

Developing an ontology-based tool for relating risks to the energy performance gap in buildings

Article

Accepted Version

Creative Commons: Attribution-Noncommercial 4.0

Yilmaz, D., Tanyer, A. M. and Dikmen, I. ORCID:
<https://orcid.org/0000-0002-6988-7557> (2025) Developing an ontology-based tool for relating risks to the energy performance gap in buildings. *Engineering, Construction and Architectural Management*. ISSN 0969-9988 doi: 10.1108/ECAM-09-2024-1203 Available at <https://centaur.reading.ac.uk/120282/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1108/ECAM-09-2024-1203>

Publisher: Emerald

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Developing an ontology-based tool for relating risks to the energy performance gap in buildings

Abstract

Purpose- Despite extensive research on the underlying reasons for the energy performance gap in buildings, there is a critical need for stakeholders to standardize and facilitate the use of this knowledge and support its broader application by machines. Our research addresses this gap by developing both an ontology and a tool to utilize risk information regarding the performance gap in buildings.

Design/methodology/approach- Research into this topic began with the creation of an energy performance gap-risk ontology for new and existing buildings using the METHONTOLOGY method. This comprised a comprehensive literature review and semi-structured interviews with ten experts concerning six buildings, in order to develop taxonomies and define risk factor interactions. It was followed by a three-stage validation using a mixed-method research methodology. Steps included comparing the ontology with a similar empirical study, gathering expert opinions via interviews and ratings assessments, and finally, interviewing an experienced professional to ascertain whether there were any concepts not covered by the ontology. The taxonomies were modeled in Protégé 5.5, and using the ontology, a spreadsheet tool was developed using Microsoft Visual Basic for Applications in Excel.

Findings- The ontology identified 36 primary risk factors, and a total of 95 when including additional risks linked to certain factors. Factors such as professional liability insurance, stakeholder motivation, effective communication, experience, training, integrated design, simplicity of detailing, building systems or design, and project commissioning can help manage the performance gap in buildings. The tool developed serves as a decision-support system, offering features like project risk checklists to assist stakeholders in addressing the performance gap.

Quality/value-This study is the first to develop an energy performance gap-risk ontology and a tool to help project stakeholders collect, store, and share building risk information.

Keywords

Energy performance gap, ontology, spreadsheet tool, project risks, risk identification

Paper type Research paper

32 **1. Introduction**

33 Buildings are responsible for significant energy consumption and energy-related greenhouse
34 gas emissions (Alam *et al.*, 2017). Therefore, it is critical to plan the right policies to improve
35 the energy efficiency of new and existing building stock (Burman *et al.*, 2014). To address this
36 problem, governments have upgraded energy and construction standards in buildings and
37 energy performance assessment tools worldwide. These efforts have led to the emergence of a
38 series of low-carbon and low-energy buildings, both newly built and retrofitted (Gupta *et al.*,
39 2020).

40 Nevertheless, energy estimates at the design stage often differ from actual operational use, and
41 this difference is known as the energy performance gap (Godefroy, 2022). The magnitude of
42 the energy performance gap (EPG) varies widely (Shi *et al.*, 2019). In reviewed publications,
43 Mahdavi and Berger (2024) found a median EPG of +30% in residential and +14% in non-
44 residential buildings, while Calì *et al.* (2016) reported that the EPG can be up to 287%.

45 This phenomenon impacts various aspects of the building industry, including governmental
46 sustainability targets (Ortiz *et al.*, 2020), design, economic, technological, well-being, and
47 health benefits (Shrubsole *et al.*, 2019). It also affects the credibility of industry professionals,
48 such as policymakers, engineers, and designers (Wang *et al.*, 2023). Additionally, energy
49 performance risk has financial implications for energy service companies, which typically
50 guarantee project savings through energy performance contracting (Doylend, 2015).

51 The EPG of buildings, including green buildings, has been extensively studied for over two
52 decades (Shi *et al.*, 2019), with significant efforts being made to identify its causes (Pomponi
53 and Moncaster, 2018) and propose strategies to bridge the gap. However, current research
54 focuses on the technical aspects of building energy performance to reduce EPG, frequently
55 overlooking important social and organizational factors (Zheng *et al.*, 2024).

56 Furthermore, some authors have identified risks contributing to the gap. Risk is characterized
57 as uncertain events impacting project goals (Siraj and Fayek, 2019) and performance
58 (Jayasudha and Vidielli, 2016). Significant uncertainty persists both throughout the building's
59 life cycle and when replicating actual conditions in energy simulations (Garwood, 2019).
60 Therefore, reducing uncertainties and implementing risk management strategies early in
61 construction increases the likelihood of achieving the project goals (Yousri *et al.*, 2023) and
62 effectively mitigates the energy performance gap (Frei *et al.*, 2017).

63 However, relatively few studies examine the EPG issue from a risk perspective (Doylend, 2015;
64 Alam *et al.*, 2017; and Topouzi *et al.*, 2019). Furthermore, while these studies provide valuable

65 insights into risk factors and their classification, they lack the comprehensive overview
66 necessary to account for the varied risks across different contexts since they focus on one
67 country, and one case study. Additionally, the findings of these studies often overlap with
68 previous research identifying the causes of EPG and exploring it through risk management
69 literature. These studies categorize risks into different classes and this redundancy in
70 terminology and classification hinders the effective communication and practical application of
71 the accumulated knowledge and expertise in current practice to reduce the gap in buildings.
72 Therefore, standardization in the EPG domain, particularly from a risk perspective, is necessary
73 for effective energy performance gap mitigation.

74 Developing an ontology is often considered the first step towards harmonizing domain
75 knowledge across various information systems (Jiang *et al.*, 2023). Ontologies provide benefits
76 such as semantic modeling, reusability, and the extensibility of information (Schachinger and
77 Kastner, 2017; Han *et al.*, 2015). However, despite the existence of several ontologies in
78 building energy efficiency (Tah and Abanda, 2011; Corry *et al.*, 2015; Zhou and El-Gohary,
79 2017), a gap remains in the ontological representation linking risks to the performance gap and
80 specifying interrelationships between risk factors across multiple building projects involving
81 different building uses. Moreover, the construction sector needs to work on capturing, storing,
82 sharing, and re-using knowledge due to a lack of mechanisms and processes that encourage the
83 necessary social interaction to shape and formalize it (Shelbourn *et al.*, 2006). Therefore, an
84 environment is needed that can not only standardize these processes in a structured manner, but
85 also serve as a guideline, and transfer risk knowledge to future projects.

86 Given these research gaps, the primary aim of this study is to develop an ontology to relate risks
87 to EPG. The objectives of the paper are to:

- 88 – establish a common vocabulary to eliminate heterogeneity when identifying EPG risks in
89 buildings;
- 90 – classify risk factors and define their interrelations;
- 91 – develop a tool to assist project stakeholders in gathering, storing, and sharing the risk
92 information of energy-efficient building projects.

93 Our research contributes to the existing body of knowledge by developing a comprehensive
94 ontology that synthesizes empirical and theoretical knowledge across different building types,
95 certification systems, and contexts. The ontology facilitates knowledge dissemination among
96 project stakeholders and ensures semantic interoperability. By leveraging the ontology into a
97 risk management tool, the research supports the systematic collection of data from buildings
98 and the mitigation of EPG, and contributes to the United Nations' sustainable development

99 goals (SDG). The first section of this paper introduces the study. The second section provides
100 background information, focusing both on the reasons for and risks surrounding the gap and on
101 previous ontology studies. The third section details the research methodology, while the fourth
102 section presents research findings on the ontology and the tool developed. The fifth section
103 offers a discussion, and the final section covers conclusions, research limitations, and future
104 work.

105 **2. Background**

106 *2.1. Causes of the energy performance gap*

107 A widely accepted definition describes EPG as the difference between calculated (or simulated)
108 and measured energy use (Bai *et al.*, 2024), arising from concurrent factors present throughout
109 a building's life cycle (Hahn *et al.*, 2020). Researchers identified EPG factors through various
110 methods, including literature reviews (Van Dronkelaar *et al.*, 2016), surveys with facility
111 managers (Liang *et al.*, 2019), and detailed analyses of project documentation, thermography,
112 co-heating tests, interviews, occupant surveys, and walkthroughs (Gupta *et al.*, 2013).

113 In the design phase, EPG is influenced by limitations in modeling programs and methods
114 (Menezes *et al.*, 2012), misuse of tools (Kampelis *et al.*, 2017), unrealistic behavioral
115 assumptions (Gram-Hanssen and Georg, 2018), design complexity, early design choices, and
116 human errors (Godefroy, 2022). Wang *et al.* (2023) highlight the lack of actual data on existing
117 buildings and the disregarding of thermal bridges and insulation gaps during energy modeling.
118 Factors such as post-design changes and construction quality can cause EPG in the construction
119 phase, while unfinished activities and poor-quality handovers contribute to EPG at the
120 commissioning and handover stage (Godefroy, 2022). During operation, occupant-driven
121 factors predominantly cause EPG (Mahdavi & Berger, 2024), including higher operating
122 temperatures, increased air change rates, and discrepancies in plug-loads, lighting usage, and
123 internal heat loads. For this reason, the knowledge and skills of the occupants and energy
124 managers are crucial (Zou *et al.*, 2018). Further factors leading to EPG include poor practices,
125 faulty equipment, measurement system limitations, operational instability, maintenance, and
126 facility management issues (Godefroy, 2022).

127 In addition to the root causes of the gap, strategies for closing it are among the most widely
128 studied areas in current research. Most researchers and practitioners consider technical
129 methods, such as data collection and simulation processes, to be among the best ways to reduce
130 the gap (Zheng *et al.*, 2024), as well as transparency in energy performance data reporting and
131 benchmarking (Danish & Senju, 2023). However, resolving the EPG also requires soft
132 methods, such as effective communication and management among building stakeholders, and

133 mandatory regulatory strategies (Zheng *et al.*, 2024). Therefore, effective stakeholder
134 engagement and collaboration (Madhusanka *et al.*, 2022), along with strategies such as designer
135 competence, early involvement of key participants, and an integrated project delivery model,
136 are also critical to bridging the gap (Moradi *et al.*, 2024).

137 *2.2. Risks influencing the gap*

138 Risk is often described in terms of uncertain events and their influence on project goals (Siraj
139 and Fayek, 2019). Therefore, early-stage risk identification helps ensure that stakeholders and
140 clients achieve their project goals (Yousri *et al.*, 2023). The ISO 31000:2018 standard
141 emphasizes risk assessment—comprising identification, analysis, and evaluation—as central to
142 risk management.

143 Risk assessment models in green building projects are less comprehensive than in general risk
144 literature (Nguyen and Macchion, 2023). Mills *et al.* (2006) identified five classes of energy-
145 efficient project risks: measurement and verification, economic, operational, technological, and
146 contextual. Qin *et al.* (2016) examined certification, managerial, quality/technological,
147 financial/cost, political, and social risks in the green building life cycle in China, emphasizing
148 their probability and impact. Yang *et al.* (2016) showed that the critical risks for and
149 stakeholders of green buildings differ between countries (Australia and China).

