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Time-consistent consumption-investment and proportional1

reinsurance in market model under Markovian regime-switching2

Nour El Houda Bouaicha �, Farid Chighouby, Abhishek Pal Majumder z3

4

Abstract. This paper presents a characterization of equilibrium in a game-theoretic description of discount-5

ing stochastic consumption, investment and reinsurance problem, in which the controlled state process evolves6

according to a multi-dimensional linear stochastic di¤erential equation, when the noise is driven by a Brownian7

motion under the e¤ect of a Markovian regime-switching. The running and the terminal costs in the objective8

functional, are explicitly depended on some general discount functions, which create the time-inconsistency of9

the considered model. Open-loop Nash equilibrium controls are described through some necessary and su¢ cient10

equilibrium conditions as well as a veri�cation result. A state feedback equilibrium strategy is achieved via11

certain partial di¤erential-di¤erence equation. As an application, we study an investment-consumption and equi-12

librium reinsurance/new business strategies for some particular cases of power and logarithmic utility functions.13

A numerical example is provided to demonstrate the e¢ cacy of theoretical results.14

15

Keys words: Stochastic Optimization, Investment-Consumption Problem, Merton Portfolio Problem, Non-16

Exponential Discounting, Time-Inconsistency, Equilibrium Strategies, Stochastic Maximum Principle.17
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18

1 Introduction19

In recent years, time-inconsistent control problems have received signi�cant attention in economics and mathe-20

matical �nance. For a dynamic control issue, time-inconsistency suggests that the Bellman�s optimality principle21

does not hold in this case. In another way, a restriction of an optimal control for a de�nite starting data on a fu-22

ture time interval may not be optimal for that associated initial data. This arises, for example, in mean-variance23

control issues and utility maximization situations for consumption-investment strategies with non-exponential24

discounting.25

The common assumption in usual discounted investment-consumption problems is that the discount rate is26

constant over time, this assumption o¤ers the possibility to compare outcomes occurring at various times by dis-27

counting future utility by some constant factor. On the other hand, results from experimental studies contradict28

this assumption, implying that discount rates for the near future are much lower than discount rates for the time29

further away in the future. Ainslie, in [1], established empirical studies on human and animal behavior and dis-30

covered that discount functions are almost hyperbolic, meaning that they decrease like a negative power of time31

rather than an exponential. According to Loewenstein & Prelec in [34], economic decision makers are impatient32

about selections in the short term but are more patient when choosing between long-term alternatives, so a hy-33

perbolic discount function would be more realistic. Consequently, when the discount function is non-exponential,34

discounted utility models become time-inconsistent, that is, they do not satisfy the Bellman�s optimality principle,35

and the classical dynamic programming technique may not be applied to solve these problems.36

There are two fundamental methods to handling the time-inconsistency in the non-exponential discounted37

utility models. In the �rst one, under the concept of naive agents, every decision is made without considering38

that their preferences may change in the near future. At any time t 2 [0; T ], the agent will solve the problem like39
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a standard optimal control problem with an initial condition X(t) = xt. If we assume that the naive agent solves40

the problem at time 0, his or her solution is a so-called pre-commitment solution. In other terms, it is optimal41

as long as the agent can pre-commit his or her future behavior at time t = 0. Kydland & Prescott in [30] argue42

that a pre-committed strategy may be economically signi�cant in some situations.43

The second method consists of the formulation of a time-inconsistent decision problem as a non-cooperative44

game among incarnations of the decision maker at various instants of time. Nash equilibrium of these strategies45

is then considered to determine the new notion of the solution to the original problem. Strotz in [47] was the46

�rst to apply this game perspective to dealing with the dynamic time-inconsistent decision problem posed by47

the deterministic Ramsay problem; see [44]. Then, by capturing the concept of non-commitment, by allowing48

the commitment period being in�nitesimally small, he presented a primitive notion of Nash equilibrium strategy.49

More works along this line has been done in both discrete and continuous time by Pollak [43], Phelps and50

Pollak [41], Goldman [21], Barro [6] and Krusell & Smith [29]. Using the same game theoretic approach, Ekland51

& Lazrak [16] and Marín-Solano & Navas [35] considered an optimal investment-consumption problem under52

non-exponential discount function in the deterministic framework. They described the equilibrium strategies via53

a value function which should satisfy a certain non linear di¤erential equation with a non local term depends54

on the global behavior of the solution, called "extended HJB equation". In this case, every decision at time t55

is made by a t�agent which denotes the incarnation of the controller at time t and is called a "sophisticated56

t�agent" in [35].57

Björk & Murgoci in [8] extended the notion to the stochastic setting, in which the controlled dynamic is driven58

by a general class of Markov process and a fairly general objective function. Yong in [51], by a discretization59

of time, investigated a class of time-inconsistent deterministic linear quadratic models and obtained equilibrium60

controls through some class of Riccati-Voltera equations. Yong in [52], also by a discretization of time, studied a61

general discounting time-inconsistent stochastic optimal control problem and described a feedback time-consistent62

Nash equilibrium control through the "equilibrium HJB equation". In a series of works, Basak & Chabakauri [7],63

Hu et al. [25], Czichowsky [14] and Björk et al. [9] studied the time-inconsistent mean variance problem.64

For the equilibrium strategies in optimal consumption-investment problem under a general discount function,65

Ekeland & Pirvu [17] were the �rst to discover the Nash equilibrium strategies in which the price process of the66

risky asset is driven by geometric Brownian motion. They described the equilibrium strategies via the solutions67

of a �ow of BSDEs and showed that for a special form of the discount function, the BSDEs reduce to a system68

of two ODEs that has a solution. Ekeland et al. in [18] added life insurance to the investor�s portfolio and69

they used an integral equation to describe the equilibrium strategy. In [52], Yong addressed the problem of70

time-inconsistent consumption-investment under a power utility function. Following Yong�s method. Zhao et al.71

in [54], investigated the consumption-investment problem under a general discount function and a logarithmic72

utility function. Furthermore, Zou et al. in [56], studied the equilibrium consumption-investment strategies for73

Merton�s portfolio problem under stochastic hyperbolic discounting.74

Recently, Markov regime-switching models have received a lot of attention in �nancial applications, see e.g.,75

[55], [12], [13], [50] and [32]. Markov regime-switching models allow the market to face shocks at random times. A76

standard example of such a regime would be a bull market, in which stock prices are generally rising. After a shock,77

the market�s behaviour fundamentally changes. The shock is represented as a switch of regime. Zhou and Yin [55]78

are the �rst to investigate the mean-variance optimization problem under a continuous time Markov regime-79

switching �nancial market, by using techniques of stochastic linear-quadratic control, they derived the mean-80

variance e¢ cient portfolios and e¢ cient frontiers based on solutions of two systems of linear ordinary di¤erential81

equations. Chen et al. [12], Chen and Yang [13] investigated the mean-variance asset-liability management82

problem in continuous-time and in multi-period settings, respectively. Wei, Wong, Yam and Yung [50] investigated83

the mean-variance asset-liability management problems under a continuous time Markov regime-switching setting.84

Following the approach developed in [8], they derived a time consistent investment strategy explicitly. Liang and85

Song [32] studied optimal investment and reinsurance problems under partial information for insurer with mean-86

variance utility, where the drift rate of stock and insurer�s risk aversion are Markov-modulated.87

In this paper, we investigate equilibrium solutions for a non-exponential discounted time-inconsistent investment-88

consumption and reinsurance problem under continuous time Markov regime switching framework and a general89

utility function. Di¤erent from [35] and [17], in which the authors provided explicit solutions for special forms90

of the discount factor, the non-exponential discount function in our model is in a fairly general form. Moreover,91

we consider open-loop equilibrium strategies, as de�ned in [25] and [26], which di¤ers from the majority of the92

existing literature on this subject. It�s also worth noting that the time-inconsistency, in our paper is due to93

non-exponential discounting in the objective function, whereas the works [25] and [26] are concerned with a94
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di¤erent type of time-inconsistency caused by non-linear terms of expectations in the terminal cost. Moreover,95

in our paper, the objective functional is not reduced to the quadratic form as in [25] and [26].96

We concentrate on a variational technique approach that leads to a version of a necessary and su¢ cient97

condition for equilibrium, which includes a �ow of forward-backward stochastic di¤erential equations (FBSDEs)98

and an equilibrium condition. We also provide a veri�cation theorem that covers some possible cases of utility99

functions. Then, by decoupling the �ow of the FBSDEs, we get a closed-loop representation of the equilibrium100

strategies through a parabolic non-linear partial di¤erential-di¤erence equation (PDDE). We show that for a101

special form of the utility function (logarithmic and power) the PDDE reduces to a system of ODEs that has102

an explicit solution. Noting that, Hamaguchi in [23] presented some equilibrium conditions for a general time-103

inconsistent investment and consumption model in a possibly incomplete market under general discount functions104

with random endowments. These conditions are connected to the solvability of an equivalent fully coupled FBSDE105

system, which is more feasible than a �ow of FBSDEs studied in [25] and [26].106

We emphasize that, di¤erent from most of the existing studies on this topic, where feedback equilibrium107

strategies are obtained via several very di¢ cult non-linear integro-di¤erential equations, in our paper, we derive108

an explicit representation of the equilibrium strategies via simple ODEs. This technique can also present the109

necessary and su¢ cient conditions for characterizing equilibrium strategies, whereas the extended HJB techniques110

can only provide, in general, the su¢ cient condition in the form of a veri�cation theorem that describes the111

equilibrium strategies.112

The paper is organized as follows. In Section 2, we formulate the problem and provide the necessary notations113

and preliminaries. In Section 3 we give the main results of the paper, Theorem 5 and Theorem 8, which114

characterizes the equilibrium strategies by some necessary and su¢ cient conditions. In Section 4, we derive115

an explicit representation of the equilibrium consumption-investment and reinsurance strategies. Section 5 An116

explicit representation of the equilibrium strategies is derived for a special form of the utility function (logarithmic117

and power). The paper concludes with an Appendix giving some proofs.118

2 Problem formulation119

Let (
;F ;F;P) be a �ltered probability space where F := fFtj t 2 [0; T ]g is a right-continuous, P-completed120

