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16 Abstract

17 Colloidal gas aphrons (CGA) are microbubbles created by the intense stirring of a 
18 surfactant solution that can be used as a separation method for biomolecules. The main 
19 objective of this work was to investigate for the first time the use of whey protein as a 
20 natural surfactant for CGA generation. Furthermore, their application for separating 
21 phenolic compounds from hydroalcoholic extracts obtained from fruit based by-products 
22 (grape marc and red goji berry). Additionally, to investigate if this surfactant-rich fraction 
23 could confer an advantage in stabilising anthocyanins during storage. First, a 
24 hydroalcoholic extract was obtained from each feedstock; then whey protein isolate 
25 (WPI) generated CGA were applied and compared with Tween 20 generated CGA. 
26 Recovery performance was assessed based on total phenolics, flavonoids, and 
27 antioxidant capacity. CGA generated with a 1.5% (WPI) displayed comparable 
28 characteristics (gas hold-up and stability) to those generated with Tween 20 (10 mM). 
29 The CGA separation process with WPI led to a recovery of up to 97% of phenolic 
30 compounds but a loss of antioxidant capacity under the tested conditions. Hydrophobic 
31 interactions as well as hydrogen bonding between phenolics and WPI could be 
32 responsible for the successful separation that could also hinder the radical scavenging 
33 activity. In contrast, these interactions could be responsible for the stabilising effect on 
34 anthocyanins observed during storage. Overall, CGA generated with WPI have resulted in 
35 an integrated separation method that by combining it with hydroalcoholic extraction 
36 leads to the effective separation of phenolics and their pre-formulation in a whey protein 
37 rich solution with stabilisation effect. 
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43 1. Introduction

44 Phenolic compounds, the biggest family of phytochemicals with more than 8000 
45 structures, are of particular interest since they have demonstrated to aid in cognitive and 
46 metabolic disorders such as diabetes (Fallah et al., 2020; Russo et al., 2019; Yang et al., 
47 2017), as well as to have anti-inflammatory and antimicrobial properties (Koh et al., 2023; 
48 Sonu et al., 2018). The number of research on the extraction of phenolic compounds from 
49 agri-food by-products has been increasing in the past decades since their valorisation is 
50 a way to reduce food waste with the added advantage of being a low-cost source 
51 (Moreno-González & Ottens, 2021; Muhlack et al., 2018; Sagar et al., 2018). In this 
52 context, by-products such as grape marc, obtained from the wine-making industry, have 
53 a high content of phenolics, mainly flavonoids such as anthocyanins (Cortés et al., 2020; 
54 Hegedüs et al., 2022; Pertuzatti et al., 2020; Sinrod et al., 2021; Spigno et al., 2007). Red 
55 goji berry pomace, on the other hand, is a less studied by-product composed mostly of 
56 skins and pulp and is rich in carotenoids and phenolics, like flavonoids and phenolic acids 
57 (Kosińska-Cagnazzo et al., 2017; Kulczyński & Gramza-Michałowska, 2016; Skenderidis et 
58 al., 2017).

59

60 Typically, these added value compounds are obtained by hydroalcoholic extraction. 
61 Further processing either involves a second extraction to maximise recovery and/or 
62 solvent removal. Although ethanol is considered a green solvent and classified as GRAS, 
63 i.e., suitable for food applications, its high flammability can limit its application at an 
64 industrial scale. Colloidal gas aphrons (CGA) are surfactant-stabilized microbubbles 
65 generated by the intense stirring of a surfactant solution at high speeds (5000-1000 rpm) 
66 (Jarudilokkul et al., 2004; Lye & Stuckey, 1998; Prasad et al., 2015). They present 
67 properties such as adherence of molecules to the surfactant bubble surface, which can 
68 be modulated according to the type of surfactant (ionic or non-ionic) used and higher 
69 stability than conventional foams (Jauregi et al., 2000). These characteristics and their 
70 ease of pumping from one point to another make them particularly interesting as a 
71 separation method which can be easily scalable using a flotation column in batch or 
72 counter-current mode (Dermiki et al., 2021). In our previous research, we demonstrated 
73 that phenolic compounds can be extracted from hydroalcoholic extracts of grape marc 
74 with CGA at high yields  (Carullo et al., 2022; MohdMaidin et al., 2018; Spigno et al., 2015).  
75 In addition, using a food grade surfactant such as Tween 20 avoids the need for a 
76 subsequent step for its removal and, it could aid the formulation of the extracted 
77 compounds (MohMaidin 2019). As concluded by  Jauregi & Dermiki, (2013), if CGA are 
78 applied following an integrated approach, i.e. if removal of surfactant is not required, this 
79 separation could be more advantageous than others such as, supercritical carbon dioxide 
80 extraction and solvent extraction.

81

82 Phenolic compounds, present a myriad of challenges when formulating them. Their 
83 physicochemical properties and their high susceptibility to structural changes due to 
84 solubility, temperature, pH, storage conditions, and oxidation can lead to a reduction in 
85 their bioactivity (Brglez Mojzer et al., 2016; Cao et al., 2021; Manach et al., 2004). Great 



86 efforts have been made towards their stabilisation and protection, commonly through 
87 methods such as encapsulation and covalent and non-covalent complexation (Guo & 
88 Jauregi, 2018; Kaderides et al., 2020; McClements, 2018; Motilva et al., 2016; Wen et al., 
89 2017). In recent work we have demonstrated that the non-ionic surfactant used for the 
90 generation of CGA (Tween 20) had a stabilisation effect on the anthocyanins as compared 
91 to the ethanolic raw extract, (MohdMaidin et al., 2019). Tween 20 is a synthetic but food 
92 grade surfactant. Yet, the use of these synthetic surfactants possesses limitations due to 
93 the quantities that can be used safely in foods and the lack of nutritional value. 