150 The effective mitigation of EPG requires a well-structured, integrated performance and risk
151 management process (Frei *et al.*, 2017). However, studies focusing on risks causing EPG are
152 limited. Doylend (2015) categorized energy performance risks into four groups: design and
153 engineering, management and process, external constraints, and operation and maintenance,
154 while Alam *et al.* (2017) categorized risks into six classes: design input, client-related issues,
155 procurement, construction management, material and equipment, and knowledge and skills.
156 Furthermore, Topouzi *et al.* (2019) identified three main risks: communication, sequence, and
157 assessment, comparing their likelihood in five retrofit approaches, and Thompson *et al.* (2022)
158 identified twenty-two risk factors in an analysis of 49 non-residential buildings.

159 *2.3. An overview of ontology studies*

160 Ontologies, sometimes described as vocabularies, contain a formalized representation of
161 knowledge for a particular domain in the information science field (Pritoni *et al.*, 2021). A
162 hierarchy of concepts illustrating entity types, relations among concepts, restrictions on
163 relations, and instances are significant parts of ontologies (Schachinger and Kastner, 2017).
164 Ontologies facilitate knowledge exchange between domains and link shared knowledge,
165 offering advantages like semantic modeling (Schachinger and Kastner, 2017), information
166 reusability, extensibility, and interoperability (Han *et al.*, 2015). They are useful in the research

167 areas of artificial intelligence, system integration, the semantic web, and problem-solving
168 methods (Tserng *et al.*, 2009).

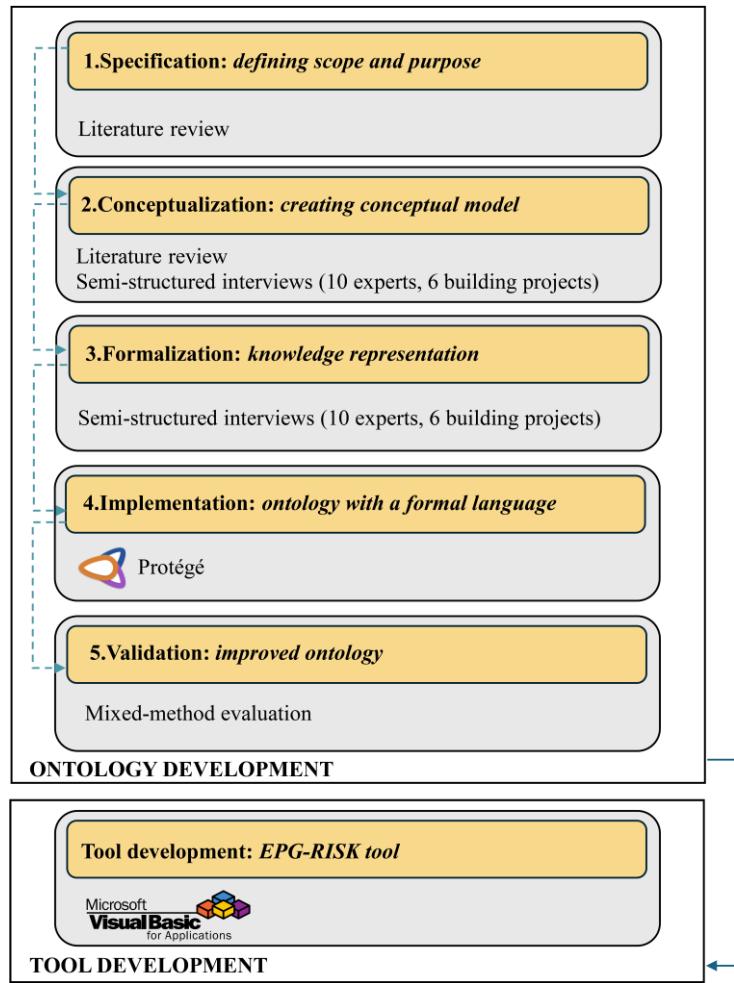
169 Ontology development typically follows an iterative process with various modeling methods
170 (Schachinger and Kastner, 2017). Ontology building uses a customized procedure with no
171 universal method. Among the most common methods used in the construction industry are
172 METHONTOLOGY, SKEM, Uschold & Gruninger's (1996) approach, and NeOn, Grüninger,
173 and Fox's (1995) approach (Zhao *et al.*, 2016). Iqbal *et al.* (2013) conducted a comprehensive
174 review of fifteen ontology engineering methodologies and concluded that, while none of the
175 methodologies are fully mature, METHONTOLOGY stands out by providing detailed
176 descriptions of the techniques and activities employed.

177 Ontologies related to building energy efficiency serve multiple purposes. Researchers have
178 developed ontologies for selecting photovoltaic systems (Tah and Abanda, 2011), extracting
179 energy requirements from energy conservation codes (Zhou and El-Gohary, 2017), identifying
180 occupants' behavioral adaptation mechanisms (Hong *et al.*, 2015), and representing interactions
181 between smart grids and building energy management systems (Schachinger and Kastner,
182 2017). Other focuses include thermal comfort and energy efficiency (Esnaola-Gonzalez *et al.*,
183 2021) and performance assessment via a semantic web-based method (Corry *et al.*, 2015).

184 *2.4. Research contribution*

185 A comprehensive literature review on EPG research revealed the following critical limitations
186 in existing studies:

- 187 – Existing research predominantly focuses on the technical aspects of building energy
188 performance to mitigate EPG, often neglecting crucial social and organizational factors.
- 189 – Performance gap studies can be categorized into two groups: those with a risk management
190 perspective and those without. Despite using different terms like cause, reason, and risk, the
191 findings overlap significantly between these groups.
- 192 – Most studies in the risk management literature use a structured approach with risk
193 classification, something often lacking in EPG studies. Additionally, existing literature on
194 risk identification typically categorizes risks into different classes. The development and
195 application of classifications enhance communication efficiency by revealing patterns and
196 providing a comprehensive overview through the visualization of clusters, densities, and
197 gaps (Kwaśnik, 2019). However, inconsistent terminology and classification between
198 studies complicate the use of previous research insights.


199 – Existing literature struggles to establish causal relationships between risk factors.
200 Nevertheless, it is essential to consider risk paths, both to prevent significant risks from
201 being disregarded (Alam *et al.*, 2017) and to enhance risk mitigation.
202 – Additionally, earlier studies on risks affecting building energy performance have been
203 constrained by focusing only on the UK construction sector, renovation methods, literature
204 reviews, and a single case study. However, previous researchers noted that risks affecting
205 building performance vary from one building to another (De Wilde, 2014), and critical risks
206 differ between different stakeholders and countries (Yang *et al.*, 2016).
207 – Current ontologies address the technical aspects of building energy performance; however,
208 no domain ontology systematically categorizes and defines the relationships between key
209 risks in EPG.
210 – This study addresses current research limitations by developing an ontology that considers
211 various building types, sustainability standards, and country conditions to provide a
212 comprehensive view of risks affecting EPG. The ontology will standardize risk
213 terminology, classify risks systematically, and establish causal relationships between the
214 risks. Through semi-structured interviews considering the life-cycle stages of different
215 buildings, the study will explore not only technical but also social and organizational factors
216 causing EPG. Later, a tool will be developed to integrate risk management into the project
217 life cycle to reduce the gap in buildings. In this study, risks are defined as uncertain events
218 or situations that can impact building performance either negatively, positively, or both.

219 **3. Research steps and methods**

220 The study includes two main parts: (1) a five-step process for ontology development and (2)
221 the development of a tool based on the ontology. It proposes an ontology rather than a model
222 or conceptual framework, as ontologies represent knowledge, facilitate interoperability, and
223 allow semantic modeling. Although a conceptual framework outlines the current state of
224 knowledge, it is finalized before the study and is rarely modified once data collection begins
225 (Varpio *et al.*, 2020).

226 Figure 1 illustrates the research steps employed in the study. The ontology was created using
227 the METHONTOLOGY method, as referenced by Zhou *et al.* (2016) and Guyo *et al.* (2023).
228 METHONTOLOGY is well-structured (Fernandez *et al.*, 1997), comprehensive, and one of the
229 most frequently used ontology engineering methodologies (Abanda *et al.*, 2017). It enables the
230 creation of an ontology from scratch (Abanda *et al.*, 2017; Khalid *et al.*, 2023), while also
231 permitting the reuse of existing ontologies. Due to the evolving prototype life cycle of this

232 methodology, ontology development is a continuous process, allowing updates at any phase
233 (Khalid *et al.*, 2023). The ontology can be employed to create various tools suited to specific
234 requirements. This article provides an illustrative example. Following the ontology
235 development steps, a practical Excel-based tool, EPG-RISK, was created within a spreadsheet
236 environment to help project stakeholders collect, store, and share the risk information of
237 projects.

238

239

Figure 1. Research steps (Source: Authors own work)

240 *3.1 Ontology development stage*

241 The ontology development process consists of five main steps: specification, conceptualization,
242 formalization, implementation, and validation. The following sections explain each step in
243 detail.

244 *3.1.1 Specification*

245 At a minimum, the specification step should provide the ontology's purpose, level of formality,
246 and scope (Fernandez *et al.*, 1997). This ontology aims to explain the energy performance gap
247 in buildings by utilizing project risks. The ontology can then be used by (i) project managers,
248 energy consultants, engineers, and energy service companies involved in developing a specific
249 energy-efficient building project and assessing project risks, or (ii) experts who want to predict
250 the risk of an energy performance gap in a project. Professionals can use the ontology to
251 describe risks influencing EPG in a semi-formal language, considering the design, construction,
252 and operational phases. Additionally, it helps identify relationships between various risk factors.

253

254 3.1.2 *Conceptualization*

255 The conceptualization process aims to uncover knowledge related to risks contributing to EPG
256 in buildings. Conceptualization, a challenging aspect in ontology design, requires a subjective
257 representation of the world and an understanding of how individuals perceive and categorize
258 their environment (Fidan *et al.*, 2011).

259 This step involved the identification of risks through an extensive review of the existing
260 literature and semi-structured interviews concerning six building projects. Semi-structured
261 interviews are frequently used to understand the ‘what’ and ‘how’, with a particular emphasis
262 on the ‘why’. Additionally, they help us understand the context and analyze relationships
263 between variables (Saunders *et al.*, 2019). Several researchers have employed semi-structured
264 interviews (Moradi *et al.*, 2024; Alencastro *et al.*, 2024; Yousri *et al.*, 2023), which was also the
265 preferred method in this study as the aim was to understand the contextual factors for risk and
266 EPG, particularly interrelations.

