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ABSTRACT: This study presents an evaluation of the skill of 12 global climate models from the

CMIP6 archive in capturing convective-storm parameters over the United States. For the historical

reference period 1979-2014, we compare the model-simulated 6-hourly CAPE, CIN, 0-1 km wind

shear (S01) and 0-6 km wind shear (S06) to those from two independent reanalysis datasets –

ERA5 and MERRA2. To obtain a comprehensive picture, we analyze the parameter distribution,

climatological mean, extreme, and thresholded frequency of convective parameters. The analysis

reveals significant bias in capturing both magnitude and spatial patterns, which also vary across

the seasons. The spatial distribution of means and extremes of the parameters indicate that most

models tend to overestimate CAPE, whereas S01, and S06 are underrepresented to varying extents.

Additionally, models tend to underestimate extremes in CIN. Comparing the model profiles with

rawinsonde profiles indicates that most of the high-CAPE models have warm and moist bias.

We also find that the near-surface wind speed is generally underestimated by the models. The

intermodel spread larger for thermodynamic parameters as compared to kinematic parameters.

The models generally have a significant positive bias in CAPE over western and eastern regions

of the continental US. More importantly, the bias in thresholded frequency of all four variables is

considerably larger than the bias in mean, suggesting a non-uniform bias across the distribution.

This likely leads to an under-representation of favorable severe thunderstorm environments, and has

the potential to influence dynamical downscaling simulations via initial and boundary conditions.
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SIGNIFICANCE STATEMENT: Global climate model projections are often used to explore

future changes in severe thunderstorms activity. However, climate model outputs often have

significant biases, and they can strongly impact the results. In this study, we thoroughly examined

biases in convective parameters in 12 models from the Coupled Model Intercomparison Project

Phase 6 with respect to two reanalysis datasets. The analysis is performed for North America,

covering the period 1979-2014. The study reveals significant biases in convective parameters that

differ between models, and are tied to the biases in temperature, humidity, and wind profiles. These

results provide valuable insight into selecting the right set of models to analyze future changes in

severe thunderstorm activity across the North American continent.

1. Introduction

The global mean surface temperature has increased approximately 1.1°C relative to pre-industrial

baselines (1850-1900), primarily as a result of increased greenhouse gas emissions due to human

activities (IPCC 2023). One of the direct consequence of tropospheric warming is generally an

increase in water vapor content as dictated by the Clausius-Clapeyron (C-C) relationship, however

studies have reported deviations from C-C scaling (e.g., O’Gorman and Muller 2010). This is

expected to enhance thermodynamic instability, thereby increasing thunderstorm likelihood (Allen

2018; Trapp 2013). In the United States (US), severe convective storms (SCS) pose a substantial

threat, resulting in significant loss of lives and billions of US dollars in insured losses annually

(Doswell III 2003; Hoeppe 2016). Thus, how the risks associated with SCS might change in future

assumes significant societal and scientific importance. However, while increases in boundary-layer

moisture and low-level thermodynamic instability may favor the formation of SCS, modulating

changes in convective inhibition and vertical wind shear may occur (Trapp et al. 2007; Brooks

2013; Diffenbaugh et al. 2013; Hoogewind et al. 2017; Lepore et al. 2021a; Haberlie et al. 2022).

Due to this complex interplay, future changes in SCS have high uncertainty.

The bulk of the studies that investigate the future changes in SCS typically adopt two different

approaches. Multiple global climate model (GCM) or regional climate model (RCM) are used to

project how large-scale environments that promote formation and organization of SCS change in the

future (Diffenbaugh et al. 2013; Allen et al. 2014a; Seeley and Romps 2015; Lepore et al. 2021a).

The other approach involves performing climate-scale, convective-allowing numerical simulations
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via “downscaling” the GCM outputs to examine the storm activity in future (Trapp et al. 2007, 2011;

Gensini and Mote 2015; Hoogewind et al. 2017; Trapp et al. 2019; Rasmussen et al. 2020; Haberlie

et al. 2022; Ashley et al. 2023). While GCMs use parameterization schemes to represent convection,

convective-allowing simulations provide an explicit treatment of convection, thus adding greater

value. Both the above approaches rely heavily on GCM outputs either directly or as initial/boundary

conditions, and therefore the skill of the GCMs in capturing severe convective environments

is of crucial importance. The analyses involving multiple model simulations generally reveal

considerable inter-model spread in the simulated severe convective environments, though detailed

analysis of these biases has generally not been explored (Trapp et al. 2007; Marsh et al. 2007;

Seeley and Romps 2015; Lepore et al. 2021a; Chavas and Li 2022). Therefore, we argue that a

more thorough evaluation of current generation GCMs is necessary before they are employed to

explore changes in severe storm activity.

A majority of past evaluations have generally focused on justifying the use of GCMs for future

projection of convective parameters, though rarely delve into the driving source of the biases

beyond mean characteristics. Marsh et al. (2007) evaluated the performance of Community

Climate System Model version 3 (CCSM3) in simulating severe thunderstorm environments over

North America, comparing it to the NCEP/NCAR reanalysis dataset. Findings highlighted a

significant underestimation of convective available potential energy (CAPE; hereinafter referred to

as a thermodynamic parameter) over the continental US. Interestingly, the model-simulated CAPE

values peaked over the Gulf of Mexico (GoM) and northern Atlantic, following the Gulf Stream,

while demonstrating promising skill in reproducing severe thunderstorm activity over the central

US. The analysis by Diffenbaugh et al. (2013) examining the Coupled Model Intercomparison

Project phase 5 (CMIP5) models indicated significant improvement in terms of the representation

of severe thunderstorm environments (defined based on the product of CAPE and 0-6km wind

shear; CAPES06) over North America, however several models showed positive bias for CAPE

in comparison to reanalysis data. Seeley and Romps (2015) also analyzed 11 CMIP5 models and

noted that most models have excessive positive bias in CAPE, thereby impacting the magnitude and

spatial distribution of severe thunderstorm environments. A recent study by Lepore et al. (2021a)

compared the convective environments simulated by CMIP6 models and those derived from ERA-

Interim reanalysis data. The multi-model mean consistently overestimated climatological CAPE
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and underestimated 0-6 km wind shear climatology (S06; hereinafter referred to as a kinematic

parameter) as compared to the reanalysis. Their study also noted that the climatological mean of

convective inhibition (CIN; another thermodynamic parameter) is also slightly underestimated by

the multi-model mean. Li et al. (2020a) evaluated the performance of the Community Atmosphere

Model version 6 (CAM6) historical simulation (1980–2014) over North America. They observed

that CAM6 simulations have a high CAPE bias in the eastern US as compared to ERA5, primarily

resulting from near-surface moisture bias. They also noted that while climatological extreme

patterns (99th percentile) of S06 are well captured by CAM6, 0-3km storm-relative helicity is

overestimated due to bias in low-level winds. More recently, Chavas and Li (2022) analyzed 13

models from the CMIP6 family and evaluated the models’ skill in reproducing severe thunderstorm

environments in comparison to ERA5 data in terms of CAPES06. The above study focused on

higher percentiles of the CAPE and CAPES06 distributions. They noted that the bias in CAPES06

is primarily driven by bias in CAPE in models, and the study concluded that the bias CAPE is

reflective of the bias in near-surface moist static energy in those models.

The studies investigating severe thunderstorm environments, in general, use the metric CAPES06

or a variant of it (e.g., Brooks et al. 2003; Trapp et al. 2007; Diffenbaugh et al. 2013; Seeley and

Romps 2015; Chavas and Li 2022). Given that several GCMs tend to overestimate the CAPE

fields, it is very likely that the bias, if any, in vertical wind shear field (S06) might be obscured

or overlooked. Furthermore, the above-mentioned studies have not explored other convective

parameters such as CIN and 0-1km wind shear (S01), a kinematic parameter, in detail nor biases

in the variables that constitute these parameters. Considering that CIN and S01 are also key

factors that modulate the formation and organization of severe thunderstorms (Brooks et al. 2003;

Trapp 2013; Allen 2018), we argue that it is imperative to evaluate the models’ skill in simulating

these parameters, not only in terms of mean values but also in frequential space and their root

causes. Therefore, the present study aims at providing a comprehensive evaluation of CMIP6

models in simulating the convective parameters such as CAPE, CIN, S01, and S06 over North

America with respect to reanalysis data. To obtain a comprehensive picture, we analyze the total

parameter distribution, mean, extreme, and thresholded frequency of convective parameters in

CMIP6 models. We also analyze how bias varies at different percentiles of parameter distribution,

which will show if the bias is skewed at higher or lower percentiles. Unlike earlier studies, which
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primarily rely on a single reanalysis product, which may have its own inherit biases, here we

compare the results from CMIP6 GCMs with two independent reanalysis products – ERA5 and the

Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA2). To the

best of our knowledge, such an in-depth analysis of CMIP6 models featuring multiple aspects in

the context of SCS does not exist in literature. Additionally, to better understand the biases in the

driving output variables in each model, we compare the model-simulated temperature, humidity

and wind fields with respect to those derived from rawinsonde soundings across North America.

These results inform the choice of models for studying future SCS activity over North America

either through convective environments, or using these data as initial conditions for downscaling.

