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Abstract—Cyber-Physical Systems (CPSs) are systems of systems merging the physical world with the virtual 
world of cyberspace. CPSs are often highly complex and interdisciplinary. Thus, their design, analysis, 
development, performance refinement, and testing require the consideration of multiple aspects from 
various domains. This is even more critical for Machine Learning (ML) enabled CPSs, which are increasingly 
becoming more prevalent. In this study, we take the first step towards collecting a set of quality attributes 
for smart CPSs. Further, we introduce a set of merit criteria for tools that can be used for designing, 
modeling, and developing smart CPSs. This is to provide a framework for the comparison and benchmarking 
of smart CPSs and CPS modeling tools. The framework has been put through the first phase of expert 
interview-based validation. 
 

Index Terms—cyber-physical systems, modeling, quality at- tributes, merit criteria, machine learning, 
qualitative research 

 
 
I. INTRODUCTION 

 
Cyber-Physical Systems (CPSs) are complex systems that connect the physical world with the virtual world 
of cyberspace [1]. A modern car, an aircraft, a smart grid, a robot in a production line, or a computer system 
controlling a chemical process at a plant are examples of CPSs. If a CPS possesses any Artificial Intelligence 
(AI) or cognitive capability, for example, through a Machine Learning (ML) component, it is called a smart 
(i.e., ML-enabled) CPS. Further, a CPS might be connected to the Internet (Internet of Things, IoT) or be 
isolated, possibly due to security and/or privacy concerns. Also, CPSs are typically cross-application 
domains, cross-technologies, and cross-organizations [2]. Therefore, it is vital to have inclusive and 
objective measures for evaluating, comparing, and benchmarking smart CPSs from various viewpoints. 
 
For instance, a software engineer might be concerned with the modularity of the source code. By contrast, 
a data scientist might focus on the accuracy, precision, and recall of the underlying ML model, whereas a 
data engineer might be keen to minimize the footprint (compactness) and latency of the trained ML model 
such that it could fit in the highly limited main memory of a particular Tiny ML device to deliver high- speed 
edge analytics. Each of these stakeholders would assess and score the system in a very different manner. 
Figure 1 illustrates a modern car as an example of a CPS. A key Research Question (RQ) is how we can 
objectively assess and measure the qualities of different CPSs, for example, two cars, thus comparing them 
from various perspectives. Also, another key RQ we ask is how to compare different CPS modeling tools. 
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Fig. 1. How to objectively measure the quality of CPSs and compare them? 
 

The contribution of this paper is twofold: i) It proposes a framework of 26 quality attribute groups to support 
the bench- marking and evaluation of smart CPSs. This includes three subcategories: a) general Systems and 
Software Engineering (SSE) merit criteria; b) merit criteria related to distributed computing, CPSs, and the 
IoT; c) merit criteria related to Data Engineering and Analytics (DEA), as well as ML. ii) It proposes a 
framework of 26 merit criteria groups to help benchmark and evaluate the modeling tools for designing and 
creating smart CPSs. However, most of the proposed quality attributes and merit criteria are generic, thus 
being applicable to systems other than CPSs too. 
 
The remainder of this paper is structured as follows: Section II reviews the state of the art. Moreover, Section 
III elaborates on the proposed quality attributes and merit criteria. Finally, Section IV concludes and suggests 
future work. 
 
II.  RELATED WORK 

Recently, several studies have proposed evaluation criteria and metrics for CPSs. Vogel-Heuser and Prieler 
[3] evaluated selected metrics for the flexibility of Cyber-Physical Production Systems (CPPSs). Moreover, 
Weyrich et al. [4] proposed an evaluation model for the assessment of CPPSs, which included various 
identified performance indicators, such as modularity, complexity, maintainability, production efficiency, 
reconfigurability, automatic planning, automatic adaptation, social interaction, decision support, and 
usability. 
 