94

95 Natural molecules with surfactant properties, such as saponins, have been explored for 
96 CGA separation. However, they possess limitations, especially in food applications, due 
97 to astringency and possible side effects depending on the concentration used (Sharma et 
98 al., 2023). On the other hand, whey protein, a by-product generated from cheese making 
99 and widely used as a food ingredient, presents surface activity properties such as those 

100 of low molecular weight surfactants, i.e. the ability to create stable foams (Cao et al., 
101 2018; Luck et al., 2002; Nastaj & Sołowiej, 2020). Moreover, whey proteins have been 
102 extensively researched due to their capacity to interact with phenolic compounds and 
103 the stabilisation effect this interaction confers (Gong et al., 2021; Guo & Jauregi, 2018; Li 
104 et al., 2022; Li & Girard, 2023; Tazeddinova et al., 2022).

105

106 The main objective of this work was to investigate for the first time the use of whey 
107 protein as a natural surfactant for CGA generation and their further application for the 
108 separation of phenolic compounds from hydroalcoholic extracts obtained from different 
109 fruit based by-products with different phenolics composition, grape marc and red goji. 
110 Furthermore, to investigate if this surfactant-rich fraction could confer an additional 
111 advantage in stabilising anthocyanins during storage. 

112

113 2. Materials and Methods

114 2.1 Materials 

115 Casa Emma (Firenze, Italy) winery kindly supplied a sample of fresh frozen and vacuum-
116 packaged Sangiovese variety grape marc (skins, seeds, and stems) from the September 
117 2019 harvest. The grape marc was ground to a particle size of <2mm. Dried red goji berry 
118 skins (dried at 40-45ᵒC until moisture content below 5% was achieved) were supplied 
119 from EVRA (Potenza, Italy). Whey protein isolate under the UW XP label was supplied by 
120 Volac Ltd (Hertfordshire, UK) with the following specifications: 94% protein, 0.3% fat and 
121 0.5% lactose. TWEEN® 20 was purchased from Sigma-Aldrich (UK). 

122 2.2 Reagents

123 Folin-Ciocalteu (F9252), and sodium carbonate BioXtra, ≥99.0% (S7795), aluminum 
124 chloride anhydrous powder, (99.999%), sodium hydroxide, sodium nitrate, sodium 



125 acetate, potassium chloride, ethanol (≥99.8%), (+)-catechin hydrate (≥98%), gallic acid 
126 (≥98%), formic acid, 2,2′-azino-bis (3-ethylbenzothiazoline- 6-sulfonic acid) diammonium 
127 salt (ABTS) (≥98%), potassium persulfate (≥99%), ( ± )-6-hydroxy-2,5,7,8-
128 tetramethylchromane-2-carboxylic acid (Trolox) (≥97%), TPTZ (2, 4, 6-tris(2-pyridyl)-s-
129 triazine) and ferric chloride hexahydrate were purchased from Sigma- Aldrich 
130 (Massachusetts, US). HPLC grade water, and acetonitrile were purchased from Sigma 
131 Aldrich (Massachusetts, US), and Thermo Fisher (Massachusetts, US). Delphinidin-3-o-
132 glucoside (>99%); cyanidin-3-o-glucoside (>98%); petunidin-3-o-glucoside (> 98%) and 
133 malvidin-3-o-glucoside (>99%) were purchased from Extra synthese (Paris, France).

134

135 2.3 CGA production and characterisation

136 First, an aqueous solution of whey protein isolate with a final protein concentration of 15 
137 mg/mL (1.5% w/v) was prepared in a 500 mL volumetric flask and left overnight at room 
138 temperature for complete hydration. This concentration was chosen based on previous 
139 experiments where the minimum protein concentration to obtain stable CGA was 
140 determined (data not published). In addition, an aqueous Tween 20 [10mM] solution was 
141 prepared to compare both CGA characteristics. All CGA were generated by stirring 400 
142 mL of each solution at 8000 rpm for 5 min at room temperature using a SLT 2 high-speed 
143 impeller (Silverson Machines, UK). The gas hold-up ε, the volume of air incorporated into 
144 the dispersion, was determined as follows:

145 Equation (1)   𝜀 =  
𝑉𝐶𝐺𝐴 𝑉0

𝑉𝐺𝐴  𝑥 100 

146

147 VCGA is the volume of aphrons, and Vo  is the volume of liquid used in the generation of 
148 CGA, expressed as percentage.

149 The stability of the foams was determined based on the time taken for half of the liquid 
150 volume (Vo/2) to drain (Ƭ v/2). For this, measurement of the volume drained from CGA 
151 was taken every minute for a 15 min period. The time was calculated from the equation 
152 derived from the graphical representation of the drained volume against time; in the 
153 equation, the drained volume was fixed to Vo/2=200mL to obtain the time it takes to drain 
154 half of the initial volume. Each CGA were done in triplicate.