2. Data and methods

a. CMIP6 and reanalysis datasets

The historical simulations from 12 GCMs from the CMIP6 archive (Eyring et al. 2016) are

examined (Table 1). We selected models to cover a broad range of horizontal and vertical grid

spacing and the selection was reliant on the availability of 3D profiles necessary to calculate

6-hourly convective variables. The ensemble used in the present study is slightly different from

the one in Chavas and Li (2022). In addition to those analyzed in Chavas and Li (2022), the

present study considers BCC-CSM2-MR, CESM2, FGOALS-g3, and NorESM2-MM. Whereas,

AWI-ESM-1-1-LR and GFDL-CM4, included in Chavas and Li (2022), have not been utilized in

our analysis owing to issues of availability for future projections. The convective parameterization

scheme used in CMIP6 models is indicated in Table ST1.

The majority of the model outputs are obtained through the Google Cloud Public Data set. The

datasets for CMCC-CM2-SR5 and NorESM2-MM were sourced through the Earth System Grid

Federation (ESGF) data portal. We used the GCM outputs at 6-hourly temporal resolution covering

the period 1979-2014.

Reanalysis products serve as common tools for assessing model performance, however they also

exhibit biases, especially in convective environments (Allen et al. 2014b; Gensini and Mote 2014;

King and Kennedy 2019; Li et al. 2020a; Wang et al. 2021; Taszarek et al. 2021b). When aiming to

study long-term patterns in convective parameters, it is desirable to use multiple reference datasets,

particularly in the light of known biases in many reanalysis products (e.g. Taszarek et al. 2021c;
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Table 1. List of the CMIP6 models used in the study. Numbers in parenthesis in the No. of gridpoints entry

are the number of vertical levels within the lowest 500 hPa for regions over the ocean.

Model name Variant ID No. of gridpoints [X × Y × Z] References

BCC-CSM2-MR r1i1p1f1 320 × 160 × 46 (11) Wu et al. (2019)

CanESM5 r1i1p2f1 128 × 64 × 49 (18) Swart et al. (2019)

CESM2 r11i1p1f1 288 × 192 × 32 (12) Danabasoglu et al. (2020)

CMCC-CM2-SR5 r1i1p1f1 288 × 192 × 30 (12) Cherchi et al. (2019)

CNRM-CM6 r11i1p1f2 256 × 128 × 91 (27) Voldoire et al. (2019)

CNRM-ESM2 r11i1p1f2 256 × 128 × 91 (27) Séférian et al. (2019)

FGOALS-g3 r3i1p1f1 180 × 80 × 26 (8) Li et al. (2020b)

GISS-E2.1-G r11i1p1f2 144 × 90 × 40 (14) Kelley et al. (2020)

MIROC6 r1i1p1f1 256 × 128 × 81 (17) Tatebe et al. (2019)

MPI-ESM1.2-HR r1i1p1f1 384 × 192 × 95 (14) Mauritsen et al. (2019)

MRI-ESM2.0 r1i1p1f1 320 × 160 × 80 (22) Yukimoto et al. (2019)

NorESM2-MM r1i1p1f1 288 × 192 × 32 (12) Seland et al. (2020)

Pilguj et al. 2022). Therefore, in this study, we choose two independent reanalysis datasets –

ERA5 and MERRA2 – for comparison with model outputs. This approach allows us to validate

model-derived convective parameters against two widely accepted reanalysis datasets, enhancing

the robustness and reliability of our findings.

ECMWF’s ERA5 (Hersbach et al. 2020) is one of the popularly-used reanalysis products for

model evaluation. ERA5 provides global atmospheric fields at a horizontal grid spacing of 0.25◦

× 0.25◦ on 137 terrain-following hybrid model levels (41 are within lowest 500mb) at 1-hourly

temporal resolution. However, for consistency with the frequency of the CMIP6 models selected

in this study, we utilized ERA5 outputs at 6-hourly frequency. MERRA2 (Gelaro et al. 2017) is

another commonly used global atmospheric reanalysis product developed by the Global Modeling

and Assimilation Office (GMAO), NASA. Compared to ERA5, MERRA2 comes on a coarser mesh

with a horizontal grid spacing of 0.5◦ × 0.625◦ having 72 terrain-following hybrid vertical levels

(22 are within lowest 500mb) and hence is more similar to the resolution of the GCMs. MERRA2

data is available from the year 1980, and we also used 6-hourly data to align with the temporal

frequency of the GCMs.
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b. Rawinsonde data and quality-checks

To provide an observational basis and supplement the environmental evaluation, rawinsonde

profiles from the Integrated Global Radiosonde Archive version 2 (IGRA2) are used. IGRA2

is a collection of quality-controlled historical and near real-time rawinsonde and pilot balloon

observations across the globe (Durre et al. 2018). Fig. SF1 shows the spatial distribution of

sounding stations considered in this study. A second-level quality-check is performed for the

rawinsonde observations following the methodology described in Taszarek et al. (2021c). This

includes removal of records with missing variables, elimination of levels with temperature gradients

higher than 10◦C km−1, and exclusion of values outside 1.5 times the interquartile range of the

distribution. Rawinsonde profiles from 237 stations are considered here. Out of a total of 6377930

profiles, we used only 3476618 (54.51%) profiles that passed the quality check for the analysis

here.

c. Convective parameters

The environments that are conducive for the formation of severe thunderstorms are typically

inferred using parameters that summarize the atmospheric profile including CAPE, CIN, and

vertical wind shear (Rasmussen and Blanchard 1998; Brooks et al. 2003; Trapp 2013). CAPE is

a measure of instability of the atmosphere, which is computed as the total energy due to positive

buoyancy of an air parcel between the level of free convection and the level of neutral buoyancy

(Emanuel et al. 1994). CIN, on the other hand, corresponds to the negative buoyancy experienced

by the air parcel and hence it essentially amounts to the energy required for an air parcel to reach

LFC. Deep-layer wind shear (S06), computed as the magnitude of the vector difference in horizontal

wind at 6 km height and the surface, is another crucial factor influencing the development of severe

thunderstorms. The low-level wind shear (S01; magnitude of the vector difference in horizontal

wind at 1 km and the surface) is a parameter that can impact the likelihood of tornadoes. Moreover,

it allows us to assess reliability for near surface winds, a property that is known to be biased in

earlier studies (Diffenbaugh et al. 2013; Allen et al. 2014b).
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d. Methodology

We computed the above-mentioned convective parameters from CMIP6 models and reanalysis

datasets for the period 1979-2014 (1980-2014 for MERRA2) at 6-hourly intervals on their native

horizontal resolutions. CAPE and CIN are computed using the lowest 100 mb mixed-layer (ML)

parcel for a pseudo-adiabatic ascent and applying the correction for virtual temperature following

Doswell III and Rasmussen (1994). To compute S01 and S06, we first estimated the height above

ground level using the hypsometric equation. Then, we interpolated wind vector to surface, 1- and

6-km above ground level and calculated the vector difference corresponding to S01 and S06. We

used the python package xcape (Lepore et al. 2021b) to compute CAPE and CIN as it facilitates

efficient calculation of the convective parameters by taking advantage of wrapped Fortran routines

together with parallelization utilizing dask.

We compared the distributions of vertical profiles of temperature, specific humidity, and zonal

and meridional wind components from GCMs with rawinsonde profiles. The observed and the

model profiles are interpolated to 100 common height levels from surface to 40 km in vertical (above

ground level), with 35 levels in the lower troposphere (0-2 km), for a consistent comparison between

the varying model and observational level spacings. The distributions of observed soundings

corresponding to 00Z and 12Z are compared with those from the GCMs at the nearest grid point

in space and time. Additionally, profiles from the reanalysis fields are also compared to provide a

reference baseline for the performance of reanalysis in capturing ambient meteorological features.

The specific humidity profiles for MERRA2 are computed using temperature and relative humidity

fields following Huang (2018).

3. Results

a. Parameter distributions

We analyze the distribution of convective parameters in terms of probability density functions

(PDF) to assess the ensemble spread relative to the reanalysis fields. Analyzing the PDF helps gain

insights into the general behavior of each ensemble member and the variability within the model

simulations.

The model-simulated ML-CAPE exhibits considerable variability among the ensemble, and

the spread is quite evident at the higher tail of the distribution (Fig. 1a). Among the CAPE
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Fig. 1. PDF of (a) 100mb ML-CAPE, (b) 100mb ML-CIN, (c) S01, and (d) S06 from all grids points over

the study region [130W-60W and 15N-60N] for the period 1980-2014 from 12 CMIP6 models, ERA5 and

MERRA2. Datapoints are on their native grids at 6-hourly temporal resolution. The figures in inset show the

same parameters for a shorter range to highlight the spread at the lower end of the PDF. Values corresponding to

different percentiles from the above distribution for (e) ML-CAPE, (f) ML-CIN, (g) S01, and (h) S06 from all

models are also shown. 10
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distributions, MERRA2 is on the lowest end for CAPE values above 2000 J kg−1, though MPI-

ESM1-2-HR also shows significant underestimation. However, the majority of the models show

excessive frequencies of high CAPE values, with GISS-E2.1-G, and CMCC-CM2-SR5 being on

the higher end. Fig. 1e further highlights the inter-model spread at different CAPE percentiles.

