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We study the behaviour of eigenvalues, below the bottom of the essential spectrum, of the Laplacian
under finite Riemannian coverings of complete and connected Riemannian manifolds. We define
spectral stability and instability of such coverings. Among others, we provide necessary conditions
for stability or, equivalently, sufficient conditions for instability.

1 Introduction

Recently, Magee et al. [15, 20] have initiated a study of the spectrum of the Laplacian of a random
Riemannian cover of a fixed hyperbolic (i.e., curvature = —1) surface. Broadly speaking, the main results
obtained by them say that asymptotically almost surely the spectrum of a cover does not acquire new
eigenvalues below a specific threshold < 1/4; that is, among n-sheeted covers, the percentage of those
acquiring a new eigenvalue below that threshold tends to zero as n tends to infinity. What is even more
interesting is that the threshold is independent of the bottom surface, but only depends on its type;
see below.

A classical result of Randol [26] is quite opposite to the results of Magee et al. Namely, for any
hyperbolic metric on a closed (i.e., compact and connected with empty boundary) surface S of genus g > 2,
any natural number ¢ and any ¢ > 0, there is a finite Riemannian cover p: ' — S such that S’ has at
least ¢ eigenvalues in [0, ). (See [3, Theorem 4.1] for an elementary proof.)

One motivation for our studies in this paper is that, although the above mentioned results of Magee
et al. show that asymptotically almost all n-sheeted covers of the surface in question are spectrally stable
in a specific range, they do not provide any necessary or sufficient condition for this to happen. Among
others, we provide, in this paper, some necessary conditions.

To set the stage, let M be a complete and connected Riemannian manifold of dimension m. Denote
by M the universal covering space of M, endowed with the lifted Riemannian metric, and let I" be the
fundamental group of M, viewed as the group of covering transformations on M.

Denote by 10(M) < Aess(M) the bottom of the spectrum and the essential spectrum (of the Laplacian
A) of M, respectively. Recall that 1o(M) need not vanish in general, that 1o(M) = 0 and Aess(M) = oo in
the case where M is closed (that is, compact and connected without boundary) and that the spectrum
of M below Aess(M) consists of a locally finite set of eigenvalues of finite multiplicity. We assume
throughout that

Ao(M) < Aess(M) (1.1)

and enumerate the eigenvalues of M in [0, Aess(M)) according to their size and multiplicity as

0=<iM) <A (M) =2o(M) <., (1.2)
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2 | W.Ballmann and S. Mondal

where we recall that the eigenvalue Ao(M) has multiplicity one since its eigenfunctions do not change
sign. For A > 0, we denote by Ny (1) and Ny (A—) the number of 2, (M) in [0, 2] and [0, 1), respectively. More
generally, for any subset I C [0, Aess(M)), we denote by Ny (I) the number of A, (M) in L.

Let p: M’ — M be a finite Riemannian covering of complete and connected Riemannian manifolds.
Then

M) =2o(M)  and  Aess(M) = Aess(M); (1.3)

see (2.5). Since the lifts p*¢ = ¢ o p of eigenfunctions ¢ of M are eigenfunctions of M’, we always have

(M) < A (M). (1.4)
Likewise, for any subset I C [0, Aess(M)),

Nu(@) < N (D). (1.5)
We say that p is I-stable if

Nu(D) = Ny (D). (1.6)

With respect to this terminology, results of Magee et al. say among others that,
(1) for any orientable, convex cocompact, non-compact hyperbolic surface S with Hausdorff dimension
of its limit set § > 1/2 and any o € (3§/4,9), any finite Riemannian cover p: S’ — S is asymptotically
almost surely [§(1 — 8),0(1 — o)]-stable as |p| — oo; see [20, 21]. Note that here 1o(S) =8(1 —6) < 1/4 =
Aess(S).
(2) for any orientable and compact hyperbolic surface S and any ¢ > 0, any finite Riemannian cover
p: S’ — Sis asymptotically almost surely [0,3/16 — ¢]-stable as |p| — oo; see [22].
(3) for any orientable and non-compact hyperbolic surface S of finite area and any ¢ > 0, any finite
Riemannian cover p: §' — S is asymptotically almost surely [0, 1/4 — ¢]-stable as |p| — oo; see [15]. Here
20(5) =0 < 1/4 = hess(S).

Clearly, I-stability means that lifting yields an isomorphism between eigenspaces of M and M’ for all
eigenvalues of M and M’ in I. In particular:
(1) if J € [0, 00) 1s a further subset and I € J, then

I -instability of p implies ] -instability of p; (1.7)

(2) if q: S” — ' is a further finite Riemannian covering of complete and connected Riemannian
manifolds, then

I -instability of p or q implies I -instability of p o q. (1.8)

For k > 0, we say that p is Ax-stable if
Ny (A) = Ny (L), (1.9)

where A = A (M) < Aess(M). By definition, A,-instability Ny (%) < Ny (1) can occur in two ways: Either p
is strictly Ag-unstable, that is, Ny (A—) < Ny (A—), or else p is weakly Ap-unstable, that is, Ny(A—) = Ny (A—),
but the multiplicity of A as an eigenvalue increases, u(x, M) < u(r, M). By (1.7),

A -instability implies A, -instability, forany 1 <k < ¢, (1.10)

where 1¢(M) < Aess(M). In particular, A;-instability implies A-instability for all k > 1. For that reason,
our main focus is on A;-stability and instability.

For an eigenfunction ¢ on a Riemannian manifold, the set Z(p) = {¢ = 0} is called the nodal set of
¢ and the connected components of {¢ # 0} are called nodal domains of . (In general, we use the term
domain to indicate connected open sets.) One of our main arguments uses connectedness of preimages in
M’ of nodal sets in M.
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Spectral Instability | 3

Theorem A. If p: M' — M is a A,-stable finite Riemannian covering of complete and connected
Riemannian manifolds, where Ao(M) < Ax(M) < Aess(M), then the preimage p~1(U) of any nodal
domain U of any A-eigenfunction ¢ on M is connected, for any Ao(M) < A < A(M). In fact, if Uis
any nodal domain of any A-eigenfunction ¢ on M for any such A and j > 1 denotes the number
of connected components of p~*(U), then

N (A=) = Ny(h—) +j — 1.

Theorem A is a special case of Theorem 4.2. An easy application of the main results of [18] and [12]
and Theorem A yields the following

Corollary B. A closed manifold M carries a Riemannian metric g, such that p is strictly A;-unstable
with respect to g, for any non-trivial finite covering p: M’ — M of closed manifolds, where M’
is endowed with the lifted Riemannian metric g'. In fact, for an appropriate choice of g,

Ny (=) > Ipl (=Nu@-)+[pl =1,

where A = 11(M, g) and |p| denotes the degree (number of sheets) of p.

Proof. By [18, Main Theorem]| and [12, Theorem 1.1], M carries a Riemannian metric g, which has a
topological ball U as a nodal domain. (Note that the proof in [18] also works in the non-orientable
case.) Since balls are simply connected, p~*(U) has |p| disjoint lifts. Now the claim follows from
Theorem A. |

Corollary C. The orientable closed surface S of genus two carries a hyperbolic metric such that
any non-trivial Riemannian coveringp: S’ — S, that is not generated by one element, is strictly
A1-unstable.