�ltration to which all of the processes outlined below are adapted, such as the Markov chain and the Brownian121

motions.122

The Markov chain � (�) is assumed to take values in �nite state space � = fe1; e2; :::; eDg where D 2 N;
ei 2 RD and the j-th component of ei is the Kronecker delta �ij for each (i; j) 2 f1; :::; Dg2. G := (gij)1�i;j�D
represents the rate matrix of the Markov chain under P. As a result, gij is the constant transition intensity of

the chain from state ei to state ej at time t, for each (i; j) 2 f1; :::; Dg2. Note that for; i 6= j, gij � 0 and
DP
j=1

gij = 0, thus gii � 0. In the sequel, for each i; j = 1; 2; :::; D with i 6= j, we assume that gij > 0 consequently,
gii < 0: We have the following semimartingale representation of the Markov chain � (�) obtained from Elliott et
al. [19]

� (t) = � (0) +

Z t

0

G>�(�)d� +M(t);

where fM(t)jt 2 [0; T ]g is an RD-valued; (F;P)-martingale.123

We �rst provide a set of Markov jump martingales linked with the chain � (:), which will be used to model
the controlled state process. For each (i; j) 2 f1; :::; Dg2, with i 6= j, and t 2 [0; T ], denote by J ij (t) :=
gij
R t
0
h� (��) ; eii d� + mij (t) the number of jumps from state ei to state ej up to time t, where mij (t) :=R t

0
h� (��) ; eii hdM (�) ; eji d� an (F;P)-martingale. ~�j(t) denotes the number of jumps into state ej up to time

t; for each �xed j = 1; 2; :::; D; then

~�j(t) =
DX

i=1;i 6=j
J ij (t) ;

=

DX
i=1;i 6=j

gij

Z t

0

h� (��) ; eii d� +�j(t);
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with �j(t) :=
DP

i=1;i 6=j
mij (t) is an (F;P)-martingale for each j = 1; 2; :::; D. Set for each j = 1; 2; :::; D

gj (t) =
DX

i=1;i 6=j
gij

Z t

0

h� (�) ; eii d� :

Then; the process �j(t) = ~�j(t)� gj (t) is an (F;P)-martingale, for each j = 1; 2; :::; D.124

2.1 Notations125

Throughout this paper, we use the following notations:126

M>: the transpose of the vector (or matrix)M , h�; �i : the inner product of � and �, that is, h�; �i := tr(�T �):127

For a function f; we denote by fx (resp. fxx) the �rst (resp. the second) derivative of f with respect to the128

variable x:129

For any Euclidean space E with Frobenius norm j�j we let, for any t 2 [0; T ] ;130

� Lp (
;Ft;P;E) : for any p � 1; the set of E�valued Ft�measurable random variables X; such that131

E [jXjp] <1:132

� L2F (t; T ;E) : the space of E�valued, (Fs)s2[t;T ]�adapted continuous processes Y (�), with

kY (�)kL2F (t;T ;E) =

vuutE" sup
s2[t;T ]

jY (s)j2
#
<1:

� Mp
F (t; T ;E) : for any p � 1; the space of E�valued, (Fs)s2[t;T ]�adapted processes Z (�), with

kZ (�)kMp
F (t;T ;E)

= E

"Z T

t

jZ (s)jp ds
# 1
p

<1:

� Mg;2
F;p (t; T ;E) : the space of E�valued, (Fs)s2[t;T ]�predictable processes X (�), with

kX (�)kMg;2
F;p(t;T ;E)

= E

24Z T

t

X
j 6=i

jXij (s)j2 gij (s) ds

35 <1:

2.2 Risk process133

The classical risk process of an insurer is described by the following stochastic di¤erential equation134

dR1 (s) = cds� d
L(s)X
i=1

Yi (2.1)

where the premium rate c is a constant, implying that the insurance company gets deterministically units of135

money per unit time. Meanwhile, when a claim occurs, the insurance company must pay a stochastic sum of136

money. Assume that the number of claims throughout the time interval [0; t] is represented by the counting137

process fL(s)gs�0, Yi is the i-th claim size, and fYigi�1 are i.i.d. random variables that are independent of138

L(s). We suppose fL(s)gs�0 is a Poisson process with intensity �L > 0; which means E[L(s)] = �Ls. Y139

is a generic random variable with the same distribution as fYigi�1. The �rst and second moments of Y are140

mY > 0 and �Y > 0. The expected value principle is supposed to be used to determine the premium rate c,141

i.e., c = (1 + �1)
E[L(s)]E(Y )

s
= (1 + �1)�LmY with safety loading �1 > 0, then the insurance company gets the142

expected pro�t E[dX(s)] = (c � �LmY )ds = �1�LmY ds. In this paper according to Grandell [22], we consider143

the di¤usion approximation, i.e., approximating the classical risk model by a Brownian motion with drift. This144
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approximation is mathematically based on the theory of weak convergence of probability measures. The way145

to express this di¤usion approximation is that if the classical risk model is viewed as �large deviation�, the146

di¤usion model is associated to the �central limit theorem�. The di¤usion approximation is extensively used in147

the literature on optimal problems for insurers, such as Browne [11], Bai & Zhang [5], etc. Hence, the di¤usion148

approximation of the classical risk process is as follows149

dR2(s) = (1 + �1)�LmY ds� �LmY ds+
p
�L�Y dW0(s); (2.2)

where W0(�) is a standard Brownian motion. For more details on this di¤usion approximation, see Grandell
[22] (pages 15 � 17). Another remarkable work is [38]. An insurance company gets the premium but it will
also face the risk of paying claims. If the risk is too dangerous, the insurer may decide to transmit part of
the risk to another insurer. Reinsurance is the procedure that transfers risk from one insurance company to
another. As the second insurance company is called reinsurer. The reinsurance company frequently does the
same thing, i.e., it transfers part of its own risk to a third company, and so on. By transferring on parts of risks,
large risks are divided into a number of smaller sections taken up by di¤erent risk carriers.This risk exchange
procedure reduces the danger of large claims for individual insurers. Reinsurance can take several forms, including
proportional reinsurance, excess-loss reinsurance, and stop-loss reinsurance, and so on. In this work, we consider
the proportional reinsurance, which is widely used in practice. Let a(s) be the retention level of new business
(particularly, reinsurance business) acquired at time s. It means that the insurer pays a(s)Y for the claim Y that
occurs at time s, whereas the new businessman (particularly, the reinsurer) pays (1 � a(s))Y . The reinsurance
premium is also supposed to be calculated through the expected value principle, i.e., the premium is to be
paid at rate(1 � a(s))c1 = (1 � a(s))(1 + �)�LmY for this business, where � > 0 is the safety loading of the
new businessman, where we assume that �1and � are equal. As a result, the expected pro�t of the reinsurance
company is f(1� a(s))c1 � (1� a(s))�LmY g ds = (1 � a(s))��LmY ds in [s; s + ds). Note that for the �rst
insurance company, a(s) 2 [0; 1] corresponds to a reinsurance cover, a(s) > 1 would mean that the company is
able to take on additional insurance business from other companies (i.e., operate as a reinsurer for other cedents)
and a(s) < 0 indicates other new businesses. The following SDE describes the reserve process with new business
before investment. In order to emphasise the dependence on the reinsurance price, we let the safety coe¢ cient
of the reinsurer depend on the current regime by letting all other variables unchanged. Thus, instead of (2.2),
we consider the process

dR(s) = (1 + �1 (� (s)))�LmY ds� (1� a(s))(1 + � (� (s)))�LmY ds� �LmY a(s)ds+ a(s)
p
�L�Y dW0(s);

equivalently, we obtain150

dR(s) = a(s)� (� (s))�LmY ds+ a(s)
p
�L�Y dW0(s): (2.3)

2.3 Financial market151

Consider an agent facing the problem of portfolio and inter-temporal consumption where the �nancial market152

consists of one savings account and N risky securities. The risky securities are stocks and their prices processes153

S1; :::; SN are governed by the following Markov-modulated SDE154 8<: dSn (s) = Sn (s)

�
�n (s; � (s)) ds+

NP
m=1

�nm (s; � (s�)) dWm (s)

�
; for s 2 [0; T ] ;

Sn (0) > 0;
(2.4)

where, for n = 1; 2; :::; N; Wn (�) is a one dimensional standard Brownian motion de�ned on (
;F ;F;P), the155

coe¢ cients �n (�; �) : [0; T ] � � ! (0;1) and �n (�; �) = (�n1 (�; �) ; ::; �nN (�; �))> : [0; T ] � � ! RN repre-156

sent the appreciation rate and the volatility of the n-th stock, respectively. For brevity, we use � (s; ei) =157

(�1 (s; ei) ; �2 (s; ei) ; ::; �N (s; ei))
> to indicate the drift rate vector, and the volatility matrix is denoted by158

� (s; ei) = (�nm (s; ei))1�n;m�N .159

The price of the savings account is given by the di¤erential equation160 �
dS0 (s) = r0 (s)S0 (s) ds; for s 2 [0; T ] ;
S0 (0) = 1;

(2.5)

where r0 (�) is a deterministic function with values in (0;1) that represents the interest rate. We suppose that161

E [�n (t; ei)] > r0 (t) � 0; dt � a:e:; for ei 2 � and n = 1; 2; ::; N . This is a very natural supposition, because162

otherwise, nobody wants to invest in the risky stocks.163
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2.4 Consumption-reinsurance-investment policies and wealth process164

Starting from an initial wealth x0 > 0 and a initial market state ei0 2 X at time 0. The decision maker is allowed
to dynamically invest in the stocks as well as in the bond, consume and purchase proportional reinsurance,
throughout the time horizon [0; T ]. The stochastic process u (�) = (c (�) ; a (�) ; �1 (�) ; : : : ; �N (�))> describes a
trading strategy, where c (s) is the consumption rate at time s 2 [0; T ] ; a(s) represents the retention level of
reinsurance or new business acquired at time s 2 [0; T ] and �n (s) ; for n = 1; 2; ::; N; is the amount invested
in the n-th risky stock at time s 2 [0; T ] : The process � (�) = (�1 (�) ; : : : ; �N (�))> represents the investment

strategy. The amount invested in the bond at time s is Xx0;ei0 ;u (s)�
NP
n=1

�n (s) ; where X
x0;ei0

;u
(�) is the wealth

process associated with the strategy u (�) and the initial state (x0;ei0). The evolution of Xx0;ei0 ;u (�) is given by8>><>>:
dXx0;ei0 ;u (s) = dR(s) +

�
Xx0;ei0 ;u (s)�

NP
n=1

�n (s)

�
dS0 (s)

S0 (s)
+

NP
n=1

�n (s)
dSn (s)

Sn (s)
� c (s) ds; for s 2 [0; T ] ;

Xx0;u (0) = x0; � (0) = ei0 2 �:

Therefore, the wealth process solves the following SDE165 8><>:
dXx0;ei0 ;u (s) =

n
r0 (s)X

x0;ei0 ;u (s) + � (s)
>
r (s; � (s)) + � (� (s)) a (s)�LmY � c (s)

o
ds

+
p
�L�Y a (s) dW0 (s) + � (s)

