with 
data scientists 
and engineers 

i) UML class diagrams, ii) data flow diagrams, iii) UML use case 
diagrams, iv) ER 
diagrams 

System designers, engineers, 
integrators, and net- 
work engineers with data scientists and 
engineers 

i) UML deployment diagrams, ii) data flow diagrams, iii) DFGs or CGs 
[18] augmented 
with physical (i.e., deployment) information, iv) UML class diagrams 

Security experts with data scientists 
and engineers 

i) data flow diagrams, ii) UML deployment diagrams, iii) DFGs or CGs 
[18] augmented 
with physical (i.e., deployment) information, iv) ER diagrams, v) 
mathematical notations, vi) UML class diagrams 

Safety and regulatory compliance 
engineers, data 
protection (privacy) officers, and ethics 
committees or boards with data 
scientists and engineers 

i) text documents, ii) data flow diagrams, iii) ER diagrams, iv) DFGs 
or CGs [18] 
augmented with physical (i.e., deployment) information, v) tables or 
matrices, vi) UML deployment diagrams 

 
 

 
VII. CONCLUSION AND FUTURE WORK 
In this paper, we have enhanced architecture frameworks to address ML-enabled software systems. We have 
identified the stakeholders who might have concerns with respect to the ML aspects, namely data scientists and 
data engineers. Moreover, we have proposed new architecture viewpoint categories (i.e., analytics modeling and 
analytics operations) as well as model kinds to support these viewpoints and their corresponding views. 
 
The results of this study are expected to improve the effectiveness and increase the efficiency of software 



development projects involving ML-enabled systems, which require the communication and collaboration of 
various stakeholder groups with different backgrounds, concerns, metrics, and vocabularies from different 
domains, organizations, and regions. This expectation is based on the nature of the study, which reflects on the 
expert knowledge and insight as well as the state of practice in the respective fields. 
 
One limitation of the present study was the absence of particular groups of stakeholders, such as the operations 
team (see [16]), the maintenance managers, and quality assurance engineers. The two latter items were suggested 
by our online survey participants. In the future, these and other stakeholder groups can be studied. Also, the 
enhancement of architecture frameworks for other sub-disciplines of Artificial Intelligence (AI) beyond ML should 
be helpful. 
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