Here we say that a covering p: M’ — M of connected manifolds is generated by k elements if, for one
(or any) point x € M, there are k loops in M at x such that any two points in p~'(x) can be connected
by lifts to M’ of concatenations of these loops and their inverses; see also Section 3.1. This property is
independent of the choice of x.

Proof of Corollary C. By [24], there exists a hyperbolic metric on S which has a A1(S)-eigenfunction ¢
such that one of its nodal domains U is either a disc or an annulus. In the first case, the preimage of U
is disconnected with |p| components and the assertion is a consequence of Theorem A. In the second
case, if the preimage of U is connected and x € U, then any two points of p~!(x) can be connected by
a lift of an iterate of any loop in U at x which generates 1 (U, x); see also Lemma 3.1. This shows the
assertion in the second case. ]

Theorem D. Suppose that M is complete and connected with A1 (M) < Aess(M) and carries a i1 (M)-
eigenfunction ¢ such that its nodal set is not connected.

(1) Then there is a two-sheeted Riemannian covering of M which is strictly A;-unstable.
(2) If M is orientable, then M carries an n-sheeted cyclic Riemannian covering which is strictly A;-
unstable, for any n > 2.

Theorem D is a special case of Theorem 4.6.

Let S be a complete and connected Riemannain surface. (To avoid misunderstandings: a Riemannian
surfaceis a surface with a Riemannian metric.) Recall that Sis said to be of finite type if it is diffeomorphic
to the interior of a compact surface with (possibly empty) boundary.

For a domain U in S and a point x € U, we identify I’ with 71(S, x) and denote the image of =1 (U, x) in
I by I'y. Corresponding assertions will be independent of the choice of x.
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4 | W.Ballmann and S. Mondal

Theorem E. Assume that S is of finite type with x(S) < 0, and let ¢ be a r-eigenfunction, where
20(S) < A < ess(S). Then ¢ has v > 2 nodal domains and at least one, U, such that x(S)/v <
x(U) < 1. For any such U, I' admits a surjective homomorphism I to Z}, respectively Z* if S
is orientable, where u > —(v — 1)x(S)/v, such that I'y € kerl. In particular, if ker] C IV € T
is a finite index subgroup, then the corresponding Riemannian covering p: ' — S is strictly
A-unstable. More precisely,

Ng (A=) = Ns(A—) + [p| — 1,
where the number of sheets of the covering |p| = [T'\TI'|.
Theorem E is proved in Section 5. It applies, for example, to non-compact hyperbolic surfaces S of

finite area with 0 < A < 1/4 since, for them, Aess(S) = 1/4. The number p is determined in the proof of
Theorem E.

Remark 1.11 (Weyl's law). Let p: M' — M be a non-trivial finite Riemannian covering of closed
Riemannian manifolds. Then, by Weyl's law,

lim Nu) _ CnVolM and lim N @) _ Cpn Vol M,

oo AM2 T oo A2 T

where Cy, equals the volume of the ball of radius 1/27 in R™. Since Vol M’ = |p| Vol M and |p| > 2,
we get that Ny (A) > Ny(2) for all sufficiently large a. Therefore, stability of p can only hold
in a bounded range of 1; see Corollary G for a stronger result in this direction for hyperbolic
manifolds.

Theorem F. Given ro(M) < A < ress(M) and ¢ € N, there exists n € N such that any finite covering
p: M’ - M with |p| > n satisfies A, (M) < A.

Theorem F is a special case of the somewhat more general Theorem 6.2. It was suggested to us by
a referee and improves our previous version. Theorem F generalizes work of Sunada [30, Proposition 6]
and Brooks [8, Theorem 2] on so-called towers of coverings.

The assumption ro(M) < Aess(M) is satisfied if M is compact since the essential spectrum of closed
Riemannian manifolds is empty. On the other hand, the assumption A < Aess(M) is inessential and just
serves as a reminder that counting beyond Aess(M) is meaningless in general.

Let H = G/K be a Riemannian symmetric space of non-compact type, where K is the stabilizer of a
point xo € H. Let G = KAN be an Iwasawa decomposition of G. Then S = AN is a solvable Lie subgroup
of G which acts simply transitively on H. Then Axq is a maximal totally geodesic flat subspace of H
through xo, and Nx, intersects Axo perpendicularly. Let h be the mean curvature of the orbit Nxq as a
submanifold of H. Then ro(H) = h?/4; see, for example, [5, Theorem 5.2].

Example 1.12. Let H = H be a hyperbolic space of dimension m = kd, where F € {R, C, H, 0} and
d = dimg F, endowed with its standard metric of maximal sectional curvature —1. Then Axg is
a geodesic through x¢, and Nxo is the horosphere through x, perpendicular to Axg. The mean
curvature of horospheres in Hisequaltoh=m+d — 2.

Corollary G. Let M be a closed quotient of H=G/K, ¢ > 0, and ¢ € N. Then there exists n € N such
that A, (M') < h?/4 + ¢ for any finite covering p: M’ — M of closed quotients of H with [p| > n.

In the case of hyperbolic surfaces, h = 1, and Corollary G shows that beyond 1/4, spectral stability in
the sense of Magee et al. cannot continue to hold. Notice also that, for surfaces, Corollary G is analogous
to Buser’s [9, Theorem 8.1.2], where, instead of passing to coverings, the hyperbolic metric is chosen
appropriately.

An inspection of the proof of Lemma 6.1 shows that the n in Corollary G can be chosen to depend
only on H, A, and a lower bound for the injectivity radius of M.
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Spectral Instability | 5

Since Ao(M) = Ao(M) if the fundamental group of M is amenable (see [7, Theorem 1] or [4, Theorem
1.2]) Theorem F has the following consequence.

Corollary H. Suppose that the fundamental group of M is amenable and that Ao(M) < Aess(M).
Then given any ¢ > 0 and ¢ € N, there exists n € N such that A4,(M') < Ao(M) + ¢ for any finite
covering p: M’ — M with [p| > n.

2 Setup and Preliminaries

Let M be a complete and connected Riemannian manifold of dimension m. Let A denote the Laplace-
Beltrami operator, acting on the space of smooth functions C*(M) on M. Recall that A is essentially self-
adjoint on C°*(M) € L?(M). Its closure will also be denoted by A. The spectrum of the closure, depending
on the context denoted by

o(M,A) =0(A) =0(M),
can be decomposed into two sets,
o (M) = 04(M) U oess (M),

the discrete spectrum and the essential spectrum. Recall that o4(M) consists of isolated eigenvalues of A of
finite multiplicity and that oess (M) consists of those A € R for which A — A is not a Fredholm operator.
By elliptic regularity theory, o (M) = oq(M) if M is compact. By the above characterization of the discrete
spectrum, o (M) = oess(M) if M is homogeneous and non-compact.