>
� (s; � (s)) dW (s) ; for s 2 [0; T ] ;

Xx0;u (0) = x0; � (0) = ei0 2 �;
(2.6)

where W (�) = (W1 (�) ; :::;WN (�)) is a N�dimensional standard Brownian motion de�ned on (
;F ;F;P) and166

r (s; ei) = (�1 (s; ei)� r0 (s) ; : : : ; �N (s; ei)� r0 (s))
>
:167

As time evolves, we consider the following controlled stochastic di¤erential equation satis�ed by X (�) =168

Xt;�;ei (�;u (�)) which parameterized by (t; �; ei) 2 [0; T ]� L2 (
;Ft;P;R)� �169 8><>:
dX (s) =

n
r0 (s)X (s) + � (s)

>
r (s; � (s)) + � (� (s)) a (s)�LmY � c (s)

o
ds+

p
�L�Y a (s) dW0 (s)

+ � (s)
>
� (s; � (s)) dW (s) ; for s 2 [t; T ] ;

X (t) = �; � (t) = ei:

(2.7)

De�nition 1 (Admissible Strategy) A strategy u (�) =
�
c (�) ; a (�) ; � (�)>

�>
is said to be admissible over170

[t; T ] if u (�) 2 M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
and for any (t; �; ei) 2 [0; T ]� L2 (
;Ft;P;R)� �; the equation171

(2:7) has a unique solution X (�) = Xt;�;ei (�;u (�)) � 0:172

Remark 2 Any component of the vector � (�) may become negative, which is to be interpreted as short-selling173

that particular stock. The amount X(s)�
NP
n=1

�n(s) invested in the bond at time s may also become negative, and174

this corresponds to borrowing at the interest rate r (s; ei) ; for i = 1; :::; N , see Remark 2.3 of Karatzas et al. [27].175

We make the following assumption about the coe¢ cients,176

(H1) The maps r0 (�) ; r (�; �) and � (�; �) are uniformly bounded, we also assume the uniform ellipticity condition
as follow:

� (s; ei)� (s; ei)
> � �IN ; 8 (s; ei) 2 [0; T ]� �;

for some � > 0, where IN denotes the identity matrix on RN�N :177

Under the bondedness condition on the coe¢ cients in (H1), for any (t; �; ei) 2 [0; T ] � L2 (
;Ft;P;R) � �178

and u (�) 2M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
; the controlled state equation (2:7) admit a unique solution X (�) 2179

L2F (t; T ;R). Furthermore, we have the estimate180

E
�
sup
t�s�T

jX (s)j2
�
� K

�
1 + E

h
j�j2
i�
; (2.8)
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for some positive constant K. In particular for t = 0; x0 > 0 and u (�) =
�
c (�) ; a (�) ; � (�)>

�>
2 M1

F (0; T ;R)�181

M2
F
�
t; T ;RN+1

�
; the controlled state equation (2:6) admit a unique solution Xx0;ei0 ;u (�) 2 L2F (0; T ;R) also we182

have the following estimate183

E
�
sup

0�s�T
jXx0;ei0 ;u (s)j2

�
� K

�
1 + jx0j2

�
: (2.9)

2.5 General discounted utility function184

It is worth to noting that, the rate of time preference is considered to be constant in most �nancial works (This185

means that the discount is exponential). Nevertheless, there is mounting evidence that this may not be true. In186

this section, we discuss general discounting preferences. We also present the essential modeling framework for187

the Merton consumption and portfolio problem under regime-switching for surplus-dependent reinsurance. For188

additional information about the classic Merton model, we refer the reader to [20], [27], [36] and [37].189

2.5.1 Discount function190

Most works use a speci�c form of the non-exponential discount factor when discounting is non-exponential. In191

contrast to these studies, we consider the discount function from the general form192

De�nition 3 A discount function = (�) is a continuous, deterministic function satisfying = (0) = 1; = (s) > 0193

ds� a:e: and
R T
0
= (s) ds <1:194

Many articles provide examples of discount functions, including exponential discount functions, see [36] and195

[37], mixtures of exponential functions, see [17], and hyperbolic discount functions, see [54].196

2.5.2 Utility functions and objective197

The insurer extracts utility from inter-temporal consumption and terminal wealth in order to assess the per-198

formance of a trading strategy. The utility of inter-temporal consumption is represented by # (�) and the util-199

ity of the terminal wealth at some non-random horizon T is represented by h (�). Then, for any (t; �; ei) 2200

[0; T ]� L2 (
;Ft;P;R)� � the consumption-reinsurance-investment optimization problem is denoted as the fol-201

lowing: maximize202

J (t; �; ei;u (�)) = Et
"Z T

t

= (s� t)# (c (s)) ds+ = (T � t)h (X (T ))
#
; (2.10)

over u (�) 2M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
; subject to (2:7) ; where Et [�] = E [� jFt ].203

We impose the following conditions on the utility functions.204

(H2) The maps # (�) ; h (�) : R! R are strictly concave, strictly increasing and satisfy the integrability condition

E

"Z T

0

j# (c (s))j ds+ jh (X (T ))j
#
<1:

(H3) The maps # (�) ; h (�) are twice continuously di¤erentiable, in addition, the derivatives #x (�) ; hx (�) ; #xx (�)205

and hxx (�) are continuous.206

(H4) For all admissible strategy pairs, there exists a constant p > 1 sush that

E

"Z T

0

j#x (c (s))jp ds+ jhx (X (T ))jp
#
<1;

E

"Z T

0

sup
�2R;j�j�M

j#xx (c (s) + �)jp ds
#
<1; for M � 0:
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In the rest of the paper, we write W ] (s) =
�
0;W ? (s)

>
�>

where W ? (s) =
�
W0 (s) ;W (s)

>
�>
: We denote

B (s; � (s)) =
�
�1; � (� (s))�LmY ; r (s; � (s))

>
�>

and $ =
�
1; 0>RN+1

�>
; we also consider the following matrix

notation e� (s; � (s)) = � p
�L�Y 0>RN
0RN � (s; � (s))

�
and D (s; � (s)) =

�
0 0>RN+1

0RN+1 e� (s; � (s))
�
;

then the optimal control problem associated with (2:7) and (2:10) is equivalent to maximize207

J (t; �; ei;u (�)) = Et
"Z T

t

= (s� t)#
�
$>u (�)

�
ds+ = (T � t)h (X (T ))

#
; (2.11)

subject to208 (
dX (s) =

n
r0 (s)X (s) + u (s)

>
B (s; � (s))

o
ds+ u (s)

>
D (s; � (s)) dW ] (s) ; for s 2 [t; T ] ;

X (t) = �; � (t) = ei;
(2.12)

over u (�) 2M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
:209

3 Equilibrium strategies210

It is clear that the problem described by (2:11) � (2:12) is time-inconsistent in the sense that the Bellman211

optimality principle does not hold, since a restriction of the optimal strategy for a given starting pair at a212

subsequent time interval might not be optimal for that corresponding starting pair. See Ekeland & Pirvu [17]213

and Yong [52] for a more detailed explanation. We consider open-loop Nash equilibrium controls rather than214

optimal controls due to the lack of time consistency. These are strategies which are optimal to implement now215

given that they will be implemented in the future. Suppose that every player s, such that s > t, will use the216

strategy û (s). Then the optimal choice for player t is that, he/she also uses the strategy û (t) :217

Nevertheless, the problem with this �de�nition�, is that the individual player t does not really in�uence the218

outcome of the game at all. He/she only chooses the control at the single point t; and since this is a time set of219

Lebesgue measure zero, the control dynamics will not be in�uenced. Similarly to [25], we de�ne an equilibrium by220

local spike variation, given for t 2 [0; T ] ; an admissible trading strategy û (�) 2M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
:221

For any RN+2�valued, Ft�measurable and bounded random variable v and for any " > 0; consider222

u" (s) :=

�
û (s) + v; for s 2 [t; t+ ") ;
û (s) ; for s 2 [t+ "; T ] : (3.1)

We have the following de�nition.223

De�nition 4 (Open-loop Nash equilibrium) An admissible strategy û (�) 2M1
F (t; T ;R)�M2

F
�
t; T ;RN+1

�
224

is called an open-loop Nash equilibrium strategy if for every sequence "n # 0; we have225

lim
"n#0

1

"n

n
J
�
t; X̂ (t) ; � (t) ;u"n (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�o
� 0; (3.2)

for any t 2 [0; T ] ; where X̂ (�) is the equilibrium wealth process solution of the SDE226 (
dX̂ (s) =

n
r0 (s) X̂ (s) + û (s)

>
B (s; � (s))

o
ds+ û (s)

>
D (s; � (s)) dW ] (s) ; for s 2 [t; T ] ;

X̂ (t) = �; � (t) = ei:
(3.3)

3.1 A necessary and su¢ cient condition for equilibrium controls227

In this work, we follow an alternative approach, which is basically the constriction of necessary and su¢ cient228

condition for equilibrium. In the same spirit as demonstrating the stochastic Pontryagin�s maximum principle229

for equilibrium in [25] for linear quadratic models case. This condition is derived by a second-order expansion in230

the spike variation.231

We shall now present the adjoint equations, that are used to characterize the open-loop Nash equilibrium232

controls.233
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3.1.1 Adjoint processes234

Let û (�) =
�
ĉ (�) ; â (�) ; �̂ (�)>

�>
2M1

F (0; T ;R)�M2
F
�
t; T ;RN+1

�
an admissible strategy and denote by X̂ (�) 2235

L2F (0; T ;R) the corresponding wealth process. For each t 2 [0; T ], the �rst order adjoint equation satis�ed by236

the processes (p (�; t) ; q (�; t) ; l (�; t)) and de�ned on the time interval [t; T ] by the following linear backward SDE237 8><>:
dp (s; t) = �r0 (s) p (s; t) ds+

N+1P
m=1

qm (s; t) dWm (s) +
P
j 6=i
lij (s; t) dJ

ij (s) ; s 2 [t; T ] ;

p (T ; t) = = (T � t)hx
�
X̂ (T )

�
;

(3.4)

where q (�; t) = (q0 (�; t) ; q1 (�; t) ; : : : ; qN (�; t))> and l (s; t) = (lij (s; t))1�i;j�D 2 RD�D: According to Theorem238

5.15 in [31], for any û (�) 2 M1
F (0; T ;R) � M2

F
�
t; T ;RN+1

�
and t 2 [0; T ], we deduce that equation (3:4)239

has a unique adapted solution (p (�; �) ; q (�; �) ; l (�; �)) 2
�
L2F (t; T ;R)�M2