155 2.4 Extraction of phenolic compounds from grape marc and goji berry skins

156 The grape marc solvent extraction was carried out following the methodology developed 
157 previously by MohdMaidin et al. (2018). The extraction was performed at 8:1 solvent to 
158 sample ratio (v/w) using a hydroalcoholic solution of 60% ethanol as solvent, under 
159 magnetic stirring for two hours at 60°C. After the extraction, the solids were separated 
160 through vacuum filtration using #1 Whatman paper. For the red goji berry skins, the 
161 extraction was carried out using a hydroalcoholic solution of 60% ethanol at 15:1 solvent 
162 to solute ratio (v/w), under magnetic stirring for 40 minutes at 60°C (conditions 



163 established by the supplier). After this, the solids were separated through vacuum 
164 filtration using #1 Whatman paper. Grape marc extract (GME) and red goji skins extract 
165 (RGSE) were stored at -18 °C for further analysis and CGA processing. The extractions 
166 were carried out in duplicate and analysed in triplicate.

167 2.5 Separation of phenolic compounds with CGA 

168 CGA made of WPI, labelled CGA(WPI) and CGA made of Tween 20, labelled CGA(Tween 
169 20), were used to separate phenolic compounds from GME and RGSE. The separation 
170 was carried out based on the optimum conditions found in previous works, i.e., extract 
171 to CGA volumetric ratio (Vextract:VCGA) of 1:16, contact time of 5 min, and drainage time of 
172 5 min (MohdMaidin et al., 2018, 2019; Spigno et al., 2015). For the separation, 65 mL of 
173 extract were added to a flotation gas column (i.d: 5cm, height: 50 cm), and 1040 mL of 
174 CGA(WPI) or CGA(Tween 20) were pumped with the help of a peristaltic pump (Watson 
175 Marlow, UK) from the CGA generating container into the flotation glass column with the 
176 extract. An adjusted flow of 142 mL CGA/ min was set to allow a contact time of 5 min. 
177 After this, a period of 5 min drainage time was allowed for the separation of phases: 
178 aphron phase (AP) at the top and liquid phase (LP) at the bottom (drained liquid). CGA 
179 were made in duplicate, and each duplicate was analysed in triplicate. The percentage 
180 recovery of total phenols, total flavonoids, and total anthocyanins in the aphron phase 
181 (AP) was calculated with the formula:
182

183                  Equation (2)              Recovery (%) = 
Μ 𝑓𝑒𝑒𝑑―Μ𝑙𝑖𝑞𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒

Μ𝑓𝑒𝑒𝑑
× 100

184 Where Mfeed is the initial mass of phenolic compounds in the GME or RSGE, and Mliquid 
185 phase is the mass of phenolic compounds determined in the liquid phase. The 
186 determination of phenolics in the aphron phase led to an overestimation due to 
187 interference by the surfactant and this is why it was determined in the liquid phase.

188 2.6 Degradation of anthocyanins over time 

189 To determine the stability of anthocyanins during storage,  accelerated storage 
190 conditions were tested. The method was selected based on previous work done in the 
191 research group on the storage time effect on anthocyanins in Roselle beverages 
192 (Omoarukhe et al., 2023). Aliquots of GME, before and after CGA separation with both 
193 surfactants, were stored under accelerated conditions at 40°C in a controlled 
194 temperature cabinet (SANYO, GALLENKAMP) and regularly monitored using a 
195 thermometer for 30 days. The changes were screened at day 0, 4, 8, 10, 15, 20, 25, and 
196 30. The concentration of Tween 20 in CGA fraction was estimated from the volume of 
197 CGA and their corresponding liquid fractions. For WPI, the protein concentration in CGA 
198 was calculated based on the determination of protein content in the liquid fraction. The 
199 protein content of CGA(WPI) was 13.8 mg/mL, and for CGA(Tween 20), the surfactant 
200 concentration was 7.68 mM.

201 The changes were determined by calculating the degradation kinetics of the four main 
202 anthocyanins in GME. To corroborate the first order kinetic behaviour, the natural 
203 logarithms of each anthocyanin content were plotted against time and tested if it 
204 followed a linear relationship as described by the equation below: 



205 Equation (3)                              ―𝑙𝑛 𝐴𝑡

𝐴0
=  𝑘 ∗ 𝑡

206 Where A0 is the initial anthocyanin content, At is the anthocyanin content at time t, t is 
207 the storage time, and k is the rate constant. The degradation rate constant (k) was 
208 determined from the straight-line slope obtained when plotting Ln (At/A0) vs t. From the 
209 equation above, the time taken for the anthocyanin content to halve, the half-life (t1/2), 
210 can be derived as: 