Denote by Ag(M) < Aess(M) the bottom of o(M) and oess (M), respectively. If M is compact, then Ao(M) =
0 < Xess(M) = oo. Furthermore, 0 is an eigenvalue of A of multiplicity one with constant functions as
eigenfunctions. In general, Ao(M) may be positive and may belong to o4(M) or we may have ro(M) =
Aess(M). We shall be interested in the case where

ho(M) < Aess(M). (2.1

Then 10(M) is an eigenvalue of A of multiplicity one with eigenfunctions which do not change sign.
Moreover, by the above, we have

o (M) N [0, ess(M)) S aq(M). (2.2)
We enumerate the eigenvalues of A in [0, hess(M)) by size,
)LO(M) < )Ll(M) < )LZ(M) =< )Less(M), (23)

where repetitions account for multiplicities. In general, the number of eigenvalues of A below Aess(M)
might be infinite, even if Aess(M) < oco. On the other hand, we have the variational characterization of
(M) < dess(M) by

(M) = 1rFlf 5235: Ray ¢, (2.4)

where F runs over all subspaces of H(M) of dimension k + 1 and Rayg = [|Vg|?/ [¢* denotes the
Rayleigh quotient of ¢ # 0. The infimum is achieved by the linear span of the ;(M)-eigenfunctions, where
0<j<k

2.1 Spectrum under finite Riemannian coverings

Unless otherwise specified, Riemannian manifolds are assumed to be complete and connected. Sim-
ilarly, p: M’ — M will denote a finite Riemannian covering of Riemannian manifolds with |p| sheets
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6 | W.Ballmann and S. Mondal

and group I of covering transformations. Recall that T is transitive on the fibers of p if and only if p is
normal. Since p is finite, we have

oM =2o(M) and  Aess(M) = hess(M). (2.5)

To show the first equality, recall that A is the supremum of the positive spectrum, that pull back and
averaging are inverses to each other on the respective spaces of positive functions on M and M’, and
that both, pull back and averaging, are compatible with the Laplacian; see [29, Theorem 2.1]. As for the
second equality, recall the well known fact that Aess is the lim sup of A on the family of neighborhoods
of infinity of the corresponding manifold and that the first equality does not require completeness; see,
for example, 6, Proposition 4.8].

As indicated in (2.1), we assume throughout that

o(M) < Aess(M). (246)

Then Ao(M) is an eigenvalue of A on M’ and M of multiplicity one with unique positive eigenfunctions
@, and ¢o of respective L2-norms equal to one.

For any functions ¢’ on M’ and ¢ on M, let p,¢’ be the function on M such that (p.¢')(x) is the average
of the ¢'(y), y € p~1(x), and p*¢ = ¢ o p be the pull-back of ¢ to M. Say that ¢ is p-invariant if ¢’ is
constant along the fibers of p. Obviously, this holds if and only if there is a function ¢ on M such that
¢’ = p*e or, equivalently, if and only if ¢’ = p*p.¢’. Clearly, p. and p* preserve all the standard regularity
and integrability conditions. For ¢’ € L2(M’') and ¢ € L?(M), we have

(¢, 0" o) = PP+’ 9)u, (2.7)
where the indices M’ and M indicate the scalar products in L?(M’) and L? (M), respectively. Furthermore,
L2(M') = imp* @ kerp,. (2.8)

For any A > 0, let E; and E; be the i-eigenspaces of A on M’ and M, respectively. Since lifts of -
eigenfunctions on M are i-eigenfunctions on M’, p*E; is equal to the space of p-invariant functions
in E}.

Proposition 2.9. For any A > 0,

(1) E, = p*E, @ ker(p.|E}) is an L2-orthogonal splitting;
(2) V/Iplp«: p*E, — E; is an orthogonal isomorphism with inverse p*/,/|p].

Note here that A-eigenspaces of A are closed subspaces of L?(M) and L?(M'), even if A belongs to the
essential spectrum of M respectively M'.

3 Connectedness Under Coverings

Fix a point x € M. For ¥’ € p~1(x) and a loop c: [0,1] — M at x, let ¢y be the lift of ¢ to M’ starting at
x'. Then X'[c] = ¢y (1) defines a right action of I' = 71 (M, x) on the fiber p~1(x) of p over x, where [c] € I’
denotes the homotopy class of c.

Lemma 3.1. Let U € M be a connected open subset containing x. Then the connected components
of p~1(U) are in canonical one-to-one correspondence with the orbits of I'y on p~!(x), where I'y
denotes the image of m1(U,x) in T.

Proof. Let c: [0,1] — U be a loop at x, X' € p~(x), and ¢y be the lift of ¢ starting at x'. Then cy (1) is
contained in p~1(U), and hence x'[c] belongs to the component of p~'(U) containing x’. Conversely, if
X" € p~1(x) belongs to the same component of p~1(U) as ¥/, then there is a path ¢': [0, 1] — p~*(U) from
X' tox”. Then ¢’ = ¢y and, therefore, X" = ¢y (1), wherec =p o is a loop at x.
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Spectral Instability | 7

Fixing a point X' € p~1(x), we get a canonical identification p~%(x) = I"\T', where I'" denotes the image
of (M, X)) in T'. With respect to this identification, the right action of I' on p~*(x) corresponds to the
right action of I on I'"'\T.

Corollary 3.2. After the choice of a point X' € p~1(x), the connected components of p~1(U) are in
canonical one-to-one correspondence with the elements of I'"\I'/ T'y, the space of orbits of the
right action of I'y on I"\T'.

When it comes to the existence of Ap-unstable coverings, the case I'y € I'" is of interest. Our next
result corresponds to the lifting property of covering projections.

Lemma 3.3. If I'y C I/, then the right action of I';y on IV\T fixes I''e. Hence, the action has more
than one orbit unless I'" = I'. If the normal closure N.(I'y) of I'y in T is contained in I'’, then the
right action of I'y on I'"\T is trivial. In this case, the action has |p| = |[T"\T'| orbits.

Proof. If g € I'y, then Ieg = I''g = I'" since g € I'". Under the second assumption, if g e 'y and h € T,
then hg = g'h for some g’ € N.(I'y) and hence I'"hg = I''g’h = I''h since, by assumption, g’ € No(I'y) € I''.
]

Example 3.4 (Abelian coverings). For a domain U € M and a point x € U, consider the Hurewicz
homomorphism

HXﬁ 7'[1(M, X) — ﬂl(M,X)/[T[l(M,X),ﬂl(M,X)] = Hl(M)
and the projection
Hi(M) — Hi(M)/i,(H1(U)) =: A,

where H; indicates first homology groups with coefficients in Z and i: U — M denotes the
inclusion. Under their composition, the preimage of 0 € A in =1 (M, X) equals I'y. Hence, the
preimage I'" of any finite index subgroup A’ of A is a normal subgroup of I' containing I'y such
that I"\I' = A’\A is a finite Abelian group. A question, among others adressed in Theorem 4.6
and Theorem E, is whether A is trivial.

3.1 Minimal number of generators
Say that I"\T is generated by k elements if there is a subset G of T with |G| = k such that I'" U G generates
I'; then the elements of G are also called generators of I''\I". In the case where I'” is a normal subgroup
of I, this terminology coincides with the usual one for the group I"\T.

The minimal number of generators of I'\I' is denoted by w(I"\T'). Note that, for any subgroups I'” € I'" C
I, we have u(I'\I') < w(I'"\I'). In particular, u(I"\I') < u(T"), the minimal number of generators of I'.

Lemma 3.5. If (I"\I') = k and A € I' is a subgroup generated by ¢ elements, then the right action
of A on I"\T" has at least k — £ + 1 orbits.

Proof. The claim is true for ¢ > k. Suppose now, by induction, that it is true for £+ 1 < k. Then the right
action of the subgroup Ay of I' generated by A and any additional element g € T has at least k — ¢ orbits
in I"\T. If all of these would be orbits of A already, for any choice of g € T, then the A-orbits would be
invariant under I'. However, that cannot be because I' has only one orbit. Hence, there is a choice of a
g € I which decreases the number of orbits by one. |

Corollary 3.6. Let p: M’ — M be a finite Riemannian covering of complete and connected
Riemannian manifolds. Let ¢ be a A1-eigenfunction of M and U a nodal domain of ¢. Then p
is Ap-unstable if u(I"\T') > w(Ty).