F
�
t; T ;RN+1

�
�Mg;2

F;p
�
t; T ;RD�D

��
:240

Moreover there exists a constant K > 0 such that, for any t 2 [0; T ] ; we obtain the following estimate241

kp (�; t)k2L2F (t;T ;R) + kq (�; t)k
2
M2

F (t;T ;RN+1) + kl (�; t)k
2
Mg;2

F;p(t;T ;RD�D) � K
�
1 + �2

�
: (3.5)

The second order adjoint equation satis�ed by the processes (P (�; t) ; Q (�; t) ; L (�; t)) and de�ned on the time242

interval [t; T ] by the following linear backward SDE243 8><>:
dP (s; t) = �2r0 (s)P (s; t) ds+

N+1P
m=1

Qm (s; t) dWm (s) +
P
j 6=i
Lij (s; t) dJ

ij (s) ; s 2 [t; T ] ;

P (T ; t) = = (T � t)hxx
�
X̂ (T )

�
;

(3.6)

where Q (�; t) = (Q0 (�; t) ; Q1 (�; t) ; : : : ; QN (�; t))> and L (s; t) = (Lij (s; t))1�i;j�D 2 RD�D: According to Theo-
rem 5.15 in [31], the above BSDE admits a unique solution

(P (�; t) ; Q (�; t) ; L (�; t)) 2
�
L2F (t; T ;R)�M2

F
�
t; T ;RN+1

�
�Mg;2

F;p
�
t; T ;RD�D

��
:

In addition, P (�; t) has the following representation.244

P (s; t) = Es
h
= (T � t) e

R T
s
2r0(�)d�hxx

�
X̂ (T )

�i
; for s 2 [t; T ] : (3.7)

In fact, if we de�ne the function �(�; t) ; for each t 2 [0; T ] ; as the solution of the following linear ODE245 �
d�(� ; t) = r0 (�)� (� ; t) d� ; for � 2 [t; T ] ;
�(t; t) = 1;

(3.8)

and we apply the Itô�s formula to � ! P (� ; t)� (� ; t)
2 on [t; T ] ; by taking conditional expectations, we get (3:7).246

It�s worth mentioning that, since hxx
�
X̂ (T )

�
� 0, then P (s; t) � 0; ds� a:e.247

3.1.2 A characterization of equilibrium strategies248

The following theorem presents the �rst main result of this work, it gives a necessary and su¢ cient condition for249

equilibrium. First, we de�ne the process ~q (s; t) =
�
0; q (s; t)

>
�>

and we adopt the following notations250

H (s; t) , p (s; t)B (s; � (s)) +D (s; � (s)) ~q (s; t) + = (s� t)#x
�
$>û (s)

�
$; (3.9)

and251

A" (s; t) ,
�
= (s� t)#xx

�
$>

�
û (s) + �v1[t;t+")

��
0>RN+1

0RN+1 e� (s; � (s)) e� (s; � (s))> P (s; t)
�
: (3.10)
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Theorem 5 Let (H1)-(H4) hold. Given an admissible strategy û (�) 2M1
F (0; T ;R)�M2

F
�
t; T ;RN+1

�
, let for

any t 2 [0; T ] ; the process

(p (�; t) ; q (�; t) ; l (�; t)) 2
�
L2F (t; T ;R)�M2

F
�
t; T ;RN+1

�
�Mg;2

F;p
�
t; T ;RD�D

��
be the unique solution to the BSDE (3:4). Then, û (�) is an equilibrium trading strategy, if and only if, the252

following condition holds253

H (t; t) = 0; dP�a:s:; dt� a:e: (3.11)

To prove this theorem, we need to derive some technical results. Denote by X̂" (�) the solution of the state254

equation corresponding to u" (�) : It follows from the standard perturbation approach see e.g. [53] that255

X̂" (s)� X̂ (s) = y";v (s) + z";v (s) ; for s 2 [t; T ] ; (3.12)

where for any RN+2�valued, Ft�measurable and bounded random variable v and for any " 2 [0; T � t) ; y";v (�)256

and z";v (�) solve the following linear SDEs, respectively257 �
dy";v (s) = r0 (s) y

";v (s) ds+ v>D (s; � (s)) 1[t;t+") (s) dW
] (s) ; for s 2 [t; T ] ;

y";v (t) = 0;
(3.13)

and258 �
dz";v (s) =

�
r0 (s) z

";v (s) + v>B (s; � (s)) 1[t;t+") (s)
	
ds; for s 2 [t; T ] ;

z";v (t) = 0:
(3.14)

Proposition 6 Let (H1)-(H4) holds. The following estimates hold for any k � 1 and t 2 [0; T ]259

Et
"
sup
s2[t;T ]

jy";v (s)j2k
#
= O

�
"k
�
; (3.15)

Et
"
sup
s2[t;T ]

jz";v (s)j2k
#
= O

�
"2k
�
; (3.16)

Et
"
sup
s2[t;T ]

jy";v (s) + z";v (s)j2k
#
= O

�
"k
�
: (3.17)

Furthermore, we have the following equality

J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�
(3.18)

=

Z t+"

t

Et
�
hH (s; t) ; vi+ 1

2
hA" (s; t) v; vi

�
ds+ o (") :

Proof. See the Appendix.260

We now introduce the following technical lemma , which we will need later. The proof is based on an argument261

inspired by Hamaguchi [23].262

Lemma 7 Under assumptions (H1)-(H4), there exists a sequence ("tn)n2N � (0; T � t) satisfying "tn ! 0 as263

n!1, such that264

1) lim
n!1

1

"tn

Z t+"tn

t

Et [H (s; t)] ds = H (t; t) ; dP� a:s; dt� a:e:265

2) lim
n!1

1

"tn

Z t+"tn

t

Et
h
A"tn (s; t)

i
ds = A0 (t; t) ; dP� a:s; dt� a:e:266
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Proof. See the Appendix.267

Proof of Theorem 5. Given an admissible strategy û (�) 2 M1
F (0; T ;R)�M2

F
�
t; T ;RN+1

�
; for which (3:11)

holds; from Lemma 7, we have according to (3:18) ; for any t 2 [0; T ] and for any RN+2�valued, Ft�measurable
and bounded random variable v; there exists a sequence ("tn)n2N � (0; T � t) satisfying "tn ! 0 as n!1, such
that

lim
n!0

1

"tn

n
J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�o
= hH (t; t) ; vi+ 1

2



A0 (t; t) v; v

�
;

=
1

2



A0 (t; t) v; v

�
;

� 0;

where the last inequality is due to the concavity condition of # (�) and h (�). Then û (�) is an equilibrium strategy.268

Conversely, suppose that û (�) is an equilibrium strategy. Hence, from (3:2) together with (3:18) and Lemma269

7; for any (t; u) 2 [0; T ]� RN+2; we get270

hH (t; t) ; ui+ 1
2



A0 (t; t)u; u

�
� 0: (3.19)

Now, we de�ne 8 (t; u) 2 [0; T ]�RN+2; � (t; u) = hH (t; t) ; ui+ 1
2



A0 (t; t)u; u

�
: Easy manipulations demon-271

strating that the inequality (3:19) is equivalent to272

� (t; 0) = max
u2RN+2

� (t; u) ; dP� a:s;8t 2 [0; T ] : (3.20)

Thus, the following condition results from the maximum condition (3:20)273

�u (t; 0) = H (t; t) = 0; dP� a:s;8t 2 [0; T ] : (3.21)

This completes the proof.274

3.2 A characterization of equilibrium strategies by veri�cation argument275

The su¢ cient condition of optimality plays an important role for computing optimal controls in classical stochastic276

control theory (time-consistent). It asserts that if an admissible control ful�lls the maximum condition of the277

Hamiltonian, then it is in fact optimal for the stochastic control problem. This allows solving examples of optimal278

control problems where a smooth solution to the associated adjoint equation can be found.279

The objective of the following theorem is to characterize the open-loop equilibrium strategies just by a280

su¢ cient equilibrium condition. First, in order to overcome the technical di¢ culties mentioned by the hypothesis281

(H3) in the practice, let us consider the following condition about the utility functions,282

(H3�) The maps # (�) ; h (�) are continuously di¤erentiable and the �rst order derivatives #x (�) ; hx (�) are contin-283

uous.284

We have the following theorem285

Theorem 8 Let (H1), (H2) and (H3�) hold. Given an admissible strategy û (�) 2M1
F (0; T ;R)�M2

F
�
t; T ;RN+1

�
,

let for any t 2 [0; T ] ; the process

(p (�; t) ; q (�; t) ; l (�; t)) 2
�
L2F (t; T ;R)�M2

F
�
t; T ;RN+1

�
�Mg;2

F;p
�
t; T ;RD�D

��
;

be the unique solution to the BSDE (3:4). Then, û (�) is an equilibrium trading strategy, if the following condition286

holds287

H (t; t) = 0; dP�a:s:; dt� a:e: (3.22)
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Proof. Assume that û(�) is an admissible control for which the condition (3:22) holds. Furthermore, for any
t 2 [0; T ] and " 2 [0; T � t), we consider u" (�) by (3:1) : Then, we have the following di¤erence

J
�
t; X̂ (t) ; � (t) ; û (�)

�
� J

�
t; X̂ (t) ; � (t) ;u" (�)

�
= Et

"Z T

t

= (s� t)
�
#
�
$>û (s)

�
� #

�
$>u" (s)

��
ds+ = (T � t)

 
h
�
X̂ (T )

�
� h

�
X̂" (T )

�!#
:

Mentioning that the concavity of h (�) gives us

Et
h
= (T � t)

�
h
�
X̂ (T )

�
� h

�
X̂" (T )

��i
� Et

�
= (T � t)

�
X̂ (T )� X̂" (T )

�T
hx

�
X̂ (T )

��
:

Consequently, by the terminal condition in the BSDE (3:4) we get that

J
�
t; X̂ (t) ; � (t) ; û (�)

�
� J

�
t; X̂ (t) ; � (t) ;u" (�)

�
(3.23)

� Et
"Z T

t

= (s� t)
�
#
�
$>û (s)

�
� #

�
$>u" (s)

��
ds+

�
X̂ (T )� X̂" (T )

�T
p (T ; t)

#
:

By applying Ito�s formula to s 7!
�
X̂ (s)� X̂" (s)

�T
p (s; t) on [t; T ], we obtain

Et
��
X̂ (T )� X̂" (T )

�T
p (T ; t)

�
(3.24)

