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Abstract—Cyber-Physical Systems (CPSs) are systems of systems merging the physical world with the virtual
world of cyberspace. CPSs are often highly complex and interdisciplinary. Thus, their design, analysis,
development, performance refinement, and testing require the consideration of multiple aspects from
various domains. This is even more critical for Machine Learning (ML) enabled CPSs, which are increasingly
becoming more prevalent. In this study, we take the first step towards collecting a set of quality attributes
for smart CPSs. Further, we introduce a set of merit criteria for tools that can be used for designing,
modeling, and developing smart CPSs. This is to provide a framework for the comparison and benchmarking
of smart CPSs and CPS modeling tools. The framework has been put through the first phase of expert
interview-based validation.

Index Terms—cyber-physical systems, modeling, quality at- tributes, merit criteria, machine learning,
qualitative research

INTRODUCTION

Cyber-Physical Systems (CPSs) are complex systems that connect the physical world with the virtual world
of cyberspace [1]. A modern car, an aircraft, a smart grid, a robot in a production line, or a computer system
controlling a chemical process at a plant are examples of CPSs. If a CPS possesses any Artificial Intelligence
(Al) or cognitive capability, for example, through a Machine Learning (ML) component, itis called a smart
(i.e., ML-enabled) CPS. Further, a CPS might be connected to the Internet (Internet of Things, IoT) or be
isolated, possibly due to security and/or privacy concerns. Also, CPSs are typically cross-application
domains, cross-technologies, and cross-organizations [2]. Therefore, it is vital to have inclusive and
objective measures for evaluating, comparing, and benchmarking smart CPSs from various viewpoints.

For instance, a software engineer might be concerned with the modularity of the source code. By contrast,
a data scientist might focus on the accuracy, precision, and recall of the underlying ML model, whereas a
data engineer might be keen to minimize the footprint (compactness) and latency of the trained ML model
such that it could fit in the highly limited main memory of a particular Tiny ML device to deliver high- speed
edge analytics. Each of these stakeholders would assess and score the system in a very different manner.
Figure 1 illustrates a modern car as an example of a CPS. A key Research Question (RQ) is how we can
objectively assess and measure the qualities of different CPSs, for example, two cars, thus comparing them
from various perspectives. Also, another key RQ we ask is how to compare different CPS modeling tools.
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Fig. 1. How to objectively measure the quality of CPSs and compare them?

The contribution of this paper is twofold: i) It proposes a framework of 26 quality attribute groups to support
the bench- marking and evaluation of smart CPSs. This includes three subcategories: a) general Systems and
Software Engineering (SSE) merit criteria; b) merit criteria related to distributed computing, CPSs, and the
loT; c) merit criteria related to Data Engineering and Analytics (DEA), as well as ML. ii) It proposes a
framework of 26 merit criteria groups to help benchmark and evaluate the modeling tools for designing and
creating smart CPSs. However, most of the proposed quality attributes and merit criteria are generic, thus
being applicable to systems other than CPSs too.

The remainder of this paper is structured as follows: Section Il reviews the state of the art. Moreover, Section
Il elaborates on the proposed quality attributes and merit criteria. Finally, Section IV concludes and suggests
future work.

Il. RELATED WORK

Recently, several studies have proposed evaluation criteria and metrics for CPSs. Vogel-Heuser and Prieler
[3] evaluated selected metrics for the flexibility of Cyber-Physical Production Systems (CPPSs). Moreover,
Weyrich et al. [4] proposed an evaluation model for the assessment of CPPSs, which included various
identified performance indicators, such as modularity, complexity, maintainability, production efficiency,
reconfigurability, automatic planning, automatic adaptation, social interaction, decision support, and
usability.