P95 CAPE from models spans from ∼720 J kg−1 to ∼2500 J kg−1. GISS-E2.1-G shows high

CAPE values for all higher percentiles. The summary statistics given in Table 2 indicate that

MPI-ESM1-2-HR is the only model that underestimates the mean CAPE (∼23% underestimation

relative to ERA5), however it shows the least deviation from reanalysis CAPE. Other models have

biases ranging from 39% (CanESM5) to 182% (GISS-E-2.1-G). We express the inter-model spread

in terms of relative range of each parameter, which is defined as the ratio of ensemble range (the

difference between maximum and minimum values among the ensemble) to the ensemble mean

of respective parameters derived from 12 GCMs. The relative range for CAPE based on the mean

values given in Table 2 is 1.185, meaning the ensemble range is larger than the ensemble mean.

The standard deviation (SD) and upper-quartile difference (UQD; difference between 75th and 50th

percentiles) in CAPE is comparatively large compared to reanalysis in most models (Table 2). UQD

in models ranges from 44.27 J kg−1 in MPI-ESM1-2-HR to 515.11 J kg−1 in GISS-E-2.1-G, while

that of ERA5 and MERRA2 is 41.97 J kg−1 and 44.04 J kg−1, respectively. SD in CAPE ranges

from 309 J kg−1 in MPI-ESM1-2-HR to 840 J kg−1 in GISS-E-2.1-G. UQD in MPI-ESM1-2-HR

shows close agreement with the reanalysis, though SD is underestimated by 73 J kg−1 with respect

to ERA5 (43 J kg−1 with respect to MERRA2). The analysis of CAPE values from Fig. 1 and

Table 2 suggests that the model resolution does not always dictate performance for CAPE, for

example, the higher-resolution BCC-CSM2-MR (∼1.125◦ grid spacings) and a coarse-resolution

model (CanESM5; ∼2.8◦ grid spacings) have similar CAPE distribution.

ML-CIN distributions (Fig. 1b) show a smaller spread at higher values. An exception is BCC-

CSM2-MR, which has higher CIN values almost throughout the distribution. The quantile values

show (Fig. 1f) mixed bias for models as compared to the reanalysis-derived CIN values, with BCC-

CSM2-SR5 having significantly larger values for the higher quantiles. While the mean and SD

of CIN values from the models (Table 2) generally aligns with reanalysis, majority of the models

exhibit a significant difference in UQD (ranges from 0.68 in NorESM2-MM to 11.12 in MIROC6).

The difference between ERA5 and MERRA2 in terms of mean and SD of CIN is comparatively
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Table 2. Mean, standard deviation (SD), and upper-quartile difference (UQD; difference between 75th and

50th percentile) of ML-CAPE, ML-CIN, S01, and S06 from 12 models and the two reanalysis products. The

statistics are computed considering all grid points covering the study domain at a 6h temporal resolution on

native grids during 1980-2014.

ML-CAPE ML-CIN S01 S06

Reanalysis/Model Mean SD UQD Mean SD UQD Mean SD UQD Mean SD UQD

ERA5 167.65 383.94 41.97 17.85 54.75 8.16 5.35 4.25 3.21 16.02 10.59 8.13

MERRA2 151.29 342.53 44.04 17.87 55.87 4.39 5.10 4.16 3.13 15.91 10.49 8.11

BCC-CSM2-MR 271.88 625.51 50.24 28.19 83.35 4.09 5.45 4.27 3.14 16.61 10.85 8.43

CanESM5 234.53 538.61 113.62 18.99 60.61 3.71 5.52 3.79 2.77 16.33 10.46 8.16

CESM2 284.23 562.52 147.95 15.51 54.35 0.85 4.55 3.67 2.59 15.53 9.83 7.59

CMCC-CM2-SR5 338.57 682.33 179.94 14.99 49.31 1.94 4.78 4.26 3.16 15.30 9.57 7.35

CNRM-CM6 340.28 657.83 258.90 12.99 47.31 2.66 4.96 4.13 3.03 15.67 10.40 7.98

CNRM-ESM 363.14 693.47 294.89 13.62 49.15 2.76 4.94 4.15 3.03 15.49 10.33 7.87

FGOALS-g3 270.65 590.66 96.74 19.82 62.12 3.28 4.49 3.53 2.43 15.44 9.26 7.01

GISS-E-2.1-G 472.28 840.11 515.11 15.87 55.45 2.86 5.13 4.10 3.11 17.51 11.07 8.59

MIROC6 288.39 592.41 145.67 22.64 62.05 11.12 4.93 4.13 3.08 15.42 9.68 7.31

MPI-ESM1.2-HR 128.70 309.53 44.27 23.13 64.21 8.66 4.77 3.77 2.78 16.23 10.51 8.16

MRI-ESM2.0 246.21 518.95 99.19 12.61 44.54 3.35 5.78 4.49 3.24 16.62 10.52 8.07

NorESM2-MM 239.57 477.74 113.63 13.58 51.65 0.68 4.54 3.74 2.69 15.62 9.89 7.72

small, but MERRA2 has higher values towards the tail of the distribution, which is reflected in

lower UQD as compared to ERA5. Relative range for CIN based on model mean values (Table 2)

is 0.882, which is smaller than that of CAPE.

The model S01 distributions are fairly consistent with the reanalyses in terms of the statistics in

Table 2, though there are differences in the magnitude at which model-simulated S01 frequency

peaks (Fig. 1c). The frequency peaks for CMCC-CM2-SR5 at ∼1.25 m s−1 (on lowest side) and for

CanESM5, the frequency peaks at ∼3 m s−1 (on highest side). While most models overemphasize

S01 magnitudes beyond 30 m s−1, mean S01 values are slightly lower than that of the reanalyses. S01

values for various percentiles (Fig. 1g) display mixed biases in models as opposed to reanalysis, with

MRI-ESM2-0 and FGOALS-g3 on the higher and lower side, respectively for higher percentiles.

The inter-model spread in terms of relative range is 0.258, which is significantly lower than the

relative range for both CAPE and CIN. The distributions of S06 (Table 2 and Fig. 1d) are also

in agreement with the reanalysis datasets in terms of mean, SD, and UQD. However, majority of

the models tend to underestimate the wind shear of values above 30 m s−1. Fig. 1g suggests that
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there is a greater consistency among the models, even at higher percentiles, though models such

as MIROC6, FGOALS-g3, CMCC-CM2-SR5, NorESM2-MM display notable underestimation.

Relative range for S06 is 0.138, which is the least among all convective variables. It is worthwhile to

note that while S01 in MPI-ESM1.2-HR is underestimated, the S06 distribution is quite consistent

with reanalyses.

We also examined the parameter distributions for all four seasons (Fig. SF2 – SF5). Though

the general pattern of distribution remains similar to that of the annual distribution, the model bias

does exhibit seasonal dependence.

b. Spatial pattern of extremes

To assess how the models capture the spatial patterns of the extremes, we examine the 95th

percentile (P95) of all four parameters. Considering the higher frequency of severe thunderstorms

over the US in spring and summer, and the apparent biases in these seasons, we focus primarily on

these two seasons.

1) Spring (March–May)

While most models capture the general pattern of P95 ML-CAPE relative to the reanalysis fields

(Fig. 2), there is noticeable bias in the magnitude, which is reflective of the positive bias we noted

in the previous section (Table 2). The intermodel spread in terms of relative range for springtime

P95 CAPE is 1.32, indicating that the range is larger than the mean. FGOALS-g3 shows lower

CAPE values over the continental US. For instance, in the southeastern Texas, CAPE in ERA5 is

around 2200 J kg−1, whereas FGOALS-g3 indicates only around 1500 J kg−1. As noted from the

PDF (Fig.1a), MERRA2 shows lower values relative to ERA5, despite the location of the maxima

is quite consistent between the reanalyses. CMCC-CM2-SR5, CNRM-CM6, CNRM-ESM2, and

GISS-E2.1-G suffer from high bias over the GoM and southeast US. Similarly, CanESM5 shows

higher values on the east coast (near the Carolinas). This type of bias is not unexpected in climate

models given similar features in prior CMIP generations (e.g. Marsh et al. 2007; Diffenbaugh et al.

2013). Interestingly, CMCC-CM2-SR5 and MIROC6 exhibit a distinctive pattern characterized

by a northwestward extension in higher CAPE values, reaching into the northern Great Plains. All

models exhibit a pattern correlation higher than 0.8 with respect to both the reanalyses (Fig. 2o).
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Fig. 2. Spatial map of 6-hourly P95 ML-CAPE for the spring season from (a-l) 12 CMIP6 models, along

with (m) ERA5 and (n) MERRA2 reanalysis products covering the historical baseline period (1979-2014). The

(o) scatter plot shows pattern correlation and bias for all 12 models with respect to (in red) ERA5 and (in blue)

MERRA2. The bias and pattern correlation are computed after regridding all datasets to a uniform 1×1 lat-lon

grid.

