

Whey protein based colloidal gas aphrons combined with solid–liquid extraction as an integrated green separation of phenolics from fruit based by-products

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

De La Cruz Molina, A. V., Durmaz, G. ORCID: <https://orcid.org/0000-0003-3423-8108>, Oruna-Concha, M. J. ORCID: <https://orcid.org/0000-0001-7916-1592>, Charalampopoulos, D. ORCID: <https://orcid.org/0000-0003-1269-8402> and Jauregi, P. ORCID: <https://orcid.org/0000-0003-4438-191X> (2025) Whey protein based colloidal gas aphrons combined with solid–liquid extraction as an integrated green separation of phenolics from fruit based by-products. Separation and Purification Technology, 361 (3). 131526. ISSN 1383-5866 doi: 10.1016/j.seppur.2025.131526 Available at <https://centaur.reading.ac.uk/120257/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.seppur.2025.131526>

Publisher: Elsevier

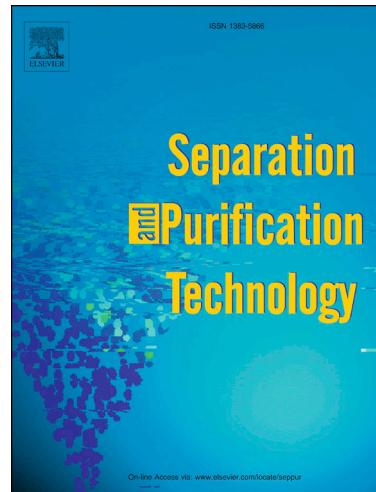
All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online


Whey protein based colloidal gas aphrons combined with solid–liquid extraction as an integrated green separation of phenolics from fruit based by-products

Aimara V. De La Cruz-Molina, Gokhan Durmaz, Maria Jose Oruna-Concha, Dimitris Charalampopoulos, Paula Jauregi

PII: S1383-5866(25)00123-6

DOI: <https://doi.org/10.1016/j.seppur.2025.131526>

Reference: SEPPUR 131526

To appear in: *Separation and Purification Technology*

Received Date: 15 November 2024

Revised Date: 6 January 2025

Accepted Date: 8 January 2025

Please cite this article as: A.V. De La Cruz-Molina, G. Durmaz, M.J. Oruna-Concha, D. Charalampopoulos, P. Jauregi, Whey protein based colloidal gas aphrons combined with solid–liquid extraction as an integrated green separation of phenolics from fruit based by-products, *Separation and Purification Technology* (2025), doi: <https://doi.org/10.1016/j.seppur.2025.131526>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1 Whey protein based colloidal gas aphans combined with solid-liquid extraction as
2 an integrated green separation of phenolics from fruit based by-products

3 Aimara V. De La Cruz-Molina ¹, Gokhan Durmaz^{2,3}, Maria Jose Oruna-Concha ¹, Dimitris
4 Charalampopoulos ¹, Paula Jauregi ^{1,4,5*}.

5 ¹ Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK,
6 RG6 6A

7 ² Department of Food Engineering, Inonu University, Malatya, 44280, Turkey

8 ³ Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, United
9 States

10 ⁴ Current address: AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque
11 Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio, Bizkaia 48160, Spain

12 ⁵ Current address: Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain

13 *** Correspondence:**

14 Email address: pjauregi@azti.es (P. Jauregi)

15

16 **Abstract**

17 Colloidal gas aphans (CGA) are microbubbles created by the intense stirring of a
18 surfactant solution that can be used as a separation method for biomolecules. The main
19 objective of this work was to investigate for the first time the use of whey protein as a
20 natural surfactant for CGA generation. Furthermore, their application for separating
21 phenolic compounds from hydroalcoholic extracts obtained from fruit based by-products
22 (grape marc and red goji berry). Additionally, to investigate if this surfactant-rich fraction
23 could confer an advantage in stabilising anthocyanins during storage. First, a
24 hydroalcoholic extract was obtained from each feedstock; then whey protein isolate
25 (WPI) generated CGA were applied and compared with Tween 20 generated CGA.
26 Recovery performance was assessed based on total phenolics, flavonoids, and
27 antioxidant capacity. CGA generated with a 1.5% (WPI) displayed comparable
28 characteristics (gas hold-up and stability) to those generated with Tween 20 (10 mM).
29 The CGA separation process with WPI led to a recovery of up to 97% of phenolic
30 compounds but a loss of antioxidant capacity under the tested conditions. Hydrophobic
31 interactions as well as hydrogen bonding between phenolics and WPI could be
32 responsible for the successful separation that could also hinder the radical scavenging
33 activity. In contrast, these interactions could be responsible for the stabilising effect on
34 anthocyanins observed during storage. Overall, CGA generated with WPI have resulted in
35 an integrated separation method that by combining it with hydroalcoholic extraction
36 leads to the effective separation of phenolics and their pre-formulation in a whey protein
37 rich solution with stabilisation effect.

38

39 **Keywords:** Whey protein, colloidal gas aphrons, anthocyanins, phenolics, grape marc,
40 red goji, degradation.

41

42

43 **1. Introduction**

44 Phenolic compounds, the biggest family of phytochemicals with more than 8000
45 structures, are of particular interest since they have demonstrated to aid in cognitive and
46 metabolic disorders such as diabetes (Fallah et al., 2020; Russo et al., 2019; Yang et al.,
47 2017), as well as to have anti-inflammatory and antimicrobial properties (Koh et al., 2023;
48 Sonu et al., 2018). The number of research on the extraction of phenolic compounds from
49 agri-food by-products has been increasing in the past decades since their valorisation is
50 a way to reduce food waste with the added advantage of being a low-cost source
51 (Moreno-González & Ottens, 2021; Muhlack et al., 2018; Sagar et al., 2018). In this
52 context, by-products such as grape marc, obtained from the wine-making industry, have
53 a high content of phenolics, mainly flavonoids such as anthocyanins (Cortés et al., 2020;
54 Hegedüs et al., 2022; Pertuzatti et al., 2020; Sinrod et al., 2021; Spigno et al., 2007). Red
55 goji berry pomace, on the other hand, is a less studied by-product composed mostly of
56 skins and pulp and is rich in carotenoids and phenolics, like flavonoids and phenolic acids
57 (Kosińska-Cagnazzo et al., 2017; Kulczyński & Gramza-Michałowska, 2016; Skenderidis et
58 al., 2017).

59

60 Typically, these added value compounds are obtained by hydroalcoholic extraction.
61 Further processing either involves a second extraction to maximise recovery and/or
62 solvent removal. Although ethanol is considered a green solvent and classified as GRAS,
63 i.e., suitable for food applications, its high flammability can limit its application at an
64 industrial scale. Colloidal gas aphans (CGA) are surfactant-stabilized microbubbles
65 generated by the intense stirring of a surfactant solution at high speeds (5000-1000 rpm)
66 (Jarudilokkul et al., 2004; Lye & Stuckey, 1998; Prasad et al., 2015). They present
67 properties such as adherence of molecules to the surfactant bubble surface, which can
68 be modulated according to the type of surfactant (ionic or non-ionic) used and higher
69 stability than conventional foams (Jauregi et al., 2000). These characteristics and their
70 ease of pumping from one point to another make them particularly interesting as a
71 separation method which can be easily scalable using a flotation column in batch or
72 counter-current mode (Dermiki et al., 2021). In our previous research, we demonstrated
73 that phenolic compounds can be extracted from hydroalcoholic extracts of grape marc
74 with CGA at high yields (Carullo et al., 2022; MohdMadin et al., 2018; Spigno et al., 2015).
75 In addition, using a food grade surfactant such as Tween 20 avoids the need for a
76 subsequent step for its removal and, it could aid the formulation of the extracted
77 compounds (MohMadin 2019). As concluded by Jauregi & Dermiki, (2013), if CGA are
78 applied following an integrated approach, i.e. if removal of surfactant is not required, this
79 separation could be more advantageous than others such as, supercritical carbon dioxide
80 extraction and solvent extraction.