Proof. This follows immediately from Theorem A in connection with Corollary 3.2 and Lemma 3.5. ll
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8 | W. Ballmann and S. Mondal

As for the inequality in Corollary 3.6, recall from above that we always have the upper bound
w(@\I) < p(T).

Remark 3.7. In general, the calculation of the minimal number of generators of quotients I"\T is
a difficult problem. However, in the case where I' is a normal subgroup of I' such that A = I'\I"
is a finite Abelian group,

A=7Z/ky x - x L]k,

then w(A) equals the maximal number of k; which share a common divisor.

3.2 Asymptotic estimate of minimal number of generators
Pyber [25] conjectures that almost all finite groups are nilpotent (see [25, p. 218] for the precise
assertion). It is therefore interesting to get estimates on the minimal number of generators of finite
nilpotent groups.

For a prime p, a finite group G is called a p-group if the orders of all elements of G are divisible by p.
This holds if and only if the order of G is a power of p; that is, |G| = p* for some positive integer «. The
number of isomorphism classes f(n) of groups of order n = p* is given by

f(n) = n@27+oya’ (3.9)

by Higman [16, Theorem 3.5] and Sims [28, Proposition 1.1]. Because any p-group is nilpotent and hence
solvable, the number f(d, n) of groups of order n = p* with a generating set of at most d elements satisfies

fad,ny <n@e (3.9)

by Mann [23, Theorem 2]. Combining (3.8) and (3.9), we conclude that the proportion of groups of order
n = p* with a generating set of at most d elements tends to zero as « tends to infinity.

For a non-trivial finite group G, a Sylow p-subgroup is a non-trivial subgroup P of G such that |P| is
the highest power of p dividing |G|. If G is nilpotent, then G is the product of its p;-Sylow subgroups P;,

G=DPyx - xD, (3.10)
where the p; run through the primes dividing |GJ; see [11, Theorem 3, Chapter 6]. We conclude

Theorem 3.11. Let n; be a sequence of natural numbers such that the maximal exponent of the
prime factors of n; tends to infinity with i. Then, for any d > 1, asymptotically almost surely,
every nilpotent group of order n; has at least d generators.

Proof. Let G be a finite nilpotent group. Because each Sylow subgroup of G is normal in G, if G is
generated by d elements, then each Sylow subgroup of G is generated by at most d elements. The proof
now follows from the discussion of p-groups above. |

We observe thatitis necessary to assume, in Theorem 3.11, that the maximal exponent of the prime
factors of n; tends to infinity with i. This follows from a result of Guralnick [13] and Lucchini [19] that says
that a finite group is generated by at most d + 1 elements if each of its Sylow subgroups is generated
by at most d elements. For more discussion on number of generators and possible applications and
implications of these see Remark 5.12.

4 A Basic Argument and Applications

Let Ao(M) < A < Aess(M), ¢ € E;, and (Uj)¢; be the family of pairwise different nodal domains of ¢. For
each i e[, let (Uy)jg, be the family of pairwise different nodal domains of p*¢ over U;. For each i e I and
J €Ji, let g be the function on M’ which coincides with p*¢/k; on Uy, vanishes on all other Uy, and is
equal to p*¢/|p| on the rest of M, where k;; is the degree of the covering p: U; — U;. The set ] of pairs ij
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with i e I andj € J; labels the set of all nodal domains Uj; of p*g, sorted by the nodal domains U; of ¢. For
any function ¢ on M, we have

/M/ eip =/M</"/f< (4.1)

Notice the similarity, and difference, between (2.7) and (4.1). The definition of the ¢; is adapted to what
is needed in the comparison of Ny and Nyr. Recall here that Ny (A), Ny (A) and Ny (A—), Ny (A—) denote
the number of eigenvalues of M and M’ in [0, 1] and [0, A), respectively.

Theorem 4.2. For any Ao(M) < A < hess(M), there are at least || — |I| linearly independent
eigenfunctions on M’ with eigenvalues in (0,A), which are perpendicular to p*(L?(M)). In
particular,

Ny (A=) = Nu@=) + D (il = 1) = NuG—=) + D il = I1I.

iel iel

Note that |Jj| > 1 for all i so that the summands in the middle, the contributions |J;| — 1 of the Uj, are all
non-negative.

Proof of Theorem A. The contribution of U to the estimate in Theorem 4.2 is j—1. Since the contributions
of the other nodal domains are non-negative, the claim follows. [ ]

Proof of Theorem 4.2. Let X be the space spanned by the g5 and Y = p*(¢*). By (4.1), X and Y satisfy
the assumptions of Lemma A.2, applied to the quadratic form Q associated to the operator A = A’ — A.
Namely, Q < 0 on X. Furthermore, by (4.1), X and Y are perpendicular in H = L?>(M’). Finally, since ¢ is
an eigenfunction of A, PY € Y by Proposition 2.9, where P is the spectral projection of A’ associated to
[0,2). It remains to clarify the dimensions of X and X N Hy, where here Hy = E}.

To determine dim X, suppose that Zieuej‘ ajp; = 0.Leti e Iandj € J;. Then on Uy, the gy, for k # j,
vanish. Hence, on Uy,

Q@ = — 2 ORI Pkl
kel\(i)
leJy

Now on Uy, ¢; is equal to p*¢/k; and each ¢y on the right to p*¢/|pl. Since p*g # 0 on Uy, we get

ajj K
t'} A,

lpl

ki
Y kel\li)
lefi

Hence, on p~1(U)),

> ey = aipe.
Jeli

We also get that a;; = a;kj. Since Zje}z ki = |p| for all i € I, we infer that Z}-EJI aj; = aj|p|. Hence, the above
displayed equality also holds on the rest of M'. Therefore, the o; satisfy the linear equation

Zai =0,

iel
which has |I| — 1 independent solutions. In conclusion,

dimxzzm — I +1

iel
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10 | W.Ballmann and S. Mondal

To determine dim X NE;, note first that XNE] contains p*e. Conversely, any linear combination of the g;
is a multiple of p*p on any of the nodal domains Uy, of p*¢. Hence, by the unique continuation property,
any smooth function in X is a multiple of p*¢. In particular, XNE} consists of multiples of p*¢. Therefore,
X N E} has dimension one. n

Corollary 4.3. If k of the nodal domains of ¢ are simply connected, then

Ny (A=) = Ny(A—) + k(lpl = D).

Proof. The preimage under p of any of the simply connected nodal domains has |p| components. Hence,
their contribution to the estimate in Theorem 4.2 is k(|p| — 1). Since the contributions of the other nodal
domains are non-negative, the claim follows. |

In Corollary 4.4, for any nodal domain U of ¢, we let I = p,m1(M, X'), for any given x € Uand X’ € p~(x)
(and I'y as usual). The assertions are independent of the choice of x and x'. Generalizing Corollary 4.3,
we have

Corollary 4.4. If k of the nodal domains U of ¢ satisfy

(1) Iy € I, then Ny (A—) > Ny(A—) + k;
(2) Ne(I'y) € I, then Ny (A=) > Ny(A—) + k(]pl — 1).