267 Initially, critical parameters, such as modeling, software, calculation methodology (De Wilde,
268 2014; Doylend, 2015; Calì *et al.*, 2016), simulation inputs (De Wilde, 2014), and design
269 problems (De Wilde, 2014; Doylend, 2015), were identified via a literature review. Twenty
270 journal articles on EPG in buildings were reviewed, and the most common concepts collected.
271 Later, semi-structured interviews were conducted with domain experts to explore factors
272 affecting risk and EPG, understand their relationships, and develop a conceptual model. One
273 criticism of semi-structured interviews is that the data collected may be perceived as “subjective
274 and imprecise.” However, conducting multiple meetings and interviews with the same
275 respondents can enhance data quality and build trust (Albaret and Deas, 2023). Our study
276 addressed these concerns by conducting two rounds of semi-structured interviews. The
277 interviews were held between December 2020 and May 2021, either online or in person, each
278 lasting 60 to 90 minutes. In the first round, interviewees were asked to describe the project
279 phases of an energy-efficient building they had worked on, explaining problems or challenges
280 that might result in an EPG, and stating whether these issues were resolved or led to further
281 problems. In the second round, the identified risk factors and relationships were presented to
282 the interviewees to determine their agreement, gather their feedback, and request suggestions
283 for revisions.

284 The building project selection process was strategically designed to capture diverse
285 perspectives on EPG in buildings applying the principles of sustainable design, both with and
286 without certification. Projects in Turkey and Germany were selected to provide a
287 comprehensive contextual lens. It is hypothesized that Turkey, offering the perspective of an

288 emerging market in green buildings, and Germany, as a pioneer, particularly in Passive House
289 certification, can both be representative and reflect different but complementary perspectives.
290 The projects that are discussed during the semi-structured interviews included one educational,
291 two residential, and three office buildings, with varying certification levels (Passive House,
292 LEED Platinum, LEED Gold, and non-certified). All buildings were constructed between 2014
293 and 2020, enabling a comprehensive examination of EPG across different building typologies,
294 sustainability standards, and country conditions (developed and developing). Table 1
295 demonstrates the building projects and the information about the interviewees.
296 The interviewees, including project managers, mechanical engineers, and site managers, were
297 selected for their comprehensive knowledge of the buildings, from the design phase to being
298 operational. One participant served as the commissioning agent for two green buildings, one of
299 which was LEED Platinum-certified, with the other being expected to achieve LEED Gold
300 certification. On average, the experts had twelve years of experience in energy-efficient
301 buildings.

302 **Table 1.**

303 Information on buildings and interviewees (Source: Authors own work)

No	Building	Country	Building Type	Construction Year	Area	Interviewee No	Position	Years of experience
I	Passive House I	Germany	Residential	2019	4,009 m ²	I1	CEO	34
II	Passive House II	Germany	Residential	2018	15,150 m ²	I2	Project manager	21
III	Green Building I (LEED Gold)	Turkey	Headquarters	2020	45,782 m ²	I3	Commissioning agent	12
						I4	Quality manager	8
						I5	Electrical technician	10
IV	Green Building II (LEED Platinum)	Turkey	Headquarters	2014	9,538 m ²	I6	Project manager	8
						I7	Site manager	8
						I8	Mechanical engineer	8
						I3	Commissioning agent	12
V	Non-certified energy-efficient building I	Turkey	Educational	2017	17,030 m ²	I9	Project manager	9
VI	Non-certified energy-efficient building II	Turkey	Headquarters	2019	8,955 m ²	I10	Mechanical engineer	8
						I9	Project manager	9
						I10	Mechanical engineer	8

304

305 *3.1.3 Formalization*

306 In this step, taxonomies and the relationships between the concepts were developed using an
307 iterative development process, as suggested by Fidan *et al.* (2011). Taxonomies represent
308 formal hierarchical relationships between items (Pritoni *et al.*, 2021). Semi-structured
309 interviews provided valuable information that helped us to develop the risk taxonomies and
310 understand how different concepts interrelate. After the initial round of interviews, experts
311 reviewed the identified risk parameters and relationships. In the second round, they evaluated
312 the interrelations, indicated their agreement, or suggested revisions.

313 *3.1.4 Implementation*

314 The implementation step modeled taxonomies and their relationships using an ontology editor
315 tool. Various ontology editors were used, including Protégé, NeOn Toolkit, SWOOP, Vitro, and
316 Anzo for Excel in other studies. Protégé is widely used for modeling domain knowledge (Yuan
317 *et al.*, 2018). Tah and Abanda (2011), Esnaola-Gonzalez *et al.* (2021), and Alsanad *et al.* (2019)
318 have all used Protégé to translate their ontologies into a semantic web language. In this study,
319 Protégé 5.5 was selected for its extensive use, free and open-source editing capabilities, stability
320 within the ontology and Semantic Web community, and compatibility with other plug-ins
321 (Abanda, 2011).

322 *3.1.5 Validation*

323 Ontology evaluation focuses on correctness and quality (Hlomani and Stacey, 2014) and is
324 generally undertaken using verification or validation methods. The verification process ensures
325 that the ontology is constructed correctly (Bilgin *et al.*, 2014), while validation checks whether
326 it accurately models the real world in its application (Gruninger, 2019). Validation criteria
327 include consistency, completeness, conciseness, expandability, and sensitiveness (Lovrenčić
328 and Čubrilo, 2008).

329 It is necessary to ensure that the ontology is technically consistent and in compliance with OWL
330 syntax for syntactic verification (Khalid *et al.*, 2023). In this study, this was tested using Pellet,
331 an OWL-based reasoner. Later, the validation process was designed as a multi-step process so
332 that the ontology could be tested using different sources of data at each step and enhanced until
333 no further changes were required. A mixed-method research methodology was used to gather
334 and analyze quantitative data, 5-point Likert scale ratings and qualitative data from interviews.
335 Indeed, combining two methods can be more effective than using just one, providing deeper
336 insights into research phenomena that cannot be fully comprehended through either qualitative
337 or quantitative methods alone (Dawadi *et al.*, 2021). One aim of employing a mixed-method
338 approach in research is to gather diverse yet complementary data on the same topic, enhancing

339 our understanding of research problems. In this way, data can be collected independently and
340 then integrated before interpreting the results (Dawadi *et al.*, 2021). In our study, an article and
341 interviews were used as different data sources to validate the ontology.

342 In the first stage, an empirical article by Jain *et al.* (2020) was reviewed in detail to evaluate the
343 ontology's completeness and expandability. This particular article was selected because it
344 focused on four building types (apartment block, school, office, and hospital) and used energy
345 model calibration for performance gap assessment.

346 The second stage comprised the interviewing of six domain experts who were knowledgeable
347 about EPG in buildings. Interviews were conducted online in May 2023, each lasting one hour.

348 The proposed ontology was sent to experts beforehand for review. These experts, mechanical
349 engineers with an average of 25 years of experience (Table 2), were based in the UK (E1, E2)
350 and Turkey (E3, E4, E5, E6). All participants had at least eight years of experience in building
351 energy efficiency and were familiar with EPG issues.

352 Participants were introduced to the ontology's research aim and definition during the
353 interviews. The suggested classes and concepts of the ontology were presented in an Excel file.

354 Participants were asked to indicate the additions, removals, potential contradictions, and
355 suggestions for future development that they considered necessary. They also reviewed and
356 provided feedback on relationships between classes. At the end of the interviews, experts
357 evaluated the ontology's appropriateness, completeness, consistency, conciseness, and
358 expandability using a 5-point Likert scale. Completeness ensures that the area of interest is
359 suitably covered, while consistency checks for contradictions (Hlomani and Stacey, 2014).
360 Conciseness examines redundant or irrelevant elements (Mishra and Jain, 2020), while
361 expandability means adding new knowledge and definitions without modifying existing groups
362 (Lovrenčić and Čubrilo, 2008).

363 **Table 2.**

364 Profile of the interviewees in the validation stage (Source: Authors own work)

365

Validation Stage	Expert no	Profession	Country	Experience (number of years)
2 nd Stage	E1	Mechanical Engineer	UK	13
	E2			10
	E3	Mechanical Engineer	Turkey	23
	E4			33
	E5			35
	E6			35

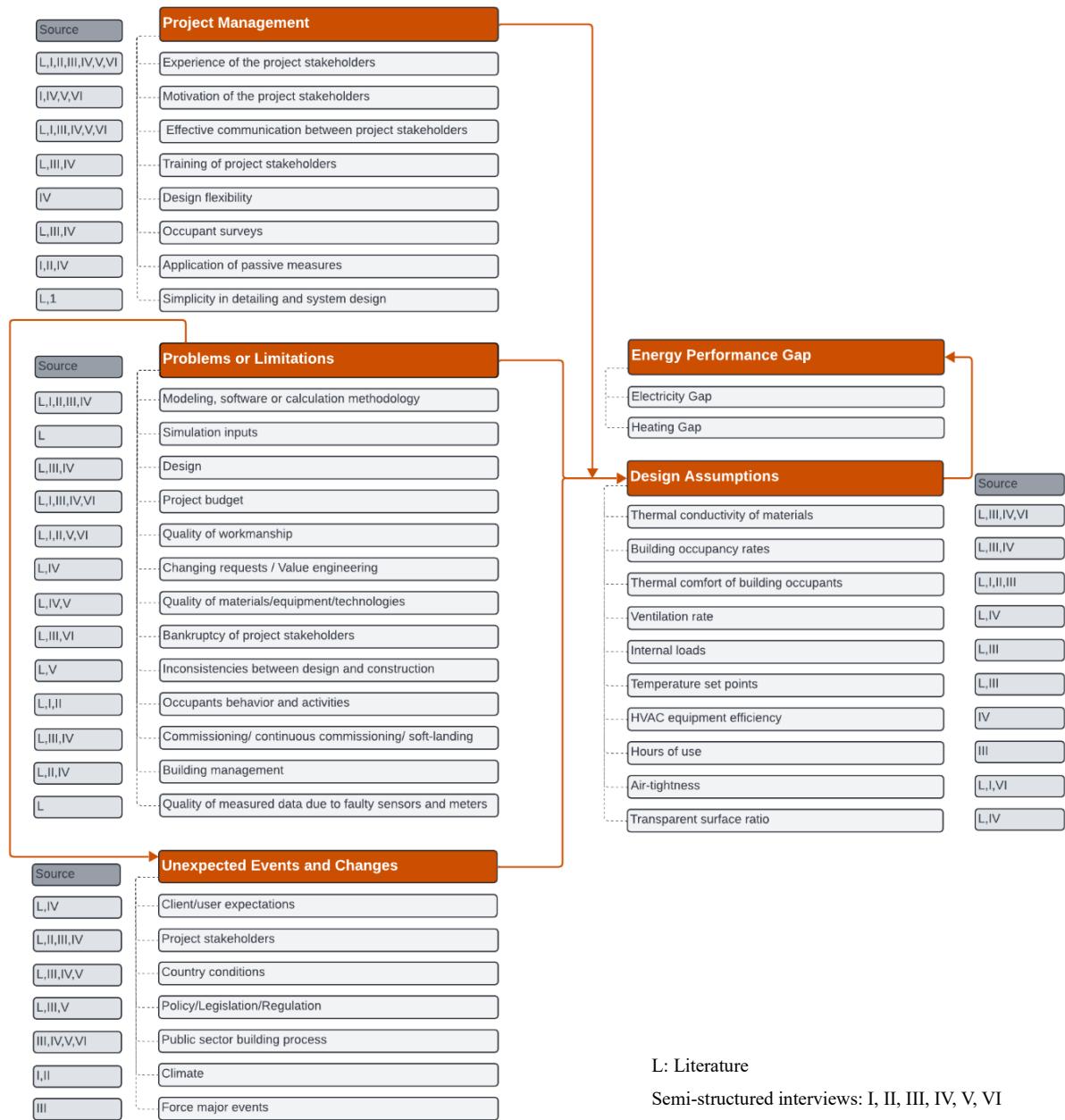
366 In the third stage, during a 1.5-hour interview, a mechanical engineer from Turkey with 46 years
367 of experience discussed the reasons for the gap and provided his feedback on the ontology. In
368 this way, different data and information sources were used to evaluate and validate the ontology.
369 This will be explained in detail in section 4.

