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Grain protein content (GPC) is generally inversely correlated with grain yield (GY) but some genotypes
consistently have higher or lower grain protein contents than predicted by simple regression analysis: this is
called grain protein deviation (GPD). Positive GPD reflects greater nitrogen use efficiency and is an important
target for breeders to develop more sustainable types of wheat.

Here, we investigate the genetic architecture of GPC, GY, thousand grain weight (TGW) and GPD using a
population of 104 doubled haploid lines derived from a cross between two cultivars with positive (Hereward)
and negative (Malacca) GPD and grown in replicated randomised field trials over three years. A total of 9 QTL
were detected for all traits, five for GPC, two for GPD and one each for GY and TGW. All of the increasing alleles
for GPC and GPD and the single QTL for TGW were contributed by Hereward while Malacca contributed the
single increasing allele for GY. The two QTLs for GPD located on chromosomes 3A and 5B explained 23.3% and
16.6% of the variance in the sample sets, respectively. Three QTL for GPC (on chromosomes 3A, 3B, 5B) each
explained more than 14% of the variance, with those on chromosomes 3A and 5B having similar locations to the
GPD QTLs on the same chromosomes. A survey of the gene content between the markers bordering the confi-
dence intervals for the two GPD QTLs on chromosomes 3A and 5B identified 136 and 704 protein coding genes,
respectively, including possible candidate genes.

1. Introduction

Wheat is the most widely grown and consumed staple crop in the
world, estimated to provide about 20% of the calories in the human diet.
The major uses of wheat are to make breads, other baked goods
(including cakes and biscuits), pasta (durum wheat) and noodles (bread
wheat), but it is also widely used as an ingredient in processed foods.
Furthermore, wheat is widely used as feed for livestock, particularly
non-ruminants (pigs and poultry), and as raw material for ethanol pro-
duction (for alcoholic beverages and bioethanol).

The processing properties of wheat are underpinned by the gluten
proteins which form a viscoelastic network in dough. Gluten is a com-
plex mixture of individual proteins and processing quality is determined
by variation in both the total protein amount, with loaf volume (a widely
used measure of quality) being positively correlated with grain protein
content (GPC) (He and Hoseney, 1992), and with allelic variation in
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some individual components, notably the high molecular weight sub-
units of glutenin (Payne et al., 1987). Hence, it is possible to compen-
sate, to some extent, for low intrinsic gluten quality by increasing gluten
amount (Payne et al., 1987).

The importance of protein content means that grain traders and
millers frequently specify minimum protein contents for breadmaking
wheat, which are generally about 13% in the UK. This high protein
requirement means that farmers often need to apply more nitrogen
fertiliser than is optimal for crop yield, typically about 200kgN.ha ! for
breadmaking wheat in the UK. This not only adds to the cost of pro-
duction, but also increases the energy requirement for fertiliser pro-
duction and the potential environmental footprint. Although it may be
possible to reduce the protein requirement for breadmaking by modi-
fying the breadmaking process, this has proved to be difficult to achieve
and attention has focused on increasing GPC at lower nitrogen
fertilisation.
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Many studies have shown that GPC is inversely correlated with grain
yield (GY) and hence attempts to increase GPC have generally resulted
in decreases in yield (Monaghan et al., 2001; Oury et al., 2003; Oury and
Godin, 2007; Bogard et al., 2010). However, Monaghan et al. (2001)
compared GY and GPC for a range of cultivars, showing that some
deviated positively or negatively from the simple regression line which
could be calculated for GY vs GPC, and introduced the term grain protein
deviation (GPD) to describe this phenomenon. GPD is an indicator of the
relative ability of a cultivar to translocate nitrogen into the developing
grain with cultivars exhibiting positive GPD being more efficient.

Several studies in bread (T. aestivum ssp. aestivum) and durum
(T. turgidum ssp. durum) wheats have shown that GPD is partially under
genetic control and therefore amenable to selection (Rapp et al., 2018;
Nigro et al., 2019; Mosleth et al.,2020; Geyer et al., 2022; Paina and
Gregersen, 2023). We have therefore investigated the genetic architec-
ture of GPD, GPC, GY and thousand grain weight (TGW) in a doubled
haploid (DH) population from a cross between the breadmaking wheat
cultivars Malacca (negative GPD) and Hereward (positive GPD) grown
in field trials for three years.