Proof. For any U as in the first assertion, p~*(U) has at least two, in the second [p| components, by
Lemma 3.3. |

Remark 4.5. Since liftings of eigenfunctions from M to M’ are eigenfunctions on M’ with the same
eigenvalues, an inequality Nyy (A—) > Ny (A—)+Cimplies that Ny (k—) > Ny(k—)+C and Ny (k) >
Num(x) + C, for any « > .

Theorem 4.6. Suppose that M is complete and connected with A1(M) < %ess(M) and carries a
A1(M)-eigenfunction ¢ such that its nodal set Z(¢) has at least u + 1 > 2 components. Let U
be one of the two nodal domains of ¢. Then there is a surjective homomorphism I: I' — Z
such that I'y € kerl. If M is orientable, there is a surjective homomorphism I: ' — Z* such
that I'y € kerl. In both cases, if I is a finite index subgroup of I' containing kerI, then the
corresponding Riemannian covering p: M’ — M is strictly A;-unstable. More precisely, with
Ipl = II"\T| and A = A1(M),

Ny (A=) = Nu(A—) + n(lpl = D).

Proof. Suppose first that 0 is a regular value of . Then {¢ < 0} and {¢ > 0} are smooth domains in M
with interiors {¢ < 0} and {¢ > 0}, and the boundary of each of these domains equals {¢p = 0} = Z(¢p),
with Vg pointing into {+¢ > 0} along Z(¢), respectively. Since ¢ is a 1 (M)-eigenfunction, it has exactly
two nodal domains, that is, {¢ < 0} and {¢ > 0} are connected, hence path connected. Hence, so are
{¢ < 0} and {¢ > 0}. Therefore, between any two points in Z(gp), there exist paths in {¢ < 0} and {¢ > 0}
joining them.

By assumption, Z(¢) has at least u + 1 connected components, Zi,...,Z,41. Let Z = Z; for some
1<j<wZ =Z,1,andz e Zandz e Z be points. By what we said above, there exist paths c_ in {¢ < 0}
and cy in {¢ > 0} between z and z'. Their union c is a closed loop in M that has intersection number one
with Z. In particular, intersection with the different Z = Z; defines a non-trivial homomorphism I from
I' to Z* if M is oriented and to Z) otherwise.

Let now U be one of the nodal domains of ¢. Then I'y is contained in kerI. Hence, the normal closure
N(I'y) is contained in the normal subgroup kerI of T'. Since kerI C I'", Corollary 4.4 applies and shows
the claim.
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If 0 is not a regular value of ¢, the above argument still applies in principle, but we need some
preparation to define intersection numbers. To that end, write

Z(p)={z € Z(p) | dp(2) #0}U{z € Z(p) | dp(z) = 0}

= Z(¢)reg U Z(‘/’)singy
the reqular and singular part of Z(¢). Let Z and Z’ be as above and set
Zreg =Zn Z(‘ﬂ)reg, Zsing =Zn Z(‘ﬂ)sing

Recall from the (elementary) proof of [14, Lemma 1.9] that any point in Zsng is contained in an open
ball B in M such that Zgy, N B is contained in a finite union of embedded submanifolds of dimension
dimM — 2. Let now U = {¢ < 0} and x € U as above.

Claim (1) Any loop in M at x is homotopic to a loop which does not meet Zgng and meets Zyeg
transversally in at most finitely many points.

To show (1), letcbe aloopin M atx. ThenI = c*i(Zsmg) is compact. Hence, I can be covered by finitely
many consecutive intervals such that the image of each of these intervals is contained in a ball B as
above. Since the codimension of the corresponding embedded submanifolds as above is two, ¢ can be
deformed consecutively to a loop at x which does not meet Zgyg. This shows the first assertion. The
second follows from standard transversality theory, applied to the smooth hypersurface Zyeg.

Claim (2) For any two homotopic loops in M at x, which do not meet Z,, and meet Zyeg transversally
in at most finitely many points, the (oriented respectively non-oriented) intersection numbers with Z
coincide.

To show (2), let ¢1 and c; be two such homotopic loops. Since they do not meet Zgn, and intersect
Zreg transversally in at most finitely many points, there is an ¢ > 0, which is a regular value of
¢ such that {¢ = ¢} has a component Z. such that the intersections of ¢; with Z and Z, are in
one-to one correspondence to each other, and similarly for c;. Now the intersection numbers of ¢,
and c¢; with Z, are well defined and agree with the intersection numbers with Z.g, by what we
said. Since ¢; and ¢, are homotopic, their intersection numbers with Z, agree, hence also the ones
With Zyeg.

Now (1) and (2) show that intersection numbers with the different Z = Z; respectively Z; ., define
a homomorphism I' to Z* in the oriented case and Z) otherwise. The rest of the proof is as in the
regular case. |

Remark 4.7. Under appropriate assumptions, the conclusion of Theorem D holds with Ar-
unstable in place of A;-unstable. More precisely, if there is a A, (M)-eigenfunction ¢ on M such
that there are components of Z(p) together with loops in M which intersect exactly once,
then the above arguments apply and show A-instability. This may indicate that ip-instability
becomes more likely, the more nodal domains A, (M)-eigenfunctions have.

4.1 Absolute estimate

In the above, we estimated Ny against Ny. Thatis what is behind the definition of the ¢; in the beginning
of the section. An easier approach leads to an estimate of Ny without comparing it with Ny. The point is
as follows: Let (D) be a family of domains in M and, for each i € I, (Dy)j, be the connected components
of p~}(D;). Let A > 0 and ¢; be a smooth function on D; with compact support and Rayleigh quotient < A.
For each i e I'andj € J;, let ¢;; now be the function which equals p*¢; on Dj and vanishes outside of Dj;.
Then the g; are pairwise L2-orthogonal and have Rayleigh quotient < . Hence,

Ny () = D Uil (4.8)

iel

Clearly, Ny (1) > |I], but that does not lead to an inequality as in Theorem 4.2.
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12 | W.Ballmann and S. Mondal

In the following discussion, we use (4.8) only in the case of one domain in M, that is, |I| = 1; cf.
Remark 4.13. Set

o (M) = inf A0(D), (4.9)

where the infimum is taken over all simply connected domains D C M. By monotonicity, Ao(M) < o (D).
Recall also that Ag(M’) = Ao(M).

In general, (4.9) poses the optimization problem of the existence of a simply connected domain D in
M such that o (M) = Ao(D) and of a Dirichlet eigenfunction ¢ on D for A¢(D).

Proposition 4.10. If o (M) < Xess(M), then M’ has at least |p| eigenvalues in [0, o (M)].

The assumption o(M) < Aess(M) is satisfied if M is closed since the essential spectrum of closed
Riemannian manifolds is empty. Recall also that iess (M) = Aess(M) since p is finite.

Proof of Proposition 4.10. For any o (M) < A < kess(M), let D € M be a simply connected domain such
that there is a ¢ € C*(M) with support in D with Rayleigh quotient < A. There are precisely |p| lifts of D
to M, and they are pairwise disjoint. For any such lift C, let ¢c € C2*(M') be the function with support in
C such that gc = ¢ o p on C. Then the ¢cs and their gradients are pairwise L2-orthogonal and have the
same Rayleigh quotient as ¢. |

For ¢ > 1, let o,(M) = infp Ag(D), where the infimum is taken over all domains D ¢ M such that the
fundamental group of D is generated by at most ¢ elements. Notice that o (M) = ao(M).

Proposition 4.11. If the minimal number of generators of I'"\TI'" is k and o¢(M) < Aess(M) for some
¢ <k, then M’ has atleast k — ¢ + 1 eigenvalues in [0, o, (M)].