= Et
"Z T

t

(û (s)� u" (s))T (B (s; � (s)) p (s; t) +D (s; � (s)) eq (s; t)) ds# :
By the concavity condition of # (�), we �nd that288

Et
"Z T

t

= (s� t)
�
#
�
$>û (s)

�
� #

�
$>u" (s)

��
ds

#
� Et

"Z T

t

= (s� t)


#x
�
$>û (s)

�
$; û (s)� u" (s)

�
ds

#
:

(3.25)
By taking (3:24) and (3:25) in (3:23) ; it follows that

J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�
� Et

"Z T

t

hB (s; � (s)) p (s; t) +D (s; � (s)) eq (s; t) + = (s� t)#x �$>û (s)�$; u" (s)� û (s)�# ds:
289

Using (3:9) and dividing both sides by " then taking the limit when " vanishes, we conclude by Lemma 7 that290

û(�) is an equilibrium control.291

Remark 9 The goal of the su¢ cient condition of optimality is to �nd an optimal control by calculating the292

di¤erence J (û (�))�J (u (�)) in terms of the Hamiltonian function, where u (�) is an arbitrary admissible control.293

Here, the spike variation perturbation (3:1) plays a major role in deriving the su¢ cient condition for equilibrium294

strategies, which reduces to the calculation of the di¤erence J
�
t; X̂ (t) ; � (t) ; û (�)

�
� J

�
t; X̂ (t) ; � (t) ; u" (�)

�
,295

without the need to achieving the second order expansion in the spike variation.296

4 Equilibrium strategies and related partial di¤erential-di¤erence297

equation298

From theorems 5 and 8, we conclude that we can get equilibrium trading strategy by solving a system of299

FBSDEs which is not standard since the ��ow�of the unknown process (p (�; t) ; q (�; t) ; l (�; t))t2[0;T ] is involved.300
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Furthermore, there is an additional constraint acting on the �diagonal� (i.e. when s = t) of the �ow. To the301

best of our knowledge, the explicit ability to solve this type of equation remains an open problem, except for a302

certain small-time solvability results see [24]. For an open-loop equilibrium strategy, Hamaguchi in [23] presented303

some equilibrium conditions for general a time-inconsistent investment and consumption model in a possibly304

incomplete market under general discount functions with random endowments. These conditions are connected305

to the solvability of an equivalent fully coupled FBSDE system, which is more feasible than a �ow of FBSDEs.306

In this section, we de�ne the equilibrium rule, and then we derive a parabolic backward PDDE. Our PDDE307

is comparable with the one obtained in Pirvu & Zhang [42], for some particular discount functions in a �nite308

horizon with di¤erent utility functions.309

In this section, let us look at the regime switching Merton�s portfolio problem with general discounting. First,310

we consider the following parabolic backward partial di¤erential equation311 8>>>>>>>><>>>>>>>>:

�ßt (t; x; ei) =ßx (t; x; ei)
�
r0 (t)x� ~B (t; ei)

>
� (t; ei) ~B (t; ei)

ß(t; x; ei)
ßx (t; x; ei)

� I (= (T � t)ß(t; x; ei))
�

+
1

2
ßxx (t; x; ei) ~B (t; ei)

>
� (t; ei) ~B (t; ei)

�
ß(t; x; ei)
ßx (t; x; ei)

�2
+ r0 (t)ß(t; x; ei)

+
DP
j=1

gij [ß(t; x; ej)�ß(t; x; ei)] ; (t; x; ei) 2 [0; T ]� R� �;

ß(T; x; ei) = hx (x) ;
(4.1)

where we denote by I (�) the inverse function of the strictly decreasing marginal derivative utility #x (�) ; ~B (s; � (s)) =312 �
� (� (s))�LmY ; r (s; � (s))

>
�>

and � (s; � (s)) �
�e� (s; � (s)) e� (s; � (s))>��1.313

Now we will introduce the veri�cation theorem314

Theorem 10 Let (H1)-(H4) hold. If there exists a classical solution

ß(�; �; ei) 2 C1;2 ((0; T )� R;R) \ C ([0; T ]� R;R) for each ei 2 �

of the PDE (4:1) such that the stochastic di¤erential equation315 8>>>>>>>>>>>><>>>>>>>>>>>>:

dX̂ (s) =

8<:r0 (s) X̂ (s)� ~B (s; � (s))
>
� (s; � (s)) ~B (s; � (s))

ß
�
s; X̂ (s) ; � (s)

�
ßx
�
s; X̂ (s) ; � (s)

�
�I
�
= (T � s)ß

�
s; X̂ (s) ; � (s)

��o
ds

�
ß
�
s; X̂ (s) ; � (s)

�
ßx
�
s; X̂ (s) ; � (s)

� ~B (s; � (s))>� (s; � (s)) e� (s; � (s)) dW ? (s) ; s 2 [0; T ] ;

X̂ (0) = x0; � (0) = ei0 2 �;

(4.2)

has a unique solution X̂ (�) ; where the following estimate holds

E
�
sup
0�t�T

jX (t)j2
�
� K

�
1 + jx0j2

�
;

then, the equilibrium trading strategy û (�) =
�
ĉ (�) ; â (�) ; �̂ (�)>

�>
is given by

ĉ (t) = I
�
= (T � t)ß

�
t; X̂ (t) ; � (t)

��
; dt� a:e:; (4.3)

â (t) = �
� (� (t))mYß

�
t; X̂ (t) ; � (t)

�
�Yßx

�
t; X̂ (t) ; � (t)

� ; dt� a:e:; (4.4)

�̂ (t) = �
r (t; � (t))ß

�
t; X̂ (t) ; � (t)

�
� (t; � (t))� (t; � (t))

>ßx
�
t; X̂ (t) ; � (t)

� ; dt� a:e: (4.5)
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Proof. Suppose that û (�) =
�
ĉ (�) ; M̂ (�)>

�>
is an equilibrium control, where M̂ (�) =

�
â (�) ; �̂ (�)>

�>
and316

denote by X̂ (�) the corresponding wealth process. Then, in view of Theorem 8, there exist an adapted process317 �
X̂ (�) ; (p (�; t) ; q (�; t) ; l (�; t))t2[0;T ]

�
that satis�es the following system of regime switching forward-backward318

stochastic di¤erential equations;319 8>>>>><>>>>>:

dX̂ (s) =
n
r0 (s) X̂ (s) + M̂ (s)

> ~B (s; � (s))� ĉ (s)
o
ds+ M̂ (s)

> e� (s; � (s)) dW ? (s) ; s 2 [t; T ] ;
dp (s; t) = �r0 (s) p (s; t) ds+ q (s; t)> dW ? (s) +

P
j 6=i
lij (s; t) dJ

ij (s) ; 0 � t � s � T;

X̂ (0) = x0; ; � (0) = ei0 2 �;
p (T ; t) = = (T � t)hx

�
X̂ (T )

�
; t 2 [0; T ] ;

(4.6)

with conditions

p (t; t)� #x (ĉ (t)) = 0; dt� a:e:; (4.7)

p (t; t) ~B (t; � (t)) + e� (t; � (t)) q (t; t) = 0; dt� a:e: (4.8)

Now, we consider the following ansatz from the terminal condition in the �rst order adjoint process320

p (s; t) = = (T � t)V
�
s; X̂ (s) ; � (s)

�
;8 0 � t � s � T; (4.9)

for some deterministic function V (�; �; ei) 2 C1;2 ([0; T ]� R;R), for each ei 2 � such that V (T; �; ei) = hx (�) :321

We apply the integration by parts formula (see, e.g., [15]) to (4:9), which yields322

dp (s; t)

=

DX
i=1

h� (s�) ; eii
�
= (T � t)

n
Vs
�
s; X̂ (s) ; ei

�
+ Vx

�
s; X̂ (s) ; ei

��
X̂ (s) r0 (s) + M̂ (s)

> ~B (s; ei)� ĉ (s)
�

+
1

2
Vxx

�
s; X̂ (s) ; ei

�
M̂ (s)

> e� (s; ei) e� (s; ei)> M̂ (s) +
DP
j=1

gij

h
V
�
s; X̂ (s) ; ej

�
� V

�
s; X̂ (s) ; ei

�i)!
ds

+= (T � t)
X
j 6=i

n
V
�
s; X̂ (s) ; ej

�
� V

�
s; X̂ (s) ; ei

�o
dJ ij(s)

+= (T � t)Vx
�
s; X̂ (s) ; � (s)

�
M̂ (s)

> e� (s; � (s)) dW ? (s) : (4.10)

Next, comparing the ds term in (4:10) by the ones in the second equation in (4:6) ; we deduce that

Vs
�
s; X̂ (s) ; ei

�
+ Vx

�
s; X̂ (s) ; ei

��
X̂ (s) r0 (s) + M̂ (s)

> ~B (s; ei)� ĉ (s)
�

(4.11)

+
1

2
Vxx

�
s; X̂ (s) ; ei

�
M̂ (s)

> e� (s; ei) e� (s; ei)> M̂ (s)

+
DP
j=1

gij

�
V
�
s; X̂ (s) ; ej

�
� V

�
s; X̂ (s) ; ei

��
= �r0 (s)V

�
s; X̂ (s) ; ei

�
;

and by comparing the dW ? (s) and dJ ij terms, we also obtain

q (s; t) = = (T � t)Vx
�
s; X̂ (s) ; � (s)

� e� (s; � (s))> M̂ (s) ; (4.12)

lij (s; t) = = (T � t)
n
V
�
s; X̂ (s) ; ej

�
� V

�
s; X̂ (s) ; ei

�o
:

We take the above expressions of p (s; t) and q (s; t) at s = t into (4:7) and (4:8) ; then323

= (T � t)V
�
t; X̂ (t) ; � (t)

�
� #x (ĉ (t)) = 0; (4.13)

and324

Vx
�
t; X̂ (t) ; � (t)

� e� (t; � (t)) e� (t; � (t))> M̂ (t) = � ~B (t; � (t))V
�
t; X̂ (t) ; � (t)

�
: (4.14)
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Consequently, we get that ĉ (�) ; â (�) and �̂ (�) admit the following representation:

ĉ (t) = I
�
= (T � t)V

�
t; X̂ (t) ; � (t)

��
; dt� a:e:; (4.15)

â (t) = �
� (� (t))mY V

�
t; X̂ (t) ; � (t)

�
�Y Vx

�
t; X̂ (t) ; � (t)

� ; dt� a:e:; (4.16)

�̂ (t) = �
r (t; � (t))V

�
t; X̂ (t) ; � (t)

�
� (t; � (t))� (t; � (t))