2. Materials and methods
2.1. Field trials and grain samples

A doubled haploid (DH) population of 104 lines was developed from
the cross Malacca x Hereward by RAGT Seeds (UK) as described by
Millar et al. (2008). This population was grown in three different envi-
ronments (combination of year and location): at Rothamsted Research in
2019-2020 (51°48'06"N, 000°23'42"W), abbreviated to RR2020, and at
Reading University experimental station at Sonning-on-Thames in
2020-2021 (51°28'47"N, 000°53'59"W) and 2021-2022 (51°28'41"N,
000°54'06"W), abbreviated to RU2021 and RU2022 respectively. The
same level of nitrogen fertilisation (150 kg ha~!) was used for all three
trials but the application times and other agronomic treatments were
those used as standard for the two sites. Large plots were used in order to
provide accurate yield data.

The DH population (104 lines) and the two parental lines were grown
in three field trials. Most lines were grown in three replicate blocks in all
three years but limited availability of grain meant that a small number of
lines could only be grown in one replicate (12 lines) or two replicates (8
lines) in year one. Hence, the experimental design in the RR2020 trial
consisted of a Balanced Incomplete Block Design (BIBD) with 3 blocks of
100 (4.15m x 1.8m - 7.47 m?) plots. A Randomised Complete Block
Design (RCBD) was used in the two Reading field trials with three blocks
of 5m x 1.9m (9.5 m?) plots of the 106 lines (104 DH and 2 parental
lines). The sowing density was 250 seeds.m ™2 in RR2020 and 350 seeds.
m 2 in the two Reading trials.

Nitrogen fertilisation was applied at a rate of 150kgN.ha™! in two
splits with the RR2020 trial receiving 50kgN.ha~! and 100kgN.ha! as
ammonium sulphate and ammonium nitrate, respectively, and the two
trials at Reading receiving 75kgN.ha~! as a mix of ammonium sulphate
and ammonium nitrate and 75kgN.ha! as ammonium nitrate. The
ammonium sulphate fertiliser therefore also provided sulphur at 44kgS.
ha~! at Rothamsted and 40kgS.ha-1 at Reading.

2.2. Determination of GPC by near infrared spectroscopy (NIRS)

A small metallic plate was filled with cleaned grains and inserted into
a FieldSpec 4 Standard-Res spectroradiometer (Malvern Panalytical,
UK) which had been calibrated for nitrogen (AACCI Method 46-30)
(Approved Methods of Analysis (cerealsgrains.org)). The NIRS spectra
were then analysed with the software Indico Pro (Malvern Panalytical,
UK) and the module IQ Predict (Alphasoft, Dhaka, Bangladesh) to
calculate the grain nitrogen content which was converted to protein by
applying a conversion factor of 5.7.
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2.3. Determination of GY and TGW

The grain weight (kg) from each plot was measured at harvest by the
combine harvester and the grain yield (g.m~2) calculated by dividing the
grain fresh weight by the plot area. Fresh grain samples of 70-80g were
dried overnight at 105 °C to determine their water content and grain
yield at 15% moisture was calculated. The value at 15% moisture was
chosen as this is standard for the grain industry and allowed comparison
with other studies such as Bogard et al. (2010). Two sub-samples of five
hundred dried grains were prepared using an Elmor C1 seed counter
(Elmor, Switzerland). These were weighed and the mean values used to
calculate TGW on a dry weight basis.

2.4. Calculation of GPD genotypic means

Simple linear regressions between the individual values (including
the individual field replicates or blocks) for GPC and GY were calculated
for the three separate environments, with 284, 298, and 304 plots for
RR2020 and RU2021 and RU2022, respectively, using the statistical
software R (v4.1.1; RCore Team 2021) to retrieve the residuals (raw
GPD values).

For the RR2020 trial, the Best Linear Unbiased Estimators (BLUES)
for GPD were calculated using a mixed model with a fixed structure,
"line", a random structure, "block", and a random structure "row-
*column" nested into "block" with the R package lme4 (v1.1.30; Bates
et al., 2015). A mixed model was selected to account for the imbalance of
the line treatment. For the RU2021 and RU2022 trials, the arithmetic
means for GPD were calculated with a linear model with a treatment
“line” and a structure “block” on the untransformed GPD values for
RU2021 and on the logjo.transformed GPD values for RU2022 to
improve the normality and homoscedasticity of the residuals.