Additionally, related work exists in the literature of Model- Driven Software Engineering (MDSE) regarding
evaluation criteria for modeling environments and Domain-Specific Modelling Languages (DSMLs). For
instance, Challenger et al. [5] proposed a systematic approach to evaluating DSML environments for Multi-
Agent Systems (MAS). Further, Giraldo et al. [6] concentrated on the topic of quality in Model-Driven
Engineering (MDE). They elaborated on various facets of quality in MDE and also pointed out a mismatch
between the notion of quality in the views of industrial practitioners versus researchers in academia.



I1l. QUALITY ATTRIBUTES AND MERIT CRITERIA

In this section, we propose two sets of quality at- tributes/merit criteria for CPSs and CPS modeling tools.
We have grouped the closely related attributes/criteria in each part (e.g., security and privacy);
otherwise, they are listed in an arbitrary order without any intended implication as to ranking. Table |
summarizes the demographics of the expert interviewees who contributed to the preliminary validation of
the proposed quality attributes/merit criteria framework.

TABLE |

SUMMARY OF THE DEMOGRAPHIC INFORMATION OF THE INTERVIEWEES

Type Breakdown
Sex or gender (12) female (1), male (11), other (0), no answer (0)
Age group (12) below 18 (0), 18-24 (0), 25-39 (5), 40-60 (7), 60 plus

(0), no answer (0)

Highest degree (12) Bachelor’s (0), Master’s (2), Ph.D. (10), No academic
degree (0), Other (0), no answer (0)

Field of expertise (12) | ML (3), CPSs (3), MDE (2), MDE & CPSs (2), general

SSE (2)

Job or occupation (12) | professor (6), researcher (2), industrial practitioner (1),
company co-founder (2), project manager (1)

A. Quality attributes for smart CPSs

We categorized the smart CPS quality attributes into three groups to focus the discussions with experts in
the domains most relevant to their respective fields of expertise. These categories are as follows: i) general
SSE quality attributes (which also hold for CPSs); ii) Quality attributes related to distributed computing,
CPSs, and the loT; iii) Quality attributes pertaining to DA (including ML) and DE (i.e., DEA). Under each
category, a set of quality attributes had already been collected based on insights from previous research
(see the respective citations). To minimize the risk of interview- induced biasing of the experts’ responses
to questions, before the commencement of each interview, we asked each expert to state which criteria
they would use. It is acknowledged that the most significant attribute of every system is the performance
metric, indicating the extent of fulfillment of the requirements as specified by the stakeholders.

General SSE quality attributes:

1) Security and privacy protection: Regulatory compliance by design (as applicable) [7].

2) Providing high (adaptive) usability, accessibility, user acceptance, as well as social and environmental
acceptability: This includes sustainability considerations such as energy efficiency, carbon emissions
footprint, reusability, recyclability, and re-purposability [7]-[11].

3) Modularity, maintainability, and evolution support: Simplification by design and eliminating avoidable
complexity [7], [11], [12].

4) Dependability, reliability, trustworthiness, availability, and robustness of performance [7], [11], [12].

5) Efficiency, portability, scalability, and concurrency
[11].

6) Expressivity, explainability, and transparency: Avoidance of black box solutions as much as possible to
suit the user’s needs.

7) Cost-effectiveness: Cost-effective to procure and maintain (the latter may overlap with the
maintainability criterion above) [7].

8) Learning capability: That is, ML-enabled.



Quality attributes related to distributed computing, CPSs, and the IoT:

1)
2)

3)

4)

Safety compliance: Since CPSs deal with the physical world and may interact with humans, they are
often safety-critical [13], [14].

Semantic interoperability of heterogeneous systems and open system design: As subset of the so-
called cross-* CPS properties [1], [2], [15].

Failure recovery handling and resilience: Fault- tolerance and graceful recovery from failure (e.g., the
capability of an aircraft to fly further beyond the point of a single engine failure and possibly
glide for a specific distance beyond the point of failure of all its engines). This is a child class
of the so- called self-* CPS properties, exhibited by reflexive de- sign as a root merit criterion which
subsumes others, such as self-adaptive, self-learning, self-optimizing, self- monitoring, self-auditing,
self-diagnosing, self-healing, self-repairing, self-accountable, self-expressive, and explanation-giving
capability [2], [3], [13], [16].