> Vx
�
t; X̂ (t) ; � (t)

� ; dt� a:e: (4.17)

Then by putting expressions (4:15) ; (4:16) and (4:17) into (4:11), this indicates that V (�; �; �) coincides with325

the solution of the PDE (4:1), evaluated along the trajectory X̂ (�) ; solution of the state equation:326

Remark 11 Equation (4:1) is comparable with the one in Pirvu & Zhang [42], in which the equilibrium is de�ned327

within the class of feedback controls.328

5 Special utility functions329

In this section, we look at some special cases of Merton�s portfolio problem with general discounting in which330

the function ß(�; �; �) may be separated into functions of time and state variables. The equilibrium strategies can331

then be determined completely by solving a system of ODEs.332

5.1 Power utility function333

To explicitly solve the problems (2:11) � (2:12), we consider the case where # (c) = c




and h (x) = a

x




; with334

a > 0 and 
 2 (0; 1). The PDE (4:1) is reduced in this case to335 8>>>>>>>><>>>>>>>>:

�ßt (t; x; ei) =ßx (t; x; ei)
�
r0 (t)x� ~B (t; ei)

>
� (t; ei) ~B (t; ei)

ß(t; x; ei)
ßx (t; x; ei)

� (= (T � t)ß(t; x; ei))
1


�1

�
+
1

2
ßxx (t; x; ei) ~B (t; ei)

>
� (t; ei) ~B (t; ei)

�
ß(t; x; ei)
ßx (t; x; ei)

�2
+ r0 (t)ß(t; x; ei) +

DP
j=1

gij [ß(t; x; ej)�ß(t; x; ei)] ; (t; x; ei) 2 [0; T ]� R�X ;

ß(T; x; ei) = ax
�1:
(5.1)

We consider the following trial solution based on the terminal condition ß(s; x; ei) = a�(s; ei)x
�1; for some336

deterministic function �(�; ei) 2 C1 ([0; T ] ;R) for each ei 2 X where the terminal condition �(T; ei) = 1: Then337

by substituting in (5:1) ; we get338 8<: �t (t; ei) +
�
K (t; ei) +Q (t)� (t; ei)

1

�1
�
�(t; ei) +

DP
j 6=i
gij�(t; ej) = 0; for t 2 [0; T ] ;

�(T; ei) = 1;

(5.2)

where339

K (t; ei) � 
r0 (t) +
1

2




(1� 
)
~B (t; ei)

>
� (t; ei) ~B (t; ei) + gii, (5.3)

and340

Q (t) � (1� 
) (a= (T � t))
1


�1 : (5.4)

From Pirvu & Zhang [42], we deduce that the equation (5:1) admit a unique continuously di¤erentiable uni-
formly bounded solution �(t; ei) ; ei 2 X ; then in light of Theorem 10, the representation of the Nash equilibrium
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strategies (4:3)� (4:5) gives

ĉ(t) = (a= (T � t)� (t; � (t)))
1


�1 X̂ (t) ; dt� a:e:; (5.5)

â (t) =
� (� (t))mY

(1� 
)�Y
X̂ (t) ; dt� a:e:; (5.6)

�̂(t) =
r (t; � (t))

(1� 
)� (t; � (t))� (t; � (t))>
X̂ (t) ; dt� a:e: (5.7)

The wealth process determined by the above trading strategy is given by

X (t) = x0 +

Z t

0

�
r0 (s) +

1

(1� 
)
~B (s; � (s))

>
� (s; � (s)) ~B (s; � (s))

� (a= (T � s)� (s; � (s)))
1


�1
o
X̂ (s) ds

+

Z t

0

X̂ (s)

(1� 
)
~B (s; � (s))

>
� (s; � (s)) e� (s; � (s)) dW ? (s) ; t 2 [0; T ] :

341

5.2 Logarithmic utility function342

Now, let us consider the case where # (c) = ln (c) and h (x) = a ln (x) ; with a > 0: In this case, the PDE (4:1)343

reduces to344 8>>>>>>>>><>>>>>>>>>:

�ßt (t; x; ei) =ßx (t; x; ei)
�
r0 (t)x� ~B (t; ei)

>
� (t; ei) ~B (t; ei)

ß(t; x; ei)
ßx (t; x; ei)

� (= (T � t)ß(t; x; ei))�1
�
+
1

2
ßxx (t; x; ei) ~B (t; ei)

>
� (t; ei) ~B (t; ei)

�
ß(t; x; ei)
ßx (t; x; ei)

�2
+ r0 (t)ß(t; x; ei) +

DP
j=1

gij [ß(t; x; ej)�ß(t; x; ei)] ; (t; x; ei) 2 [0; T ]� R�X ;

ß(T; x; ei) =
a

x
:

(5.8)
345

We consider the ansatz346

ß(t; x; ei) = � (t; ei)
a

x
; for t 2 [0; T ] ; (5.9)

where �(�; ei) 2 C1 ([0; T ] ;R) for each ei 2 X : Substituting in (5:8) ; we get347 8<: �t (t; ei) + gii�(t; ei) +
1

a= (T � t) +
DP
j 6=i
gij�(t; ej) = 0; for t 2 [0; T ] ;

�(T; ei) = 1;

(5.10)

which admits the folowing representation348

�(t; ei) = e
(T�t)gii

(
1 +

Z T

t

e(��T )gii

 
1

a= (T � �) +
DP
j 6=i
gij�(� ; ej)

!
d�

)
; for t 2 [0; T ] : (5.11)

Let �t (t) = (�t (t; e1) ; :::::;�t (t; eN ))
T and � (t) = (� (t; e1) ; ::::;�(t; eN ))

T , the system (5:10) can be
represented as 8<: �t (t) + G� (t) +

1

a= (T � t) = 0;

� (T ) = I 2 RN ;

it is well-known that

� (t) =

 
I +

Z T

t

e�(T�s)G
1

a= (T � s)ds
!
eG(T�t):
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where the matrix exponential eGt is de�ned by

eGt =
1X
k=0

(Gt)k

k!
:

In light of Theorem 10, the representation of the Nash equilibrium strategies (4:3)� (4:5) gives

ĉ(t) = (a= (T � t)� (t; � (t)))�1 X̂ (t) ; dt� a:e:; (5.12)

â (t) =
� (� (t))mY

�Y
X̂ (t) ; dt� a:e:; (5.13)

�̂(t) =
r (t; � (t))

� (t; � (t))� (t; � (t))
> X̂ (t) ; dt� a:e: (5.14)

The wealth process associated to the above trading strategy is given by349

X (t) = x0 +

Z t

0

n
r0 (s) + ~B (s; � (s))

>
� (s; � (s)) ~B (s; � (s)) � (a= (T � s)� (s; � (s)))�1

o
X̂ (s) ds

+

Z t

0

~B (s; � (s))
>
� (s; � (s)) e� (s; � (s)) X̂ (s) dW ? (s) ;

where 8 (t; ei) 2 [0; T ]�X ; �(t; ei) is given by (5:11) :350

6 Special discount function351

As mentioned in [35], an agent who makes a decision at time t is known as the t-agent and he has the ability to act352

in two ways: naive and sophisticated. Naive agents take decisions without considering that their preferences will353

change in the near future, then any t-agent solves the problem on the grounds that it is a standard optimal control354

problem with initial condition X(t) = xt such that his decision will be time-inconsistent. The t-agent should355

then be sophisticated in order to get a time consistent strategy, that is, taking into consideration the preferences356

of all s-agents, for s 2 [t; T ]. As a result, one way to deal with time-inconsistency in dynamic decision-making357

problems is to consider them as non-cooperative games with a continuous number of players in which decisions358

are selected at every instant of time. The solution to the problem of the agent with non-constant discounting359

must be created by searching for the sub-game perfect equilibria of the related game with an in�nite number of360

t-agents. In [35] the authors looked for a solution of sophisticated agent to the modi�ed HJB, then they must361

consider Markov equilibrium strategies. Unlike [35], we use open-loop equilibrium strategies in our work. This362

is a signi�cant di¤erence that leads to a signi�cant shift in the results.363

6.1 Exponential discounting with constant discount rate (classical model)364

We start this subsection with the case where the discount function is of standard exponential form365

= (t) = e��0t; t 2 [0; T ] ; (6.1)

where �0 > 0 is a constant denotes the discount rate. In this case, our equilibrium solutions for the two cases366

become367

1) Logarithmic utility

ĉ(t) =
�
ae�(T�t)�0�(t; � (t))

��1
X̂ (t) ; dt� a:e:; (6.2)

â (t) =
� (� (t))mY

�Y
X̂ (t) ; dt� a:e:; (6.3)

�̂(t) =
r (t; � (t))

� (t; � (t))� (t; � (t))
> X̂ (t) ; dt� a:e: (6.4)
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where 8 (t; ei) 2 [0; T ]�X368 8<: �t (t; ei) + gii�(t; ei) +
1

ae�(T�t)�0
+

DP
j 6=i
gij�(t; ej) = 0; for t 2 [0; T ] ;

�(T; ei) = 1;

(6.5)

Thus we have the following solution369

� (t) = (� (t; e1) ; ::::;�(t; eN )) ;

=

 
I +

Z T

t

e�(T�s)G
1

ae�(T�s)�0
ds

!
e(T�t)G :

2) Power utility

ĉ(t) =
�
ae�(T�t)�0�(t; � (t))

� 1

�1

X̂ (t) ; dt� a:e:; (6.6)

â (t) =
� (� (t))mY

(1� 
)�Y
X̂ (t) ; dt� a:e:; (6.7)

�̂(t) =
r (t; � (t))

(1� 
)� (t; � (t))� (t; � (t))>
X̂ (t) ; dt� a:e; (6.8)

where 8 (t; ei) 2 [0; T ]�X ;�(t; ei) is the solution to equation (5:2) ; with Q (t) = (1� 
) (a exp (��0 (T � t)))
1


�1 :370

6.2 Exponential discounting with non constant discount rate (Karp�s model)371

Let us now suppose that the instantaneous discount rate is non-constant, which is a continuous and positive372

function of time � (l), for l 2 [0; T ], as proposed by Karp [28]. A non-increasing discount rate � (�) will characterize373

impatient agents. To evaluate a payo¤ at time � � 0, the given discount factor is given by = (�) = e�
R �
0
�(l)dl: In374

this case, our (open-loop) equilibrium solutions for the two cases become375

1) Logarithmic utility

ĉ(t) =
�
ae�

R T�t
0

�(l)dl�(t; � (t))
��1

X̂ (t) ; dt� a:e:; (6.10)