All other models show bias ∼50% or higher. GISS-E2.1-G has a bias close to 150%, which is

the largest among the ensemble. Better performance of MPI-ESM1-2-HR and excessive bias in

GISS-E2.1-G during spring is in agreement with (Chavas and Li 2022). Intriguingly, models

tend to correlate better with the spatial pattern of MERRA2 than ERA5, notably for CanESM5,

CMCC-CM2-SR5, GISS-E2.1-G. MPI-ESM1-2-HR shows a near-zero bias.

P95 of ML-CIN (Fig. 3) has a pattern with maximum values concentrated over the western parts

of the GoM, with an extension into the southern Great Plains. The P95 ML-CIN structure in both

the reanalysis fields is quite similar, except that MERRA2 exhibits slightly higher values, primarily

in the west side of the Rockies. While models are consistent at simulating the relative maxima over
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Fig. 3. As for Fig. 2 but for ML-CIN.

GoM and the southern Great Plains, most of them struggle to capture the magnitude accurately.

The CNRM models and MRI-EMS2.0 fail to reproduce the higher values over the southern Great

Plains. BCC-CSM2-MR exhibits the largest positive bias (close to 50%), whereas the two CNRM

models, MRI-ESM2-0, and NorESM2-MM show approximately 25% underestimation in overall

magnitude (Fig. 3o). MPI-ESM1.2-HR, again displays very good skill in capturing P95 CIN with

a pattern correlation of >0.9 and bias close to 0, while MIROC6 shows better skill in simulating

the P95 ML-CIN pattern relative to the reanalysis. The relative range for P95 CIN is 0.87, smaller

than that of CAPE, suggesting that the intermodel spread is considerably smaller for P95 CIN as

compared to that of CAPE.

P95 S01 has greater consistency between the models and reanalyses (Fig. 4) with smaller

ensemble spread (relative range 0.29). As compared with ERA5, MERRA2 has slightly lower

S01 values, particularly over the Great Plains and Midwest. Moreover, ERA5 exhibits higher shear

values over high terrains of the Rockies owing to its finer horizontal grid spacing. Almost all

models capture the spatial pattern well, as evidenced by a high pattern correlation (>0.9). We note
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Fig. 4. As for Fig. 2 but for S01.

a slightly higher pattern correlation for most models relative to MERRA2 as compared to ERA5,

likely due to the coarser horizontal grid spacing in MERRA2. MRI-ESM2.0 tends to overestimate

the magnitude by approximately 10%. BCC-CSM2-MR, CanESM5, CMCC-CM2-SR5, CNRM

models, and GISS-E2-1G show better skill capturing the S01 magnitude with bias less than 5%.

All other models tend to underestimate P95 S01 with a bias close to 10%. FGOALS-g3 and

MPI-ESM1.2-HR considerably underestimate P95 S01. Owing to similarities in the modeling

components, both CESM2 and NorESM2-MM exhibit very similar pattern, and both these models

do not capture the high shear values near the Rockies. Intriguingly, the model’s skill in accurately

capturing P95 S01 magnitude is not always dependent on the model grid spacing. For instance,

CanESM5 has a much coarser mesh compared to CESM2, with approximate grid spacings of

2.8◦ and 1.25◦ degrees, respectively. However, CanESM5 exhibits a noticeably better skill in

reproducing P95 S01 magnitude and spatial distribution (>0.9 pattern correlation and <5% bias).

The springtime P95 S06 distributions (Fig. 5) in the reanalysis products show consistent patterns,

although ERA5 indicates slightly higher magnitudes compared to the values in MERRA2. The
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Fig. 5. As for Fig. 2 but for S06.

P95 S06 distribution is characterized by a pattern of higher S06 values along the Rockies and

the west coast, with peaks reaching up to ∼50 m s−1 in ERA5. S06 along the Appalachian

Mountains and the northwest Atlantic is also stronger. While most models capture the pattern

over Appalachian Mountains, the higher values near the Rockeis are underestimated. GISS-E2.1-

G exhibits anomalously high S06 values over northern Mexico (up to 15 m s−1 higher values).

CESM2, FGOALS-g3 and NorESM2-MM exhibit lower S06 magnitudes along the Rockies and

west coast. While the bias across the ensemble lies within ±10%, the pattern correlation varies

between 0.73 to 0.95. Curiously, the pattern correlation relative to ERA5 and MERRA2 is notably

different in models, specifically for GISS-E2.1-G (0.83 and 0.73 respectively). The intermodel

spread in terms of relative range for P95 S06 is 0.17, which is the least among the four variables

during the spring season.
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Fig. 6. Spatial map of 6-hourly P95 ML-CAPE for the summer season from 12 CMIP6 models, along with

ERA5 and MERRA2 reanalysis products covering the historical baseline period (1979-2014).

2) Summer (June–August)

In summer, most models heavily overestimate the P95 ML-CAPE values (Fig. 6) compared to

reanalysis, similar to the findings in earlier work (Chavas and Li 2022). Among the reanalyses,

MERAA2 shows slightly lower values overall and particularly near the Gulf of California (∼1000

J kg−1 difference). While both of the reanalyses maximize ML-CAPE around 3000 J kg−1 near the

Great Plains, several models have P95 ML-CAPE values higher than 4500 J kg−1. The intermodel

spread in terms of relative range of magnitude is 1.41, and this is higher as compared to that

in spring (1.32). FGOALS-g3, MPI-ESM1.2-HR and NorESM2-MM are relatively better for

CAPE magnitude (bias close to 50%), whereas GISS-E2.1-G is high outlier (150% bias). CMCC-

CM2-SR5, CanESM5, GISS-E2.1-G, MIROC6, and MRI-ESM2.0 exhibit high CAPE in the Great

Plains. As for spring, CMCC-CM2-SR5 and MIROC6 indicate the northwestward extension of

CAPE maxima into the northern Great Plains in summer as well. Note that MPI-ESM1-2-HR,
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unlike other models, have notably lower CAPE over the oceans. Intriguingly, CanESM5 displays

a slightly different spatial pattern, with the maxima extending into the northeast US, resulting in

poor pattern correlation (0.62). All other models have a pattern correlation higher than 0.8. The

consistent high positive bias in models over the ocean, particularly along the northeast US coast

is more pronounced in the summer compared to spring, suggesting biases in convective instability

over warm waters. In contrast, the CCSM3 simulations in Marsh et al. (2007) displayed stronger

bias near the northeast coast in spring.

The summertime P95 ML-CIN pattern (Fig. 7) has maxima over the Great Plains and near the

Gulf of California. Compared to ERA5, MERRA2 exhibits slightly higher values over the Great

Plains. Most models capture the P95 ML-CIN pattern similar to the reanalyses (pattern correlation

>0.8), however the CNRM models and FGOALS-g3 are outliers. BCC-CSM2-MR shows much

higher values, up to 800 J kg−1 (bias close to 100%), both the CNRM models exhibit markedly

lower values over the Great Plains (∼ 200 J kg−1). FGOALS-g3 is another outlier showing much

different spatial pattern as compared to other models and reanalyses, with maximum CIN values

near the southern US. The relative range based on CIN magnitude from models is 1.3, indicating

a large ensemble spread, which is notably larger than springtime CIN (0.87).

The spatial pattern of P95 S01 in summer (Fig. 8) is similar to spring. High S01 values

are seen over the northeast and central US. MERRA2 exhibits slightly higher S01 values in the

northern and northeastern regions compared to ERA5. As in spring, MRI-ESM2 slightly (<10%

bias) overestimates the P95 S01 magnitude over the northeast US, though it captures the overall

spatial structure reasonably well (0.92 pattern correlation). BCC-CSM2-MR, CESM2, MIROC6,

and NorESM2 show relatively better skill in S01 spatial pattern and magnitude (> 0.85 pattern

correlation and < 10% bias; Fig. 8o). However, CNRM-CM6, CNRM-ESM2, FGOALS-g3, and

MPI-ESM1.2-HR show noticeably lower values relative to reanalysis (> 15% underestimation).

This underestimation by the models is greater in summer relative to spring. The relative range for

S01 magnitude is 0.27, which suggests smaller intermodel spread similar to that in spring.

In terms of P95 S06 (Fig. 9), the patterns in ERA5 and MERRA2 are almost identical with higher

values, above 35 m s−1, in the northwest region of the US. Higher S06 values are observed over the

northeast US as well. BCC-CSM2-SR is an outlier which significantly overestimates S06 values

in the northeast US and southern Canada. GISS-E-2.1-G and NorESM2-MM are the other two
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Fig. 7. As for Fig. 6 but for ML-CIN. In (o), CNRM-CM6 and CNRM-ESM do not appear as their pattern

correlation is about 0.3 and 0.2, respectively.

models with much higher S06 values near the northeast US. MPI-ESM1.2-HR and MRI-ESM2

show relatively good skill in capturing the S06 spatial structure seen in the reanalyses (close to 0

bias and >0.92 pattern correlation). Although FGOALS-g3 shows a better skill in capturing the

S06 pattern in the northeast region, it fails to reproduce the high shear values in the northwest

US (0.87 pattern correlation). CMCC-CM2-SR5 and the two CNRM models underestimate the

S06 magnitude by ∼10%. As in spring, the intermodel spread in terms of relative range of S06

magnitude is the smallest among the four convective variables and is 0.18.
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Fig. 8. As for Fig. 6 but for S01.