Additionally, related work exists in the literature of Model- Driven Software Engineering (MDSE) regarding 
evaluation criteria for modeling environments and Domain-Specific Modelling Languages (DSMLs). For 
instance, Challenger et al. [5] proposed a systematic approach to evaluating DSML environments for Multi-
Agent Systems (MAS). Further, Giraldo et al. [6] concentrated on the topic of quality in Model-Driven 
Engineering (MDE). They elaborated on various facets of quality in MDE and also pointed out a mismatch 
between the notion of quality in the views of industrial practitioners versus researchers in academia. 

 
 
 
 
 
 



 
III. QUALITY ATTRIBUTES AND MERIT CRITERIA 

 
In this section, we propose two sets of quality at- tributes/merit criteria for CPSs and CPS modeling tools. 
We have grouped the closely related attributes/criteria in each part (e.g., security and privacy); 
otherwise, they are listed in an arbitrary order without any intended implication as to ranking. Table I 
summarizes the demographics of the expert interviewees who contributed to the preliminary validation of 
the proposed quality attributes/merit criteria framework. 

TABLE I 
 

           SUMMARY OF THE DEMOGRAPHIC INFORMATION OF THE INTERVIEWEES 
 

Type Breakdown 

Sex or gender (12) female (1), male (11), other (0), no answer (0) 

Age group (12) below 18 (0), 18-24 (0), 25-39 (5), 40-60 (7), 60 plus 
(0), no answer (0) 

Highest degree (12) Bachelor’s (0), Master’s (2), Ph.D. (10), No academic 
degree (0), Other (0), no answer (0) 

Field of expertise (12) ML (3), CPSs (3), MDE (2), MDE & CPSs (2), general 
SSE (2) 

Job or occupation (12) professor (6), researcher (2), industrial practitioner (1), 
company co-founder (2), project manager (1) 

 
 

A. Quality attributes for smart CPSs 
We categorized the smart CPS quality attributes into three groups to focus the discussions with experts in 
the domains most relevant to their respective fields of expertise. These categories are as follows: i) general 
SSE quality attributes (which also hold for CPSs); ii) Quality attributes related to distributed computing, 
CPSs, and the IoT; iii) Quality attributes pertaining to DA (including ML) and DE (i.e., DEA). Under each 
category, a set of quality attributes had already been collected based on insights from previous research 
(see the respective citations). To minimize the risk of interview- induced biasing of the experts’ responses 
to questions, before the commencement of each interview, we asked each expert to state which criteria 
they would use. It is acknowledged that the most significant attribute of every system is the performance 
metric, indicating the extent of fulfillment of the requirements as specified by the stakeholders. 
 

     General SSE quality attributes: 
 
1) Security and privacy protection: Regulatory compliance by design (as applicable) [7]. 
2) Providing high (adaptive) usability, accessibility, user acceptance, as well as social and environmental 

acceptability: This includes sustainability considerations such as energy efficiency, carbon emissions 
footprint, reusability, recyclability, and re-purposability [7]–[11]. 

3) Modularity, maintainability, and evolution support: Simplification by design and eliminating avoidable 
complexity [7], [11], [12]. 

4) Dependability, reliability, trustworthiness, availability, and robustness of performance [7], [11], [12]. 
5) Efficiency, portability, scalability, and concurrency 

[11]. 
6) Expressivity, explainability, and transparency: Avoidance of black box solutions as much as possible to 

suit the user’s needs. 
7) Cost-effectiveness: Cost-effective to procure and maintain (the latter may overlap with the 

maintainability criterion above) [7]. 
8) Learning capability: That is, ML-enabled. 

 
 
 



 
Quality attributes related to distributed computing, CPSs, and the IoT: 
 
1) Safety compliance: Since CPSs deal with the physical world and may interact with humans, they are 

often safety-critical [13], [14]. 
2) Semantic interoperability of heterogeneous systems and open system design: As subset of the so-

called cross-* CPS properties [1], [2], [15]. 
3) Failure recovery handling and resilience: Fault- tolerance and graceful recovery from failure (e.g., the 

capability of an aircraft to fly further beyond the point of a single engine failure and possibly 
glide for a specific distance beyond the point of failure of all its engines). This is a child class 
of the so- called self-* CPS properties, exhibited by reflexive de- sign as a root merit criterion which 
subsumes others, such as self-adaptive, self-learning, self-optimizing, self- monitoring, self-auditing, 
self-diagnosing, self-healing, self-repairing, self-accountable, self-expressive, and explanation-giving 
capability [2], [3], [13], [16]. 