211 Equation (4)                              𝑡1
2 =  𝐿𝑛(2)

𝑘

212

213 2.7 Identification of anthocyanins by HPLC

214 The anthocyanin content through the stability analysis was determined using an Agilent 
215 HPLC 1100 series equipped with a degasser, a quaternary pump, and a photodiode array 
216 detector model (Agilent, Waldbronn, Germany) with Chemstation software. The column 
217 used was a C18 HiChrom (150mm×4.6mm i.d; 5μm particle size and 100Å pore size; part 
218 no.EXL-121-1546U) operated at 25 °C. The method was as follows: the mobile phase 
219 consisted of 2% formic acid (v/v) and 5% acetonitrile (v/v) in water (mobile phase A) and 
220 2% formic acid (v/v) in acetonitrile (mobile phase B) using the following gradient: 5–15% 
221 B (15 min), 15–30% B (15 min), 30–50% B (10 min), 50–95% B (5 min) and 95–5% B (5 
222 min), at a flow rate of 1 mL min-1. The total run was 50 min, and a pre-time of 10 min was 
223 allowed for re-equilibration. The injection volume was 20 μL for pure standards and 
224 samples. The anthocyanins were detected at 520 nm and identified based on the 
225 retention times and by comparing the spectra with that of the following external 
226 standards: delphinidin-3-o-glucoside; cyanidin-3-o-glucoside; petunidin-3-o-glucoside, 
227 and malvidin-3-o-glucoside (Appendix A.1). 

228 2.8 Phenolic compounds analytical determinations

229 Total Phenol Content (TPC)

230 The total phenol content was determined by the Folin-Ciocalteu method (Singleton & 
231 Rossi, 1965). For the assay, 75 μL de Folin-Ciocalteu reagent [1:10] diluted in water v/v, 
232 were added in a 96-well microplate, with 15 μL of the sample and 60 μL of 7.5% Na2CO3. 
233 For samples containing whey protein or Tween 20, 1mL of a 0.01% SDS solution was 
234 added to the stock of Na2CO3 to avoid precipitation. The samples were incubated in the 
235 dark for 30 minutes after this time the microplate was read at 765 nm (FLUOstar Omega, 
236 BMG Labtech, Offenburg, Germany); each sample was done in triplicate. The results were 
237 quantified from a gallic acid calibration curve ranging from 0.05 to 0.5 mg/ml. Results are 
238 expressed as milligrams of gallic acid per 100 grams of dry weight (mg GAE/ 100 g dw) or 
239 percentage of gallic acid equivalents (% GAE), adapted from equation 2.



240 Total Monomeric Anthocyanin Content (TMAC)

241 Total monomeric anthocyanin levels were measured by the pH differential method (Lee 
242 et al., 2005). For this, each sample was combined in a 1:20 ratio (v:v) with potassium 
243 chloride or sodium acetate buffers (pH 1.0 and 4.5, respectively) in separate wells of a 
244 96-well microplate. After an equilibration period (15 min), the raw absorbance of each 
245 solution was measured at 520 and 700 nm in a microplate reader (FLUOstar Omega, BMG 
246 Labtech). The values were calculated using the following formula: 

247

248 Equation (5)              Monomeric Anthocyanins =
𝐴×𝑀𝑊×𝐷𝐹×1000

𝜀×1

249

250 Where A is the difference in absorbance of (A520nm – A700nm)pH 1.0 – (A520nm – 
251 A700nm)pH 4.5; MW is the molecular weight of the main anthocyanin 493.43 g/mol for 
252 malvidin 3 glucoside (M3G); DF is the dilution factor; 1000 is the factor for conversion 
253 from g to mg; Ꜫ is the molar extinction coefficient, in L x mol–1 x cm–1 for M3G = 28 000; 
254 1 is pathlength in cm. The results are expressed as milligrams of malvidin 3-glucoside 
255 equivalents or percentage of malvidin 3-glucoside equivalents (% M3GE), adapted from 
256 equation 2.

257

258 Total Flavonoid Content (TFC)

259 The analysis was carried out using the aluminium chloride methodology (Zhishen et al., 
260 1999). For the analysis, 100 μL of each sample were mixed with 430 μL of the A solution 
261 (1.8 mL of 5% sodium nitrite with 24 mL of distilled water) in an Eppendorf and incubated 
262 for 5 min. Afterwards,  30 μL of 10% aluminium chloride were added and let it rest for 1 
263 min. Finally, 440μL of solution B (12 mL of sodium hydroxide 1M with 14.4 mL of distilled 
264 water) were added. From this reaction, 150 μL were transferred to a 96-well microplate 
265 in triplicate. The samples were read at 496 nm in a microplate reader (FLUOstar Omega, 
266 BMG Labtech). The absorbance was compared with a catechin standard curve ranging 
267 from 0.1 to 1 mg/ml. A new calibration curve was prepared for every experiment. Results 
268 are expressed as milligrams of catechin equivalents per 100 grams of dry weight (mg CE/ 
269 100 g dw) or the percentage of catechin equivalents (% CE) adapted from the equation 
270 2.

271  2.9 Antioxidant Capacity (AOC)

272 ABTS -2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

273 The total antioxidant activity of all samples was measured by the ABTS assay at 734 nm, 

274 which was modified from Re et al. (1999). Briefly, the ABTS·+ stock solution was prepared 
275 by mixing 5 mL of 7mM ABTS solution (50 mL volume, stored in an amber flask and kept 
276 under refrigeration at 0–4 °C up to one month) and 88 μL of 140mM potassium persulfate 



277 solution (10 mL volume, stored in an amber flask and dark place at room temperature for 
278 up to one month). Then, the mixture was kept in the dark at room temperature for at 
279 least 16 hours before use. 

280 For the assay, the working solution of the ABTS·+ was obtained by diluting the ABTS·+ 

281 stock solution with distilled water to an absorbance of 0.70 ± 0.02 measured at 734 nm. 