81

82 Phenolic compounds, present a myriad of challenges when formulating them. Their
83 physicochemical properties and their high susceptibility to structural changes due to
84 solubility, temperature, pH, storage conditions, and oxidation can lead to a reduction in
85 their bioactivity (Brglez Mojzer et al., 2016; Cao et al., 2021; Manach et al., 2004). Great

86 efforts have been made towards their stabilisation and protection, commonly through
 87 methods such as encapsulation and covalent and non-covalent complexation (Guo &
 88 Jauregi, 2018; Kaderides et al., 2020; McClements, 2018; Motilva et al., 2016; Wen et al.,
 89 2017). In recent work we have demonstrated that the non-ionic surfactant used for the
 90 generation of CGA (Tween 20) had a stabilisation effect on the anthocyanins as compared
 91 to the ethanolic raw extract, (MohdMadin et al., 2019). Tween 20 is a synthetic but food
 92 grade surfactant. Yet, the use of these synthetic surfactants possesses limitations due to
 93 the quantities that can be used safely in foods and the lack of nutritional value.

94

95 Natural molecules with surfactant properties, such as saponins, have been explored for
 96 CGA separation. However, they possess limitations, especially in food applications, due
 97 to astringency and possible side effects depending on the concentration used (Sharma et
 98 al., 2023). On the other hand, whey protein, a by-product generated from cheese making
 99 and widely used as a food ingredient, presents surface activity properties such as those
 100 of low molecular weight surfactants, i.e. the ability to create stable foams (Cao et al.,
 101 2018; Luck et al., 2002; Nastaj & Sołowiej, 2020). Moreover, whey proteins have been
 102 extensively researched due to their capacity to interact with phenolic compounds and
 103 the stabilisation effect this interaction confers (Gong et al., 2021; Guo & Jauregi, 2018; Li
 104 et al., 2022; Li & Girard, 2023; Tazeddinova et al., 2022).

105

106 The main objective of this work was to investigate for the first time the use of whey
 107 protein as a natural surfactant for CGA generation and their further application for the
 108 separation of phenolic compounds from hydroalcoholic extracts obtained from different
 109 fruit based by-products with different phenolics composition, grape marc and red goji.
 110 Furthermore, to investigate if this surfactant-rich fraction could confer an additional
 111 advantage in stabilising anthocyanins during storage.

112

113 **2. Materials and Methods**

114 **2.1 Materials**

115 Casa Emma (Firenze, Italy) winery kindly supplied a sample of fresh frozen and vacuum-
 116 packaged Sangiovese variety grape marc (skins, seeds, and stems) from the September
 117 2019 harvest. The grape marc was ground to a particle size of <2mm. Dried red goji berry
 118 skins (dried at 40-45°C until moisture content below 5% was achieved) were supplied
 119 from EVRA (Potenza, Italy). Whey protein isolate under the UW XP label was supplied by
 120 Volac Ltd (Hertfordshire, UK) with the following specifications: 94% protein, 0.3% fat and
 121 0.5% lactose. TWEEN® 20 was purchased from Sigma-Aldrich (UK).

122 **2.2 Reagents**

123 Folin-Ciocalteu (F9252), and sodium carbonate BioXtra, ≥99.0% (S7795), aluminum
 124 chloride anhydrous powder, (99.999%), sodium hydroxide, sodium nitrate, sodium

125 acetate, potassium chloride, ethanol (≥99.8%), (+)-catechin hydrate (≥98%), gallic acid
 126 (≥98%), formic acid, 2,2'-azino-bis (3-ethylbenzothiazoline- 6-sulfonic acid) diammonium
 127 salt (ABTS) (≥98%), potassium persulfate (≥99%), (±)-6-hydroxy-2,5,7,8-
 128 tetramethylchromane-2-carboxylic acid (Trolox) (≥97%), TPTZ (2, 4, 6-tris(2-pyridyl)-s-
 129 triazine) and ferric chloride hexahydrate were purchased from Sigma- Aldrich
 130 (Massachusetts, US). HPLC grade water, and acetonitrile were purchased from Sigma
 131 Aldrich (Massachusetts, US), and Thermo Fisher (Massachusetts, US). Delphinidin-3-o-
 132 glucoside (>99%); cyanidin-3-o-glucoside (>98%); petunidin-3-o-glucoside (> 98%) and
 133 malvidin-3-o-glucoside (>99%) were purchased from Extra synthèse (Paris, France).

134

135 **2.3 CGA production and characterisation**

136 First, an aqueous solution of whey protein isolate with a final protein concentration of 15
 137 mg/mL (1.5% w/v) was prepared in a 500 mL volumetric flask and left overnight at room
 138 temperature for complete hydration. This concentration was chosen based on previous
 139 experiments where the minimum protein concentration to obtain stable CGA was
 140 determined (data not published). In addition, an aqueous Tween 20 [10mM] solution was
 141 prepared to compare both CGA characteristics. All CGA were generated by stirring 400
 142 mL of each solution at 8000 rpm for 5 min at room temperature using a SLT 2 high-speed
 143 impeller (Silverson Machines, UK). The gas hold-up ε , the volume of air incorporated into
 144 the dispersion, was determined as follows:

145 Equation (1) $\varepsilon = \frac{V_{CGA}-V_0}{V_{GA}} \times 100$

146

147 V_{CGA} is the volume of aaphrons, and V_0 is the volume of liquid used in the generation of
 148 CGA, expressed as percentage.

149 The stability of the foams was determined based on the time taken for half of the liquid
 150 volume ($V_0/2$) to drain ($T v/2$). For this, measurement of the volume drained from CGA
 151 was taken every minute for a 15 min period. The time was calculated from the equation
 152 derived from the graphical representation of the drained volume against time; in the
 153 equation, the drained volume was fixed to $V_0/2=200\text{mL}$ to obtain the time it takes to drain
 154 half of the initial volume. Each CGA were done in triplicate.

155 **2.4 Extraction of phenolic compounds from grape marc and goji berry skins**

156 The grape marc solvent extraction was carried out following the methodology developed
 157 previously by MohdMadin et al. (2018). The extraction was performed at 8:1 solvent to
 158 sample ratio (v/w) using a hydroalcoholic solution of 60% ethanol as solvent, under
 159 magnetic stirring for two hours at 60°C. After the extraction, the solids were separated
 160 through vacuum filtration using #1 Whatman paper. For the red goji berry skins, the
 161 extraction was carried out using a hydroalcoholic solution of 60% ethanol at 15:1 solvent
 162 to solute ratio (v/w), under magnetic stirring for 40 minutes at 60°C (conditions

163 established by the supplier). After this, the solids were separated through vacuum
164 filtration using #1 Whatman paper. Grape marc extract (GME) and red goji skins extract
165 (RGSE) were stored at -18 °C for further analysis and CGA processing. The extractions
166 were carried out in duplicate and analysed in triplicate.