3) Fall (September–November) and winter (Decemeber–February)

Fall P95 CAPE values are predominantly higher over oceanic areas, with peak reanalysis values

around 2000 J kg−1 (Figure SF6). Models show higher values (close to 4000 J kg−1) over GoM and

the Caribbean Sea. In contrast, the pattern of P95 ML-CIN is well captured (Fig. SF7). Though

models slightly underestimate the P95 S01 pattern (Fig. SF8), most models fail to capture the P95

S06 field (Fig. SF9) accurately. The relative range for CAPE, CIN, S01, and S06 in fall is 2.45,

0.90, 0.26, 0.15, respectively. P95 ML-CAPE in winter (Fig. SF10) is very weak over the region

with values well below 1000 J kg−1 over the Caribbean Sea. A few models heavily overestimate

the oceanic P95 ML-CAPE values. Wintertime P95 ML-CIN is lower in most models (Fig. SF11).

Except BCC-CSM2-MR and MPI-ESM1.2-HR, all other models considerably underestimate the

P95 ML-CIN magnitude. MRI-ESM2 performs best among the CMIP ensemble in capturing

P95 S01 (Fig. SF12), whereas CESM2, FGOALS-g3, and NorESM2-MM have lower P95 S01

magnitudes. While models show a reasonable skill in capturing P95 S06, most models have a
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Fig. 9. As for Fig. 6 but for S06.

smoother pattern with a slightly lower magnitudes. The relative range for wintertime CAPE, CIN,

S01, and S06 is 2.51, 1.16, 0.24, 0.19, respectively.

The analysis of convective parameters suggests that while most models have a tendency to over-

estimate ML-CAPE, wind shear is lower in the majority of the models. More importantly, several

models have similar spatial patterns, suggesting a basis for categorizing them into specific group-

ings. Based on ML-CAPE patterns, CMCC-CM2-SR5, CanESM5, GISS-E2.1-G, and MIROC6

can be categorized as a ‘high-CAPE’ family of models. The rest of the models may fall into a

‘moderate-CAPE’ family. The intermodel spread quantified in terms of relative range of parameter

magnitude suggests that CAPE has largest model spread and S06 has smallest model spread in all

four seasons.

c. Mean spatial patterns

The parameter distributions (Fig. 1) and the spatial distribution of extremes (P95) of convective

parameters revealed varying degrees of biases. To assess models’ skill in reproducing seasonal
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mean (climatology) of each parameter, we compute pattern correlation and standard deviation of

seasonal mean relative to the reanalyses. Since each models and the two reanalyses operate on

different native grids, to avoid spatially induced parameter biases, all datasets are regridded to

a uniform 1°×1°mesh to facilitate a grid-to-grid comparison. The pattern correlation coefficient

and standard deviation are plotted as Taylor diagrams for all four parameters. For a consistent

comparison, we normalize the standard deviation of each parameter with the reference standard

deviation (computed from the reanalysis). Normalization facilitates easier comparison, and a

normalized standard deviation (NSD) close to 1 indicates that the model captures the spatial

variability well.

1) Spring

The models in general show larger spatial variability for ML-CAPE when compared to the re-

analysis climatology (Fig. 10a) as evidenced by large NSD. The skill scores for the models are

slightly different between ERA5 and MERRA2, primarily in terms of NSD. The spatial pattern is

well captured by most models with a pattern correlation close to 0.9 consistent with earlier findings

(Chavas and Li 2022). CanESM5 and FGOALS-g3 show relatively weaker correlation (∼0.8).

GISS-E2.1-G, CMCC-CM2-SR5, CNRM-CM6, CNRM-ESM, FGOALS-g3, and MIROC6, ex-

hibit a very large NSD. The intermodel spread in terms of the relative range of climatological

CAPE magnitude is 1.9. Note that relative range for seasonal mean is larger than that of P95.

The intermodel spread in terms of ML-CIN NSD (Fig. 10b) is much lower as compared to

that of CAPE. However, all models except BCC-CSM2-MR under-represent the spatial variability

(NSD) relative to the reanalysis data. NorESM2-MM reproduces only half of the spatial variability

relative to reanalysis. As observed for P95 CIN, this models have a considerable negative bias in

reproducing the CIN magnitude as well. MPI-ESM-1.2-HR captures the spatial pattern and the

variability well with a correlation close to 0.95. MIROC6 also shows a good skill, with a pattern

correlation of 0.9. All other models underestimate the spatial variability (except BCC-CSM2-MR),

though the pattern correlation is above 0.85. The relative range in terms of CIN magnitude is 1.19,

suggesting large ensemble spread, and the spread is much larger as opposed to that of P95 values

(0.87).
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1. BCC-CSM2-MR
2. CanESM5
3. CESM2
4. CMCC-CM2-SR5 
5. CNRM-CM6
6. CNRM-ESM
7. FGOALS-g3
8. GISS-E2.1-G
9. MIROC6
10.MPI-ESM1.2-HR
11. MRI-ESM2.0
12.NorESM2-MM
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MERRA2
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Fig. 10. Taylor diagram showing pattern correlation and normalized standard deviation for seasonal clima-

tologies of (a) ML-CAPE and (b) ML-CIN (c) S01, and (d) S06 for spring. The pattern correlation and standard

deviation are computed for each model with respect to ERA5 (red) and MERRA2 (blue). Note that BCC-CSM2-

MR does not appear in panel d as it lies out of the quadrant due to high NSD (2.07).

The S01 mean pattern in spring (Fig. 10c) is reasonably well captured by most models (>0.9

pattern correlation) and there is a better agreement among the models as compared to the thermo-

dynamic parameters. However, NSD is underestimated by FGOALS-g3, CESM2, NorESM2-MM,

MPI-ESM1.2-HR. Models’ skill in reproducing the mean S06 (Fig. 10d) pattern is slightly weaker

than that of S01. A consistent outlier is FGOALS-g3, which shows a pattern correlation of ∼0.7

with under-represented spatial variability (by almost 40%). BCC-CSM2-MR, CESM2, NorESM2-
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Fig. 11. As for Fig. 10 but for summer.

MM, and CMCC-CM2-SR5 show relatively better skill. The relative range for climatological S01

and S06 magnitudes is (0.30 and 0.17) very similar to that of the P95 values (0.29, and 0.17).

2) Summer

The intermodel spread in summertime ML-CAPE in terms of pattern correlation and NSD

(Fig. 11a) is larger when compared to spring. The pattern correlation for CanESM5 is notably

weaker (∼0.6) compared to other models, possibly due to the presence of the extended CAPE

maxima in CanESM5 (Fig. 6). Curiously, MPI-ESM1.2-HR shows relatively lower pattern cor-

relation (approximately 0.8) with smaller NSD. GISS-E2.1-G, CMCC-CM2-SR5, CNRM-CM6,
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and CNRM-ESM show better correlation, albeit with larger NSD. The relative range of CAPE

magnitude is 2.51, and this also underscores a high ensemble spread.

The summertime CIN climatology (Fig. 11b) also shows a larger spread than that in spring.

A similar spread is seen in relative range based on CIN magnitude (2.0), which is also larger as

compared to the relative range in P95 CIN magnitude (1.3). Both the CNRM models show much

weaker pattern correlation (0.4) with respect to the reanalysis climatology. Another outlier is BCC-

CSM2-MR, which has significantly large spatial variability with an NSD of 2.07 (lies out of the

quadrant), possibly due to its the large positive bias. GISS-E-2.1-G captures the spatial variability

quite well, however the pattern correlation is relatively lower (∼0.65). All other models show a

pattern correlation higher than 0.8. Among them, CESM2, MRI-ESM2.0, and CMCC-CM2-SR5

show NSD close to 1.

Most models capture the S01 mean climatology in summer (Fig. 11c) reasonably well. Note that

the NSD values for the models are slightly different with respect to ERA5 and MERRA2, with

values corresponding to MERRA2 are larger. MRI-ESM2.0 overestimates the spatial variability

(NSD ∼1.2), though it captures the pattern well (0.9 correlation). NSD with respect to ERA5

suggests that many other models tend to underplay the spatial variability, specifically FGOALS-g3

(NSD ∼0.75). The relative range of S01 magnitude is 0.3. In terms of S06 climatology (Fig. 11d),

most models reproduce the spatial variability and pattern well. The S06 relative range is 0.24,

which is larger compared to spring (0.17). The CNRM models and FGOALS-g3 underestimate

the spatial variability, with an NSD of ∼0.6. FGOALS-g3 consistently underestimates the spatial

variability of S01 and S06, in both seasons.

3) Fall and Winter

The ML-CAPE climatology in fall (Fig. SF14a) also exhibits a large intermodel spread. Models,

except CanESM5 show a pattern correlation higher than 0.8. The ML-CIN climatology from

models (Fig. SF14b) also displays large spread. Several models struggle to reproduce the spatial

pattern, specifically the CNRM models. The S01 climatology in fall (Fig. SF14c) is fairly

well captured by most models, except FGOALS-g3, CESM2, NorESM2-MM, and CanESM5. The

results are mostly similar for S06 climatology (Fig. SF14d). In winter, GISS-E1.2-G, FGOALS-g3,

CMCC-CM2-SR5, CNRM-CM6, and CNRM-ESM overestimate the oceanic CAPE though they
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capture the pattern fairly well (Fig. SF15a). MPI-ESM1.2-HR considerably underestimates the

spatial variability. While models capture the mean ML-CIN (Fig. SF15b) spatial pattern quite well,

except BCC-CSM2-MR and the MPI model, all other models underestimate the spatial variability.