2.5. Genotyping

The genotyping procedure and the construction of the genetic link-
age map are detailed in Min et al., 2020.

2.6. Calculation of descriptive statistics, correlations and broad sense
heritability

All statistics were calculated in the R software suite (v4.1.1; RCore
Team 2021). In-built functions mean, median and standard deviation
were used to calculate the arithmetic mean, median and the standard
deviation, respectively. The correlations between replicates or between
measurements in different environments were calculated using function
"cor" and method “pearson”.

Broad-sense heritability (H?) measures the percentage of phenotypic
variance that is explained by the genetic variance. A high H? value in-
dicates that the trait has a strong genetic basis in the set of environments
under study and would be suitable for selection by breeders.

The following fixed effect model was used to calculate the broad-
sense heritability H>):

Yike = + & + e + (ge);, + €ike

where yix, is the kth observation of the ith genotype at the tth environ-
ment, u is the intercept, g is the main effect for the ith genotype, e is the
main effect for the tth environment, (ge); is the itth genotype-by-
environment interaction effect, and ey, is the plot error effect corre-
sponding to ik

The variance components of the model: Vg, Ve, Vg,V, were calculated
using the package VCA (v.1.5.1.) (Schuetzenmeister and Dufey, 2024)
and were used to replace the parameters in following equation based on
Schmidt et al. (2019) to calculate H:


https://www.cerealsgrains.org/resources/methods/Pages/default.aspx
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Where 6? is the genetic variance, dge represents the variance of the
interaction between the genotype and the environment, (sf is the resid-
ual variance, n, the number of environments and n, the number of
replicates or blocks.

2.7. QTL. Analysis

The QTL analysis was performed in R using the package qtl (v.1.52;
Broman et al., 2003) with a custom made script available from https:gith
ub.com/wingenl/rqtl_jic/tree/rqtl jic_vs1.9. The script used the CIM
(composite interval mapping) function to scan the genome for QTL lo-
cations testing between 2 and 20 co-variates and selecting the model
with the highest overall LOD support. The co-variates are introduced in
the model to control the influence of QTL outside the genetic interval
which is tested. The CIM QTL follow the following statistical model:

Yi = B+ g X+ 30 b Xk + ¢

where: q is the qtl being tested; yj is the trait value for individual j; p is
the overall mean; oy is the effect of the putative QTL in the marker in-
terval (i,i+1); x; is the genetic predictor for individual j (taking value 1
or 0 with probability depending on the genotypes at the markers i and j
and the position tested for this QTL), by is the partial regression coeffi-
cient of the phenotype x on the kth marker, x;j is a known coefficient for
the kth marker in the jth individual taking a value 1 or O depending on
the marker type and e; is the random error, all errors assumed to be
normally distributed.

The significance of each individual QTL selected in the final model
was assessed by backward multiple regression using the R2 criteria. The
QTL confidence intervals were defined as the closest markers to the
genomic positions of a LOD drop of 1.5 from the QTL peak.

The CIM model uses a permutation test (with 1000 permutations) to
derive a genome-wide LOD significance threshold at the 5% level. QTL
with LOD scores over this threshold are significant at the 5% level. We
also recorded QTL with LOD scores less than 10% below this threshold if
the backward regression test showed statistical significance (at the 5%
level).

2.8. Identification of putative candidate genes within the two GPD QTL
confidence intervals

The positions of markers bordering the QTL confidence interval on
the IWGSC RefSeqv1.0 assembly were identified as described in Shor-
inola et al. (2022). The BioMart tool from the EnsemblPlant software
(Release 59, May 2024) was used to search for candidate genes in the
Ensembl Plants Genes 59 database within the Triticum aestivum genes
IWGSC dataset (Harrison et al., 2024) in the confidence interval region.
This dataset was screened for protein coding genes only within the
confidence interval (CI) of the two GPD QTL.

2.9. Orthology and gene set enrichment analysis

The functional enrichment analysis was performed using g:Profiler
(version el11_eg58_p18 f463989d) with g:SCS multiple testing correc-
tion method applying a significance threshold of 0.05 (Kolberg et al.,
2023). The search for orthologue genes in the model species Arabidospis
thaliana was carried out with the version (e111_eg58 p18_f463989d).