167 2.5 Separation of phenolic compounds with CGA

168 CGA made of WPI, labelled CGA(WPI) and CGA made of Tween 20, labelled CGA(Tween
 169 20), were used to separate phenolic compounds from GME and RGSE. The separation
 170 was carried out based on the optimum conditions found in previous works, i.e., extract
 171 to CGA volumetric ratio ($V_{\text{extract}}:V_{\text{CGA}}$) of 1:16, contact time of 5 min, and drainage time of
 172 5 min (MohdMadin et al., 2018, 2019; Spigno et al., 2015). For the separation, 65 mL of
 173 extract were added to a flotation gas column (i.d: 5cm, height: 50 cm), and 1040 mL of
 174 CGA(WPI) or CGA(Tween 20) were pumped with the help of a peristaltic pump (Watson
 175 Marlow, UK) from the CGA generating container into the flotation glass column with the
 176 extract. An adjusted flow of 142 mL CGA/ min was set to allow a contact time of 5 min.
 177 After this, a period of 5 min drainage time was allowed for the separation of phases:
 178 aphon phase (AP) at the top and liquid phase (LP) at the bottom (drained liquid). CGA
 179 were made in duplicate, and each duplicate was analysed in triplicate. The percentage
 180 recovery of total phenols, total flavonoids, and total anthocyanins in the aphon phase
 181 (AP) was calculated with the formula:

$$183 \quad \text{Equation (2)} \quad \text{Recovery (\%)} = \frac{M_{feed} - M_{liquid\ phase}}{M_{feed}} \times 100$$

184 Where M_{feed} is the initial mass of phenolic compounds in the GME or RSGE, and M_{liquid}
 185 phase is the mass of phenolic compounds determined in the liquid phase. The
 186 determination of phenolics in the aphon phase led to an overestimation due to
 187 interference by the surfactant and this is why it was determined in the liquid phase.

188 2.6 Degradation of anthocyanins over time

To determine the stability of anthocyanins during storage, accelerated storage conditions were tested. The method was selected based on previous work done in the research group on the storage time effect on anthocyanins in Roselle beverages (Omoarukhe et al., 2023). Aliquots of GME, before and after CGA separation with both surfactants, were stored under accelerated conditions at 40°C in a controlled temperature cabinet (SANYO, GALLENKAMP) and regularly monitored using a thermometer for 30 days. The changes were screened at day 0, 4, 8, 10, 15, 20, 25, and 30. The concentration of Tween 20 in CGA fraction was estimated from the volume of CGA and their corresponding liquid fractions. For WPI, the protein concentration in CGA was calculated based on the determination of protein content in the liquid fraction. The protein content of CGA(WPI) was 13.8 mg/mL, and for CGA(Tween 20), the surfactant concentration was 7.68 mM.

201 The changes were determined by calculating the degradation kinetics of the four main
202 anthocyanins in GME. To corroborate the first order kinetic behaviour, the natural
203 logarithms of each anthocyanin content were plotted against time and tested if it
204 followed a linear relationship as described by the equation below:

$$205 \quad \text{Equation (3)} \quad -\ln\left(\frac{A_t}{A_0}\right) = k * t$$

206 Where A_0 is the initial anthocyanin content, A_t is the anthocyanin content at time t , t is
 207 the storage time, and k is the rate constant. The degradation rate constant (k) was
 208 determined from the straight-line slope obtained when plotting $\ln(A_t/A_0)$ vs t . From the
 209 equation above, the time taken for the anthocyanin content to halve, the half-life ($t_{1/2}$),
 210 can be derived as:

$$211 \quad \text{Equation (4)} \quad t_{\frac{1}{2}} = \frac{\ln(2)}{k}$$

212

213 2.7 Identification of anthocyanins by HPLC

The anthocyanin content through the stability analysis was determined using an Agilent HPLC 1100 series equipped with a degasser, a quaternary pump, and a photodiode array detector model (Agilent, Waldbronn, Germany) with Chemstation software. The column used was a C18 HiChrom (150mm×4.6mm i.d; 5µm particle size and 100Å pore size; part no. EXL-121-1546U) operated at 25 °C. The method was as follows: the mobile phase consisted of 2% formic acid (v/v) and 5% acetonitrile (v/v) in water (mobile phase A) and 2% formic acid (v/v) in acetonitrile (mobile phase B) using the following gradient: 5–15% B (15 min), 15–30% B (15 min), 30–50% B (10 min), 50–95% B (5 min) and 95–5% B (5 min), at a flow rate of 1 mL min⁻¹. The total run was 50 min, and a pre-time of 10 min was allowed for re-equilibration. The injection volume was 20 µL for pure standards and samples. The anthocyanins were detected at 520 nm and identified based on the retention times and by comparing the spectra with that of the following external standards: delphinidin-3-o-glucoside; cyanidin-3-o-glucoside; petunidin-3-o-glucoside, and malvidin-3-o-glucoside (Appendix A.1).

228 2.8 Phenolic compounds analytical determinations

229 Total Phenol Content (TPC)

The total phenol content was determined by the Folin-Ciocalteu method (Singleton & Rossi, 1965). For the assay, 75 μ L de Folin-Ciocalteu reagent [1:10] diluted in water v/v, were added in a 96-well microplate, with 15 μ L of the sample and 60 μ L of 7.5% Na_2CO_3 . For samples containing whey protein or Tween 20, 1mL of a 0.01% SDS solution was added to the stock of Na_2CO_3 to avoid precipitation. The samples were incubated in the dark for 30 minutes after this time the microplate was read at 765 nm (FLUOstar Omega, BMG Labtech, Offenburg, Germany); each sample was done in triplicate. The results were quantified from a gallic acid calibration curve ranging from 0.05 to 0.5 mg/ml. Results are expressed as milligrams of gallic acid per 100 grams of dry weight (mg GAE/ 100 g dw) or percentage of gallic acid equivalents (% GAE), adapted from equation 2.

240 **Total Monomeric Anthocyanin Content (TMAC)**

241 Total monomeric anthocyanin levels were measured by the pH differential method (Lee
 242 et al., 2005). For this, each sample was combined in a 1:20 ratio (v:v) with potassium
 243 chloride or sodium acetate buffers (pH 1.0 and 4.5, respectively) in separate wells of a
 244 96-well microplate. After an equilibration period (15 min), the raw absorbance of each
 245 solution was measured at 520 and 700 nm in a microplate reader (FLUOstar Omega, BMG
 246 Labtech). The values were calculated using the following formula:

247

248 Equation (5)
$$\text{Monomeric Anthocyanins} = \frac{A \times MW \times DF \times 1000}{\varepsilon \times 1}$$

249

250 Where **A** is the difference in absorbance of (A520nm – A700nm)pH 1.0 – (A520nm –
 251 A700nm)pH 4.5; **MW** is the molecular weight of the main anthocyanin 493.43 g/mol for
 252 malvidin 3 glucoside (M3G); **DF** is the dilution factor; **1000** is the factor for conversion
 253 from g to mg; **ε** is the molar extinction coefficient, in $\text{L} \times \text{mol}^{-1} \times \text{cm}^{-1}$ for M3G = 28 000;
 254 **1** is pathlength in cm. The results are expressed as milligrams of malvidin 3-glucoside
 255 equivalents or percentage of malvidin 3-glucoside equivalents (% M3GE), adapted from
 256 equation 2.