The mean S01 patterns in models show better correlation score with MERRA2 (Fig. SF15c)

as compared to ERA5. FGOALS-g3, CESM2, and NorESM2-MM underestimate the spatial

variability, though the pattern correlation is fairly high (>0.9). Similar to other seasons, most

models tend to underestimate the spatial variability of S06 climatology (Fig. SF15d), particularly

FGOALS-g3 (NSD ∼0.6).

d. Regional biases in seasonal means

The analyses in previous sections reveal that the biases in convective parameters are spatially

non-homogeneous and vary across the models. Here, we examine and quantify the seasonal mean

biases in CAPE, CIN, S01, and S06 during spring and summer across three subdomains over the

continental US: (i) western CONUS that lies west of the Rocky Mountains, (ii) central CONUS,

which comprise of much of the Great Plains, and (iii) eastern CONUS to the east of the Great

Plains (shown in SF16).

Most models overestimate the mean CAPE over the western region (Fig. 12a,b) where clima-

tological values are low. CAPE bias is lowest in the central CONUS for most models, however

CanESM5, CMC-CM2-SR5, GISS-E2.1-G, and MIROC6 have higher CAPE values relative to

ERA5. FGOALS-g3 is the only model that shows slight underestimation of springtime CAPE.

BCC-CSM2-MR, CESM2, MPI-ESM1.2-HR, and MRI-ESM2.0 are better in terms of capturing

the mean CAPE fields in both seasons. In the eastern subdomain, models tend to overestimate

CAPE, with FGOALS-g3 and MPI-ESM1.2-HR performing better. Bias in mean CIN (Fig. 12c,d)

is also largest over the western CONUS, especially in spring. Over the central CONUS, models

tend to underrepresent CIN, especially in spring. The two CNRM models and MRI-ESM2.0

exhibit almost 50% reduction in the mean CIN in both seasons, whereas the BCC-CSM2-MR

exhibits considerable overestimation (∼90%) during summer. BCC-CSM2-MR, CanESM5, and

MIROC6 overestimate the springtime CIN values in eastern CONUS, whereas in summer, BCC-

CSM2-MR and FGOALS-g3 exhibit very high CIN values. The CNRM models, GISS-E2.1-G,
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Fig. 12. Heatmaps showing mean fractional biases in (a,b) CAPE, (c,d) CIN, (e,f) S01, and (g,h) S06 during

(a,c,e,g) spring and (b,d,f,h) summer for the three subdomains across the CONUS. W, C, and E on the y-axis

are for Western, Central, and Eastern subdomains. Fractional bias for models is computed using 6h data on 1×1

lat-lon mesh, relative to ERA5-derived fields. The numbers on the right side of heatmaps indicate mean values

of each parameter from ERA5 corresponding to each subdomain.

and MRI-ESM2.0 consistently underestimate mean CIN over central and eastern CONUS in both

the seasons.

Most models underestimate S01 throughout the CONUS, however the magnitude of underestima-

tion lies within 20% in general (Fig. 12e,f). In spring, CESM2, FGOALS-g3, and NorESM2-MM

show large difference in mean S01 relative to ERA5. BCC-CSM2-MR, CanESM5, the two CNRM

models, GISS-E2.1-G, and MRI-ESM2.0 have relatively lower bias over all three sub-domains in

spring. Whereas, over the central CONUS, CESM2, FGOALS-g3, and NorESM2-MM exhibit

large deviation from ERA5. The underestimation becomes more evident in summer in many mod-

els. CESM2, MIROC6, and NorESM2-MM show more than 20% reduction in mean S01 values.

All the models invariably underestimate mean S01 over the western CONUS in the summer season.

The pattern is almost similar in the eastern sub-domain as well. Most models underestimate the
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S06 magnitude also across CONUS (Fig. 12g,h). Over the central and eastern CONUS, models

show a good skill in reproducing S06 magnitude with mean bias within 10% in spring. Over the

central CONUS, the BCC-CSM2-MR and MRI-ESM2.0 overestimate S06. While most models

show relatively better skill over the eastern region, BCC-CSM2-MR exhibits a large positive bias

(+23%).

Bias in convective parameters vary considerably across the continental US. Most models struggle

to accurately simulate the parameter magnitude over the western CONUS, which is likely to be

associated with resolving topography near the Rockies. The bias values are relatively lower in the

central CONUS, where the severe thunderstorm frequency is highest but are larger over the eastern

US.

e. Bias in thresholded frequency

Mean biases in parameter magnitudes do not necessarily convey the potential for frequential

biases in representing favorable severe thunderstorm environments. Here we discuss the bias in

frequencies of ML-CAPE exceeding 1000 J kg−1, ML-CIN exceeding 150 J kg−1, S01 and S06

exceeding 10 m s−1 and 20 m s−1, respectively.

Fig. 13a,b reveals that the bias in thresholded frequency is much larger than the bias in mean

ML-CAPE. Most models have bias higher than 300% over the western and eastern CONUS in

spring, which suggests that prevalence of event is not the sole driver of these regional signals.

The frequency bias is relatively lower over the central region as compared to the other two sub-

domains, though positively biased for most models. Interestingly, FGOALS-g3 shows a negative

bias in ML-CAPE frequency. The frequency bias in ML-CAPE in summer is slightly smaller as

compared to spring. In spring, models except MPI-ESM1.2-HR have a bias larger than 75% over

the eastern CONUS, whereas in summer, the frequency bias is above 100% for most models with

an exception of FGOALS-g3 and MPI-ESM1.2-HR. The frequency bias for ML-CIN exceeding

150 J kg−1 is large in general (Fig. 13c,d). Over the western CONUS, ML-CIN frequency is

predominantly positive and higher than 50% in spring. However, in the central CONUS, most

models exhibit a negative bias, and interestingly, they show varying patterns for CIN frequency in

the eastern region during spring. The CNRM models consistently show negative bias (more than

60%) over the central CONUS in spring and summer. In the summer season BCC-CSM2-MR,
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Fig. 13. Heatmaps showing frequency biases in (a,b) CAPE, (c,d) CIN, (e,f) S01, and (g,h) S06 in (a,c,e,g)

spring and (b,d,f,h) summer for the three subdomains across the CONUS. W, C, and E on the y-axis are for

Western, Central, and Eastern subdomains. Fractional bias is computed for 6h data at 1×1 lat-lon grid with

respect to ERA5-derived fields. The numbers on the right of heatmaps show the total number of events satisfying

the condition in each subdomains from ERA5 data.

CanESM5, CESM2, FGOALS-g3, MIROC6, MPI-ESM1.2-HR, and NorESM2-MM overestimate

the CIN frequency by almost 50% or higher in the central region. Over the eastern region in

summer, in contrast to spring, most models show much larger bias in CIN frequency.

The bias in thresholded frequencies for S01 and S06 (Fig. 13e-h) are predominantly negative

across the US. More importantly, as in the case of convective parameters, the frequency bias is

considerably larger as compared to the bias in the mean. CESM2, FGOALS-g3, and NorESM2-

MM significantly underestimate the frequency S01 exceeding 10 m s−1 in all three subdomains in

spring. The severity of negative bias increases in most models in the summer season, except MRI-

ESM2.0. FGOALS-g3 and MPI-ESM1.2-HR exhibit large underestimation in all three subdomains

in summer. The bias in frequency of S06 exceeding 20 m s−1 (Fig. 13g,h) is modest in spring

when compared to the bias in S01 frequency. Negative bias is largest over the western CONUS

for several models. In general, underestimation in S06 frequency is within 20% over the central
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CONUS region and within 5% over the eastern region. However in summer, the above pattern

changes and several models show substantial negative bias.

We analyzed the thresholded frequency bias in all four parameter for higher thresholds as well

and the bias is generally higher (Fig. SF17).

To examine how the bias in component variables (CAPE, CIN, and S06) impact the likelihood of

severe storm formation, we calculated supercell composite parameter (SCP) following the definition

in Lepore et al. (2021a). We computed the bias in frequency of events where SCP exceeds 1.0 in

each sub-domain for spring and summer (Fig. SF18). CanESM5, GISS-E2.1-G, MIROC6, and

MRI-ESM2.0 exhibit large positive bias in SCP frequency in both seasons across the US (140 to

300+ % bias). As we noted in other convective variables, the bias is generally lower in the central

CONUS. BCC-CSM2-MR, CESM2, FGOALS-g3, MPI-ESM1-2-HR, and NorESM2-MM show

bias within +/- 50% over central CONUS.

f. Bias in vertical structure

The results discussed so far indicate varying degrees of biases in convective parameters from

CMIP6 models. It is very likely that these biases are reflective of the biases in the basic meteo-

rological fields. To validate this hypothesis, we examine the vertical profiles of model-simulated

temperature, specific humidity, and wind fields with respect to the observed data for the three

subdomains defined in the previous sections.