282 After this, 5 μL of sample were added to 245 μL of ABTS·+ adjusted working solution. The 
283 mixture was then incubated at room temperature in the dark for 5 min, and the 
284 absorbance (ABSsample) was recorded at 734 nm, using a microplate reader (FLUOstar 
285 Omega, BMG Labtech). The results are expressed in micromoles of Trolox equivalents per 
286 gram of theoretical quantity of dry weight of marc or skins found in the feedstock (μmol 
287 TE/ g dw), calculated from a Trolox standard curve ranging from 0.02 to 0.4 mg/mL. The 
288 analysis was done in triplicate for each sample.

289 FRAP - Ferric Reducing Antioxidant Power

290 To measure the total antioxidant activity by FRAP, the methodology established by Benzie 
291 & Strain (1996) was used with minor modifications. First, FRAP stock reagents were 
292 prepared as follows: 300 mM acetate buffer (pH=3.6, 2.699 g sodium acetate trihydrate 
293 and 16 ml (16.8 g) of glacial acetic acid dissolved in 1 L of deionized water), 2,4,6-
294 tripyridyl-s-triazine (TPTZ) (10 mM) in 10 ml HCl (40 mM), and 20 mM ferric chloride 
295 hexahydrate aqueous solution. The FRAP reagent was mixed with 25 mL of acetate buffer, 
296 2.5 mL of TPTZ and 2.5 mL of ferric chloride solutions. For the assay, 10 μL of the 
297 sample/standard were added to 300 μL of FRAP reagent in an Eppendorf and vortexed 
298 for 10 s. Then 100 μL of this mixture were transferred into the microwell plate (96-well, 
299 NUNC, FB), and absorbance was measured at 595 nm (FLUOstar Omega, BMG Labtech). 
300 The results are expressed as micromoles of ascorbic acid equivalents per gram of 
301 theoretical quantity of dry weight of marc or skins found in the feedstock (μmol AAE/ g 
302 dw), using an ascorbic acid standard curve: 0.02 to 0.2 mg/mL. The analysis was done in 
303 triplicate.

304 2.10 Statistical Analysis

305 The differences between the surfactants in gas hold-up, stability and CGA separation 
306 performance, were analysed using a t-test for independent samples. For comparison of 
307 antioxidant capacity of the extract and the separated CGA of the two surfactants, the 
308 data was analysed using a one-way ANOVA, detecting differences with the Tukey test. 
309 The significance level was defined at p<0.05 for all the analyses. All statistical analyses 
310 were done using IBM® SPSS® Statistics 27. The results are reported as mean ± SD. 



311 3. Results and Discussion

312 3.1 CGA characterisation 

313 To demonstrate the capacity of WPI for CGA generation, the gas hold-up and drainage of 
314 CGA generated with this surfactant were compared against those of Tween 20. The latter 
315 is a food-grade synthetic surfactant that has been previously used for the separation of 
316 phenolic compounds from hydroalcoholic extracts. The results of this comparison are 
317 shown in Table 1. Overall, it was observed that CGA(WPI) have a lower gas hold-up and 
318 stability than CGA(Tween 20). However, CGA characterisation results are within the range 
319 of stability (450s – 700s) and gas hold-up (57-72%) reported for other surfactants, 
320 including Tweens and Spans (Dahmoune et al., 2013; Dermiki et al., 2009; Fuda et al., 
321 2004; MohdMaidin et al., 2018; Spigno et al., 2015). These results demonstrate that 
322 whilst WPI displayed lower gas hold-up and stability than Tween 20, the tested 
323 concentration produced CGA within the range of stable CGA reported previously. 

324

325 3.2 Hydroalcoholic extracts characterisation

326 Prior to the CGA separation, a hydroalcoholic extract was obtained from each feedstock. 
327 The characterisation of the extracts (Table 2) showed that the phenolic content differed 
328 greatly in composition, which was expected due to the natural composition of each by-
329 product. Goji berry extract had been previously characterized by the authors (data not 
330 published), showing that phenolic acids (caffeic acid) and flavonoids (quercetin-3-O-
331 rutinoside, quercetin, kaempferol-3-O-rutinoside, and catechin) are the major phenolic 
332 compounds, explaining the content of TPC and TFC. Other studies have reported the 
333 presence of anthocyanins in goji berries (Kosińska-Cagnazzo et al., 2017; Kulczyński & 
334 Gramza-Michałowska, 2016; Liu et al., 2020); however, in this study, no anthocyanins 
335 were detected; this could be related to different factors like extraction and analytical 
336 methods used here. For grape marc, it has been widely reported that it contains a high 

Table 1. Gas hold-up and half-life time of CGA generated with Tween 20 and WPI

 Surfactant Gas Hold Up (%)  Ƭ v/2 (s)

Tween 20 10 mM 67.22 ± 2.84 a 628.07 ± 2.65 a

WPI 15 mg/mL 56.50 ± 1.34 b 516.54 ± 18.22 b

Values are expressed as mean ± SD (n=3). Different letters in the same column denote 
significant difference p<0.05.



337 content of flavonoids, such as anthocyanins (delphinidin, malvidin, cyanidin, petunidin, 
338 and peonidin in their glycosylated forms) and phenolic acids (caffeic acid, ferulic acid, 
339 syringic acid) (MohdMaidin et al., 2018), which explain the high content of TPC, TFC, and 
340 the presence of TMAC. 