257

258 **Total Flavonoid Content (TFC)**

259 The analysis was carried out using the aluminium chloride methodology (Zhishen et al.,
 260 1999). For the analysis, 100 μL of each sample were mixed with 430 μL of the A solution
 261 (1.8 mL of 5% sodium nitrite with 24 mL of distilled water) in an Eppendorf and incubated
 262 for 5 min. Afterwards, 30 μL of 10% aluminium chloride were added and let it rest for 1
 263 min. Finally, 440 μL of solution B (12 mL of sodium hydroxide 1M with 14.4 mL of distilled
 264 water) were added. From this reaction, 150 μL were transferred to a 96-well microplate
 265 in triplicate. The samples were read at 496 nm in a microplate reader (FLUOstar Omega,
 266 BMG Labtech). The absorbance was compared with a catechin standard curve ranging
 267 from 0.1 to 1 mg/ml. A new calibration curve was prepared for every experiment. Results
 268 are expressed as milligrams of catechin equivalents per 100 grams of dry weight (mg CE/
 269 100 g dw) or the percentage of catechin equivalents (% CE) adapted from the equation
 270 2.

271 **2.9 Antioxidant Capacity (AOC)**272 **ABTS -2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)**

273 The total antioxidant activity of all samples was measured by the ABTS assay at 734 nm,
 274 which was modified from Re et al. (1999). Briefly, the ABTS⁺ stock solution was prepared
 275 by mixing 5 mL of 7mM ABTS solution (50 mL volume, stored in an amber flask and kept
 276 under refrigeration at 0–4 °C up to one month) and 88 μL of 140mM potassium persulfate

277 solution (10 mL volume, stored in an amber flask and dark place at room temperature for
278 up to one month). Then, the mixture was kept in the dark at room temperature for at
279 least 16 hours before use.

280 For the assay, the working solution of the ABTS⁺ was obtained by diluting the ABTS⁺
281 stock solution with distilled water to an absorbance of 0.70 ± 0.02 measured at 734 nm.
282 After this, 5 µL of sample were added to 245 µL of ABTS⁺ adjusted working solution. The
283 mixture was then incubated at room temperature in the dark for 5 min, and the
284 absorbance (ABS_{sample}) was recorded at 734 nm, using a microplate reader (FLUOstar
285 Omega, BMG Labtech). The results are expressed in micromoles of Trolox equivalents per
286 gram of theoretical quantity of dry weight of marc or skins found in the feedstock (µmol
287 TE/ g dw), calculated from a Trolox standard curve ranging from 0.02 to 0.4 mg/mL. The
288 analysis was done in triplicate for each sample.

289 ***FRAP - Ferric Reducing Antioxidant Power***

290 To measure the total antioxidant activity by FRAP, the methodology established by Benzie
291 & Strain (1996) was used with minor modifications. First, FRAP stock reagents were
292 prepared as follows: 300 mM acetate buffer (pH=3.6, 2.699 g sodium acetate trihydrate
293 and 16 ml (16.8 g) of glacial acetic acid dissolved in 1 L of deionized water), 2,4,6-
294 tripyridyl-s-triazine (TPTZ) (10 mM) in 10 ml HCl (40 mM), and 20 mM ferric chloride
295 hexahydrate aqueous solution. The FRAP reagent was mixed with 25 mL of acetate buffer,
296 2.5 mL of TPTZ and 2.5 mL of ferric chloride solutions. For the assay, 10 µL of the
297 sample/standard were added to 300 µL of FRAP reagent in an Eppendorf and vortexed
298 for 10 s. Then 100 µL of this mixture were transferred into the microwell plate (96-well,
299 NUNC, FB), and absorbance was measured at 595 nm (FLUOstar Omega, BMG Labtech).
300 The results are expressed as micromoles of ascorbic acid equivalents per gram of
301 theoretical quantity of dry weight of marc or skins found in the feedstock (µmol AAE/ g
302 dw), using an ascorbic acid standard curve: 0.02 to 0.2 mg/mL. The analysis was done in
303 triplicate.

304 ***2.10 Statistical Analysis***

305 The differences between the surfactants in gas hold-up, stability and CGA separation
306 performance, were analysed using a t-test for independent samples. For comparison of
307 antioxidant capacity of the extract and the separated CGA of the two surfactants, the
308 data was analysed using a one-way ANOVA, detecting differences with the Tukey test.
309 The significance level was defined at $p < 0.05$ for all the analyses. All statistical analyses
310 were done using IBM® SPSS® Statistics 27. The results are reported as mean ± SD.

311 **3. Results and Discussion**312 **3.1 CGA characterisation**

313 To demonstrate the capacity of WPI for CGA generation, the gas hold-up and drainage of
 314 CGA generated with this surfactant were compared against those of Tween 20. The latter
 315 is a food-grade synthetic surfactant that has been previously used for the separation of
 316 phenolic compounds from hydroalcoholic extracts. The results of this comparison are
 317 shown in Table 1. Overall, it was observed that CGA(WPI) have a lower gas hold-up and
 318 stability than CGA(Tween 20). However, CGA characterisation results are within the range
 319 of stability (450s – 700s) and gas hold-up (57-72%) reported for other surfactants,
 320 including Tweens and Spans (Dahmoune et al., 2013; Dermiki et al., 2009; Fuda et al.,
 321 2004; MohdMadin et al., 2018; Spigno et al., 2015). These results demonstrate that
 322 whilst WPI displayed lower gas hold-up and stability than Tween 20, the tested
 323 concentration produced CGA within the range of stable CGA reported previously.

324

Table 1. Gas hold-up and half-life time of CGA generated with Tween 20 and WPI

Surfactant	Gas Hold Up (%)	T v/2 (s)
Tween 20 10 mM	67.22 ± 2.84 ^a	628.07 ± 2.65 ^a
WPI 15 mg/mL	56.50 ± 1.34 ^b	516.54 ± 18.22 ^b

Values are expressed as mean ± SD ($n=3$). Different letters in the same column denote significant difference $p<0.05$.

325 **3.2 Hydroalcoholic extracts characterisation**

326 Prior to the CGA separation, a hydroalcoholic extract was obtained from each feedstock.
 327 The characterisation of the extracts (Table 2) showed that the phenolic content differed
 328 greatly in composition, which was expected due to the natural composition of each by-
 329 product. Goji berry extract had been previously characterized by the authors (data not
 330 published), showing that phenolic acids (caffeic acid) and flavonoids (quercetin-3-O-
 331 rutinoside, quercetin, kaempferol-3-O-rutinoside, and catechin) are the major phenolic
 332 compounds, explaining the content of TPC and TFC. Other studies have reported the
 333 presence of anthocyanins in goji berries (Kosińska-Cagnazzo et al., 2017; Kulczyński &
 334 Gramza-Michałowska, 2016; Liu et al., 2020); however, in this study, no anthocyanins
 335 were detected; this could be related to different factors like extraction and analytical
 336 methods used here. For grape marc, it has been widely reported that it contains a high

337 content of flavonoids, such as anthocyanins (delphinidin, malvidin, cyanidin, petunidin,
 338 and peonidin in their glycosylated forms) and phenolic acids (caffeic acid, ferulic acid,
 339 syringic acid) (MohdMadin et al., 2018), which explain the high content of TPC, TFC, and
 340 the presence of TMAC.

341

Table 2. Phenolic compounds determination for grape marc (GME) extract and red goji skin extract (RGSE).