The 50th percentile of temperature bias distributions in spring for W. CONUS (Fig. 14a) indicate

that all models have a noticeable warm bias throughout the lower and middle troposphere. GISS-

E2.1-G, both CNRM models, and FGOALS-g3 show larger warm bias. These models exhibit

largest warm bias in summer as well (Fig. 14b). The CNRM models and GISS-E2.1-G have biases

up to 10 K near 9 km in vertical. CMCC-CM2-SR5 and NorESM2-MM exhibit a summertime cold

bias (-2 K) near the surface. MPI-ESM1.2-HR, CMCC-CM2-SR5, CanESM5, NorESM2-MM

show relatively smaller temperature bias (2 K within ∼10km) in summer. The bias in springtime

specific humidity (Fig. 14c) shows mixed signals within the lower 8km. CanESM5 and GISS-

E2.1-G has the largest positive bias in the boundary layer (0.6 g kg−1), whereas, MRI-ESM2.0 has

a dry bias of 1 g kg−1 near the surface. Many other models also show a dry bias within the lower

troposphere. This pattern reverses above 3km, and most models exhibit a moist bias up to 8km
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Fig. 14. 50th percentile of bias distributions in (a, b) temperature, (c, d) specific humidity, (e, f) u-wind,

and (g, h) v-wind in models with respect to IGRA2 observations on interpolated height levels for W. CONUS

subdomain.
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Fig. 15. As for 14 but for C. CONUS subdomain.

33

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-24-0165.1.Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 01/22/25 10:16 PM UTC



4 2 0 2 4 6 8
Temperature [  K]

0

2000

4000

6000

8000

10000

12000

14000

He
ig

ht
 [m

 A
GL

]

a

Spring

4 2 0 2 4 6 8
Temperature [  K]

0

2000

4000

6000

8000

10000

12000

14000
b

Summer

1 0 1 2 3
Specific humidity [  g kg 1]

0

2000

4000

6000

8000

10000

12000

14000

He
ig

ht
 [m

 A
GL

]

c

1 0 1 2 3
Specific humidity [  g kg 1]

0

2000

4000

6000

8000

10000

12000

14000
d

BCC-CSM2-MR
CanESM5
CESM2
CMCC-CM2-SR5
CNRM-CM6
CNRM-ESM2
FGOALS-g3
GISS-E2-1-G
MIROC6
MPI-ESM1-2-HR
MRI-ESM2-0
NorESM2-MM

10 8 6 4 2 0 2 4
U component of wind [  m s 1]

0

2000

4000

6000

8000

10000

12000

14000

He
ig

ht
 [m

 A
GL

]

e

10 8 6 4 2 0 2 4
U component of wind [  m s 1]

0

2000

4000

6000

8000

10000

12000

14000
f

4 3 2 1 0 1 2 3 4
V component of wind [  m s 1]

0

2000

4000

6000

8000

10000

12000

14000

He
ig

ht
 [m

 A
GL

]

g

4 3 2 1 0 1 2 3 4
V component of wind [  m s 1]

0

2000

4000

6000

8000

10000

12000

14000
h

Fig. 16. As for 14 but for E. CONUS subdomain.
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in vertical. The moist bias is relatively larger in summer (Fig. 14d), with almost all models have

0.5 g kg−1 moist bias within 0.5 – 3km in vertical. MRI-ESM2.0 shows a near-surface dry bias

in summer as well. CanESM5 shows the largest moist bias near 3km. CMCC-CM2-SR5 exhibit

positive bias within 3.5km and negative bias above through 10km.

All models underestimate the surface u-wind in spring and summer (Fig. 14e-h). Change in

bias profile in vertical is indicative of bias in S01 and S06. BCC-CSM2-MR, CanESM5, and

GISS-E2.1-G show relatively stable bias profile, albeit negatively biased. These models have

been observed to have a better representation of wind shear. In spring, the CNRM models and

MIROC6 exhibit largest changes in u-wind bias in vertical (0 – 6km). The above patter changes

in summer, though most models have a negative bias. CMCC-CM2-SR5 and MRI-ESM2.0 show

largest deviation in u-wind bias profile within 6km. The bias profiles for v-wind (Fig. 14g-h)

indicate positive bias near-surface and negative bias above ∼ 1km for most models. While CNRM

models, FGOALS-g3, MRI-ESM2.0 etc. show minimal changes in bias in vertical, NorESM2-

MM, CESM2, MIROC6, and CMCC-CM2-SR5 exhibit the largest changes (up to 3 m s−1 at 6km

height) in spring. The change in surface to 1km v-wind bias is more pronounced in summer (up to

3 m s−1 at 1km height). This will contribute to a bias in both S01 and S06, as would be expected

from biases noted in previous sections.

Similar analysis for C. CONUS (Fig. 15) and E. CONUS (Fig. 16) confirms that the temperature

bias in larger in the W. CONUS region. The CNRM models, FGOALS-g3, and GISS-E2.1-G have

the largest temperature bias in all three sub-domains. Most models exhibit similar temperature bias

profiles in all three regions, albeit with slightly different magnitudes. Whereas, the bias profiles for

specific humidity in the C.CONUS (Fig. 15c-d) suggest significant dry bias in MIROC6, specifically

in the lower- to mid-tropospheric region (up to 1 g kg−1 at 2–4km). MPI-ESM1.2-HR also shows

a dry bias in summer. FGOALS-g3 and BCC-CSM2-MR exhibit an excessively moist bias in the

lower troposphere, particularly in summer. Models tend to show larger moisture bias in summer

as compared to spring in the lower troposphere. The above results are more or less similar for

the E.CONUS as well (Fig. 16c-d). The bias in u-wind over C.CONUS indicates that near-surface

wind bias is somewhat lower relative to that in W.CONUS. Additionally, changes in bias profile

is lower in spring as compared to summer, corroborating earlier findings that bias in S01 and S06

are larger in summer. However, u-wind profiles have similar bias in spring and summer in the
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E.CONUS sub-domain. Most models have a negative u-wind bias in spring. The bias in v-wind

over the C.CONUS (Fig. 15e-f) shows more changes in vertical, suggesting the potential for bias

in both S01 and S06. MIROC6, MPI-ESM1.2-HR (in summer), CMCC-CM2-SR5 etc. exhibit the

largest changes in bias in the vertical. In the E.CONUS sub-domain, v-wind bias (Fig. 16e-f) is

largest in the CNRM models, FGOALS-g3 and MPI-ESM1.2-HR (in summer).

The positive bias in temperature and moisture fields observed in the majority of the models

tends to corroborate the excessive bias in thermodynamic parameters identified in the preceding

sections. The two interesting cases are of FGOALS-g3 and BCC-CSM2-MR (in summer, except in

W.CONUS). Among the above-mentioned models, FGOALS-g3 exhibits a large warm and moist

bias; however, it shows only a moderate magnitude of CAPE. More intriguingly, this model has

a minor underestimation in ML-CAPE over the central CONUS region. A possible reason for

such a behavior can be that the biases may be predominant on non-convective days. Similarly,

BCC-CSM2-MR also shows a substantially high humidity bias in summer. Curiously, mean CIN

during summer is also higher, specifically over central and eastern CONUS. On the other hand, the

two CNRM models display consistently lower CIN values over central and eastern CONUS. This

can be attributed to the fact that these two models have a low-level warm moist bias, which may

result in smaller CIN values. However, analyzing bias in relative humidity profiles (Fig. SF19),

we find that most models have a negative bias in the lower- to mid-troposphere. Models’ tendency

to underestimate extremes in CIN (P95) could be associated with the negative bias in RH. The

high CAPE values in models such as GISS-E2.1-G and CanESM5 may also be attributed to the

considerable warm bias and positive humidity bias present in these two models. Interestingly,

CESM2 and NorESM2-MM exhibit very similar temperature bias profiles, although there are

slight differences in their humidity bias profiles. MPI-ESM1.2-HR and MRI-ESM2.0 show only a

moderate bias in temperature and humidity, though the springtime humidity bias is quite different

in these models. Results were cross-validated using the ERA-5 and MERRA2 datasets, and showed

similar persistent bias structures suggesting that evaluating against only the reanalyses may hinder

identification of such biases (not shown).
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4. Discussion and conclusions

The results presented here reveal varying degrees of biases in all thermodynamic and kinematic

parameters in CMIP6 models relative to the reanalysis-derived parameters. Generally, CAPE is

positively biased in the models, whereas the vertical wind shear is negatively biased. Previous

studies that have examined the current-climate severe thunderstorm environment distributions in

CMIP models (e.g., Diffenbaugh et al. 2013; Seeley and Romps 2015; Chavas and Li 2022) have

also reported significant positive bias in CAPE. Chavas and Li (2022) reported that MPI-ESM1.2-

HR, CNRM-CM6, and CNRM-ESM as good models in terms of CAPE bias. Our study revealed

that while upper quantiles of CAPE is well captured by MPI-ESM1.2-HR, the lower percentiles are

underestimated (Fig. 17). Additionally, MPI-ESM1.2-HR underestimate thresholded frequency in

S01, specifically in the central CONUS region (up to 49%), where severe thunderstorm activity is

highest. CNRM-ESM and CNRM-CM6 suffer from significant underestimation of CIN in central

and eastern CONUS (56–71%), which can also impact the overall severe thunderstorm frequency.