Scalability and latency: To satisfy the network throughput requirements and real-time performance as
applicable loT requires scalability at a much higher level.

Quality attributes pertaining to Data Engineering and Analytics (DEA):

1)

2)
3)

4)

5)

6)

7)

8)

Target-based metrics, such as Accuracy, Precision, Re- call (i.e., the true positive rate, also known as
sensitivity in the case of binary classification), specificity (i.e., the true negative rate, also known as
selectivity in the case of binary classification), and Fl1-measure can be used in the case of
classification. Also, a confusion matrix is often useful for summarizing the performance of a
classification algorithm. Moreover, in the case of regression, various error metrics, such as Mean-
Squared Error (MSE), can be used. It is noted that the target-based metrics may incorporate the
above- mentioned supervised ML performance metrics and/or other application-specific metrics
depending on the use context, for example, the unavailability of labeled data and ground truth, such
as in clustering tasks for which a range of other performance metrics could be deployed. Some notable
examples include the Silhouette Score, (Adjusted) Rand Index, Mutual Information, Calinski- Harabasz
Index, Davies-Bouldin Index, and Dunn Index [17], [18].

High-speed performance in terms of time-to-output (e.g., the latency for making predictions).
Generalization: Robustness of performance even with certain increased noise levels in the datasets or
changes in the data.

Handling uncertainty: The ability to detect that the data are different from the original data,
(adversarial) attack detection, the degree to which the system remains capable of maintaining high
Area Under the Curve (AUC) scores for the Receiver Operating Characteristic (ROC) curve, and the
quality of calibration of the ML model so that we can interpret the output in terms of a probability.
End-to-end ML: The capability of the ML model to capture the entire ML pipeline (including the
pre- processing and post-processing tasks) and act as a one- stop-shop, thus offering the so-called end-
to-end ML.

Automated ML (AutoML): The extent to which the ML modeling pipeline stages are (semi)-automated
involving stages, such as data pre-processing (data cleaning and de-noising, dimensionality reduction,
sparsity mitigation, re-scaling, standardization, re- sampling, and re-balancing), feature extraction, ML
model selection, training, and hyperparameter tuning.

Auto annotation: Capabilities to process data with variable annotation formats, machine-readable
data as well as non-semantic data; (class-) labeled, unlabeled, and partially labeled data for supervised,
unsupervised, and semi-supervised ML, respectively.

Ethical and legal compliance by design: This is another root class merit criterion, particularly exhibited
as privacy-preserving by design, dignity-preserving, handling algorithmic bias, inclusiveness by design,
security by design (e.g., adversarial attacks resistance), environ- mental acceptability (expressed as
energy efficiency and having a low carbon footprint).



9) Explainability: This distinguishes explainable by- design ML models, such as PGMs, from those ML
models that are not explainable by design, such as ANNs.

10)Scalable batch data processing or offline learning: Coping with large or very large datasets in the
order of 10-100 thousand, or 100 thousand to 1 million instances.

11) Efficient stream processing or online learning: Being capable of efficient stream processing or online
learning (i.e., dealing with unbounded datasets); and possibly ad- dressing continual or lifelong learning
needs; capability to auto-evolve new models.

12) Supporting transfer learning.

13) Disk space and memory usage efficiency: In particular, in the case of resource-constrained devices,
such as TinyML platforms [19].

14) MLOps-enabled: Support for integrative MLOps- DevOps (MLOps is the application of DevOps from SE
to the ML domain).