Feedstock	TPC	TMAC	TFC
GME	2034.98 ± 240.30	27.37 ± 2.82	2015.00 ± 108.99
RGSE	1029.61 ± 2.06	ND	254.95 ± 43.81

Total phenol content (TPC) values are expressed in mg GAE/ 100 g dw; total monomeric anthocyanin content (TMAC) values are expressed in mg of M3GE/ 100 g dw; total flavonoid content (TFC) values are expressed in mg CE/ 100 g dw. Values are expressed as mean ± SD ($n=6$). ND: Not detected

342 **3.3 Separation of phenolic compounds by CGA(WPI)**

343 CGA separation performance for each surfactant and each feedstock is shown in Fig 1.
 344 The results show that the recovery of TPC and TFC from grape marc was above 90%, with
 345 similar values for both surfactants (Fig 1-A). Thus, whey protein behaves similarly to
 346 Tween 20 in terms of phenolic compounds separation. For TMAC in grape marc, a lower
 347 recovery of anthocyanins than total phenols and flavonoids was obtained with both
 348 surfactants (Fig 1-C). Whilst the recovery with WPI was the lowest of the two surfactants,
 349 recovery with WPI was still over 60%. A different trend was observed for red goji extract,
 350 where the highest recovery of total phenols and flavonoids was observed in CGA(WPI)
 351 (Fig 1-A; 1-B) and similar TPC to that obtained for grape marc (about 90%).

352

353 The similar performance of Tween 20 and WPI in terms of TPC and TFC yields might be
 354 explained by the type of interactions occurring between the surfactants and phenolics
 355 during their separation. Several studies have established that hydrophobic interactions
 356 drive the separation of phenolic compounds when using Tween 20 (Carullo et al., 2022;
 357 Noriega et al., 2018; Sazdanić et al., 2023). Here, we hypothesised that these same
 358 hydrophobic interactions would lead to a successful separation using WPI. In general,
 359 phenolic compounds interact with the hydrophobic pocket of the protein. However,
 360 other interactions such as hydrogen bonding and van der Waals forces have
 361 demonstrated to play an important role when it comes to binding of protein and

362 phenolics (Cao & Xiong, 2017; Gong et al., 2021; Meng & Li, 2021; Ozdal et al., 2013; Skrt
 363 et al., 2012) which can explain the high recoveries obtained with WPI.

364

365 On the other hand, the significant difference in anthocyanin recovery between CGA(WPI)
 366 and CGA(Tween) is likely to be related to the pH of the surfactant solutions and the
 367 change of pH during the separation (Table 3). WPI stock solution displayed a pH above
 368 the isoelectric point of whey proteins (4.5-5.5); therefore, the overall charge of the
 369 protein was negative (Fuda et al., 2005; Fuda & Jauregi, 2006). In the case of GME and
 370 RSGE, the addition of WPI(CGA) led to a rise in pH whilst a decrease for Tween 20 (Table
 371 3).

372

Table 3. pH of GME, RSGE, surfactants and CGA phases after separation

		WPI (pH 6.20)		Tween 20 (pH 4.98)	
Feedstock	Extract	Liquid phase	Aphron phase	Liquid Phase	Aphron Phase
GME	4.56 ± 0.00	6.33 ± 0.00	5.81 ± 0.04	3.84 ± 0.06	3.79 ± 0.07
RGSE	5.68 ± 0.00	6.41 ± 0.05	6.16 ± 0.03	4.79 ± 0.03	4.82 ± 0.01

Values are expressed as mean ± sd (n=2)

373

374 The aphron phase in RSGE had a pH above the isoelectric point of whey protein (protein's
 375 net charge negative) , while GME showed a slightly lower pH in the AP, closer to the
 376 isoelectric point of whey proteins (protein's net charge close to zero). Therefore, despite
 377 proteins in GME and RSGE CGA(WPI) being differently charged, similar recoveries of TPC
 378 and TFC were attained for both. These findings support our hypothesis that CGA(WPI)
 379 separation is driven mainly by hydrophobic interactions and hydrogen bonds.
 380 Nonetheless, pH greatly affected the recovery of anthocyanins. The increased pH in the
 381 CGA(WPI) aphron phase of GME could be the reason for anthocyanin's reduced recovery.
 382 Anthocyanins are highly susceptible to structural changes above pH 2, where the
 383 ionisation of the flavylium ion gives place to other structures, like chalcones and quinones
 384 (Andersen & Jordheim, 2010; Cabrita et al., 2000; Enaru et al., 2021; Martín et al., 2017).
 385 Therefore, this could be the reason for the better recovery of anthocyanins with
 386 CGA(Tween 20) (pH 3.79) than CGA(WPI) (pH 5.81). In summary, phenolic compounds
 387 can be recovered effectively with CGA generated from whey protein. However, the pH of
 388 the resultant extraction mixture will need to be adjusted for pH-sensitive compounds.

389 Nevertheless, the isoelectric point of the whey proteins will need to be taken into account
 390 (for major whey proteins, it is about pH = 4-5) as at that pH, they will precipitate.

391 **3.4 AOC after CGA separation**

392 Following the successful separation and recovery of various phenolic compounds with
 393 WPI, it was crucial to determine the implications of this process on the AOC in the aphon
 394 phase. ABTS results (Fig. 2-A) show that a similar decrease of AOC occurred in GME for
 395 both surfactants, around 40%. For RSGE, the reduction was less than 10%. FRAP results
 396 (Fig. 2-B) showed a more noticeable decrease in GME than in RGSE with the two
 397 surfactants. However, this was more pronounced for CGA(WPI), where the initial activity
 398 was reduced by 50% approximately.

399

400 Previous studies have reported a reduction of AOC during CGA separation with Tween
 401 20, attributing this to phenolic oxidation (Spigno et al., 2015). In the case of CGA(WPI), it
 402 has been reported previously that a major cause for the decrease in AOC is likely due to
 403 the complex protein-phenolic interactions, the type of phenolic compounds and the
 404 medium (Almajano et al., 2007; Cao & Xiong, 2017; De La Cruz-Molina et al., 2023; de
 405 Morais et al., 2020; von Staszewski et al., 2011). it is important to note that both extracts
 406 have a different phenolic profile. GME displayed a higher content of flavonoids (Table 2)
 407 that are known to interact more strongly with WPI than phenolic acids, which are
 408 abundant in RSGE (Cao & Xiong, 2017). Other studies report that a masking effect is likely
 409 to occur depending on the method due to the competition during the antioxidant activity
 410 analysis between the protein and hydroxyl groups of the phenolics (Ozdal et al., 2013;
 411 Stojadinovic et al., 2013).

412

413 In summary, despite the high recovery of phenolics attained with both surfactants, the
 414 antioxidant activity of the extracts was reduced after CGA separation but especially in
 415 the case of GME, and this effect was even more pronounced with WPI, possibly due to
 416 protein-phenolic interactions.

417

418 **3.5 Stability effect of CGA on GME - kinetics of anthocyanins over storage time**

419 It was seen in the previous section that WPI possibly causes a decrease in AOC during
 420 CGA separation. Hence, it was important to understand the effect of CGA separation on
 421 the stability of anthocyanins since they are highly susceptible to degradation and they
 422 will have more or less stability depending on the structure, medium, temperature, and
 423 storage conditions (Andersen & Jordheim, 2010; Martín et al., 2017; Vidana Gamage et
 424 al., 2022). Thus, the impact of whey protein on the stability of GME's anthocyanins was
 425 studied. Figure 3 shows the degradation of anthocyanins in GME and GME-CGA over time
 426 which follow first-order kinetics. These results agree with previous studies for grape marc
 427 anthocyanins degradation, noting that while degradation is complex, it generally follows

428 first-order kinetics (Andersen & Jordheim, 2010; Hellström et al., 2013; Lavelli et al., 2016;
 429 MohdMadin et al., 2019).