370 *3.2 Tool development stage*

371 The ontology can be utilized by other researchers to develop tools tailored to specific needs. An
372 illustrative example of such a tool is provided in the article. The tool was developed using
373 Microsoft Excel Version 2406 (2024) and Microsoft Visual Basic for Applications (VBA), an
374 internal programming language used across various Microsoft applications. VBA allows users
375 to create forms with command buttons, option buttons, text boxes, scroll bars, and more,
376 enabling data entry and automated task execution. Using the tool, project stakeholders can not
377 only enter details related to their building stock, including geographical conditions, but also
378 evaluate the magnitude of the risks, and store and share this information with other project
379 stakeholders.

380 **4. Research findings**

381 This section presents the research findings from the ontology development stage, covering the
382 conceptual model, taxonomy, developed ontology, and ontology evaluation. It also introduces
383 the Excel-based tool created.


384 *4.1 Conceptual model*

385 In this study, semi-structured interviews were conducted with ten building experts to validate
386 and/or revise the risks identified in the literature, explore the relationships between the risks,
387 and develop a conceptual model. For example, additional risk factors and their relationships
388 were observed using verbal data from one of the projects, an office building in Turkey, as stated
389 below:

390 “Due to flexible work arrangements during the pandemic, fewer occupants worked in
391 offices. When the building was in use, lights were off, but the heating system was still
392 operating. Occupants complained about room temperature, especially in rooms with high
393 ceilings and cafeterias. That year, the weather was unusually severe. To address comfort
394 issues, the heating system was turned on earlier, and occupants were allowed to adjust the
395 room temperature by 2°C. An occupant survey can be conducted to better understand the
396 comfort-related issues and reasons for the gap.”

397 This building's heating consumption exceeded design projections, while its electricity
398 consumption was lower than anticipated. Unexpected events, such as extreme weather and the
399 Covid-19 pandemic, caused problems or limitations concerning occupant behavior and
400 activities, creating uncertainty in simulation assumptions. The expert suggested post-occupancy
401 evaluations to manage these issues.

402 Based on a synthesis of literature review findings and interviews about building projects, a
403 conceptual model comprising forty concepts and five classes was created, as shown in Figure
404 2. The model includes five groups: energy performance gap, design assumptions,
405 problems/limitations, unexpected events and changes, and project management. The design
406 assumption group includes the simulation assumptions made during the design phase, such as
407 the thermal conductivity of materials and occupancy rates. Problems and limitations, including
408 elements like design problems and budget limitations, arise during the different stages of a
409 project's life cycle, introducing weaknesses to the system. These aspects can cause unexpected
410 events and changes (i.e., changes in project stakeholders), although these may also occur
411 independently. Factors affecting the manageability of these groups are classified under project
412 management, which contains elements like stakeholder experience, communication, and
413 training. According to the model, factors in the first three categories can trigger changes in
414 design assumptions, leading to an energy performance gap.

415

416

Figure 2. Conceptual model (Source: Authors own work)

417 *4.2. Taxonomy development*

418 A taxonomy organizes elements into a superclass-subclass hierarchy. This structure brings
 419 substantial order to the model's elements, categorizes them for human interpretation, and
 420 facilitates the reuse and integration of tasks (Fidan *et al.*, 2011). Figure 3 represents the
 421 taxonomy classes developed and their relationships in a Unified Modeling Language (UML)
 422 diagram. Each box represents a class and consists of three compartments in the UML diagram.
 423 The uppermost compartment contains the class name, while the middle one contains class
 424 attributes. For instance, the *Building* class has attributes such as building type, construction
 425 type, location, and project name. The relationship between the classes is shown using arrows or

426 lines. A straight line indicates an association between classes. Association role labels (e.g.,
427 “has,” “results in,” “causes”) on the lines indicate the role of the classes. For example, the
428 Building class “has” an energy performance gap. Unexpected Events and Changes “cause”
429 Problems or Limitations, and vice versa. Multiplicities in UML diagrams indicate the number
430 of instances associated with instances of another class. For instance, multiplicity (1...*)
431 indicates that one or more Unexpected Events and Changes cause one or more Problems or
432 Limitations. While a solid line with a filled arrowhead indicates a directed relationship, a solid
433 line with an unfilled arrowhead shows inheritance between classes. For instance, the Risks class
434 is the super-class of Project Management, Problems or Limitations, and Unexpected Events and
435 Changes.

Figure 3. Data model for risk-energy performance gap ontology (Source: Authors own work)

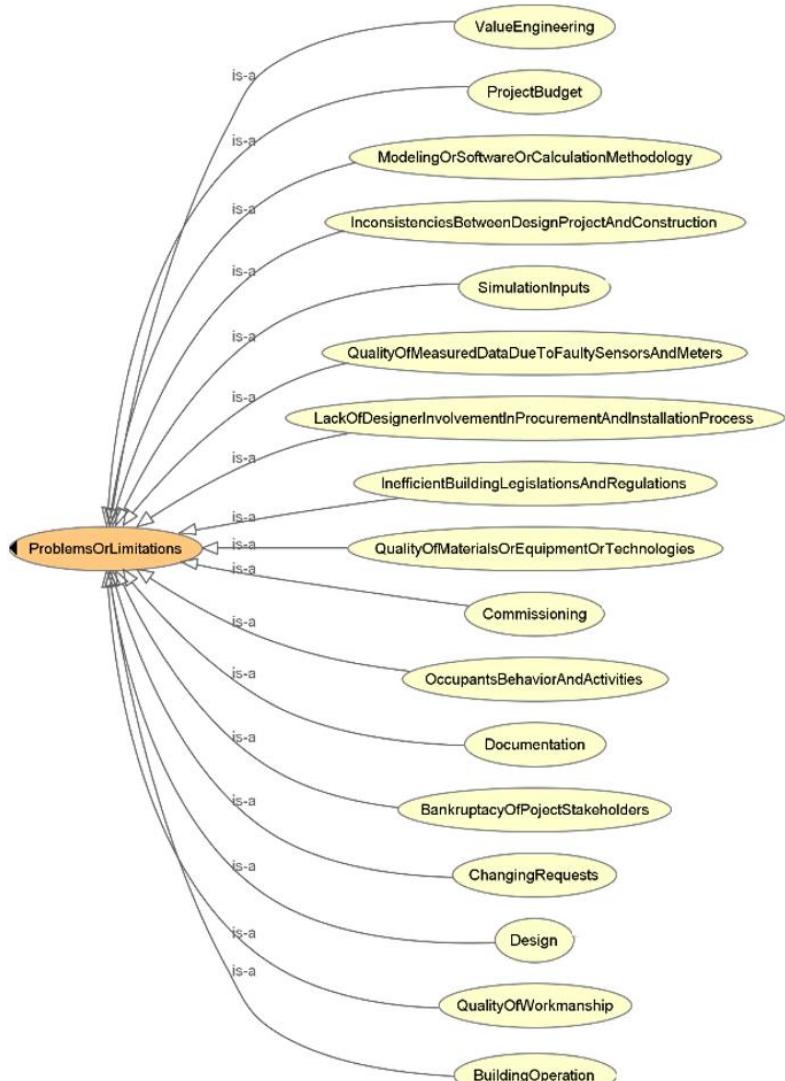
438 *4.3 The developed ontology*

439 The energy performance gap-risk ontology was developed using Web Ontology Language
440 (OWL) to represent concepts, properties, and relationships. OWL is a standard language for
441 describing ontologies (Delgoshaei *et al.*, 2018). An OWL ontology includes individuals,
442 properties, and classes. Individuals, or instances, represent objects within a specific domain.
443 Classes encompass individuals, and properties are binary relations between individuals
444 (Horridge and Brandt, 2011). OWL has three types of properties: object properties, data
445 properties, and annotation properties. Object properties link individuals, data properties link an
446 individual to an XML Schema Datatype value or an RDF literal, and annotation properties add
447 more information to classes, individuals, and object/data properties (Horridge and Brandt,
448 2011).

449 The ontology consists of three main classes: Building, Energy Performance Gap, and Risks.
450 The Risks class contains three subclasses: Project Management, Problems or Limitations, and
451 Unexpected Events and Changes (see Appendix). The following sections explain the classes,
452 properties, and individuals of the ontology.

453 *4.3.1 Building class*

454 The Building class collects general information about building projects to provide a clear
455 understanding of the project's initial conditions. Concepts include Project Name, Building
456 Type, Construction Type, Number of Floors, Heated Floor Area, Certification Status, and
457 whether the building is New or Retrofitted. Object properties like "has," "has-Gap," and "has-
458 Risk-Of" link elements such as Project Name and Problems or Limitations. Data properties,
459 such as "has-Name" and "has-Number-Of-Floors," link objects to specific data types like
460 strings or positive integers. Individuals in this class include residential and non-residential
461 building types, contract types, and wind conditions.


462 *4.3.2 Energy Performance Gap class*

463 The Energy Performance Gap class includes concepts for different types of gaps, such as
464 Carbon Emissions, Electricity, Natural Gas, and Water. These gaps are linked to various risk
465 factors through object properties like "is-due-to" to define their relationships. Studies examine
466 total electricity consumption (Shi *et al.*, 2019) and gas for domestic hot water, fan electricity,
467 pump electricity, lighting electricity, and heating and cooling electricity as energy items in their
468 analyses (Chang *et al.*, 2020).

469 4.3.3 Risks class

470 The Risks class comprises Problems or Limitations, Unexpected Events and Changes, and
 471 Project Management. Construction projects face numerous risks and uncertainties that can
 472 delay completion, result in exceeded budgets, and compromise safety, quality, and operational
 473 demands (Öztaş and Ökmen, 2005).

474 The Problems or Limitations subclass includes seventeen concepts (Figure 4). This category
 475 lists risk factors specific to individual project phases, such as design, construction, and
 476 operation, which can weaken the system and affect energy performance. For instance, poor
 477 workmanship during construction can impact the building's energy performance during
 478 operation. Additionally, risks throughout the project life cycle are characterized by their
 479 magnitude, which can be very low, low, medium, high, or very high. The data property
 480 "hasMagnitude" links an individual to a string representing this value.

481 **Figure 4.** Problems or limitations OWLViz asserted class hierarchy

482 (Source: Authors own work)

483 Inaccurate assumptions about simulation inputs during the design phase are a primary cause of
 484 the energy performance gap. The Simulation Inputs concept is categorized as a risk under the
 485 Problems or Limitations class. Figure 5 lists the assumptions that can cause EPG.