â (t) =
� (� (t))mY

�Y
X̂ (t) ; dt� a:e:; (6.11)

�̂(t) =
r (t; � (t))

� (t; � (t))� (t; � (t))
> X̂ (t) ; dt� a:e:; (6.12)

where 8 (t; ei) 2 [0; T ]�X376 8<: �t (t; ei) + gii�(t; ei) +
1

ae�
R T�t
0

�(l)dl
+

DP
j 6=i
gij�(t; ej) = 0; for t 2 [0; T ] ;

�(T; ei) = 1;

(6.13)

Thus we have the following solution377

� (t) = (� (t; e1) ; ::::;�(t; eN )) ;

=

 
I +

Z T

t

e�(T�s)G
1

ae�
R T�s
0

�(l)dl
ds

!
e(T�t)G :

2) Power utility

ĉ(t) =
�
ae�

R T�t
0

�(l)dl�(t; � (t))
� 1

�1

X̂ (t) ; dt� a:e:; (6.14)

â (t) =
� (� (t))mY

(1� 
)�Y
X̂ (t) ; dt� a:e:; (6.15)

�̂(t) =
r (t; � (t))

(1� 
)� (t; � (t))� (t; � (t))>
X̂ (t) ; dt� a:e; (6.16)
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where 8 (t; ei) 2 [0; T ]�X ;�(t; ei) is the solution to equation (5:2) withQ (t) = (1� 
)
�
a exp

�
�
R T�t
0

�0 (l) dl
�� 1


�1
.378

6.3 Hyperbolic discounting379

We conclude this subsection with the case where the discount function is of hyperbolic form, which induces380

dynamically inconsistent preferences, implying a motive for consumers to constrain their own future choices.381

Hyperbolic discounting is mathematically described as382

= (�) = 1

1 + ��
(6.17)

where = (�) is the discount factor and � > 0 is a constant representing the discount rate. In this case, our383

equilibrium solutions for the two cases become384

1) Logarithmic utility

ĉ(t) =

�
a

1 + (T � t) ��(t; � (t))
��1

X̂ (t) ; dt� a:e:; (6.18)

â (t) =
� (� (t))mY

�Y
X̂ (t) ; dt� a:e:; (6.19)

�̂(t) =
r (t; � (t))

� (t; � (t))� (t; � (t))
> X̂ (t) ; dt� a:e:; (6.20)

where 8 (t; ei) 2 [0; T ]�X385 8<: �t (t; ei) + gii�(t; ei) +
1 + (T � t) �

a
+

DP
j 6=i
gij�(t; ej) = 0; for t 2 [0; T ] ;

�(T; ei) = 1;

(6.21)

Thus we have the following solution386

� (t) = (� (t; e1) ; ::::;�(t; eN )) ;

=

 
I +

Z T

t

1 + (T � s) �
a

e�(T�s)Gds

!
e(T�t)G :

2) Power utility

ĉ(t) =

�
a

1 + (T � t) ��(t; � (t))
� 1


�1

X̂ (t) ; dt� a:e:; (6.22)

â (t) =
� (� (t))mY

(1� 
)�Y
X̂ (t) ; dt� a:e:; (6.23)

�̂(t) =
r (t; � (t))

(1� 
)� (t; � (t))� (t; � (t))>
X̂ (t) ; dt� a:e: (6.24)

where 8 (t; ei) 2 [0; T ]�X ; �(t; ei) is the solution to equation (5:2) with Q (t) = (1� 
)
�

a

1 + � (T � t)

� 1

�1

:387

7 Numerical analysis388

In this section, we present some numerical results to illustrate the e¤ects of model parameters on the results
derived in the previous section. Throughout the numerical analyses for convenience but without loss of generality
we consider the logarithmic utility case where the discount function is of hyperbolic form. Other cases can be
treated in a similar manner, we suppose that all the parameters of the �nancial market are constants and the
Markov chain takes two possible values 1 and 2, i.e., X = f1; 2g with the rate matrix of the Markov chain being

G =
�
�2 2
5 �5

�
:
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the basic parameters are given below:

a � (� (t)) �0 �L mY �Y � r0 � (� (t)) � (� (t))
� (t) = 1 0.5 0.8 1.5 0.5 0.3 0.4 0.6 0.35 0.7 0.3
� (t) = 2 0.5 0.6 1.5 0.5 0.3 0.4 0.6 0.35 0.6 0.4

For (t; i) 2 [0; T ] � f1; 2g, let us denote by A (t; i) ; C(t; i) and �(t; i) the propensities to equilibrium rein-389

surance, consumption and investment strategies, respectively, i.e. A(t; � (t)) = â(t)

X̂(t)
; C(t; � (t) ) = ĉ(t)

X̂(t)
and390

�(t; � (t))= �̂(t)

X̂(t)
:391

According to (6:19), we can obtain that
@A

@� (�) (t; � (t)) > 0;
@A

@mY
(t; � (t)) > 0 and

@A

@�Y
(t; � (t)) < 0392

which indicate that as the safety loading � (�) or the expectation of the size of each claim mY increases, the393

reinsurance becomes more expensive, thus the insurer will undertake more risk through purchasing less reinsurance394

or acquiring more new business. When the claims�second-order moment �Y is higher, i.e. the surplus becomes395

more volatile, the insurer will purchase more reinsurance or acquire less new business.396

Figure 1 presents the curves of the di¤erent state trajectories of the propensitie to equilibrium reinsurance
A(t; i), in the three mods, i = 1, i = 2 and i = � (t). By using a two-state Markov chain Matlab code for � (�),
we can achieve the trajectories of A(t; 1); A(t; 2) and A(t; � (t)) and their graphs, the blue line is the graph of
A(t; 1), the continuous red line is the graph of A(t; 2), and the solid black line is the graph of A(t; � (t)); whose
values are switched between the blue line and the red line.

Figure 1. The propensitie to equilibrium reinsurance in the three modes for i=1;2 and �:

From the expression (6:20), we know that it is only dependent with the parameters of risk-free asset and397

risky asset. Di¤erentiating �(t; � (t) ) with respect to r0, we have
@�

@r0
(t; � (t) ) < 0, which implies that the398

cost of borrowing and lending will be higher as the interest rate increases. Thus, the insurer should invest less399

money in the risky asset. We obtain that
@�

@�
(t; � (t) ) > 0, which shows that the equilibrium investment strategy400

increases with �. In other words, the insurer will invest more money in the risky asset with the increase of �;401

20

6 Jan 2023 02:45:50 PST
230106-Chighoub Version 1 - Submitted to J. Ind. Manag. Optim.



@�

@�
(t; � (t) ) < 0, which shows �(t; � (t) ) decrease with the volatility of the risky asset�s price. The insurer should402

reduce investment in the risky asset when � becomes larger to hedge the risk.403

Figure 2 depicts the graph of the propensitie to equilibrium investment with respect to the state change of404

the Markov chain �(�) between 0 and 4 unit of time, where the initial state is assume to be �(0) = 1.405

Figure 2. The propensitie to equilibrium investment in the three modes for i=1;2 and �:

By using Matlab�s advanced ODE solvers (particularly the function ode45) and Markov chain � (�) we can406

achieve trajectories of C (t; 1) ; C (t; 2) and C (t; � (t)). Figure 3 shows the state of the equilibrium consumption407

propensitie. In fact, when � (0) = 1, is the initial state trajectory. Then the values are also switched between two408

paths which are the trajectories of the equilibrium consumption propensitie correspond to the di¤erent states of409

the Markov chain � (t) = 1 and � (t) = 2: As a result, we can clearly see how the Markovian switching in�uences410

the overall behaviour of the trajectories of the equilibrium consumption propensitie.411
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The propensitie to equilibrium consumption in the three modes for i=1;2 and �:

8 Conclusion412

In this paper, we have considered a class of dynamic decision models of Merton�s consumption-investment and413

reinsurance problem, under the e¤ect of Markovian regime-switching. We have employed a game theoretic advance414

to handle the time-inconsistency. Through this study, open-loop Nash equilibrium strategies are established as415

an alternative of optimal strategies. This was achieved using a stochastic system that includes a �ow of forward-416

backward stochastic di¤erential equations under equilibrium conditions. Concrete instances of discounted utilities417

are presented to con�rm the validity of our proposed study. The work may be developed in di¤erent ways. The418

methodology, for example, may be expanded to a non-Markovian framework meaning that, the case where the419

coe¢ cients of the controlled SDE as well as the coe¢ cients of the objective functional are random, via closed-loop420

equilibrium strategies.421

Another problem is to consider the model with some constraints such as negativity on the wealth process (see422

e.g. [40]) and to extend our objective criterion with deterministic discount function to the one with stochastic423

discount process. It is also worth to discuss some other types of reinsurance such as excess-of-loss reinsurance or424

combined reinsurance in our risk model.425

426

Similar to the �nite-state models, the Markov chain can be assumed to take values in�nite state space N,
and the rate matrix being G = [gij ]N�N. A direct consequence is that the matrix G has an in�nite dimension,
where i; j 2 N and gij > 0. From the de�nition, each row of G must sum up to 0,

1P
j=1

gij = 0. If we impose the

non-explosivity condition which is
sup
i2N

�gii <1;

then the usual Martingale problem mentioned in �rst display of Page 3 has a unique solution for the continuous427

time Markov chain and everything will work in similar fashion like in �nite state space. The reason we went ahead428

with �nite state space Markov chain assumption is that the major focus of this work is on applied directions,429

and �nite state space makes all the calculations tractable as opposed to countably in�nite state space.430
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But in�nite state space may give some interesting challenges from other aspects when we study the long run431

behavior of open loop Nash equilibrium strategies in speci�c examples. Recall that in case of �nite state Markov432

chain if ei is a positive recurrent state, then its recurrence time Tei has �nite expected value. It turns out that433

the di¢ culty is the fact that while every state ei communicates with every other state ej , it is possible that434

the chain starting from ei wanders o¤ to �in�nity� for every without ever returning to ei (for transient case).435

Furthermore, it is possible that even if the chain returns to ei in�nitely often with probability 1, the expected436

return time from ei to ei can be in�nite (for null recurrent case). Few works done on regime switching process437

with countably in�nite state space are [33] and [46]. Other general references include [48] and [10].438

Then how to study the methods where the regime-switching process is allowed to take in�nite many states is439

a very interesting and challenging research problems.440

Acknowledgements.441

We would like to thank the anonymous reviewers and the Editor for their constructive comments and sug-442

gestions on an earlier version of this paper, which led to a considerable improvement of the presentation of the443

work.444

9 Appendix445

Proof of Proposition 6 is derived using some limiting procedures and duality analysis. Furthermore, because our446

objective function is not in the quadratic form, we have to adapt some of the results obtained in [25] and [26]447

to our control problem which is about maximizing a general and non necessary quadratic utility. The proof of448