430

431 Both surfactants show a pronounced stabilising effect of M3G. Very steady degradation
 432 of this anthocyanin in the CGA of both surfactants as compared to the extract (control) is
 433 shown in Fig 3. Both WPI and Tween showed a stabilisation effect with high life increasing
 434 from 4 days in the extract to 8 and 10 in the whey and Tween 20 CGA respectively (Table
 435 4). This stabilisation effect was also observed for C3G but there is almost no effect for
 436 P3G and D3G. Clearly, surfactants improve the stability of specific anthocyanins, possibly
 437 because of interactions between surfactant and anthocyanin and the degradation
 438 pattern could be influenced by the structure of anthocyanins (Appendix A.2).

439

440

Table 4. Half-lives ($t_{1/2}$, days) and degradation rate constant (k , d⁻¹) of anthocyanins processed in control (GME), CGA(WPI) and CGA(Tween 20).

Anthocyanin/Sample	GME		CGA(WPI)		CGA(Tween 20)	
	$t_{1/2}$	K (d ⁻¹)	$t_{1/2}$	K (d ⁻¹)	$t_{1/2}$	K (d ⁻¹)
Delphinidin 3-O-glucoside (D3G)	3	0.2146	2	0.3419	3	0.2359
Cyanidin 3-O-glucoside (C3G)	3	0.2326	6	0.1187	6	0.1125
Petunidin 3-O-glucoside (P3G)	4	0.1595	4	0.1931	5	0.1456
Malvidin 3-O-glucoside (M3G)	4	0.1711	8	0.0859	10	0.0700

441

442 For example, D3G is a highly hydroxylated molecule, making it more susceptible to
 443 degradation in aqueous systems and high temperatures (Cabrita et al., 2000; Vidana
 444 Gamage et al., 2022). On the other hand, the absence of hydroxyl groups in positions 3'
 445 and 5' makes malvidins more stable compared to other anthocyanidins (Martín et al.,
 446 2017). Interestingly, here, C3G was more stable than P3G. This result was unexpected
 447 since the methoxy group in position 5' should give P3G more stability compared to C3G,
 448 which has no functional group in the 5' position. It is important to note that the pH in
 449 CGA(WPI) and CGA(Tween 20) was above the pH in which anthocyanins are stable. Near

450 neutral pH, the flavylium cation is ionised, making the molecule more susceptible to
451 structural changes (Andersen & Jordheim, 2010; Martín et al., 2017; Mattioli et al., 2020).

452 This set of results showed that for most of the primary anthocyanins in GME, the
453 degradation was slower in both CGA than in the crude extract. Thus, extending the half-
454 lives of the analysed anthocyanins, possibly due to the stabilisation effect of the
455 interactions between surfactants and phenolics.

456 ***3.6. Integrated separation method***

457 Figure 4 shows an example of how CGA could be integrated within the conventional
458 process and how it would compare with other processes that are currently applied to
459 grape marc such as, evaporation or ultrafiltration, in which the removal of the solvent or
460 purification need to be carried out as a subsequent step. In this example, all the processes
461 end with the drying or encapsulation of the extract however, the only one that integrates
462 a pre-formulation step is CGA separation since there is no need to remove the protein
463 that is present in the aphyton phase. Moreover, the recycling of the protein in the liquid
464 phase generated after the CGA separation could be of great help from a techno-economic
465 point of view, as this could be used for following separations, making a cost-effective
466 process. While something similar can occur in the case of evaporation, in the case of CGA,
467 the collection of the liquid phase after the separation does not require the use of
468 specialized equipment.

469 Other surfactant based separations have been developed that could represent a green
470 solid-liquid extraction alternative to hydroalcoholic extraction. For example, Atanacković
471 Krstonošić et al. (2023) describe solid-liquid extraction using a surfactant rich solvent as
472 a green solvent that effectively extracts polyphenols with high antioxidant activity from
473 grape marc. In this method, the solubilisation power of the surfactant in the form of
474 micelles is the basis of the separation. Yet although it is an interesting method that leads
475 to high yields of phenolics with high antioxidant activity, in comparison with the one
476 proposed here, it requires: (i) higher amount of surfactant, 3% w/v vs 1.5% in the case of
477 CGA (ii) higher solvent to solids ratio, 100:1 vs 64:1 with CGA (calculated based on
478 solvent to solids ratio 8:1 and CGA to extract volume ratio 16) (iii) longer separation time,
479 45 minutes vs 10 minutes for CGA; for further comparisons between the different
480 surfactant based methods including CGA see Atanacković Krstonošić et al. (2023). Overall,
481 from the example and the results described above, it can be concluded that CGA can be
482 advantageous as compared to other separations, especially because it allows the
483 integration of the separation and formulation steps.

484 **4. Conclusions**

485 In this work, it was shown for the first time that CGA generated from whey proteins can
486 successfully separate phenolics from natural extracts, and the recovery of phenolics was
487 comparable to that of CGA generated from Tween 20. The results suggest that
488 hydrophobic interactions between phenolics and whey protein are responsible for the
489 successful separation, as well as hydrogen bonding. The strong interactions between
490 phenolics and protein lead to high yields but can also hinder the radical scavenging
491 activity, as observed in AOC reduction. On the other hand, these interactions can be
492 responsible for the stabilising effect observed during storage. Overall, CGA generated
493 with WPI have resulted in an integrated separation method that, by combining it with
494 hydroalcoholic extraction, leads to the effective separation of phenolics and their pre-
495 formulation in a whey protein rich solution with stabilisation effect. Thus, the
496 combination of CGA generated with food grade surfactants (Tween 20 and whey protein)
497 and the conventional solid-liquid extraction opens the perspective for a cost effective,
498 integrated and sustainable process for the extraction and formulation of phenolics from
499 by-products. Cost effectiveness will need to be further assessed by conducting a detailed
500 techno-economic assessment. Nevertheless, CGA generated with whey protein, which is
501 a food-grade surfactant derived from a by-product, can be an attractive and sustainable
502 separation method for food applications.

503

504

505

506

507

508

509 **Acknowledgements**

510 Gökhan Durmaz was supported by Inonu University with the project numbered FUA-
511 2018-1054.

512 **Funding Sources**

513 Partial funding from Horizon 2020, EXCELLENT SCIENCE - Marie Skłodowska Curie
514 Actions, Foods for Diabetes and Cognition (FODIAC) project, grant number 778388

515 **Author contributions: CRediT**

516 **Aimara V. De La Cruz Molina:** conceptualization, data curation, formal analysis,
517 methodology, investigation, writing – original draft, review and editing; **Gokhan Durmaz:**
518 conceptualization, investigation, methodology, writing – review and editing; **Maria Jose
519 Oruna Concha:** methodology, funding acquisition, supervision, writing – review and

520 editing; **Dimitris Charalampopoulos**: supervision, writing – review and editing. **Paula**

521 **Jauregi**: conceptualization, data curation, methodology, funding acquisition, supervision,

522 investigation, validation, writing – original draft, review and editing.

523 **Declaration of interests**

524 The authors declare that they have no known competing financial interests or personal

525 relationships that could have appeared to influence the work reported in this paper.