341

342 3.3 Separation of phenolic compounds by CGA(WPI) 

343 CGA separation performance for each surfactant and each feedstock is shown in Fig 1. 
344 The results show that the recovery of TPC and TFC from grape marc was above 90%, with 
345 similar values for both surfactants (Fig 1-A). Thus, whey protein behaves similarly to 
346 Tween 20 in terms of phenolic compounds separation. For TMAC in grape marc, a lower 
347 recovery of anthocyanins than total phenols and flavonoids was obtained with both 
348 surfactants (Fig 1-C). Whilst the recovery with WPI was the lowest of the two surfactants, 
349 recovery with WPI was still over 60%. A different trend was observed for red goji extract, 
350 where the highest recovery of total phenols and flavonoids was observed in CGA(WPI) 
351 (Fig 1-A; 1-B) and similar TPC to that obtained for grape marc (about 90%). 

352

353 The similar performance of  Tween 20 and WPI in terms of TPC and TFC yields might be 
354 explained by the type of interactions occurring between the surfactants and phenolics 
355 during their separation. Several studies have established that hydrophobic interactions 
356 drive the separation of phenolic compounds when using Tween 20 (Carullo et al., 2022; 
357 Noriega et al., 2018; Sazdanić et al., 2023). Here, we hypothesised that these same 
358 hydrophobic interactions would lead to a successful separation using WPI. In general, 
359 phenolic compounds interact with the hydrophobic pocket of the protein. However, 
360 other interactions such as hydrogen bonding and van der Waals forces have 
361 demonstrated to play an important role when it comes to binding of protein and 

Table 2. Phenolic compounds determination for grape marc (GME) extract and red goji 
skin extract (RSGE).

Feedstock TPC TMAC TFC

GME 2034.98 ± 240.30 27.37 ± 2.82 2015.00 ± 108.99 

RGSE 1029.61 ± 2.06 ND 254.95 ± 43.81 

Total phenol content (TPC) values are expressed in mg GAE/ 100 g dw; total monomeric 
anthocyanin content (TMAC) values are expressed in mg of M3GE/ 100 g dw; total flavonoid 
content (TFC) values are expressed in mg CE/ 100 g dw. Values are expressed as mean ± SD 
(n=6). ND: Not detected 



362 phenolics (Cao & Xiong, 2017; Gong et al., 2021; Meng & Li, 2021; Ozdal et al., 2013; Skrt 
363 et al., 2012) which can explain the high recoveries obtained with WPI.

364

365 On the other hand, the significant difference in anthocyanin recovery between CGA(WPI) 
366 and CGA(Tween) is likely to be related to the pH of the surfactant solutions and the 
367 change of pH during the separation (Table 3). WPI stock solution displayed a pH above 
368 the isoelectric point of whey proteins (4.5-5.5); therefore, the overall charge of the 
369 protein was negative (Fuda et al., 2005; Fuda & Jauregi, 2006). In the case of GME and 
370 RSGE, the addition of WPI(CGA) led to a rise in pH whilst a decrease for Tween 20 (Table 
371 3). 

372

Table 3. pH of GME, RSGE, surfactants and CGA phases after separation

  WPI (pH 6.20) Tween 20 (pH 4.98)

Feedstock Extract Liquid phase Aphron phase Liquid Phase Aphron Phase

GME 4.56 ± 0.00 6.33 ± 0.00 5.81 ± 0.04 3.84 ± 0.06 3.79 ± 0.07

RGSE 5.68 ± 0.00 6.41 ±0.05 6.16 ± 0.03 4.79 ± 0.03 4.82 ± 0.01

Values are expressed as mean ± sd (n=2)

373

374 The aphron phase in RSGE had a pH above the isoelectric point of whey protein (protein´s 
375 net charge negative) , while GME showed a slightly lower pH in the AP, closer to the 
376 isoelectric point of whey proteins (protein´s net charge close to zero). Therefore, despite 
377 proteins in GME and RSGE CGA(WPI) being differently charged, similar recoveries of TPC 
378 and TFC were attained for both. These findings support our hypothesis that CGA(WPI) 
379 separation is driven mainly by hydrophobic interactions and hydrogen bonds. 
380 Nonetheless, pH greatly affected the recovery of anthocyanins. The increased pH in the 
381 CGA(WPI) aphron phase of GME could be the reason for anthocyanin’s reduced recovery. 
382 Anthocyanins are highly susceptible to structural changes above pH 2, where the 
383 ionisation of the flavylium ion gives place to other structures, like chalcones and quinones 
384 (Andersen & Jordheim, 2010; Cabrita et al., 2000; Enaru et al., 2021; Martín et al., 2017). 
385 Therefore, this could be the reason for the better recovery of anthocyanins with 
386 CGA(Tween 20) (pH 3.79) than CGA(WPI) (pH 5.81). In summary, phenolic compounds 
387 can be recovered effectively with CGA generated from whey protein. However, the pH of 
388 the resultant extraction mixture will need to be adjusted for pH-sensitive compounds. 



389 Nevertheless, the isoelectric point of the whey proteins will need to be taken into account 
390 (for major whey proteins, it is about pH = 4-5) as at that pH, they will precipitate. 