Proof. For any o,(M) < A < less(M), there is a domain D in M with o,(M) < Ao(D) < A such that the
fundamental group of D is generated by at most ¢ elements. Hence, the preimage of D under p has at
least k—¢+1 components, by Corollary 3.2 and Lemma 3.5. Therefore, M’ has at least k—¢+1 eigenvalues
in [0, 4). [ |

Remark 4.12. For a Riemannian surface S, 01(S) coincides with the analytic systol of S, introduced
in [1]. Recall that S has at most —x(S) eigenvalues in [0, 01(S)], by [2, Theorem 1.5]. Here we get
that the covering surface S’ has at least two eigenvalues in [0, 01 (S)], provided that the minimal
number of generators of I'"\I is at least two.

Remark 4.13. As in Theorem 4.2, we can also consider families of pairwise disjoint domains to
get a more general estimate than the one in Proposition 4.11. Namely, if (D;);; is a finite family
of pairwise disjoint domains in M such that the fundamental group of D; is generated by at
most ¢; elements and such that A = maxig(D;) < Aess(M), then M has atleast > ;(k — ¢ + 1)
eigenvalues in [0, ). The point is that the different lifts of functions ¢; € C°(D;) to the different
components of p~(D;) are pairwise L?-perpendicular.

5 Coverings of Surfaces

Let S be a connected surface. Assume that S is of finite type, that is, S is diffeomorphic to the interior
of a compact surface S with boundary. Equivalently, the Euler characteristic x(S) > —oo. The connected
components of S\ S consist of circles, called holes or circles at infinity.

Suppose that S is endowed with a complete Riemannian metric which has a square-integrable
eigenfunction ¢ at the bottom 2o of its spectrum. Recall that the multiplicity of Ao is one and that
@o does not change sign, hence can be chosen to be positive. If the area |S| < oo, then ¢, is constant
and Ao = 0. Eigenfunctions of S for eigenvalues A > Ao are perpendicular to ¢y and hence change sign. In
particular, they have at least two nodal domains. The structure of the nodal set of such an eigenfunction
¢ was clarified in [10, Theorem 2.5]:
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Theorem 5.1 (Cheng). The nodal set Z(g) of ¢ is a locally finite graph in S. Moreover, z € Z(p) has
valence 2n if and only if ¢ vanishes to order n at z. The opening angles between the edges at z
are equal to =/n. Furthermore, Z(p) is a locally finite union of immersed circles and lines.

We will need the following topological result for the study of nodal domains.

Lemma 5.2. Let S be a connected surface of finite type and U C S an open domain with piecewise
smooth boundary. Assume that the complement U° of U in S contains only finitely many
components which are discs or annuli. Then U has finite type.

Proof. The proof rests on the fact that a surface (orientable or not) has finite type if and only if any
family of simple closed curves, which are not null-homotopic, pairwise disjoint, and pairwise not freely
homotopic, is finite; cf. [27,pp. 259-260]. Assuming that U is not of finite type, there is an infinite family
F of simple closed curves in U, which satisfies these conditions with respect to U.

If cis a member of F and c is null-homotopicin S, then c bounds an embedded disc Din S, ¢ = 9D. Now
89U N D cannot contain components of 8U which are line segments and hence consists of finitely many
simple closed curves, which bound discs in D which belong to U¢. There are only finitely many such discs,
by assumption. Hence, the union U’ of such discs with U is of finite type if and only if U is. Therefore,
we can assume from now on that the complement of U does not contain components which are discs.

Let now ¢y and c¢; be members of F which are freely homotopic in S. Then there is an embedded
annulus A in S such that ¢ Uc; = dA. Now dU N A cannot contain components of dU which are line
segments, nor can it contain closed curves which are homotopic to zero, by assumption. Hence, it
consists of two boundary curves ¢, and ¢;, such that the parts of A between ¢y and &, respectively,
¢; and ¢ belong to U and the rest, A, to U. Now A is an annulus. Hence, there are only finitely many
such, by assumption. Since S is of finite type, we arrive at a contradiction to the assumption that F is
infinite. ]

Lemma 5.3. A A-eigenfunction ¢ on S with A < Aess(S) has only finitely many nodal domains.

Proof. Let N be the family of different nodal domains of ¢. For any U € N, let ¢y be the function which
coincides with ¢ on U and vanishes otherwise. Then the ¢y are pairwise L2-perpendicular, are in H(S),
and have Rayleigh quotient < A. Since A < ess(S), the variational characterization of eigenvalues implies
that A is finite. |

Corollary 5.4. For A < Aess(S), the nodal domains of A-eigenfunctions on S are geometrically finite.

Proof. By Theorem 5.1, any nodal domains U of ¢ is a domain in S with piecewise smooth boundary. (If
aU has a self-intersection at a critical point x of ¢, push U a bit inside, away from x, to get 93U embedded.)
Now Lemma 5.2 and Lemma 5.3 imply the assertion. |

5.1 On the topology of nodal domains
Assume from now on that x(S) < 0 and let ¢ be an eigenfunction of S perpendicular to go.

Lemma 5.5. If none of the nodal domains of ¢ is a disc, then each nodal domain U of ¢ is a domain
of finite type; in particular x(U) > —oo. Moreover x(U) < 0 unless U is a disc or an annulus or
a Mébius band.

Proof. Let U be a nodal domain of ¢. If a component D of U¢ is a closed disc, then a component
of the open set D \ Z(p) is a disc, a contradiction to the assumption. Now Lemma 5.2 implies the
assertion. ]

Lemma 5.6. If ¢ is an eigenfunction of S perpendicular to ¢, then ¢ has a nodal domain U such
that x(S)/2 < x(U) < 1. More generally, if ¢ > 2 denotes the number of nodal domains of ¢, then
¢ has a nodal domain U such that

xS/t = xU) < 1.
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14 | W.Ballmann and S. Mondal

Proof. Since x(S) < 0, the assertion holds if a nodal domain U is a disc. Assume now that no nodal
domain of ¢ is a disc. Then all nodal domains of ¢ are domains of finite type, in particular with finite
Euler characteristic. By [10, Theorem 2.5], the nodal set Z of ¢ is a graph with vertices of (even) order at
least two. Therefore, x(Z) < 0 and hence

> xU) = x@)+ > x(U) = x(S),

where the sum is over all nodal domains U of ¢. Hence, there is at least one nodal domain U of ¢ such
that x(S)/¢ < x(U) < 1. |

Let I be the fundamental group of S. If S is closed, S = S, the minimal number of generators of I' is
v=v() =vS) =2-x(©S). (5.7)
If Sis non-compact, then I is a free group and the minimal number of generators of T" is

v=1v() =v(S)=1-x(S). (5.8)

Lemma 5.9. Let ¢ be an eigenfunction of S with ¢ > 2 nodal domains.

(1) If € = v(S), at least one of the nodal domains is a disc or an annulus or a Mébius band.
(2) If £ < v(S), then ¢ has a nodal domain with minimal number of generators of its fundamental
group at most 1 — x(S)/¢.