3. Results
104 DH lines from the cross Malacca (negative GPD) and Hereward

(positive GPD) were grown in three field trials (called RR2020, RU2021
and RU2022) with a fertilisation rate of 150kgN.ha™! to investigate the
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genetic architecture of GPD under sub-optimal nitrogen nutrition (i.e.
below the UK national average rate for breadmaking wheat of 200kgN.
ha ).

3.1. Descriptive statistics

Descriptive statistics (arithmetic mean, median, and standard devi-
ation) for GPD, GPC, GY and TGW were calculated for individual field
trials and are presented in Table 1.

GPD showed the widest variation of the traits measured, with the
coefficient of variation (cv) around the mean ranging from 12.67 to 158,
and absolute values ranging from between —1.25 and +2.36 % protein
in RR2020 to between —0.90 and +0.90 % protein in RU2021. By
contrast, GPC, GY and TGW showed less variation, with cv values from
0.04 (GPC RU2021) to 0.09 (GY RR2020 and RU2022) (Table 1).

3.2. Correlations between trait measurements

The correlation coefficients between the four traits (TGW, GPD, GPC,
GY) measured in the different environments (shown Fig. 1d) are
generally in good agreement: 0.72, 0.72 and 0.80 for TGW, 0.34, 0.43
and 0.44 for GPD, and 0.39, 0.37 and 0.36 for GY. For GPC, the corre-
lation was greater between RU2021 and RU2022 (0.60) than between
these trials and RR2020 (0.43, 0.49).

Correlations between the four traits in each environment were
calculated and are shown in Fig. 1 a-c. Within each field trial, GPD was
strongly and positively correlated with GPC (0.97, 0.92, 0.95) with weak
negative correlations with TGW at RU2021 and RU2022 and with GY at
all sites. GPC was negatively correlated with GY at all sites (—0.44,
—0.53, —0.51) and with TGW at the RU2021 and RU2022 sites (—0.42,
—0.37), but not at RR2020. TGW was positively correlated with GY at all
sites, but more strongly at RU2021 and RU2022 (0.55, 0.49) than at
RR2020 (0.27).

3.3. Linear regression between GPC and GY

The linear relationships between GPC and GY were analysed sepa-
rately for the individual environments (Fig. 2). Statistically significant
(p < 0.05) slightly negative (slope = -0.002) relationships of similar
magnitude were found between GPC and GY (Fig. 2), with an increase in
GY of 100 g m~2 being accompanied by a decrease in GPC of 0.2% dry
weight. The values for the two parents, Malacca and Hereward, were
situated below and above the regression lines, respectively, in the
RR2020 and at RU2021 sample sets (Fig. 2a and b), which is in agree-
ment with previous reports (Millar et al., 2008; Mosleth et al., 2015,
2020). However, the separation was less clear in the RU2022 sample set
(Fig. 2c). The regression models for the RU2021 and RU2022 sample sets
had a higher coefficient of determination (R2=0.18) than that for the
RR2020 sample set (R2=0.08) suggesting a weaker linear relationship
between the two variables in the latterenvironment (Fig. 2a—c).

3.4. Broad-sense heritability

The broad sense heritability (H?) varied from 0.57 for GPD to 0.78
for TGW (Table 2) showing that more than half (0.57) of the observed
variation in GPD is due to the genetic differences between cultivars.

3.5. QTL analysis

The CIM identified nine statistically significant QTLs (with LOD
scores above 5) for the four traits. These were located on six chromo-
somes with the greatest number being five for GPC and the lowest one
each for GY and TGW (Table 3). A further five QTL which were just
below significance in the CIM model (LOD scores of 0.2-0.4 below the
LOD threshold) but significant in a statistical ‘leave-one-out test’ are
presented in Supplementary Table S1.


https://github.com/wingenl/rqtl_jic/tree/rqtl_jic_vs1.9
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Table 1