391 3.4 AOC after CGA separation

392 Following the successful separation and recovery of various phenolic compounds with 
393 WPI, it was crucial to determine the implications of this process on the AOC in the aphron 
394 phase. ABTS results (Fig. 2-A) show that a similar decrease of AOC occurred in GME for 
395 both surfactants, around 40%. For RSGE, the reduction was less than 10%. FRAP results 
396 (Fig. 2-B) showed a more noticeable decrease in GME than in RGSE with the two 
397 surfactants. However, this was more pronounced for CGA(WPI), where the initial activity 
398 was reduced by 50% approximately. 

399

400 Previous studies have reported a reduction of AOC during CGA separation with Tween 
401 20, attributing this to phenolic oxidation (Spigno et al., 2015). In the case of CGA(WPI), it 
402 has been reported previously that a major cause for the decrease in AOC is likely due to 
403 the complex protein-phenolic interactions, the type of phenolic compounds and the 
404 medium (Almajano et al., 2007; Cao & Xiong, 2017; De La Cruz-Molina et al., 2023; de 
405 Morais et al., 2020; von Staszewski et al., 2011). it is important to note that both extracts 
406 have a different phenolic profile. GME displayed a higher content of flavonoids (Table 2) 
407 that are known to interact more strongly with WPI than phenolic acids, which are 
408 abundant in RSGE (Cao & Xiong, 2017). Other studies report that a masking effect is likely 
409 to occur depending on the method due to the competition during the antioxidant activity 
410 analysis between the protein and hydroxyl groups of the phenolics (Ozdal et al., 2013; 
411 Stojadinovic et al., 2013). 

412

413 In summary, despite the high recovery of phenolics attained with both surfactants, the 
414 antioxidant activity of the extracts was reduced  after CGA separation but especially in 
415 the case of GME, and this effect was even more pronounced with WPI, possibly due to 
416 protein-phenolic interactions.

417

418 3.5 Stability effect of CGA on GME - kinetics of anthocyanins over storage time

419 It was seen in the previous section that WPI possibly causes a decrease in AOC during 
420 CGA separation. Hence, it was important to understand the effect of CGA separation on 
421 the stability of anthocyanins since they are highly susceptible to degradation and they 
422 will have more or less stability depending on the structure, medium, temperature, and 
423 storage conditions (Andersen & Jordheim, 2010; Martín et al., 2017; Vidana Gamage et 
424 al., 2022). Thus, the impact of whey protein on the stability of GME’s anthocyanins was 
425 studied. Figure 3 shows the degradation of anthocyanins in GME and GME-CGA over time 
426 which follow first-order kinetics. These results agree with previous studies for grape marc 
427 anthocyanins degradation, noting that while degradation is complex, it generally follows 



428 first-order kinetics (Andersen & Jordheim, 2010; Hellström et al., 2013; Lavelli et al., 2016; 
429 MohdMaidin et al., 2019).

430  

431 Both surfactants show a pronounced stabilising effect of M3G. Very steady degradation 
432 of this anthocyanin in the CGA of both surfactants as compared to the extract (control) is 
433 shown in Fig 3. Both WPI and Tween showed a stabilisation effect with high life increasing 
434 from 4 days in the extract to 8 and 10 in the whey and Tween 20 CGA respectively (Table 
435 4). This stabilisation effect was also observed for C3G but there is almost no effect for 
436 P3G and D3G. Clearly, surfactants improve the stability of specific anthocyanins, possibly 
437 because of interactions between surfactant and anthocyanin and the degradation 
438 pattern could be influenced by the structure of anthocyanins (Appendix A.2). 

439

440

Table 4. Half-lives (t ½, days) and degradation rate constant (k, d-1) of anthocyanins 
processed in control (GME), CGA(WPI) and CGA(Tween 20).

GME CGA(WPI) CGA(Tween 20)

Anthocyanin/Sample

t 1/2 K (d-1) t 1/2 K (d-1) t 1/2 K (d-1)

Delphinidin 3-O-glucoside (D3G) 3 0.2146 2 0.3419 3 0.2359

Cyanidin 3-O-glucoside (C3G) 3 0.2326 6 0.1187 6 0.1125

Petunidin 3-O-glucoside (P3G) 4 0.1595 4 0.1931 5 0.1456

Malvidin 3-O-glucoside (M3G) 4 0.1711 8 0.0859 10 0.0700

441

442 For example, D3G is a highly hydroxylated molecule, making it more susceptible to 
443 degradation in aqueous systems and high temperatures (Cabrita et al., 2000; Vidana 
444 Gamage et al., 2022). On the other hand, the absence of hydroxyl groups in positions 3’ 
445 and 5’ makes malvidins more stable compared to other anthocyanidins (Martín et al., 
446 2017). Interestingly, here, C3G was more stable than P3G. This result was unexpected 
447 since the methoxy group in position 5’ should give P3G more stability compared to C3G, 
448 which has no functional group in the 5’ position. It is important to note that the pH in 
449 CGA(WPI) and CGA(Tween 20) was above the pH in which anthocyanins are stable. Near 



450 neutral pH, the flavylium cation is ionised, making the molecule more susceptible to 
451 structural changes (Andersen & Jordheim, 2010; Martín et al., 2017; Mattioli et al., 2020).