486
 487 **Figure 5.** Inaccurate design assumptions OWLViz asserted class hierarchy
 488 (Source: Authors own work)

489 The Unexpected Events and Changes subclass contains seven concepts, while the Project
 490 Management subclass contains twelve. Figure 6 illustrates the asserted class hierarchy of the
 491 Unexpected Events and Changes. This subclass includes risks that cause deviations from the
 492 project's initial conditions due to sudden changes and events, such as a pandemic, regulatory
 493 changes, stakeholder changes, and unavailability of certified equipment. Concepts within this
 494 subclass include Country Conditions, Force Majeure Events, and Climate and Geography.

495
 496 **Figure 6.** Unexpected events and changes OWLViz asserted class hierarchy (Source: Authors
 497 own work)

498 The Project Management subclass includes risks that influence resilience and affect the
 499 manageability of those risks causing the energy performance gap. For example, effective
 500 communication between project stakeholders ensures better information flow and collaboration
 501 to resolve issues across project phases. This subclass encompasses concepts such as the
 502 Experience of Project Stakeholders, Integrated Design, and Design Flexibility.

503 4.4 Ontology validation

504 This section presents the results of the evaluation process, which included a three-stage
 505 validation process.

506 In the first stage, an empirical article (Jain *et al.*, 2020) was reviewed to assess the ontology's
 507 completeness and expandability. The article included four case studies, and data was manually
 508 extracted to compare it with the suggested ontology. New concepts were added to the

509 appropriate class if the article mentioned a gap-causing concept not included in the ontology.
510 For example, Documentation and Poorly Specified Energy Targets were added to the Problems
511 or Limitations class and the concept of Building Management was modified to Building
512 Management and Maintenance.

513 In the second stage, interviews were conducted with six domain experts. This validation stage
514 resulted in several additions, particularly to the Buildings, Problems or Limitations, and Project
515 Management classes. For instance, Geographical Coordinates, Wind Conditions, and Energy
516 and Exergy Analysis were suggested for the Building class. Mechanical System Design
517 (including Errors in Mechanical Design Assumptions, Overdesign of Mechanical Systems, and
518 Using Incorrect Weather Data) was also recommended for the Problems or Limitations subclass.
519 Moreover, the “Design Assumptions” class, previously shown in the conceptual model (Figure
520 2), was redefined as an attribute of the “Problems or Limitations” subclass. The importance of
521 concepts such as Integrated Design, Professional Liability Insurance, and Good Interpretation
522 of Design was noted in Project Management.

523 Moreover, at the end of the interviews, six experts evaluated the ontology's appropriateness,
524 completeness, consistency, conciseness, and expandability using a 5-point Likert scale. Small
525 sample sizes are a common limitation in quantitative studies on risks in green building projects.
526 However, this constraint is understandable given the relatively smaller number of green
527 building practitioners compared to other sectors in the construction industry (Nguyen and
528 Macchion, 2023).

529 Table 3 presents the participants' responses using the mean, median, and interquartile ranges
530 (IQR). Descriptive statistics were used by Lee *et al.* (2017) and Alberici *et al.* (2020) despite
531 the sample sizes being small (six and twenty, respectively). Alberici *et al.* (2020) demonstrated
532 that small sample sizes can be evaluated using the median and interquartile range (IQR). The
533 median and the IQR are commonly used to assess the central tendency and dispersion of a
534 dataset. They are more robust than the mean and standard deviation because they are less
535 affected by outliers. Moreover, the IQR is particularly effective for analyzing skewed
536 distributions (Frost, 2024).

537 Experts evaluated the ontology's appropriateness, expandability, and consistency, giving it a
538 median score of 4.00 and an interquartile range (IQR) of 0.00. An IQR of 0.00 means there is
539 no variability among the middle half of the ratings. For completeness and conciseness, the
540 ontology received a median score of 4.00 and an IQR of 1.00, indicating some variability among
541 the middle half of the ratings.

542

543 **Table 3.**

544 Evaluation of the ontology based on appropriateness, completeness, consistency, conciseness,
 545 and expandability (Source: Authors own work)

No.	Questions	P1	P2	P3	P4	P5	P6	Mean	Median	IQR
1	How appropriate do you think the proposed ontology is to identify the risks that cause EPG in buildings?	4	4	4	4	4	3	3.83	4.00	0.00
2	Please evaluate the completeness of the proposed ontology.	4	3	4	4	4	3	3.66	4.00	1.00
3	Please evaluate the consistency of the proposed ontology.	4	4	5	4	4	3	4.00	4.00	0.00
4	Please evaluate the conciseness of the proposed ontology.	4	3	5	4	4	3	3.83	4.00	1.00
5	Please evaluate the expandability of the proposed ontology.	2	4	4	4	4	5	3.83	4.00	0.00

*Answers to each question are given using a 5-point Likert scale.

546 In the third stage, a mechanical engineer provided insights into the performance gap in
 547 buildings. The interview highlighted several critical factors: Involvement of experienced
 548 stakeholders, significance of mechanical system design, designer involvement during usage,
 549 quality of commissioning, and regular equipment maintenance. This validation stage confirmed
 550 that the ontology effectively captured these factors, therefore, no modifications were necessary.
 551 Table 4 details the concepts added, the modifications to concept names, and their classification
 552 into appropriate classes or subclasses during the validation stages.

Table 4.

Updates to the ontology following the validation stage (Source: Authors own work)

Stage	Type of change	Concept	New Concept Name	Sub-class	Classes						
					C1	C2	C3	C4	C5	C6	
I	New additions	Documentation								✓	
		Thermal Bridges	Inaccurate Design Assumptions							✓	
		Water Usage	Inaccurate Design Assumptions							✓	
	Poorly Specified Energy Targets			Building Design						✓	
II	New additions	Building Management	Building Management and Maintenance							✓	
		Certified or not								✓	
		Cooled Space Area								✓	
		Daily Temperature Difference								✓	
		Energy or Exergy Analysis								✓	
		Geographical Coordinates								✓	
		Heated or Cooled or Both								✓	
		Number of Floors								✓	
		Occupancy Ratio								✓	
		Wind Condition								✓	
		Year of Retrofitting								✓	
		Carbon Emissions Gap								✓	
		Water Gap								✓	
		Hot Water Gap								✓	
		Inaccurate Determination of Measurement Points	Commissioning							✓	
		Incorrect Automation Algorithm	Commissioning							✓	
		Building Design	Design							✓	
		Mechanical System Design	Design							✓	
	New additions	Errors in Mechanical Design Assumptions	Mechanical System Design							✓	
		Overdesign of Mechanical Systems	Mechanical System Design							✓	
		Using Incorrect Weather Data	Mechanical System Design							✓	
		Lack of Designer Involvement in Procurement and Installation								✓	
III	New additions	Building Orientation	Simulation Inputs								
		Building Zoning	Simulation Inputs								
		Heat Losses	Simulation Inputs								
		Thermal Transmittance (Floors, Roof, and Walls)	Simulation Inputs								
		Water Usage (Cold and Hot Water)	Simulation Inputs								
		Weather Bin Data	Simulation Inputs								
		Shell and Core Applications								✓	
		Integrated Design								✓	
		Professional Liability Insurance								✓	
		Project Commissioning								✓	
		Balancing	Project Commissioning							✓	
		Consideration of Occupancy Rate Afterwards	Project Commissioning							✓	
		Good Interpretation of Design	Project Commissioning							✓	
		Recommissioning When Necessary	Project Commissioning							✓	
		Retro-commissioning	Project Commissioning							✓	
		Building Maintenance	Building Operation							✓	
	Modification of the name	Heating Gap	Natural Gas Gap							✓	
		Building Management and Maintenance	Building Operation								
		Climate	Climate and Geography							✓	
		Change in Design Assumptions	Inaccurate Design Assumptions		Simulation Inputs					✓	
		Changing Requests and Value Engineering	Changing Requests							✓	
		Changing Requests and Value Engineering	Value Engineering							✓	
III	No Changes										

C1: Building, C2: Problems or Limitations, C3: Unexpected Events and Changes, C4: Project Management, C5: Energy Performance Gap, C6: Change in Design Assumptions

556 4.5 EPG-RISK tool

557 An EPG-RISK identification tool based on Microsoft Visual Basic for Applications in Excel
558 and Macro was created using the ontology developed to demonstrate its use in practice. The
559 tool comprises seven Excel worksheets.

560 The first worksheet, ABOUT, provides users with information about the tool. The following
561 five worksheets consider the classes and sub-classes of the ontology.

562 The second worksheet, BUILDING INFORMATION, collects general data about the project.
563 Users enter energy performance gap information in the third worksheet. Data is entered
564 manually or by selecting from the dropdown menu, as demonstrated in Figure 7.

The screenshot shows the 'BUILDING INFORMATION' worksheet. It contains several data entry fields:

- Project Name: Project 1
- Building Type: School
- Year of Construction: 1911
- Construction Type: Masonry Construction
- Location: Germany
- New or Retrofitted: Retrofit
- Number of Floors: 4
- Certified or Not: Not Certified
- Wind Condition: Low Wind
- Geographical Coordinates: Latitude 50.97, Longitude 11.32
- Contract Type: Other Contract
- Insulated or Not: Insulated
- Heated or Cooled: Heated
- Heated Floor Area (m²): 6250
- Energy and Exergy Analysis: Energy
- Cooled Space Area (m²): 0

A red 'SAVE' button is located at the bottom right.

565

The screenshot shows the 'ENERGY PERFORMANCE GAP' worksheet. It displays energy consumption data in three columns: Measured, Calculated, and Percentage (%). The data is as follows:

	Measured	Calculated	Percentage (%)
Electricity Gap	1225000 kWh	1000000 kWh	18.36
Natural Gas Gap	937500 m³	850000 m³	9.33
Carbon Emissions Gap	NA kg/a	NA kg/a	NA
Water Gap	NA m³	NA m³	NA

A red 'SAVE' button is located at the bottom right.

566

567 **Figure 7.** Building information & energy performance gap worksheet (Source: Authors own
568 work)

569 The fourth worksheet, PROBLEMS OR LIMITATIONS, allows users to evaluate their project
570 based on seventeen criteria, ranging from very low to very high, with an option for “not
571 applicable” (NA) responses using option boxes. This rating system allows users to compare
572 knowledge from various projects and pinpoint the most problematic criteria. Users can conduct
573 a more detailed evaluation by considering sub-criteria, such as identifying which design
574 assumptions (e.g., hours of use, airtightness, building orientation) posed more problems during
575 building energy performance calculations.

576 The fifth worksheet, UNEXPECTED EVENTS AND CHANGES, allows users to evaluate
 577 their project based on seven criteria using option buttons. This section addresses various
 578 unexpected conditions, such as force-majeure events like a pandemic.
 579 The sixth worksheet, PROJECT MANAGEMENT, lists twelve criteria that might help to
 580 control the magnitude of the gap in the project (Figure 8). Entering data for multiple projects
 581 allows users to see project conditions in which a lower or higher EPG was observed.
 582 Furthermore, users leverage the tool to inform their project development decisions.

RISKS: PROJECT MANAGEMENT
 Please enter the information required below manually. If the question does not apply to you, please select NA.