Descriptive statistics of GPD, GPC, GY, and TGW in the RR2020, RU2021 and RU2022 sample sets.
Trait Environment N Range Mean Median SD cv
GPD RR2020 106 —1.25:4+2.36 4.50-0.3 —0.07 0.71 158
GPD RU2021 105 —0.90; 0.90 -0.03 —0.06 —0.38 12.67
GPD RU2022 106 —1.36;1.19 0.01 5.00-03 0.48 48
Across environments —0.02
GPC RR2020 106 11.39; 15.43 12.86 12.83 0.77 0.06
GPC RU2021 106 10.02; 12.33 11.08 11.09 0.44 0.04
GPC RU2022 106 9.40; 12.44 11.12 11.13 0.54 0.05
Across environments 11.69
GY RR2020 106 514.15; 760.33 626.06 626.68 55.55 0.09
GY RU2021 106 511.59; 766.54 668.47 670.54 50.73 0.08
GY RU2022 106 632.26; 1020.34 850.05 852.02 76.56 0.09
Across environments 714.86
TGW RR2020 98 36.81; 51.25 44.69 44.86 3.04 0.07
TGW RU2021 106 29.01; 44.99 37.61 37.72 2.68 0.07
TGW RU2022 106 28.14; 47.89 40.18 40.27 3.18 0.08
Across environments 40.83

GPD is expressed as % protein at 15% moisture, GPC as protein % dry weight, GY as g.m~2 dry weight, TGW as g dry weight.
The values were rounded up to two decimal places. Sample size (N), standard deviation (SD), and coefficient of variation around the mean (CV).

a. RR2020 b. RU2021 c. RU2022
GPD  GPC  TGW GY GPD GPC  TGW  OY GPD GPC  TGW GY
Heeo *kk * ; * %% * FR * KKk * *
GPD 0.97 0.02 | -0.25 \k\k 0.92 024 | -017 j[ %ﬁ 0.95 024 | -0.22
" § [dke *kk ' . *kk * kK : s g oy *hk *hk
GPC 0.44 042 | -0.53 o i 20.37 | -0.51
* T *k*k * %%
TGW 0.25 0.55 0.49
GY
d. All sites
GPD GPD GPC GPC TGW TGW GY GY
RU2021 | RU2022 RU2021 | RU2022 RU2021 | RU2022 RU2021 | RU2022
GPD 0.34 0.43 GPC 0.43 0.49 TGW 0.72 0.72 GY 0.39 0.37
RR2020 RR2020 RR2020 RR2020
GPD 0.44 GPC 0.60 TGW 0.80 GY 0.36
RU2021 RU2021 RU2021 RU2021

Fig. 1. Correlation coefficients for GPD, GPC, TGW and GY within individual field trials (a-c) and between the three trials (d). Red stars indicate levels of significance
at 5% (), 1% (**), and 0.1% (***) thresholds. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

All of the increasing alleles (ie. alleles associated with higher values
for the traits) for GPC and GPD were contributed by Hereward, which
was expected as it was chosen as having higher GPC and GPD than
Malacca. Malacca contributed the single increasing allele for GY, on
chromosome 3B, which was also expected as it has a higher yield po-
tential, being released in 1997, almost a decade after Hereward (1989).
Hereward also contributed the single increasing allele for TGW.

Three QTL for GPC (Q.Gpc-3A, Q.Gpc-3B and Q.Gpc-5B) each
explained more than 14% of the variance of the trait in the sample sets.
The two GPC QTL Q.Gpc-3A and Q.Gpc-5B are mirrored by the GPD QTL
Q.Gpd-3A and Q.Gpd-5B, which have similar locations and explain
similar proportions of the GPD variance. Similarly, the significant GPC
QTL Q.Gpc.3B and Q.Gpc-7A are mirrored by the GPD QTL Q.Gpd.3B

and Q.Gpc-7A which were just below significance in the CIM analysis
(Supplementary Table S1).

Two co-locations of QTL confidence intervals were noticed: Q.Gpc-
5B and Q.Gpd-5B and Q.Gpc-3B and Q.Gy-3B (Table 3). Q.Gpd-5B and
Q.Gpc-5B share the same peak marker (AX-95242218) and have fully
overlapping QTL confidence intervals (Table 3, highlighted in red). Q.
Gpc-3B, which was identified in the RU2022 sample set, co-locates
with Q.Gy-3B identified in the RR2020 sample set with the peak
marker (AX-94896615) being the same and similar confidence intervals
(Table 3, highlighted in blue). However, whereas Hereward exhibited
the increasing allele for GPC at RU2022, the increasing allele for GY in
RR2020 was from Malacca. This is consistent with the known trade-off
between GY and GPC in the two parental cultivars.
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Fig. 2. Linear regressions between GPC and GY at RR2020 (a), RU2021 (b) and RU2022 (c). Blue dotted lines denote the 95% confidence intervals around the
regression slopes. Individual observations for the DH parents are color-coded in red for Hereward and green for Malacca. The linear regressions were performed on
284 (a), 298 (b), and 304 (c) plots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