452 This set of results showed that for most of the primary anthocyanins in GME, the 
453 degradation was slower in both CGA than in the crude extract.  Thus, extending the half-
454 lives of the analysed anthocyanins, possibly due to the stabilisation effect of the 
455 interactions between surfactants and phenolics.  

456 3.6. Integrated separation method

457 Figure 4 shows an example of how CGA could be integrated within the conventional 
458 process and how it would compare with other processes that are currently applied to 
459 grape marc such as, evaporation or ultrafiltration, in which the removal of the solvent or 
460 purification need to be carried out as a subsequent step. In this example, all the processes 
461 end with the drying or encapsulation of the extract however, the only one that integrates 
462 a pre-formulation step is CGA separation since there is no need to remove the protein 
463 that is present in the aphron phase. Moreover, the recycling of the protein in the liquid 
464 phase generated after the CGA separation could be of great help from a techno-economic 
465 point of view, as this could be used for following separations, making a cost-effective 
466 process. While something similar can occur in the case of evaporation, in the case of CGA, 
467 the collection of the liquid phase after the separation does not require the use of 
468 specialized equipment. 

469 Other surfactant based separations have been developed that could represent a green 
470 solid-liquid extraction alternative to hydroalcoholic extraction. For example, Atanacković 
471 Krstonošić et al. (2023) describe solid-liquid extraction using a surfactant rich solvent as 
472 a green solvent that effectively extracts polyphenols with high antioxidant activity from 
473 grape marc. In this method, the solubilisation power of the surfactant in the form of 
474 micelles is the basis of the separation. Yet although it is an interesting method that leads 
475 to high yields of phenolics with high antioxidant activity, in comparison with the one 
476 proposed here, it requires: (i) higher amount of surfactant, 3% w/v vs 1.5% in the case of 
477 CGA (ii)  higher solvent to solids ratio, 100:1  vs 64:1 with CGA (calculated based on 
478 solvent to solids ratio 8:1 and CGA to extract volume ratio 16) (iii) longer separation time, 
479 45 minutes vs 10 minutes for CGA; for further comparisons between the different 
480 surfactant based methods including CGA see Atanacković Krstonošić et al. (2023). Overall, 
481 from the example and the results described above, it can be concluded that CGA can be 
482 advantageous as compared to other separations, especially because it allows the 
483 integration of the separation and formulation steps.



484 4. Conclusions 

485 In this work, it was shown for the first time that CGA generated from whey proteins can 
486 successfully separate phenolics from natural extracts, and the recovery of phenolics was 
487 comparable to that of CGA generated from Tween 20. The results suggest that 
488 hydrophobic interactions between phenolics and whey protein are responsible for the 
489 successful separation, as well as hydrogen bonding. The strong interactions between 
490 phenolics and protein lead to high yields but can also hinder the radical scavenging 
491 activity, as observed in AOC reduction. On the other hand, these interactions can be 
492 responsible for the stabilising effect observed during storage. Overall, CGA generated 
493 with WPI have resulted in an integrated separation method that, by combining it with 
494 hydroalcoholic extraction, leads to the effective separation of phenolics and their pre-
495 formulation in a whey protein rich solution with stabilisation effect. Thus, the 
496 combination of CGA generated with food grade surfactants (Tween 20 and whey protein) 
497 and the conventional solid-liquid extraction opens the perspective for a cost effective,  
498 integrated and sustainable process for the extraction and formulation of phenolics from 
499 by-products. Cost effectiveness will need to be further assessed by conducting a detailed 
500 techno-economic assessment. Nevertheless, CGA generated with whey protein, which is 
501 a food-grade surfactant derived from a by-product, can be an attractive and sustainable 
502 separation method for food applications.

503
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804

805

806 Figure Captions:

807

808 Figure 1. (A) Recovery of total phenol content, (B) total flavonoid content, and (C) total 
809 monomeric anthocyanins content from grape marc and red goji skins extract separated 
810 through CGA(WPI) and CGA(Tween 20). * Denotes a significant difference p<0.05.

811

812 Figure 2. Antioxidant capacity by (A) ABTS and (B) FRAP in feedstock, CGA(WPI) and 
813 CGA(Tween 20) fractions. Different letters mean significant differences within the 
814 phenolics source (p<0.05). Values are expressed as mean±sd (n=6).

815

816 Figure 3. Decrease of anthocyanins content over time represented as natural logarithm 
817 of the ratio of anthocyanins at a given time at time zero during storage at 40ᵒC for 30 
818 days. Values are expressed as mean ± sd (n=2).



819

820 Figure 4. Diagram of incorporation of CGA in the process chain of grape marc 
821 byproduct. 

822

823 Figure A.1. HPLC chromatogram of mixing standards of Delphinidin, Cyanidin, Petunidin, 
824 and Malvidin (20 µmol) at 520 nm wavelength.

825 Figure A.2. Structure of anthocyanins used in this work. Figures taken from the Royal 
826 Society of Chemistry-ChemSpider database (www.chemspider.com).

827
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836

837

838

839 Highlights

840 • Successful recovery of phenolic by whey protein (WPI) generated CGA 

841 • Separation of phenolics was similar with CGA(WPI) as with CGA(Tween)

842 • CGA(WPI) separation leads to reduction of antioxidant activity
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843 • CGA made of whey protein can protect anthocyanins from degradation

844 • CGA separation integrates separation and pre-formulation of phenolics
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