Lemma 7 follows a similar argument to [23]449

Proof of Proposition 6. The estimates (3:15) � (3:17) follow from Theorem 4.4 in [53]. Moreover the
following representation regarding the objective function

J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�
= Et

"Z T

t

= (s� t)
�
#
�
$>u" (s)

�
� #

�
$>û (s)

��
ds+ = (T � t)

�
h (X" (T ))� h

�
X̂ (T )

��#
: (A.1.1)

Now, from (3:12) and by applying the second order Taylor-Young expansion; we �nd that

h
�
X̂" (T )

�
� h

�
X̂ (T )

�
= hx

�
X̂ (T )

�
(y";v (s) + z";v (s)) +

1

2
hxx

�
X̂ (T )

�
(y";v (s) + z";v (s))

2

+ o
�
(y";v (s) + z";v (s))

2
�
:

By applying the second order Taylor-Lagrange expansion we get

#
�
$>u" (s)

�
� #

�
$>û (s)

�
=


#x
�
$>û (s)

�
$; v

�
+
1

2



#xx

�
$>û (s) + �v1[t;t+")

�
$$>v; v

�
:

From (3:17) it holds that

J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�
= Et

"Z T

t

= (s� t)
�

#x
�
$>û (s)

�
$; v

�
+
1

2



#xx

�
$>û (s) + �v1[t;t+")

�
$$>v; v

��
1[t;t+")ds

+ = (T � t)
�
hx

�
X̂ (T )

�
(y";v (T ) + z";v (T )) +

1

2
hxx

�
X̂ (T )

�
(y";v (T ) + z";v (T ))

2

��
+ o (") : (A.1.2)

Notice that

= (T � t)
�
hx

�
X̂ (T )

�
(y";v (T ) + z";v (T )) +

1

2
hxx

�
X̂ (T )

�
(y";v (T ) + z";v (T ))

2

�
= p (T ; t) (y";v (T ) + z";v (T )) +

1

2
P (T ; t) (y";v (T ) + z";v (T ))

2
:
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Now, by applying Itô�s formula to s 7! p (s; t) (y";v (s) + z";v (s)) on [t; T ], we get450

Et [p (T ; t) (y";v (T ) + z";v (T ))] = Et
�Z t+"

t

�
v>B (s; � (s)) p (s; t) + v>D (s; � (s)) eq (s; t)	 ds� : (A.1.3)

Again, by applying Itô�s formula to s 7! P (s; t) (y";v (s) + z";v (s))
2 on [t; T ] ; we get451

Et
h
P (T ; t) (y";v (T ) + z";v (T ))

2
i

= Et
�Z t+"

t

n
2v> (y";v (s) + z";v (s))

�
B (s; � (s))P (s; t) +D (s; � (s)) eQ (s; t)�

+v>
�
D (s; � (s))D (s; � (s))

>
�
vP (s; t)

o
ds
i
;

(A.1.4)

where eQ (s; t) = �0; Q (s; t)>�> : On the other hand, we conclude from (H1) together with (3:17) that452

Et
�Z t+"

t

(y";v (s) + z";v (s))
�
B (s; � (s))P (s; t) +D (s; � (s)) eQ (s; t)� ds� = o (") : (A.1.5)

By taking (A:1:3) ; (A:1:4) and (A:1:5) in (A:1:2) ; it follows that

J
�
t; X̂ (t) ; � (t) ;u" (�)

�
� J

�
t; X̂ (t) ; � (t) ; û (�)

�
= Et

�Z t+"

t

�

B (s; � (s)) p (s; t) +D (s; � (s)) eq (s; t) + = (s� t)#x �$>û (s)�$; v�

+
1

2

D�
= (s� t)#xx

�

$;û (s) + �v1[t;t+")

��
$$> + P (s; t)D (s; � (s))D (s; � (s))

>
�
v; v
E�

ds

�
+ o (") ;

which is equivalent to (3:18):453

Now, we derive the proof of Lemma 7 by using some limiting procedures. First, let us recall the following454

lemma which was proved by Wang in [49], Lemma 3.3.455

Lemma 12 If � (�) = (�1 (�) ; :::; �m (�)) 2 M
p
F (0; T ;Rm) with m 2 N and p > 1, then for a.e. t 2 [0; T ), there

exists a sequence f"tngn2N � (0; T � t) depending on t such that lim
n!1

"tn = 0 and

lim
n!1

1

"tn
Et
"Z t+"tn

t

j�i (s)� �i (t)j
p
ds

#
= 0; for i = 1; :::;m, dP� a:s:

Proof of Lemma 7. We de�ne, for t 2 [0; T ] and s 2 [t; T ] ;

�
�p (s; t) ; �q (s; t) ; �l (s; t)

�
:=
e�

R T
s
r0(�)d�

= (T � t) (p (s; t) ; q (s; t) ; l (s; t)) :

Then, for any t 2 [0; T ] ; in the interval [t; T ] ; the process
�
�p (�; t) ; �q (�; t) ; �l (�; t)

�
satis�es456 8<:

d�p (s; t) = �q (s; t)
>
dW ? (s) +

P
j 6=i
�lij (s; t) d�

ij (s) ; s 2 [t; T ] ;

�p (T ; t) = hx

�
X̂ (T )

�
;

(A.2.1)

Moreover, it is clear that from the uniqueness of solutions to (A:2:1), we have the equality
�
�p (s; t1) ; �q (s; t1) ; �l (s; t1)

�
=457 �

�p (s; t2) ; �q (s; t2) ; �l (s; t2)
�
; for any t1; t2; s 2 [0; T ] such that 0 < t1 < t2 < s < T: Hence, the solution458 �

�p (�; t) ; �q (�; t) ; �l (�; t)
�
does not depend on the variable t and this allows us to denote the solution of (A:2:1)459

by
�
�p (�) ; �q (�) ; �l (�)

�
:460

We have then, for any t 2 [0; T ] ; and s 2 [t; T ] ;461

(p (s; t) ; q (s; t) ; l (s; t)) = = (T � t) e
R T
s
r0(�)d�

�
�p (s) ; �q (s) ; �l (s)

�
: (A.2.2)
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Now using (A:2:2) we have, under (H2), for any t 2 [0; T ] and s 2 [t; T ] ;462

jp (s; t)� p (s; s)j � sup
t�s�t+"

j= (T � t)�= (T � s)j e�
R T
s
r0(�)d� j�p (s)j ; (A.2.3)

and463

jq (s; t)� q (s; s)j � sup
t�s�t+"

j= (T � t)�= (T � s)j e�
R T
s
r0(�)d� j�q (s)j ; (A.2.4)

From which, we have for any a > 0; t 2 [0; T ] ; and " 2 (0; T � t) ;

P
�����1"Et

�Z t+"

t

H (s; t) ds
�
� 1
"
Et
�Z t+"

t

H (s; s) ds
����� � a� ;

� 1

a
E
����1"Et

�Z t+"

t

H (s; t) ds
�
� 1
"
Et
�Z t+"

t

H (s; s) ds
����� ;

� C sup
t�s�t+"

j= (T � t)�= (T � s)j 1
"
E
Z t+"

t

(j�p (s)j+ j�q (s)j) ds

+ sup
t�s�t+"

j= (s� t)� 1j 1
"

Z t+"

t

E
�
#x
�
$>û (s)

��
ds:

Noting that since = (�) is continuous we get lim
"#0

sup
t�s�t+"

j= (T � t)�= (T � s)j = 0 for t 2 [0; T ] : Moreover, since

(�p (�) ; �q (�)) 2 L2F (0; T ;R)�M2
F
�
0; T ;RN+1

�
we get

lim
"#0

sup
t�s�t+"

j= (T � t)�= (T � s)j 1
"
E
Z t+"

t

(j�p (s)j+ j�q (s)j) ds = 0:

Noting that = (0) = 1 then lim
"#0

sup
t�s�t+"

j= (s� t)� 1j = 0: According to (H3); by using the dominated

convergence theorem

lim
"#0

1

"

Z t+"

t

E
�
#x
�
$>û (s)

��
ds = E

�
#x
�
$>û (t)

��
<1; dt� a:e.

Therefore

lim
"#0
E
����1"Et

�Z t+"

t

H (s; t) ds
�
� 1
"
Et
�Z t+"

t

H (s; s) ds
����� = 0:

Hence, for each t there exists a sequence ("tn)n�0 � (0; T � t) such that limn!1
"tn = 0 and

lim
n!1

����� 1"tnEt
"Z t+"tn

t

H (s; t) ds
#
� 1

"tn
Et
"Z t+"tn

t

H (s; s) ds
#����� = 0; dP� a:s:

Moreover, since #x
�
$>û (�)

�
2Mp

F (0; T ;R) and

(�p (�) ; �q (�)) 2 L2F (0; T ;R)�M2
F
�
0; T ;RN+1

�
we get from Lemma 12 that, there exists a subsequence of ("tn)n�0 which also denote by ("

t
n)n�0 such that

lim
n!1

1

"tn
Et
"Z t+"tn

t

H (s; s) ds
#
= H (t; t) ; dt� a:e; dP� a:s:

To derive the statement 2) in the Lemma 7, it is su¢ cient to prove the following, for each t there exists a
sequence ("tn)n�0 � (0; T � t) such that limn!1

"tn = 0 and

lim
n!1

1

"tn
Et
"Z t+"tn

t

= (s� t)#xx
�
$>

�
û (s) + �v1[t;t+")

��
ds

#
= #xx

�
$> (û (t))

�
;

lim
n!1

1

"tn
Et
"Z t+"tn

t

e� (s; � (s)) e� (s; � (s))> P (s; t) ds# = e� (t; � (t)) e� (t; � (t))> P (t; t) :
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Let us prove the �rst limit. We have����1"Et
�Z t+"

t

= (s� t)#xx
�
$>

�
û (s) + �v1[t;t+")

��
ds

�
�1
"
Et
�Z t+"

t

#xx
�
$> (û (s))

�
ds

�����
� sup

t�s�t+"
j= (s� t)� 1j 1

"
Et
�Z t+"

t

sup
��M

��#xx �$> (û (s) + �)��� ds� :
Applying the same arguments used in the �rst limit, we obtain according to Lemma 12,

lim
n!1

1

"tn
Et
"Z t+"tn

t

#xx
�
$>û (s)

�
ds

#
= #xx

�
$>û (t)

�
;

at least for a subsequence.464
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