		Very Low	Low	Medium	High	Very High	NA
M ₁	Application of Passive Measures (e.g. Shading devices)	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₂	Design Flexibility	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₃	Experience of the Project Stakeholders	<input type="radio"/>	<input type="radio"/>				
M ₄	Effective Communication Between Project Stakeholders	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₅	Integrated Design	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>
M ₆	Legal Agreements Describing Role and Responsibilities of Project Stakeholders	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₇	Motivation of Project Parties	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₈	Occupant Surveys (e.g. Post occupancy evaluation)	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>
M ₉	Professional Liability Insurances	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₁₀	Project Commissioning	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
M ₁₁	Simplicity of Detailing or Building Systems	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>
M ₁₂	Training of Project Participants	<input type="radio"/>	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>

SAVE

583

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
No	Project Name	Building Type	Year of Construction	Construction Type	Location	New or Retrofitted	Number of Floors	Certified or Not	Wind Condition	Latitude	Longitude	Contract Type	Insulated or Not	Energy and Energy Analysis	Heated or Cooled	Heated Floor Area (m ²)	Cooled Space Area (m ²)
1	Project 1	School	1911	Masonry Construction	Germany	Retrofit	4	Not Certified	Low Wind	50.97	11.32	Other Contract	Insulated	Energy	Heated	6250	0
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
21																	
22																	

584

Figure 8. Energy performance gap risk identification tool (Source: Authors own work)

585 Analyzing the dataset collected in the seventh worksheet (DATA) can identify where the
 586 majority of projects face issues. This analysis can provide new directions for both project
 587 stakeholders and policymakers to address EPG challenges in both existing and new buildings.

5. Discussion

5.1 Energy performance gap-risk ontology

591 This research standardizes experience-based and scientific knowledge on EPG in buildings by
 592 developing an ontology linking risks with the energy performance gap. The ontology is crucial
 593 for (1) providing linguistic unity across scientific literature and industrial practice, (2)
 594 facilitating knowledge sharing among project stakeholders, and (3) enabling computer

595 readability and automatic processing in various applications. The ontology can improve
596 industry practices by facilitating risk identification, mitigation, and management.
597 The ontology developed comprises three main classes: Building, Energy Performance Gap, and
598 Risks. The Risks class is divided into three subclasses: Problems or Limitations, Project
599 Management, and Unexpected Events and Changes. Previous research on risks impeding
600 building energy performance has been limited by reliance on single case studies (Doylend,
601 2015) or literature reviews (Alam *et al.*, 2017), restricting the scope to specific renovation
602 approaches (Topouzi *et al.*, 2019) and the UK construction industry (Thompson *et al.*, 2022).
603 Since risks vary between buildings (De Wilde, 2024), stakeholders, and countries (Yang *et al.*,
604 2016), it is essential to consider different building types, country conditions, and stakeholders
605 during risk identification. Our study addresses this gap by combining a comprehensive literature
606 review with semi-structured interviews from building projects representing various building
607 types and country-specific conditions (Turkey and Germany). Additionally, interviews with
608 architects, mechanical and civil engineers, a materials manufacturer, and an electrical
609 technician provided a multidisciplinary perspective on the ontology development. The ontology
610 identified 36 main risk factors, and 95 in total, when considering additional risks associated
611 with certain factors.

612 *5.2 Risks influencing the energy performance gap*

613 Despite using different terminologies, the literature on risk management and energy
614 performance gaps in buildings revealed many similarities with the risks identified in the current
615 ontology. Human elements, such as stakeholder communication, experience, motivation,
616 stakeholder responsibilities, occupant behavior, poor workmanship, design changes, and
617 modeling errors are prevalent in EPG. Risks also stem from poor quality materials and
618 technologies, design complexity, regulatory issues, and building maintenance. These findings
619 align with earlier research by Mahdavi & Berger (2024), Godefroy (2022), Thompson *et al.*
620 (2022), Topouzi *et al.* (2019), Gram-Hanssen and Georg (2018), Alam *et al.* (2017), Kampelis
621 *et al.* (2017), and Doylend (2015), due to the common methods used in the research.

622 The ontology development process identified new risk factors contributing to the energy
623 performance gap. For example, interviewees from two projects in Turkey, a developing
624 country, highlighted construction companies going bankrupt, which harmed construction
625 quality. Additionally, interviewees from four projects noted that the public sector building
626 process posed risks, including difficulties in selecting contractors and challenges associated
627 with using products that enhance energy performance. The lack of local, high-quality

628 mechanical equipment was also a country-specific risk in three out of four buildings in
629 Turkey. These risks affected building energy performance, construction costs, and schedule.
630 Interviewees from both Turkey and Germany expressed concerns about poor workmanship, and
631 modeling, software, and calculation methodologies. The importance of effective
632 communication and stakeholder experience was emphasized in both countries. These results
633 agree with Yang *et al.* (2016), indicating that different stakeholders and countries encounter
634 distinct risks. Consequently, it is crucial to customize risk management strategies that address
635 the specific needs and contexts.

636 The ontology helps illustrate how different factors interact to contribute to EPG. For instance,
637 project management aspects (e.g., the experience of project stakeholders) can influence
638 problems or limitations (e.g., design issues) and unexpected events and changes (e.g., those
639 related to project stakeholders) during the building life cycle. Unexpected events (e.g., a
640 pandemic) can cause problems or limitations (e.g., simulation inputs). The ontology suggests
641 that factors such as professional liability insurance, stakeholder motivation, effective
642 communication, experience, training, integrated design, simplicity of detailing, building
643 systems or design, and project commissioning can help manage EPG in buildings.

644 *5.3. Excel-based tool for energy performance gap risk identification*

645 Building on the established ontology, a tool was developed in Excel using VBA and Macros to
646 systematically collect, store, and share the risk information relating to building projects. This
647 tool may help stakeholders, such as energy service companies, project managers, energy
648 consultants, and engineers, when addressing EPG. Users can input details related to building
649 stock and geographical factors, such as construction type, number of floors, wind conditions,
650 and EPG of their projects.

651 Comprehensive project data enables researchers to uncover new insights through various
652 statistical methods. For example, Firth *et al.* (2024) identified correlations between the gap and
653 variables such as property type, floor area, year of construction, latitude, and mean gas
654 consumption. The tool also allows inputs for carbon emissions and water usage gaps,
655 broadening the scope of EPG studies beyond traditional energy performance metrics. Janser *et*
656 *al.* (2020) criticize the typical definition of EPG for often overlooking several critical aspects
657 of energy performance: greenhouse gas emissions linked to energy demand, embodied energy,
658 and the discrepancy between the optimal and planned energy performance.

659 Users can assess the magnitude of risks, which are categorized in different sheets, to help
660 prioritize certain risks and take actions to reduce the gap. Listing risks in a structured format
661 enables stakeholders to spot weak points quickly. Project teams can save information for

662 multiple projects, share it with team members, and use it as a reference for future risk
663 management. The tool essentially serves as a project risk checklist, facilitating risk
664 identification and decision support to mitigate EPG. Analyzing the collected data can pinpoint
665 common issues from different projects, offering new directions for stakeholders and
666 policymakers to tackle EPG challenges. Additionally, the collected data can be used in AI and
667 machine-learning models to develop predictive models.

668 Ultimately, the tool supports multiple stakeholders, such as industry practitioners,
669 policymakers, homeowners, and tenants in reducing the financial burden of the EPG and
670 enhancing stakeholder credibility. Moreover, by supporting more transparent and effective risk
671 management, the tool contributes to the sustainable development goals (SDG). Specifically, it
672 aligns with SDGs 11 (sustainable cities and communities), 12 (responsible consumption and
673 production), 13 (climate action), and 17 (partnerships for the goals).

674 **6. Conclusions**

675 The building life cycle involves numerous risks that complicate accurate performance
676 predictions, making effective risk identification crucial for studying EPG in buildings. Previous
677 studies have examined many factors contributing to EPG, but the disorganized handling of these
678 factors hinders efficient knowledge sharing and comparison.

679 To address these challenges, this study developed an ontology based on a literature review and
680 semi-structured interviews with industry professionals regarding six buildings in order to
681 structure concepts and factors to interrelate energy performance gap and risk in buildings. The
682 interviews helped identify new risk factors, such as stakeholder bankruptcy, public sector
683 building processes, and a lack of high-quality mechanical equipment, which are particularly
684 relevant to developing countries. Interviewees also highlighted risks related to poor
685 workmanship, modeling, software, and calculation methodologies, and emphasized the
686 importance of effective communication and stakeholder experience.

687 An Excel-based tool was created using the ontology to collect, store, and share risk data from
688 projects. This tool supports stakeholders by facilitating risk management throughout the project
689 life cycle. The tool can help reduce EPG and its financial burden on different stakeholders,
690 enhance the credibility of designers, engineers, and policymakers, and contribute to the
691 sustainable development goals through effective risk analysis. Analyzing data from multiple
692 projects can identify common issues, providing new directions for policymakers. The tool can
693 also be combined with machine learning to develop prediction models and strategies to
694 minimize EPG.

695 Although the proposed ontology was validated for its appropriateness, completeness,
696 consistency, conciseness, and expandability, the study has some limitations. These include the
697 limited number of building projects and countries involved in the ontology's development, as
698 well as the small number of experts in the validation phases. Consequently, the ontology and
699 the associated tool are mainly suitable for similar contexts, such as emerging markets in green
700 buildings, and countries with well-developed passive house construction. However, to enhance
701 generalizability, an extensive literature review has been carried out and a mixed-method
702 validation process was followed to capture the global experiences within this domain.
703 Therefore, adjustments may be necessary when using the ontology and the tool in different
704 country and sustainable building contexts. Future research using different building projects and
705 knowledge from different parts of the world may be carried out to test and improve the
706 ontology, if needed. Additionally, future research can leverage the ontology to develop new
707 tools, for example, for quantitative risk analysis, to enhance risk-based decision-making and
708 help establish more realistic energy performance targets.

709

710 **Declaration of competing interest**

711 The authors declare no conflict of interest.

712 **Acknowledgements**

713 This research did not receive any specific grant from funding agencies in the public,
714 commercial, or not-for-profit sectors.

715 **References**

716 Abanda, F.H., Kamsu-Foguem, B. and Tah, J.H.M. (2017), "BIM – New rules of measurement
717 ontology for construction cost estimation ", *Engineering Science and Technology, an
718 International Journal*, Vol. 20 No.2, pp.443-459.

719 Alam, M., Phung, V.M., Zou, P.X.W. and Sanjayan, J. (2017), "Risk identification and
720 assessment for construction and commissioning stages of building energy retrofit projects",
721 *Proceedings of the 22nd International Conference on Advancement of Construction
722 Management and Real Estate*, Melbourne, Australia.

723 Albaret, M. and Deas, J. (2023), "Semi structured Interviews", Fanny, B. *et al.*(Ed.),
724 *International Organizations and Research Methods: An Introduction*, University of
725 Michigan Press, Michigan, MI, pp.82–89.