B. Merit criteria for CPS modeling tools

1. Domain-specific or domain-agnostic: If domain- specific, then whether the domain of focus is a problem
(use case) domain (e.g., healthcare) or a solution domain (e.g., cloud computing)? Domain-specific tools
can often support a higher automation level and generate a higher quality code on average [20].
Moreover, if the focus domain is a problem domain, the user of the tool should be a domain expert in
that vertical (application) domain. In contrast, if the domain of focus is a solution domain, the user of
the tool should be a practitioner familiar with that area.

2. Suitability for the application domain: The expresseness of the modeling language deployed by the tool,
the level of abstract syntax completeness and appropriateness (e.g., the meta-model containing the
necessary concepts, relationships, and semantics) [5].

3. Syntax usability: (i.e., practitioner-friendly syntax) The adequacy and suitability of the vocabulary in the
case of textual concrete syntax or the diagrams in the case of graphical concrete syntax.

4. Modeling and development support: Model management (e.g., versioning support), traceability,
debuggability, documentation support, and testing support.

5. The extent of support for multiple architecture view- points (for various stakeholders) [6].

6. The extent of support for collaborative modeling.

7. The extent of support for fully automated code generation: End-to-end complete solution generation
vs. only skeleton generation [5].

8. Supported target platforms: Hardware architectures, operating systems, programming languages, and
APIs supported for code generation.

9. The extent of support for model checking and formal verification.

10.The extent of support for simulation at the design time.

11.Portability and support for web-based access through web browsers.

12.Interoperability with other tools, APls, and standards.

13.Supported ML libraries, frameworks, methods, algorithms, and techniques for code generation of
ML components.

14.The extent of support for ML techniques for non-i.i.d* data, such as sequential data (e.g., time series
or DNA data).

15.Certifiably and compliant with code generation: Assured standard compliance of generated code (e.g.,
as required for safety-critical use contexts).

16.Extensibility and adaptability of the modeling language, including the model transformations. Also, sup-
port for legacy systems.

17.0pen-source availability: For example, permissive li- cense (such as Apache, MIT, or BSD).

18.The extent of technical support: As may be available

19.User support tutorials: The extent to which tutorials and examples are available for the users (and
developers) as well as their effectiveness towards development efficiency.

Ithe iid. acronym stands for independent and identically distributed



20.Performance leap: The extent to which the deployment of the modeling tool enables performance
efficiency gain for software designers and developers [21].

21.Technology Readiness Level (TRL): Technical maturity of the tool.

22.Code generation quality: This includes a range of merit criteria sub-classes, such as functional
correctness, efficiency, modularity, and elegance of the generated code [5], [21].

23.Report generation: For example, this includes rendering plots and visualization of data to support data
analytics.

24.Support for systems integration and networking: For example, support for selection of network
topology or setting up logical connections (e.g., Virtual Private Networks, VPNs.

25.Runtime support: This includes support for asset monitoring and management, for example, support
for Over Air Programming (“OTA”) for sensors, and MOD- ELS@RUNTIME [22].

26.DevOps support: The capability to support DevOps pipelines, for example, Continuous Integration (Cl)
setup.

IV. CONCLUSION AND FUTURE WORK

In this position paper, we have proposed a framework of quality attributes and merit criteria that support
the capability assessment of smart CPSs and CPS modeling tools. The framework comprises two sets that
include 52 quality attributes and merit criteria groups for the mentioned systems and tools. We have
conducted a literature review and interviewed 12 experts. Our work has taken the initial steps toward
developing a comprehensive benchmarking framework for smart CPSs and their modeling tools.

In the future, we plan to prioritize the proposed attributes and criteria, reorganize the grouping, and
possibly extend the sets. Additionally, more concrete and measurable metrics and indicators for each
attribute/criterion should be determined as part of future work. In some cases, such as the ML target- based
metrics, this has already been achieved and elaborated. However, the quantification of some other
attributes/criteria remains a key challenge. Additionally, their interrelations and possible trade-offs should
be studied in depth. Finally, multiple case studies and further expert interviews will be necessary to validate
the final framework.
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