526

527 **Appendix**

528

529 **References**

530 Almajano, M. P., Delgado, M. E., & Gordon, M. H. (2007). Changes in the antioxidant

531 properties of protein solutions in the presence of epigallocatechin gallate. *Food*

532 *Chemistry*, 101(1), 126–130. <https://doi.org/10.1016/j.foodchem.2006.01.009>

533 Andersen, Ø. M., & Jordheim, M. (2010). Anthocyanins. In *eLS* (Issue October). Wiley.

534 <https://doi.org/10.1002/9780470015902.a0001909.pub2>

535 Atanacković Krstonošić, M., Sazdanić, D., Ćirin, D., Maravić, N., Mikulić, M., Cvejić, J., &

536 Krstonošić, V. (2023). Aqueous solutions of non-ionic surfactant mixtures as

537 mediums for green extraction of polyphenols from red grape pomace. *Sustainable*

538 *Chemistry and Pharmacy*, 33, 101069. <https://doi.org/10.1016/j.scp.2023.101069>

539 Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a

540 measure of “antioxidant power”: the FRAP assay. *Analytical Biochemistry*, 239(1),

541 70–76. <https://doi.org/10.1006/abio.1996.0292>

542 Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols:

543 Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic

544 Effects. *Molecules (Basel, Switzerland)*, 21(7).

545 <https://doi.org/10.3390/molecules21070901>

546 Cabrita, L., Fossen, T., & Andersen, Ø. M. (2000). Colour and stability of the six common

547 anthocyanidin 3-glucosides in aqueous solutions. *Food Chemistry*, 68(1), 101–107.

548 [https://doi.org/10.1016/S0308-8146\(99\)00170-3](https://doi.org/10.1016/S0308-8146(99)00170-3)

549 Cao, H., Saroglu, O., Karadag, A., Diaconeasa, ta, Zoccatelli, G., Adam Conte-Junior, C.,

550 Gonzalez-Aguilar, G. A., Ou, J., Bai, W., Mara Zamarioli, C., Alexandre Pedro de

551 Freitas, L., Shpigelman, A., Campelo, P. H., Capanoglu, E., Lik Hii, C., Mahdi Jafari, S.,

552 Qi, Y., Liao, P., Wang, M., Zou, L., Bourke, P., Simal-Gandara, J., Xiao, J., & Jesus

553 Simal-Gandara, C. (2021). Available technologies on improving the stability of

554 polyphenols in food processing. *Food Frontiers*, 2, 109–139.

555 <https://doi.org/10.1002/fft2.65>

556 Cao, Y., & Xiong, Y. L. (2017). Interaction of Whey Proteins with Phenolic Derivatives
 557 Under Neutral and Acidic pH Conditions. *Journal of Food Science*, 82(2), 409–419.
 558 <https://doi.org/10.1111/1750-3841.13607>

559 Cao, Y., Xiong, Y. L., Cao, Y., & True, A. D. (2018). Interfacial properties of whey protein
 560 foams as influenced by preheating and phenolic binding at neutral pH. *Food
 561 Hydrocolloids*, 82, 379–387. <https://doi.org/10.1016/J.FOODHYD.2018.04.020>

562 Carullo, D., Bosi, M., Dermiki, M., Bassani, A., Jauregi, P., & Spigno, G. (2022). Exploring
 563 different strategies of separation of antioxidant compounds from winery by-
 564 products via surfactant-assisted processes for process intensification and
 565 integration. *Food and Bioproducts Processing*, 131, 191–201.
 566 <https://doi.org/10.1016/J.FBP.2021.11.007>

567 Cortés, A., Moreira, M. T., Domínguez, J., Lores, M., & Feijoo, G. (2020). Unraveling the
 568 environmental impacts of bioactive compounds and organic amendment from
 569 grape marc. *Journal of Environmental Management*, 272, 111066.
 570 <https://doi.org/10.1016/J.JENVMAN.2020.111066>

571 Dahmoune, F., Madani, K., Jauregi, P., De Faveri, D. M., & Spigno, G. (2013).
 572 *Fractionation of a Red Grape Marc Extract by Colloidal Gas Aphrons*. 32.
 573 www.aidic.it/cet

574 De La Cruz-Molina, A. V., Gonçalves, C., Neto, M. D., Pastrana, L., Jauregi, P., & Amado, I.
 575 R. (2023). Whey–pectin microcapsules improve the stability of grape marc
 576 phenolics during digestion. *Journal of Food Science*, 88(12), 4892–4906.
 577 <https://doi.org/10.1111/1750-3841.16806>

578 de Moraes, F. P. R., Pessato, T. B., Rodrigues, E., Peixoto Mallmann, L., Mariutti, L. R. B.,
 579 & Netto, F. M. (2020). Whey protein and phenolic compound complexation: Effects
 580 on antioxidant capacity before and after in vitro digestion. *Food Research
 581 International*, 133(February), 109104.
 582 <https://doi.org/10.1016/j.foodres.2020.109104>

583 Dermiki, M., Gordon, M. H., & Jauregi, P. (2009). Recovery of astaxanthin using colloidal
 584 gas aphrons (CGA): A mechanistic study. *Separation and Purification Technology*,
 585 65(1), 54–64. <https://doi.org/10.1016/j.seppur.2007.12.023>

586 Dermiki, M., J. Garrard, I., & Jauregi, P. (2021). Selective separation of dyes by colloidal
 587 gas aphrons: Conventional flotation vs countercurrent chromatography. *Separation
 588 and Purification Technology*, 279. <https://doi.org/10.1016/j.seppur.2021.119770>

589 Enaru, B., Dret, G., Daria Pop, T., & St̄anil̄a St̄anil̄a, A. (2021). *Anthocyanins:
 590 Factors Affecting Their Stability and Degradation*.
 591 <https://doi.org/10.3390/antiox10121967>

592 Fallah, A. A., Sarmast, E., Fatehi, P., & Jafari, T. (2020). Impact of dietary anthocyanins
 593 on systemic and vascular inflammation: Systematic review and meta-analysis on

594 randomised clinical trials. *Food and Chemical Toxicology*, 135.
 595 <https://doi.org/10.1016/J.FCT.2019.110922>

596 Fuda, E., Bhatia, D., Pyle, D. L., & Jauregi, P. (2005). Selective separation of β -
 597 lactoglobulin from sweet whey using CGAs generated from the cationic surfactant
 598 CTAB. *Biotechnology and Bioengineering*, 90(5), 532–542.
 599 <https://doi.org/10.1002/BIT.20412>

600 Fuda, E., & Jauregi, P. (2006). An insight into the mechanism of protein separation by
 601 colloidal gas aphrons (CGA) generated from ionic surfactants. *Journal of*
 602 *Chromatography B: Analytical Technologies in the Biomedical and Life Sciences*,
 603 843(2), 317–326. <https://doi.org/10.1016/j.jchromb.2006.06.032>

604 Fuda, E., Jauregi, P., & Pyle, D. L. (2004). *Recovery of Lactoferrin and Lactoperoxidase*
 605 *from Sweet Whey Using Colloidal Gas Aphrons (CGAs) Generated from an Anionic*
 606 *Surfactant, AOT*. <https://doi.org/10.1021/bp034198d>

607 Gong, S., Yang, C., Zhang, J., Yu, Y., Gu, X., Li, W., & Wang, Z. (2021). Study on the
 608 interaction mechanism of purple potato anthocyanins with casein and whey
 609 protein. *Food Hydrocolloids*, 111, 106223.
 610 <https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106223>

611 Guo, Y., & Jauregi, P. (2018). Protective effect of β -lactoglobulin against heat induced
 612 loss of antioxidant activity of resveratrol. *Food Chemistry*, 266(January), 101–109.
 613 <https://doi.org/10.1016/j.foodchem.2018.05.108>

614 Hegedüs, I., Andreidesz, K., Szentpéteri, J. L., Kaleta, Z., Szabó, L., Szigeti, K., Gulyás, B.,
 615 Padmanabhan, P., Budan, F., & Máté, D. (2022). *The Utilization of Physiologically*
 616 *Active Molecular Components of Grape Seeds and Grape Marc*.
 617 <https://doi.org/10.3390/ijms231911165>