726 Alberici, F., Delbarba, E., Manenti, C., Econimo, L., Valerio, F., Pola, A., *et al.* (2020), "A single
727 center observational study of the clinical characteristics and short-term outcome of 20 kidney
728 transplant patients admitted for SARS-CoV2 pneumonia", *Kidney international*, Vol. 97
729 No.6, pp.1083-1088.

730 Alencastro, J., Fuertes, A. and De Wilde, P. (2024), "Investigating the influence of quality
731 management on building thermal performance", *Engineering, Construction and
732 Architectural Management*, Vol. 31 No. 8, pp. 3356-3376.

733 Alsanad, A.A., Chikh, A. and Mirza, A. (2019), "A domain ontology for software requirements
734 change management in global software development environment", *IEEE Access*, Vol.7,
735 pp.49352-49361.

736 Bai, Y., Yu, C. and Pan, W. (2024), "Systematic examination of energy performance gap in low-
737 energy buildings", *Renewable and Sustainable Energy Reviews*, Vol.202, pp.114701.

738 Bilgin, G., Dikmen, I. and Birgonul, M.T. (2014), "Ontology evaluation: An example of delay
739 analysis", *Procedia Engineering*, Vol. 85, pp.61-68.

740 Burman, E., Mumovic, D. and Kimpian, J. (2014), "Towards measurement and verification of
741 energy performance under the framework of the European directive for energy performance
742 of buildings", *Energy*, Vol. 77, pp. 153-163.

743 Calì, D., Osterhage, T., Streblow, R. and Müller, D. (2016), "Energy performance gap in
744 refurbished German dwellings: lesson learned from a field test", *Energy and Buildings*,
745 Vol.127, pp.1146-1158.

746 Chang, S., Castro-Lacouture, D. and Yamagata, Y. (2020), "Estimating building electricity
747 performance gaps with internet of things data using bayesian multilevel additive modeling",
748 *Journal of Construction Engineering and Management*, Vol.146 No.12, 05020017.

749 Corry, E., Pauwels, P., Hu, S., Keane, M. and O'Donnell, J. (2015), "A performance assessment
750 ontology for the environmental and energy management of buildings", *Automation in
751 Construction*, Vol. 57, pp.249-259.

752 Danish, M. S. S. and Senjuu, T. (2023), "Shaping the future of sustainable energy through AI-
753 enabled circular economy policies", *Circular Economy*, Vol. 2 No.2, pp.100040.

754 Dawadi, S., Shrestha, S. And Giri, R. A. (2021), "Mixed-methods research: A discussion on its
755 types, challenges, and criticisms", *Journal of Practical Studies in Education*, Vol.2 No.2, pp.
756 25-36.

757 De Wilde, P. (2014), "The gap between predicted and measured energy performance of
758 buildings: A framework for investigation", *Automation in Construction*, Vol. 41, pp. 40-49.

759 Delgoshaei, P., Heidarinejad, M. and Austin, M.A. (2018), "Combined ontology-driven and
760 machine learning approach to monitoring of building energy consumption", *Proceedings of*

761 *Building Performance Modeling Conference and SimBuild*, Chicago, United States, pp.667-
762 674.

763 Doylend, N. (2015). *Evaluating building energy performance: a life-cycle risk management*
764 *methodology*. Ph.D. Thesis. Loughborough University.

765 Esnaola-Gonzalez, I., Bermúdez, J., Fernandez, I. and Arnaiz, A. (2021), "EEPSA as a core
766 ontology for energy efficiency and thermal comfort in buildings", *Applied Ontology*, Vol. 16
767 No.2, pp.193-228.

768 Fernández-López, M., Gomez-Perez, A. and Juristo, N. (1997),
769 "METHONTOLOGY: from ontological art towards ontological engineering", *AAAI*
770 *Conference on Artificial Intelligence*.

771 Fidan, D.G., Dikmen, I., Tanyer, A. and Birgonul, M. (2011). "Ontology for Relating Risk and
772 Vulnerability to Cost Overrun in International Projects", *Journal of Computing in Civil*
773 *Engineering*, Vol.25, pp.302-315.

774 Firth, S. K., Allinson, D. and Watson, S. (2024), "Quantifying the spatial variation of the energy
775 performance gap for the existing housing stock in England and Wales", *Journal of Building*
776 *Performance Simulation*, pp. 1-18.

777 Frei, B., Sagerschnig, C. and Gyalistras, D. (2017), "Performance gaps in Swiss buildings: An
778 analysis of conflicting objectives and mitigation strategies", *Energy Procedia*, Vol. 122, pp.
779 421-426.

780 Frost, J. (2024), "Interquartile Range (IQR): How to find and use it", available at:
781 <https://statisticsbyjim.com/basics/interquartile-range/> (accessed 20 November 2024)

782 Garwood, T. (2019). *Closing the performance gap in building energy modelling through digital*
783 *survey methods and automated reconstruction*. Ph.D. Thesis. The University of Sheffield.

784 Gram-Hanssen, K. and Georg, S. (2018), "Energy performance gaps: Promises, people,
785 practices", *Building Research and Information*, Vol.46 No.1, pp.1-9.

786 Godefroy, J. (2022), *TM54: Evaluating operational energy use at the design stage*, Chartered
787 Institution of Building Services Engineers, London.

788 Gruninger, M. (2019), Ontology validation as dialogue. *CEUR Workshop Proc*, 2518.

789 Gupta, R., Gregg, M. and Cherian, R. (2013), "Tackling the performance gap between design
790 intent and actual outcomes of new low / zero carbon housing", *Proceedings of ECEEE 2013*
791 *Summer Study*, Toulon/Hyères, France, pp.1315-1328.

792 Gupta, R., Gregg, M. and Cherian, R. (2020), "Developing a new framework to bring
793 consistency and flexibility in evaluating actual building performance", *International Journal*
794 *of Building Pathology and Adaptation*, Vol. 38 No.1, pp. 228–255.

795 Guyo, E.D., Hartmann, T. and Snyders, S. (2023), "An ontology to represent firefighters' data
796 requirements during building fire emergencies", *Advanced Engineering Informatics*, Vol.
797 56, 101992.

798 Han, J., Jeong, Y.K. and Lee, I. (2015), A rule-based ontology reasoning system for context-
799 aware building energy management. *Proceedings of IEEE International Conference on*
800 *Computer and Information Technology, Ubiquitous Computing and Communications,*
801 *Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing*,
802 Liverpool, United Kingdom, pp. 2134-2142.

803 Hahn, J., Schumacher, P., Lang, W. and Jensch, W. (2020), Performance gap and occupant
804 behavior - Review and analysis of high-efficiency residential buildings in Germany.
805 *Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization,*
806 *Simulation and Environmental Impact of Energy Systems*, Osaka, Japan, pp.2023-2035.

807 Hlomani, H. and Stacey, D. (2014), "Approaches, methods, metrics, measures, and subjectivity
808 in ontology evaluation: A survey", *Semantic Web and Information Systems*, Vol. 1 No. 5, pp.
809 1-11.

810 Hong, T., D'Oca, S., Taylor-Lange, S.C., Turner, W.J.N., Chen, Y. and Corgnati, S.P. (2015),
811 "An ontology to represent energy-related occupant behavior in buildings. Part II:
812 Implementation of the DNAS framework using an XML schema", *Building and*
813 *Environment*, Vol. 94, pp. 196-205.

814 Horridge, M. and Brandt, S. (2011), "A practical guide to building OWL ontologies using
815 Protégé 4 and CO-ODE tools edition 1.3", available at: <https://mariaiulianadascalu.com/wp-content/uploads/> (accessed 10 December 2022)

817 Iqbal, R., Murad, M. A. A., Mustapha, A. And Sharef, N. M. (2013), "An analysis of ontology
818 engineering methodologies: A literature review", *Research Journal of Applied Sciences,
819 Engineering and Technology*, Vol. 6 No.16, pp. 2993-3000.

820 Jain, N., Burman, E., Stamp, S., Mumovic, D. and Davies, M. (2020), "Cross-sectoral
821 assessment of the performance gap using calibrated building energy performance
822 simulation", *Energy and Buildings*, Vol. 224,110271.

823 Janser, M., Hubbuch, M. and Windlinger, L. (2020), "Call for a definition and paradigm shift
824 in energy performance gap research", *IOP Conference Series: Earth and Environmental
825 Science*, Vol. 588 No. 5, pp. 052052.

826 Jayasudha, K. and Vidivelli, B. (2016), "Analysis of major risks in construction projects",
827 *ARPN: Journal of Engineering and Applied Sciences*, Vol. 11 No.11, pp. 6943-6950.

828 Jiang, X., Wang, S., Liu, Y., Xia, B., Skitmore, M., Nepal, M. and Ghanbaripour, A. N. (2023),
829 "A method for the ontology-based risk management of PPP construction
830 projects", *Construction Innovation*, Vol. 23 No.5, pp. 1095-1129.

831 Kampelis, N., Gobakis, K., Vagias, V., Kolokotsa, D., Standardi, L., Isidori, D., *et al.* (2017),
832 "Evaluation of the performance gap in industrial, residential & tertiary near-Zero energy
833 buildings", *Energy and Buildings*, Vol.148, pp. 58–73.

834 Khalid, Q., Fernandez, A., Lujak, M. and Doniec, A. (2023), "SBEO: Smart building evacuation
835 ontology", *Computer Science and Information Systems*, Vol. 20 No.1, pp. 51-76.

836 Kwaśnik, B. H. (2020), "Changing perspectives on classification as a knowledge-representation
837 process", *Knowledge Organization*, Vol.46 No.8, pp.656-667.

838 Lee, W., Lin, K. Y., Seto, E. and Migliaccio, G. C. (2017), "Wearable sensors for monitoring
839 on-duty and off-duty worker physiological status and activities in construction", *Automation
840 in Construction*, Vol. 83, pp. 341-353.Liang, J., Qiu, Y. and Hu, M. (2019), "Mind the energy
841 performance gap: Evidence from green commercial buildings", *Resources, Conservation
842 and Recycling*, Vol. 141, pp. 364-377.

843 Lovrenčić, S. and Čubrilo, M. (2008), "Ontology evaluation- Comprising verification and
844 validation", *Proceedings of 19th Central European Conference on Information and
845 Intelligent Systems*, Varazdin, Croatia.

846 Madhusanka, H.W.N., Pan, W. and Kumaraswamy, M.M. (2022), "Stakeholder engagement and
847 collaboration in overcoming the constraints to delivering low carbon buildings in high-rise
848 high-density cities". *In IOP Conference Series: Earth and Environmental Science*, Vol. 1101
849 No. 4 pp. 042030.

850 Mahdavi, A. and Berger, C. (2024), "Ten questions regarding buildings, occupants and the
851 energy performance gap", *Journal of Building Performance Simulation*, pp. 1–11.

852 Menezes, A. C., Cripps, A., Bouchlaghem, D. and Buswell, R. (2012), "Predicted vs. actual
853 energy performance of non-domestic buildings: Using post-occupancy evaluation data to
854 reduce the performance gap", *Applied energy*, Vol.97, pp. 355-364.

855 Mills, E., Kromer, S., Weiss, G. and Mathew, P.A. (2006), "From volatility to value: Analyzing
856 and managing financial and performance risk in energy savings projects", *Energy Policy*,
857 Vol. 34, pp. 188-199.