Table 2

Broad sense heritability (H?) for the three field trials.
Traits GPD GPC GY TGW
H? 0.57 0.74 0.66 0.78

3.6. Gene content of the 3A and 5B GPD QTLs

Q.Gpd-3A and Q.Gpd-5B may correspond to QTLs reported by other
authors (as discussed below). A survey of the gene content between the
markers bordering the confidence intervals for these QTLs on the IWGCS
v1.0 Reference Sequence was therefore carried out. For Q.Gpd-3A, the
confidence interval extends between markers AX-94557706 and AX-
94535468 (3A:479,474,983 bp - 635,102,746 bp) and for Q.Gpd-5B
between AX-94974270 and AX-94892126. However, marker AX-
94974270 could not be placed on chromosome 5B as it is absent from
the reference sequence. Instead, the adjacent marker on the map, AX-
95242218, was used to define the confidence interval (5B:587,128,
030 bp - 602, 244, 888 bp).

136 and 704 protein coding genes were inferred from the reference
annotations for Q.Gpd-3A and Q.Gpd-5B, respectively. From these, 66

and 639 genes, respectively, have orthologues in the model species
Arabidopsis.

Gene set enrichment analysis on g:Profiler showed a significant over-
representation (p = 0.023) of genes associated with calmodulin binding
(GO:0005516) for Q.Gpd-5B and eight significant over-representations
for Q.Gpd-3A; one of them (for GO:0009987-Cellular process) being
highly significant (p = 1.17x107°). Two of the identified groups
(G0:0042937 and GO:0071916) are associated with peptide trans-
membrane transport activity and both contained four genes.

4. Discussion

Improving nitrogen use efficiency (NUE) of wheat is a key sustain-
ability target, in order to reduce the use of nitrogen fertiliser and hence
the energy requirement, cost and nitrogen footprint of production. NUE
is a complex trait affected by many factors but can be broadly described
as the relationship between available nitrogen and crop productivity. It
has been described by a range of indices including the relationship be-
tween applied nitrogen and nitrogen recovered in the grain (Congreaves
et al., 2021). The progressive increases in wheat yields which have been
achieved by scientific breeding are associated with decreases in grain
protein content due to dilution with starch. Hence, positive GPD is a key
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Table 3
QTLs identified for GPC, GY, GPD, and TGW
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Two co-locations of QTL confidence intervals are highlighted: Q.Gpc-5B and Q.Gpd-5B (highlighted in red) and Q.Gpc-3B and Q.Gy-3B (highlighted in blue).

QTL name Linkage Trait Parent with LOD LOD LOD Variance Additive Nearest Position Cl start Cl end
group increasing RR2020 RU2021 RU2022 explained effect marker (cMm) (cM) (cM)
allele (%)
Q.Gpc-3A 3A GPC Hereward 7.5 21.7 1.17 AX-95105613  131.74 128.46 136.97
Q.Gpc-3B 3B GPC Hereward 5.9 19.2 0.24 AX-94896615 157.1 147.2 159.74
Q.Gpc-5D 5D GPC Hereward 6.9 9.3 0.12 AX-95652871 30.41 25.23 36.44
Q.Gpc-7A 7A GPC Hereward 5.2 12.6 0.28 AX-94627425  70.58 63.49 77.61
Q.Gpd-3A 3A GPD Hereward 5 233 0.17 AX-95105613 131.74 128.46 136.97
Q.Gy-3B 3B GY Malacca 6.1 23.2 -25 AX-94896615 157.1 154.46 159.74
Q.Tgw-2A 2A TGW Hereward 6.1 24 1.32 AX-94512334  114.24 107.94 117.32

sustainability trait as it can be exploited to breed for higher grain protein
content without the requirement for additional nitrogen fertilisation
(Hawkesford, 2014).

Dissecting the genetic architecture of GPD is challenging because it
reflects the relationship between GPC and GY, traits which are strongly
influenced by environmental factors (E) and the interactions of these
with genotype (G x E). In fact, our previous analyses showed that the
genotype contributed only 30% of the variation in GPD, compared with
48% for nitrogen content (a proxy for protein content) and 42% for GY
(Mosleth et al., 2020).