Proof. If all nodal domains of ¢ have negative Euler characteristic, then ¢ < —x(S). The first claim
now follows from (5.7) and (5.8). As for the second, we may assume that all nodal domains of ¢ have
negative Euler characteristic. Hence, by Lemma 5.6, ¢ has a nodal domain U with —x(S)/¢ > —x (U). But
then v(U) =1 — x(U) <1 — x(S)/¢ by (5.8). [ |

Corollary 5.10. There is a nodal domain U of ¢ such that the fundamental group of U admits a
system with at most v/2 generators if S is closed and (v + 1)/2 generators otherwise, where
v =1v(S).

Consider now a finite Riemannian covering p: S — S of complete and connected Riemannian
surfaces of finite type. Write S = T'\S and S’ = I"\S, where the fundamental groups I' 2 I of
S and S are viewed as groups of covering transformations of the universal covering surface S of
Sands.

Proposition 5.11. If p is A;-stable, where 11(S) < %ess(S), then the minimal number of generators
of I"\T" is at most v/2 if Sis closed and (v + 1)/2 otherwise, where v = v(S).

Proof. Let ¢ be a A1(S)-eigenfunction. By Corollary 5.10, ¢ has a nodal domain U such that the
fundamental group of U admits a system with at most v/2 respectively (v + 1)/2 generators. If the
minimal number of generators for I"\T is strictly bigger than v/2 respectively (v + 1)/2, then the right
action of m1(U) on I'"\I" cannot be transitive. By Corollary 3.2 together with Theorem 4.2, we get a
contradiction to A;-stability. |

Remark 5.12. Letn; be a sequence of natural numbers as in Theorem 3.11. As pointed out by one of
the referees, it is natural to suspect, from Theorem 3.11, that it is unlikely that, asymptotically
almost surely, n;-sheeted normal coverings of S, with nilpotent covering transformation group,
are Aq-stable. With Pyber’s conjecture [25,p. 218] we may further remove the “nilpotent”
assumption.
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We would like to emphasise that Theorem 3.11 is not sufficient to conclude the above. The
reason is clear: we need an estimate on the number of groups that arise as a quotient of the
fundamental group of S that have minimal number of generators strictly more than v/2 if S
is closed and strictly more than (v + 1)/2 otherwise. Because we are interested in groups that
arise as a quotient of the fundamental group of S, we know for a fact that the minimal number
of generators of any such group is at most v.

5.2 Intersection numbers and coverings
Let U be a nodal domain of an eigenfunction ¢ of S perpendicular to ¢o. Then the complement U of U
is a surface of finite type, and we let V be a component of U¢. Then V has k > 1 boundary circles in S,
that we call doors dy, ..., d, through which it is connected to U and ¢ > 0 boundary circles in S\ S, that
we call exits eq, ..., e, at infinity. We draw the first kind in green, meaning that we may enter U through
them, and the latter kind in red, indicating that we exit S through them eventually.

We now view V as a regular plane polyhedron P in the orientable case, respectively Q in the non-
orientable case, with the colored holes in its interior and with the standard identifications of its edges,
indicated by the labellings

Po:aa™t, where g =0,

Py: aibia; byt agbgay b, ", whereg > 1,
Qg: a1a; - - - agag, where g > 1.

In terms of (orientable respectively non-orientable) genus g and numbers k and ¢ of holes, the negative
of the Euler characteristic of V is

—x(V)y=29g+k+¢—-2 and —x(V)=g+k+I[1-2 (5.13)

in the orientable (P;) and non-orientable (Q,) case, respectively.
If ¢ > 2, we draw disjoint segments hy,...,h, from e; to the other red circles e,,...,e,. We get a

homomorphism
I=1Iy: Hi(S) > Z" respectively [=1Iy: Hi(S) > Z5, (5.14)

the intersection homomorphism, where

uw=nwnVV)=29+k—1+max{¢—1,0} forPy,
(5.15)
w=upuV)=g+k—-1+max{¢—-1,0 forQy,

by taking,

(1) in the oriented case, oriented intersection numbers with the circles in V coming from the edges
of P labeled as, by, ..., ag, by, the boundary circles d, ..., di, and the segments f5 ..., f;;

(2) in the non-orientable case, intersection numbers modulo two with the circles in V coming from
the edges of Q labeled ay, ..., a4, the boundary circles d ..., di, and the segments f5..., f;.

From (5.13) and (5.15), we conclude

Lemma 5.16. Irrespective of whether V is orientable or not, we have

1 ife=0
wV)y=—xV)+ ) > —x (V).
0 ife>1

Remark 5.17. We have u = u(V) > 1 unless (g, k, £) equals (0, 1,0) or (0,1, 1), and then V is a disc
with one green or an annulus with one green and one red boundary circle, respectively. There
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are also only a few cases with u = 1. Using the above (g, k,]) notation, if V is orientable, then it
is one of the following:

(0,2, 0) an annulus, boundary circles green; x (V) = 0;
(0,2, 1) a pair of pants, two boundary circles green, one red; and
(0, 1, 2) a pair of pants, one boundary circle green, two red.

If Vis non-orientable, it is one of the following:
(1,1, 0) a Mébius band, boundary circle green; x (V) = 0.

(1,1, 1) a projective plane with two holes, boundary circles green and red.

Lemma 5.18. Under the Hurewicz homomorphism (see Example 3.4) from I to H;(S) respectively
H4(S;Z,), I'y is contained in the kernel kerIy.

Proof. By definition, homotopy classes of loops in I'y have representatives which are contained in U and
hence have empty intersection with curves in V C U°. |

Theorem 5.19. Let p: S — S be a finite Riemannian covering of complete and connected
Riemannian surfaces and ¢ be a r-eigenfunction of M, where Ao(S) < A < kess(S). Let k be
the number of nodal domains U of ¢ such that, for some component V of U, kerIy C I, where
I is the image of 71(S', X’) in 71 (S, X) under py for some x’ € p~1(x) (see Section 3). Then,

Ns (A=) = Ns(A—) + k(|p| = D).

Proof. By Lemma 5.18 and since kerIy is a normal subgroup of I', Nr(I'y) is contained in kerIy, for any
nodal domain U and any component V of its complement as in the assertion. Hence, p~'(U) has [p|
components for any such U, by Lemma 3.3. Now Theorem 4.2 implies the assertion. |

Proof of Theorem E. By Lemma 5.6, ¢ has a nodal domain U such that x(U) > x(S)/v. Then, by
Theorem 5.1,

x (U =x©S) —xU) < (v=1x(©S)/v <O.

Therefore, the components V; of U with x(V;) < O satisfy

> x (V) = = Dx(©S)/v. (5.20)
J

For each i, we have
w(Vy) = —x (Vy,
by Lemma 5.16. Therefore, if 1 equals the sum of the u(V)), then the sum
[=@glv;: & Hi(S) — & imIV]
is a homomorphism to Z*, respectively, Z; as asserted, except that we compose it with the corresponding

Hurewicz homomorphism to have it defined on I'. |

5.3 Estimating the number of unstable coverings

Fix a base point x € S, and consider finite Riemannian coverings p: (S, x') — (S, x) of pointed complete
and connected Riemannian surfaces. Note that the isomorphism classes of such pointed coverings with
n sheets correspond one-to-one with index n subgroups of I' = 71(S, x). Denote by a(n) the number of
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isomorphism classes of all such n-sheeted coverings and by u(n) the number of isomorphism classes of
A1-unstable ones among them.

Corollary 5.21. If S is of finite type with x(S) < 0 and A1(S) < Xess(S), then

am)
2n—1’

u2n) >

Proof. We want to estimate a(n) against u(2n). Now for any n-sheeted pointed coveringp: (S, %) — (S, x)
as above, Theorem E applies to S’ in place of S and shows, that there is a A1 -unstable twofold Riemannian
covering

P (S, X" — (S, x%).