858 Mishra, S. and Jain, S. (2020), "Ontologies as a semantic model in IoT", *International Journal
859 of Computer Applications*, Vol. 42 No.3, pp. 233-243.

860 Moradi, S., Hirvonen, J. and Sormunen, P. (2024), "A qualitative and life cycle-based study of
861 the energy performance gap in building construction: Perspectives of Finnish project
862 professionals and property maintenance experts", *Building Research & Information*, Vol. 52
863 No.5, pp.564-576.

864 Nguyen, H. D. and Macchion, L. (2023), "A comprehensive risk assessment model based on a
865 fuzzy synthetic evaluation approach for green building projects: the case of
866 Vietnam", *Engineering, Construction and Architectural Management*, Vol.30 No.7,
867 pp.2837-2861.

868 Ortiz, M., Itard, L. and Bluyssen, P.M. (2020), "Indoor environmental quality related risk
869 factors with energy-efficient retrofitting of housing: A literature review", *Energy and
870 Buildings*, Vol. 221, 110102. Öztaş, A. and Ökmen, Ö. (2005), "Judgmental risk analysis
871 process development in construction projects", *Building and Environment*, Vol. 40 No. 9,
872 pp.1244-1154.

873 Pomponi, F. and Moncaster, A. (2018), "Scrutinising embodied carbon in buildings: The next
874 performance gap made manifest", *Renewable and Sustainable Energy Reviews*, Vol. 81, pp.
875 2431-2442.

876 Pritoni, M., Paine, D., Fierro, G., Mosiman, C., Poplawski, M., Saha, A., *et al.* (2021),
877 "Metadata schemas and ontologies for building energy applications: A critical review and
878 use case analysis", *Energies*, Vol. 14 No. 7, pp. 1-37.

879 Qin, X., Mo, Y. and Jing, L. (2016), "Risk perceptions of the life cycle of green buildings in
880 China", *Journal of Cleaner Production*, Vol. 126, pp. 148-158.

881 Saunders, M., Lewis, P. and Thornhill, A. (2019), Research methods for business students,
882 Pearson Education, London, England.

883 Schachinger, D. and Kastner, W. (2017), "Ontology-based generation of optimization problems
884 for building energy management", *Proceedings of IEEE International Conference on
885 Emerging Technologies and Factory Automation*, Limassol, Cyprus, pp. 1-8.

886 Shelbourn, A.M., Bouchlaghem, D.M., Anumba, C.J., Carillo, P.M. Khalfan M.M.K. and
887 Glass, J. (2006), "Managing knowledge in the context of sustainable construction", *Journal
888 of Information Technology in Construction*, Vol. 11, pp. 57-71.

889 Shi, X., Si, B., Zhao, J., Tian, Z., Wang, C., Jin, X., *et al.* (2019), "Magnitude, causes, and
890 solutions of the performance gap of buildings: A review", *Sustainability*, Vol. 11, pp. 937.

891 Shrubsole, C., Hamilton, I.G., Zimmermann, N., Papachristos, G., Broyd, T., Burman, E., *et al.*
892 (2019), "Bridging the gap: The need for a systems thinking approach in understanding and
893 addressing energy and environmental performance in buildings", *Indoor and Built
894 Environment*, Vol. 28 No.1, pp. 100-117.

895 Siraj, N.B. and Fayek, A.R. (2019), "Risk identification and common risks in construction:
896 Literature review and content analysis", *Journal of Construction Engineering and
897 Management*, Vol. 145 No. 9, 03119004.

898 Tah, J.H.M. and Abanda, H.F. (2011), "Sustainable building technology knowledge
899 representation: Using semantic web techniques", *Advanced Engineering Informatics*, Vol.
900 25 No.3, pp.547-558.

901 Thompson, D., Burman, E., Mumovic, D. and Davies, M. (2022), "Managing the risk of the
902 energy performance gap in non-domestic buildings", *Building Services Engineering
903 Research and Technology*, Vol.43 No.1, pp.57-88.

904 Topouzi, M., Killip, G., Fawcett, T. and Owen, A. (2019), "Deep retrofit approaches: managing
905 risks to minimise the energy performance gap", *Proceedings of the ECEEE 2019 Summer
906 Study on Energy Efficiency*, Presqu'ile de Giens, France, pp.1345-1354.

907 Tserng, H.P., Yin, S.Y.L., Dzeng, R.J., Wou, B., Tsai, M.D. and Chen, W.Y (2009), "A study
908 of ontology-based risk management framework of construction projects through project life
909 cycle", *Automation in Construction*, Vol. 18 No.7, pp. 994-1008.

910 Van Dronkelaar, C., Dowson, M., Spataru, C. and Mumovic, D. (2016), "A review of the
911 regulatory energy performance gap and its underlying causes in non-domestic buildings",
912 *Frontiers of Mechanical Engineering*, Vol. 1 No.17.

913 Varpio, L., Paradis, E., Uijtdehaage, S. and Young, M. (2020), "The distinctions between theory,
914 theoretical framework, and conceptual framework", *Academic Medicine*, Vol. 95 No.7, pp.
915 989-94.

916 Wang, X., Yuan, J., You, K., Ma, X. and Li, Z. (2023), "Using real building energy use data to
917 explain the energy performance gap of energy-efficient residential buildings: A case study
918 from the hot summer and cold winter zone in China", *Sustainability*, Vol.15 No.2. pp. 1575.

919 Yang, R.J., Zou, P.X.W. and Wang, J. (2016), "Modelling stakeholder-associated risk networks
920 in green building projects", *International Journal of Project Management*, Vol. 34 No.1, pp.
921 66-81.

922 Yuan, J., Li, X., Chen, K. and Skibniewski, M.J. (2018), "Modelling residual value risk through
923 ontology to address vulnerability of PPP project system", *Advanced Engineering
924 Informatics*, Vol. 38, pp.776-93.

925 Yousri, E., Sayed, A.E.B., Farag, M.A. and Abdelalim, A.M. (2023), "Risk identification of
926 building construction projects in Egypt", *Buildings*, Vol.13 No.4, pp. 1084.

927 Zheng, Z., Zhou, J., Jiaqin, Z., Yang, Y., Xu, F. And Liu, H. (2024), "Review of the building
928 energy performance gap from simulation and building lifecycle perspectives: Magnitude,
929 causes and solutions", *Developments in the Built Environment*, pp. 100345.Zhao, X., Hwang,
930 B.G. and Gao, Y. (2016), "A fuzzy synthetic evaluation approach for risk assessment: A case
931 of Singapore's green projects", *Journal of Cleaner Production*, Vol. 115, pp. 203-213. Zhou,
932 P. and El-Gohary, N. (2017), "Ontology-based automated information extraction from
933 building energy conservation codes", *Automation in Construction*, Vol. 74, pp. 103-117.

934 Zhou, Z., Goh, Y.M. and Shen, L. (2016), "Overview and analysis of ontology studies
935 supporting development of the construction industry", *Journal of Computing in Civil
936 Engineering*, Vol. 30 No.6, pp.1-14.

937 Zou, P. X. W., Xu, X., Sanjayan, J. and Wang, J. (2018), "Review of 10 years research on
938 building energy performance gap: Lifecycle and stakeholder perspectives", *Energy and
939 Buildings*, Vol.178, pp.165-181.

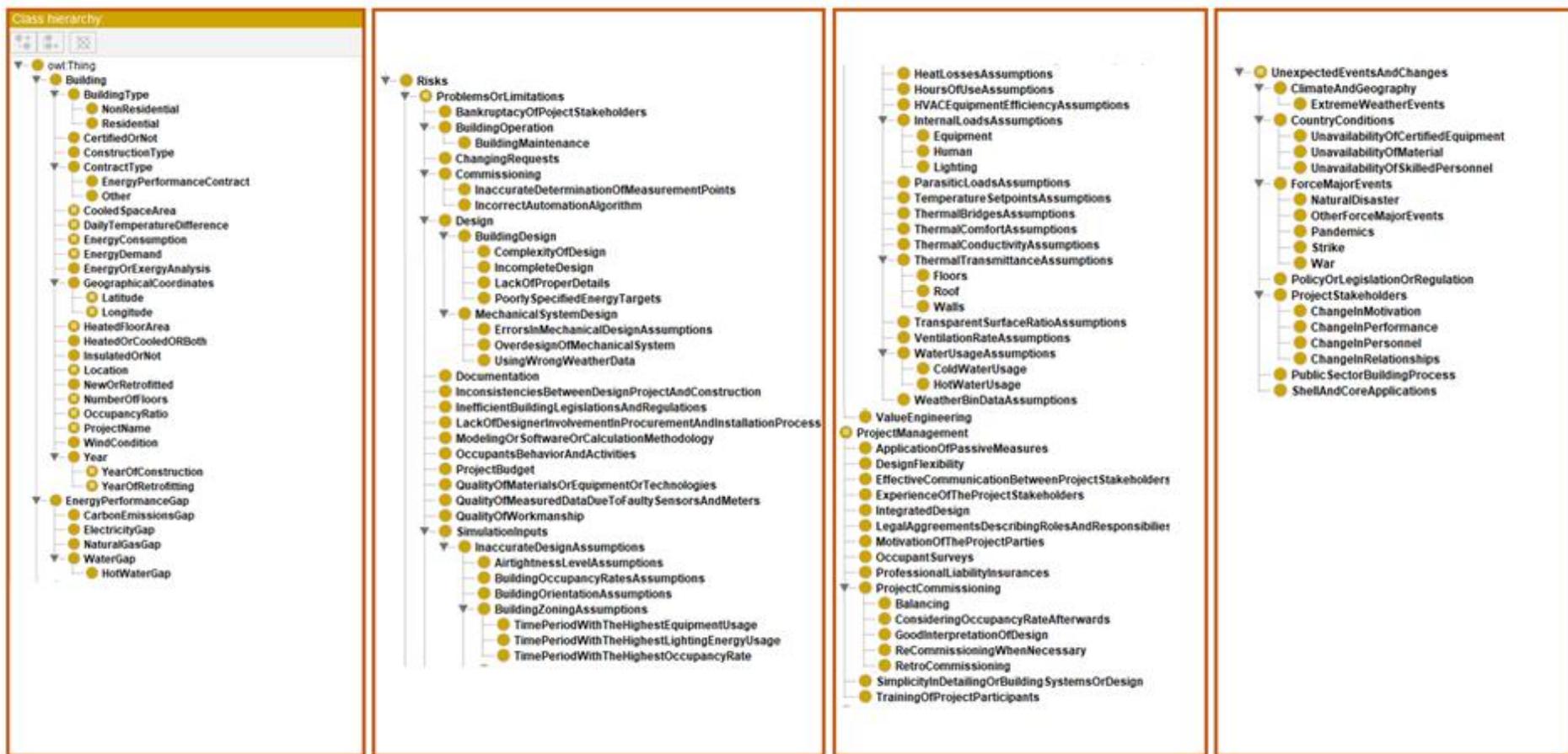


Figure A1. Classes of the energy performance gap-risk ontology (Source: Authors own work)