The parents of the cross used for this study, Hereward and Malacca,
were selected based on previous studies (Mosleth et al., 2015, 2020)
which showed that they exhibited either strong positive GPD (Here-
ward) or negative GPD (Malacca). The simple linear regression for GPC
and GY showed slight negative trends in the three environments, which
confirmed the inverse relationship between the two traits that has been
widely reported (for example, Bogard et al., 2010; Oury et al., 2003).

In this study, the DH lines displayed wide variation for GPD (high
CV), which was greater than the variation between the parents. This
transgressive segregation suggests the trait is controlled by multiple
genes with relatively small effects. The broad-sense heritability (H) for
GPD in the three environments studied here (0.57) was higher than that
reported by Mosleth et al. (2020), who reported a heritability for GPD of
0.44 for a set of genotypes grown in 17 environments. However, in
eleven of the environments much higher values for heritability (up to
0.84) were reported than in the combined dataset. The high heritability
reported here may, therefore, reflect the low number of environments
and greater similarity between them.

QTL analysis showed a total of nine significant QTL for all traits with
the percentage of phenotypic variance explained ranging between 9.3%
and 23.3%. A further five QTL were just below statistical significance
and explained between 6.2 and 17.4 % of phenotypic variance
(Supplementary Table S1).

Two major QTL (i.e explaining more than 15% of the phenotypic
variance) for GPD were identified, Q.Gpd-3A and Q.Gpd-5B, which
accounted for 24% of the phenotypic variance in RU2021 and 16.6% in
RR2020, respectively. The high percentages of the variance that were
not accounted in these sample sets suggest the presence of other loci
with small effects as well as effects of E and G x E interactions.

The two GPD QTL (Q.Gpd-3A and Q.Gpd-5B) had additive effects of
0.17% and 0.28 % protein/g dry weight, respectively (Table 3), with
substitution effects (when the decreasing allele is replaced by the
increasing allele) of 0.34% and 0.56 % protein/g dry weight.

It is notable that neither of the GPD QTLs was detected in all three
sample sets. Differences in the detection of QTLs in sample sets grown in
different environments are frequently observed in studies of this type,
particularly when the traits are controlled by multiple QTLs with rela-
tively small individual effects. Furthermore, because GPD is a derived

trait, calculated from GPC and GY, the analysis will be affected by effects
of environment on the two primary traits (GPC and GY).

However, comparisons with published studies show that both GPD
QTLs corresponded to previously reported QTLs, with Q.Gpd-3A over-
lapping with a 478.6-488.7 Mb region reported by Ruan et al. (2021)
and Q.Gpd-5B being located between QGpd.mgb-5B.1 (20.8 Mb down-
stream of the peak marker) and QGpd.mgb-5B.2 (13.3 MB upstream of
the peak marker) reported by Nigro et al. (2019) (Supplementary
Table S2).

Protein coding genes underlying the confidence intervals of the two
QTLs for GPD were predicted and enrichment analysis carried out. This
showed that the region around Q.Gpd-5B includes genes that may
encode calmodulin-binding proteins, which modulate calcium signalling
in a range of biological processes, while the region around Q.Gpd-3A
includes genes which may regulate peptide transport across mem-
branes (Supplementary Table S3). It is possible that the latter contribute
to greater transport of nitrogen into the developing grain of lines with
the Hereward allele, which could be explored by comparing their
expression levels in genotypes with the Hereward and Malacca alleles in
different tissues and time points between anthesis and harvest (GPD
being correlated with to post-anthesis N uptake (Bogard et al., 2010).

In conclusion, we have demonstrated that the Malacca x Hereward
DH population is a useful resource to study the genetic architecture of
GPD. Our results indicate that the genetic architecture of GPD is com-
plex, involving multiple loci with small effect sizes. Nevertheless, we
have identified two major QTLs on chromosomes 3A and 5B which
correspond to previously reported QTLs for GPD. These QTL could
therefore be used to underpin the development of markers for use in
breeding. However, this would require the analyses of further crosses for
more precise mapping and the validation of the markers using panels of
genotypes grown in field trials. Preliminary analyses of the gene content
within these QTL regions also indicate the presence of genes which could
contribute to the regulation of protein accumulation in the grain, but
further work is required to identify precise candidates and confirm their
functions.
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