Comparing the results for CMIP5 models’ skill in simulating CAPE and CIN from Diffenbaugh

et al. (2013), models have improved in their performance in their CMIP6 version. Particularly,

pattern correlation of CIN is improved considerably. The comparison of the vertical profiles of

model-simulated temperature and humidity with respect to the observations suggests that there

exists considerable warm and moist bias in the models. Lin et al. (2017) reported warm bias in

CMIP5 models over the central CONUS, originating primarily as a result of reduced precipitation.

Several CMIP6 models also reported to have warm bias over the US and adjoining oceanic regions

(e.g., Wu et al. 2019; Seland et al. 2020; Swart et al. 2019). Excessive bias in temperature coupled

with a positive bias in humidity contributes to more conditional instability, and hence more CAPE.

Higher low-level moisture availability also leads to lower lifting condensation level (LCL), which

in part can lead to lower values of CIN. Most models (with the exception of BCC-CSM2-MR and

MIROC6) tend to simulate relatively lower values of CIN as opposed to the reanalysis fields. The

recent study by Chavas and Li (2022) analyzing CMIP6 models argued that the positive bias in

the model-simulated CAPE arises primarily from the biases in mean-state near-surface moist static

energy. Our results indicate a peculiar ML-CAPE pattern in CanESM5 (extending excessively

eastward) and CMCC-CM2-SR5 (a northwestward extension). Similar spatial patterns were noted

in the 2-m specific humidity anomaly fields in these two models by Chavas and Li (2022), which
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might explain the above-mentioned spatial bias in CAPE. Another potential reason for biases in

CAPE and CIN is the errors arising from convective parameterization in the models as it can

crucially impact CAPE dissipation (Trapp et al. 2007; Zhang 2009; Skinner and Diffenbaugh

2013; Allen et al. 2014b). In terms of CIN, a notable outlier is BCC-CSM2-MR, which tends to

overestimate the CIN values. A possible reason would be that the LCL is set to nominal height

of 650 hPa in this model (Wu et al. 2019) based on observed climatological values (Craven et al.

2004), which can be higher than the actual height of LCL. Somewhat unexpectedly, there does not

appear to be a strong bias of thermodynamic or kinematic parameters on horizontal resolution in

the climate models. For example, CanESM5 comes on a much coarser mesh with a grid spacing of

approximately 2.8◦. Though this model appeared to lack some finer details, it shows much better

skill in simulating wind shear when compared to models such as CNRM-CM6, CNRM-ESM2,

or MIROC6, which operate on higher horizontal resolution. On the other hand, despite having

a relatively large number of vertical levels (18) within the lowest 500mb, CanESM5 exhibits a

large thermodynamic bias. FGOALS-g3 has the least number of vertical grids (8) within the

lowest 500mb among the ensemble considered here, which can potentially impact the capability of

this model in resolving convective processes. Curiously, the CNRM models have the largest (27)

number of vertical grids within 500mb, however exhibit significant low CIN bias.

We quantified the intermodel spread in terms of relative range of spatial mean magnitudes and

found that the ensemble spread is largest for CAPE and smallest for S06 in all four seasons.

Crucially, the bias for mean and extreme of convective parameters are considerably different, and

therefore we analyzed how the bias vary across the distribution. The analysis reveals that the

bias is not uniform for different percentiles (Fig. 17). More importantly, different models behave

differently in terms of quantile biases. For the above reason, analyzing mean of parameters can

also be misleading about the complete behaviour of the model. And the pattern varies seasonally

as well. For instance, the springtime CAPE in GISS-E2.1-G is much overestimated at the lower

percentiles as compared to the higher percentiles. On the other hand, MPI-ESM1.2-HR has large

underestimation at the lower percentiles and the bias becomes near-zero towards P90 and above.

The negative bias in CIN is more pronounced at lower percentiles in most models, and bias

decreases towards P99. The quantile bias in S06 is notably different in spring and summer.
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Fig. 17. Bias at different percentiles for (a,e) CAPE, (b,f) CIN, (c,g) S01, and S06 (d,h) S01 for (a-d) spring

and (e-h) summer. Bias is computed for domain-averaged values of each parameter with relative to ERA5.

Biases related to oceanic convective ‘hotspots’ are another prevalent feature, with notably higher

values of CAPE over the GoM and in the northern Atlantic (along the Gulf Stream). Most of the

previous studies have overlooked this aspect. However, the study by Marsh et al. (2007) using

CCSM3 indicated very similar positive CAPE bias over the oceans, particularly in spring. Even

after several upgrades in coupled modeling systems, we note exactly similar convective hotspots

along the Gulf Stream region in several models. This may be related to the simulation of sea

surface temperatures (SST) and low-level humidity patterns or issues in the rendition of boundary

layer fluxes or mixing in these models. For example, CMCC-CM2-SR5 and CanESM5 are shown

to have a mean positive SST bias over these regions (Cherchi et al. 2019; Swart et al. 2019).

BCC-CSM2-MR also reported to have a mean warm bias in near-surface air temperature over these

oceanic regions, notably along the Gulf Stream (Wu et al. 2019). Multiple studies have shown the

link between severe convective storm activity over North America and moisture source over the
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GoM and North Atlantic area (Molina et al. 2018; Molina and Allen 2019, 2020). The excessive

convective bias over these oceanic regions may advect inland and contribute to inland CAPE bias

though it is likely there are also be continental contributions from the land-surface, particularly in

the summer months (Molina and Allen 2019, 2020; Emanuel 2023; Tuckman et al. 2023). We have

also found that the error statistics (bias, pattern correlation, and standard deviation in mean; from

Taylor diagrams) improve if the oceanic regions are masked out.

Another notable finding is that there appears to be a familial behavior among the CMIP6 models

analyzed here. In terms of ML-CAPE, CMCC-CM2-SR5, CanESM5, GISS-E2.1-G, and MIROC6

are the models falling into a ‘high-CAPE’ family of models that would seem to span model dynam-

ics. The rest of the models group themselves into a ‘moderate-CAPE’ family. CMCC-CM2-SR5,

CanESM5, CESM2, FGOALS-g3, and NorESM2-MM use modified versions of Zhang-McFarlane

scheme to represent cumulus convection. However, these models differ in their CAPE and CIN

biases, suggesting that models’ thermodynamic bias is not solely dependent on the convective pa-

rameterization. Additionally, the community atmosphere model (CAM) is used as the atmospheric

component in CESM2 (CAM6), CMCC-CM2-SR5 (CAM5), and NorESM2-MM (CAM6 with

modifications). Interestingly, CESM2 and NorESM2-MM show similar kinematic parameters,

however CESM2 exhibits slightly larger thermodynamic bias. On the other hand, CMCC-CM2-

SR5, which uses earlier version of CAM (CAM5) show a relatively larger thermodynamic bias.

Li et al. (2020a) reported positive CAPE bias in CAM6 over the US resulting from surface mois-

ture bias. The S06 patterns also suggest a similar behavior where BCC-CSM2-MR, CanESM5,

MRI-ESM2.0, and MPI-ESM-1.2-HR provide more realistic representation, whereas models such

as CMCC-CM2-SR5, two CNRM models, FGOALS-g3, MIROC6 have a relatively weaker shear

magnitude.

The analysis of regional bias in convective parameters suggests significant variability across the

three sub-domains over CONUS. We find that most models struggle to accurately simulate CAPE,

CIN, and wind shear over the western CONUS, where SCS activity is relatively lower. However,

models show an improved skill over the central CONUS region, where SCS activity is more

frequent. Over the eastern CONUS sub-domain, CAPE is generally overestimated, whereas CIN

and wind shear are mostly underestimated. Most models considerably underestimate S01, with

poor representation of spatial variability. This likely impacts the representation of thunderstorm
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environments associated with tornadoes (Markowski and Richardson 2014). We find that the biases

in thresholded frequencies are much larger than the biases in mean patterns. Specifically, there is

a substantial negative bias in thresholded frequency of summertime wind shear in most models.

These biases highlight the importance of considering more thunderstorm relevant characteristics,

and imply potential for appreciable biases. This finding is particularly significant, given that many

previous studies investigating severe thunderstorm environments often emphasize the product of

CAPE and S06 (or its variants). Such an approach might overlook potential biases in S06, impacting

both its spatial distribution and magnitude.

The results from the present study provide a comprehensive evaluation of convective-storm pa-

rameters simulated by 12 CMIP6 models with respect to two independent reanalysis products.

Although the reanalysis datasets suffer from biases (Taszarek et al. 2021c,a), they provide a tempo-

rally consistent way to validate the models. We believe that these results provide a valuable resource

for selecting models that are applied either in statistical downscaling using future thunderstorm

environments, or in dynamic downscaling. However, we do not explicitly highlight any model as

the “best model” primarily because all of the models considered here exhibit biases in component

parameters, meaning that selection must depend on the application. On this basis, we would argue

that studies analyzing future thunderstorms over the US should opt for an ensemble approach

to encompass the substantial degree of model-to-model variability in both thermodynamic and

kinematic parameters.
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