4) Scalability and latency: To satisfy the network throughput requirements and real-time performance as 
applicable IoT requires scalability at a much higher level. 

 
Quality attributes pertaining to Data Engineering and Analytics (DEA): 
 
1) Target-based metrics, such as Accuracy, Precision, Re- call (i.e., the true positive rate, also known as 

sensitivity in the case of binary classification), specificity (i.e., the true negative rate, also known as 
selectivity in the case of binary classification), and F1-measure can be used in the case of 
classification. Also, a confusion matrix is often useful for summarizing the performance of a 
classification algorithm. Moreover, in the case of regression, various error metrics, such as Mean- 
Squared Error (MSE), can be used. It is noted that the target-based metrics may incorporate the 
above- mentioned supervised ML performance metrics and/or other application-specific metrics 
depending on the use context, for example, the unavailability of labeled data and ground truth, such 
as in clustering tasks for which a range of other performance metrics could be deployed. Some notable 
examples include the Silhouette Score, (Adjusted) Rand Index, Mutual Information, Calinski- Harabasz 
Index, Davies-Bouldin Index, and Dunn Index [17], [18]. 

2) High-speed performance in terms of time-to-output (e.g., the latency for making predictions). 
3) Generalization: Robustness of performance even with certain increased noise levels in the datasets or 

changes in the data. 
4) Handling uncertainty: The ability to detect that the data are different from the original data, 

(adversarial) attack detection, the degree to which the system remains capable of maintaining high 
Area Under the Curve (AUC) scores for the Receiver Operating Characteristic (ROC) curve, and the 
quality of calibration of the ML model so that we can interpret the output in terms of a probability. 

5) End-to-end ML: The capability of the ML model to capture the entire ML pipeline (including the 
pre- processing and post-processing tasks) and act as a one- stop-shop, thus offering the so-called end-
to-end ML. 

6) Automated ML (AutoML): The extent to which the ML modeling pipeline stages are (semi)-automated 
involving stages, such as data pre-processing (data cleaning and de-noising, dimensionality reduction, 
sparsity mitigation, re-scaling, standardization, re- sampling, and re-balancing), feature extraction, ML 
model selection, training, and hyperparameter tuning. 

7) Auto annotation: Capabilities to process data with variable annotation formats, machine-readable 
data as well as non-semantic data; (class-) labeled, unlabeled, and partially labeled data for supervised, 
unsupervised, and semi-supervised ML, respectively. 

8) Ethical and legal compliance by design: This is another root class merit criterion, particularly exhibited 
as privacy-preserving by design, dignity-preserving, handling algorithmic bias, inclusiveness by design, 
security by design (e.g., adversarial attacks resistance), environ- mental acceptability (expressed as 
energy efficiency and having a low carbon footprint). 

 
 
 



9) Explainability: This distinguishes explainable by- design ML models, such as PGMs, from those ML 
models that are not explainable by design, such as ANNs. 

10) Scalable batch data processing or offline learning: Coping with large or very large datasets in the 
order of 10-100 thousand, or 100 thousand to 1 million instances. 

11) Efficient stream processing or online learning: Being capable of efficient stream processing or online 
learning (i.e., dealing with unbounded datasets); and possibly ad- dressing continual or lifelong learning 
needs; capability to auto-evolve new models. 

12) Supporting transfer learning. 
13) Disk space and memory usage efficiency: In particular, in the case of resource-constrained devices, 

such as TinyML platforms [19]. 
14) MLOps-enabled: Support for integrative MLOps- DevOps (MLOps is the application of DevOps from SE 

to the ML domain). 
 