Then the composition q = pop’ is 2n-sheeted, and q is A;-unstable, whether p is A;-unstable or not. Now
the number of isomorphism classes of such p versus the given q is estimated by an upper bound on the
number of index n subgroups I'" of I' containing the given I'” of index 2n. Since the index of I'" in I'" is
two, I'" is generated by I'” together with an element g € I' \ I'”. Furthermore, since the index of I in T
is 2n, there are at most 2n — 1 such g modulo I'” (such that the subgroup I'" generated by g and I'” has
indexninT). |

Remark 5.22. Let ' = 71 (S, x) and S be the universal covering surface of S, endowed with the lifted
metric. Let p be a homomorphism from I' to the symmetric group S,. Associated to p, Magee
et al. consider the orbit space S’ of the product action of I'on S x {1,...,n}, see [22,paragraph
following (1.1)]. The natural projection p: S’ — Sis an n-sheeted covering, and the construction
also yields a labeling of p~1(x) by {1, ...,n}, a labeled covering. Notice that S’ is connected if and
only if the action of p(I') on {1,...,n} is transitive.

Clearly, isomorphism classes of labeled coverings of (S, x) are characterized by the representations
p. Disregarding the labeling, but fixing a base point x' € p~1(x) corresponds to dividing the
labeling by S,—1. Thus the number of all isomorphism classes of n-sheeted connected and
labeled coverings equals (n — 1)! a(n) with a(n) as above. Since ;-stability is independent of
the choice of base points and labelings, we conclude that the analog of the inequality of
Corollary 5.21 holds for isomorphism classes of connected labeled coverings as well.

Magee et al. point out that, as n — oo, the number of non-connected n-sheeted labeled coverings
vanishes asymptotically in proportion to the connected ones.

6 High Coverings

In this section, we let f: M — M be an infinite normal covering of complete and connected Riemannian
manifolds. The main example is the universal covering whenever the fundamental group of M is infinite.
Another example is the homology covering, m; W) = [r1 (M), 71 (M)], whenever the first Betti number of
M is positive; that is, the homology group Hi (M) = 71 (M)/[71(M), 71 (M)] of M has positive rank.

Let & € M and x = p(R). We identify the group I of covering transformations of p with the quotient of
71(M, x) by the normal subgroup ps (1 (M, %)).

We are interested in the spectrum of finite intermediate coverings, that is, finite Riemannian coverings
p: M’ — M such that p = po q, where q: M — M’ is a Riemannian covering (of complete and connected
Riemannian manifolds).

Let p: M' — M be a finite intermediate covering as above. For r > 0, we denote by Ny (r) the maximal
possible number of disjoint geodesic balls of radius rin M’ with centers in p~ (x) and by Nr(r) the number
of classes in I' (identified as above) which contain loops in M at x of length < 2r. Observe that Nr(r) > 1
for any r with equality for r < the injectivity radius of M.

Lemma 6.1. In the above setup, we have |p| < N,(NNr ().
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Proof. If two geodesic balls of radius r with centers in p~*(x) intersect, then there is a geodesic of length
< 2r between their centers. The image of such a geodesic in M is a geodesic loop at x of length < 2r.
Conversely, any geodesic loop at x of length < 2r lifts to a geodesic of length < 2r joining points in p~(x),
implying that the geodesic balls of radius r about the corresponding endpoints intersect. Moreover, if
two such loops belong to the same class in T, then their lifts to M’ join the same pairs of points in p~(x)
(even their lifts to M do).

Let x;, 1 <1 < Ny(r), be a maximal family of points in p~1(x) such that the geodesic balls B; of radius r
around them are disjoint. Let y € p~1(x) be such thaty # x; for any 1 < i < N,(r). Then, the geodesic ball
of radius r with center at y will intersect one of the B;. By what we said above, each B; intersects at most
Nr(r) of these balls. Hence, the total number of balls (which is the number of points in p~%(x), i.e., |p|) is
at most Np(nNr(1).

Theorem 6.2. Given Ao(M) < A < Aess(M) and ¢ e N, there exists n € N such that any finite
intermediate covering p: M’ — M with |p| > n satisfies A, (M) < A.

Proof. There is a smooth function ¢ on M with support contained in some geodesic ball B(&, 1) C M of
radius r and with Rayleigh quotient Ray ¢ < . Let x = p(X) and consider a maximal number of disjoint
geodesic balls of radius r in M’ with centers x1, ..., % in p~1(x). Let %1, ..., & be lifts of them to M. Since D
is normal, there exist g; € I' such that &; = g;%, forall 1 < i < I. The pushdowns y; of the ¢; = g og; to M in
the sense of [4, Section 4] have support in the geodesic balls of radius r about the x;, and their Rayleigh
quotients are < A. Since these geodesic balls are disjoint, the y; and their gradients are pairwise L?-
orthogonal. Hence, Aj(Mg) < 4, by the variational characterization of eigenvalues. Now | > n = [p|/Nr(r)
by Lemma 6.1, and hence the assertion follows. |

If T is amenable, then iAoM) = ro(M); see [7, Theorem 1] or [4, Theorem 1.2]. Hence, Theorem 6.2 has
the following consequence (extending Corollary H).

Corollary 6.3. Suppose that I' is amenable and that Ag(M) < Aess(M). Then given any ¢ > 0 and
¢ € N, there exists n € N such that any finite intermediate covering p: M' — M with |p| > n
satisfies A, (M) < Ao(M) + &.

~

If p is the homology covering, then I' = H;(M) is Abelian, and hence Corollary 6.3 applies to
intermediate coverings of p if the first Betti number of M is positive.
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Appendix A. A Remark About Spectral Theory

Let A be an unbounded operator with dense domain D in a Hilbert space H. Consider the polar
decomposition A = UJA| of A and the associated orthogonal decomposition

with Ux = +x for x € Hy and Hp = ker A = kerU as in [17, Section VI.7]. Since A and |A| commute with
U, the decomposition of H is invariant under A and |A|. In particular,

D=DPnNH.)®Hy® (DNH,)
and, similarly,

DQ = (DQ NH_)®Ho® (DQ NHy)
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for the domain Dq 2 D of the quadratic form Q = Q(x,y) = (Ax,y) in H associated to A. Since ker A =
ker |A| = Hp, we have Q < Oon Do NH_and Q > 0 on Do NH,.

The following is a refined version of the usual variational characterization of eigenvalues of A in the

case where the spectrum of A is discrete.

Lemma A.2. Let X € Dq and Y € H be subspaces such that Q <0Oon X, X L Y, and PY € Y, where
P denotes the orthogonal projection of H onto H_. Then,

XNkerP=XNHy and PX LY.
In particular, if dim X < oo, then

dimH_ 6Y) > dimPX = dim X — dim(X N Hp).

Proof. Write x € X as x = x_ + Xo + X4 according to (A.1), where Px = x_. Now we have

Qx,x) = Qx-,x-) + Qx4,x4) <0

and hence

Q(x4,%x4) < —Qx-,x2).

Since Q > 0 on Hy, x_ = 0 implies that x; = 0 so that then x = xo € Hp. This shows the first assertion.
As for the second, we have

(PX,Y) =(X,PY) =0

since P is orthogonal, PY C Y,and X L Y. |
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