B. Merit criteria for CPS modeling tools 

 
1. Domain-specific or domain-agnostic: If domain- specific, then whether the domain of focus is a problem 

(use case) domain (e.g., healthcare) or a solution domain (e.g., cloud computing)? Domain-specific tools 
can often support a higher automation level and generate a higher quality code on average [20]. 
Moreover, if the focus domain is a problem domain, the user of the tool should be a domain expert in 
that vertical (application) domain. In contrast, if the domain of focus is a solution domain, the user of 
the tool should be a practitioner familiar with that area. 

2. Suitability for the application domain: The expresseness of the modeling language deployed by the tool, 
the level of abstract syntax completeness and appropriateness (e.g., the meta-model containing the 
necessary concepts, relationships, and semantics) [5]. 

3. Syntax usability: (i.e., practitioner-friendly syntax) The adequacy and suitability of the vocabulary in the 
case of textual concrete syntax or the diagrams in the case of graphical concrete syntax. 

4. Modeling and development support: Model management (e.g., versioning support), traceability, 
debuggability, documentation support, and testing support. 

5. The extent of support for multiple architecture view- points (for various stakeholders) [6]. 
6. The extent of support for collaborative modeling. 
7. The extent of support for fully automated code generation: End-to-end complete solution generation 

vs. only skeleton generation [5]. 
8. Supported target platforms: Hardware architectures, operating systems, programming languages, and 

APIs supported for code generation. 
9. The extent of support for model checking and formal verification. 
10. The extent of support for simulation at the design time. 
11. Portability and support for web-based access through web browsers. 
12. Interoperability with other tools, APIs, and standards. 
13. Supported ML libraries, frameworks, methods, algorithms, and techniques for code generation of 

ML components. 
14. The extent of support for ML techniques for non-i.i.d1 data, such as sequential data (e.g., time series 

or DNA data). 
15. Certifiably and compliant with code generation: Assured standard compliance of generated code (e.g., 

as required for safety-critical use contexts). 
16. Extensibility and adaptability of the modeling language, including the model transformations. Also, sup- 

port for legacy systems. 
17. Open-source availability: For example, permissive li- cense (such as Apache, MIT, or BSD). 
18. The extent of technical support: As may be available 
19. User support tutorials: The extent to which tutorials and examples are available for the users (and 

developers) as well as their effectiveness towards development efficiency. 
 
 

1The i.i.d. acronym stands for independent and identically distributed 
 



 
20. Performance leap: The extent to which the deployment of the modeling tool enables performance 

efficiency gain for software designers and developers [21]. 
21. Technology Readiness Level (TRL): Technical maturity of the tool. 
22. Code generation quality: This includes a range of merit criteria sub-classes, such as functional 

correctness, efficiency, modularity, and elegance of the generated code [5], [21]. 
23. Report generation: For example, this includes rendering plots and visualization of data to support data 

analytics. 
24. Support for systems integration and networking: For example, support for selection of network 

topology or setting up logical connections (e.g., Virtual Private Networks, VPNs. 
25. Runtime support: This includes support for asset monitoring and management, for example, support 

for Over Air Programming (“OTA”) for sensors, and MOD- ELS@RUNTIME [22]. 
26. DevOps support: The capability to support DevOps pipelines, for example, Continuous Integration (CI) 

setup. 
       
 IV.   CONCLUSION AND FUTURE WORK 

 
In this position paper, we have proposed a framework of quality attributes and merit criteria that support 
the capability assessment of smart CPSs and CPS modeling tools. The framework comprises two sets that 
include 52 quality attributes and merit criteria groups for the mentioned systems and tools. We have 
conducted a literature review and interviewed 12 experts. Our work has taken the initial steps toward 
developing a comprehensive benchmarking framework for smart CPSs and their modeling tools. 
 
In the future, we plan to prioritize the proposed attributes and criteria, reorganize the grouping, and 
possibly extend the sets. Additionally, more concrete and measurable metrics and indicators for each 
attribute/criterion should be determined as part of future work. In some cases, such as the ML target- based 
metrics, this has already been achieved and elaborated. However, the quantification of some other 
attributes/criteria remains a key challenge. Additionally, their interrelations and possible trade-offs should 
be studied in depth. Finally, multiple case studies and further expert interviews will be necessary to validate 
the final framework. 
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