618 Hellström, J., Mattila, P., & Karjalainen, R. (2013). Stability of anthocyanins in berry
 619 juices stored at different temperatures. *Journal of Food Composition and Analysis*,
 620 31(1), 12–19. <https://doi.org/10.1016/J.JFCA.2013.02.010>

621 Jarudilokkul, S., Rungphetcharat, K., & Boonamnuayvitaya, V. (2004). Protein separation
 622 by colloidal gas aphrons using surfactant. *Separation and Purification Technology*,
 623 35(1), 23–29. [https://doi.org/10.1016/S1383-5866\(03\)00111-4](https://doi.org/10.1016/S1383-5866(03)00111-4)

624 Jauregi, P., & Dermiki, M. (2013). Separation of value-added bioproducts by colloidal gas
 625 aphrons (CGA) flotation and applications in the recovery of value-added food
 626 products. *Separation, Extraction and Concentration Processes in the Food,*
 627 *Beverage and Nutraceutical Industries*, 284-e314.
 628 <https://doi.org/10.1533/9780857090751.1.284>

629 Jauregi, P., Mitchell, G. R., & Varley, J. (2000). Colloidal gas aphrons (CGA): Dispersion
 630 and structural features. *AIChE Journal*, 46(1), 24–36.
 631 <https://doi.org/10.1002/aic.690460105>

632 Kaderides, K., Mourtzinos, I., & Goula, A. M. (2020). Stability of pomegranate peel
 633 polyphenols encapsulated in orange juice industry by-product and their
 634 incorporation in cookies. *Food Chemistry*, 310(October 2019), 125849.
 635 <https://doi.org/10.1016/j.foodchem.2019.125849>

636 Koh, Q. Q., Kua, Y. L., Gan, S., Tan, K. W., Lee, T. Z. E., Cheng, W. K., & Lau, H. L. N.
 637 (2023). Sugar-based natural deep eutectic solvent (NADES): Physicochemical
 638 properties, antimicrobial activity, toxicity, biodegradability and potential use as
 639 green extraction media for phytonutrients. *Sustainable Chemistry and Pharmacy*,
 640 35, 101218. <https://doi.org/10.1016/J.SCP.2023.101218>

641 Kosińska-Cagnazzo, A., Weber, B., Chablais, R., Vouillamoz, J. F., Molnár, B., Crovadore,
 642 J., Lefort, F., & Andlauer, W. (2017). Bioactive compound profile and antioxidant
 643 activity of fruits from six goji cultivars cultivated in Switzerland. *Journal of Berry*
 644 *Research*, 7(1), 43–59. <https://doi.org/10.3233/JBR-160144>

645 Kulczyński, B., & Gramza-Michałowska, A. (2016). Goji Berry (*Lycium barbarum*):
 646 Composition and Health Effects - A Review. *Polish Journal of Food and Nutrition*
 647 *Sciences*, 66(2), 67–75. <https://doi.org/10.1515/pjfps-2015-0040>

648 Lavelli, V., Torri, L., Zeppa, G., Fiori, L., & Spigno, G. (2016). Recovery of Winemaking By-
 649 Products. *Italian Journal of Food Science*, 28(4), 542–564.
 650 <https://doi.org/10.14674/1120-1770/ijfs.v507>

651 Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric
 652 anthocyanin pigment content of fruit juices, beverages, natural colorants, and
 653 wines by the pH differential method: Collaborative study. *Journal of AOAC*
 654 *International*, 88(5), 1269–1278. <https://doi.org/10.1093/jaoac/88.5.1269>

655 Li, D., Yang, Y., Yang, X., Wang, Z., Yao, X., & Guo, Y. (2022). Enhanced bioavailability and
 656 anti-hyperglycemic activity of young apple polyphenols by complexation with whey
 657 protein isolates. *Journal of Food Science*, 87(3), 1257–1267.
 658 <https://doi.org/10.1111/1750-3841.16062>

659 Li, N., & Girard, A. L. (2023). Impact of pH and temperature on whey protein-
 660 proanthocyanidin interactions and foaming properties. *Food Hydrocolloids*, 134,
 661 108100. <https://doi.org/10.1016/j.foodhyd.2022.108100>

662 Liu, B., Xu, Q., & Sun, Y. (2020). Black goji berry (*Lycium ruthenicum*) tea has higher
 663 phytochemical contents and in vitro antioxidant properties than red goji berry
 664 (*Lycium barbarum*) tea. *Food Quality and Safety*, 4(4), 193–201.
 665 <https://doi.org/10.1093/fqsafe/fyaa022>

666 Luck, P. J., Bray, N., & Foegeding, E. A. (2002). Factors determining yield stress and
 667 overrun of whey protein foams. *Journal of Food Science*, 67(5), 1677–1681.
 668 <https://doi.org/10.1111/J.1365-2621.2002.TB08704.X>

669 Lye, G. J., & Stuckey, D. C. (1998). Structure and stability of colloidal liquid aphrons.
 670 *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 131(1–3), 119–
 671 136. [https://doi.org/10.1016/S0927-7757\(96\)03931-3](https://doi.org/10.1016/S0927-7757(96)03931-3)

672 Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. *The American Journal of Clinical Nutrition*, 79(5), 727–747. <https://doi.org/10.1093/AJCN/79.5.727>

675 Martín, J., Kuskoski, E. M., Navas, M. J., Asuero, A. G., Martín, J., Kuskoski, E. M., Navas, M. J., & Asuero, A. G. (2017). Antioxidant Capacity of Anthocyanin Pigments. *Flavonoids - From Biosynthesis to Human Health*. <https://doi.org/10.5772/67718>

678 Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. *Molecules*, 25(17), 3809. <https://doi.org/10.3390/molecules25173809>

682 McClements, D. J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. In *Advances in Colloid and Interface Science* (Vol. 253, pp. 1–22). Elsevier B.V. <https://doi.org/10.1016/j.cis.2018.02.002>

686 Meng, Y., & Li, C. (2021). Conformational changes and functional properties of whey protein isolate-polyphenol complexes formed by non-covalent interaction. *Food Chemistry*, 364(February), 129622. <https://doi.org/10.1016/j.foodchem.2021.129622>

690 MohdMaidin, N., Michael, N., Oruna-Concha, M. J., & Jauregi, P. (2018). Polyphenols extracted from red grape pomace by a surfactant based method show enhanced collagenase and elastase inhibitory activity. *Journal of Chemical Technology and Biotechnology*, 93(7), 1916–1924. <https://doi.org/10.1002/jctb.5459>

694 MohdMaidin, N., Oruna-Concha, M. J., & Jauregi, P. (2019). Surfactant TWEEN20 provides stabilisation effect on anthocyanins extracted from red grape pomace. *Food Chemistry*, 271, 224–231. <https://doi.org/10.1016/j.foodchem.2018.07.083>

697 Moreno-González, M., & Ottens, M. (2021). A Structured Approach to Recover Valuable Compounds from Agri-food Side Streams. *Food and Bioprocess Technology*, 14(8), 1387–1406. <https://doi.org/10.1007/s11947-021-02647-6>

700 Motilva, M. J., Macià, A., Romero, M. P., Rubió, L., Mercader, M., & González-Ferrero, C. (2016). Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. *Journal of Functional Foods*, 25, 80–93. <https://doi.org/10.1016/j.jff.2016.05.013>

704 Muhlack, R. A., Potumarthi, R., & Jeffery, D. W. (2018). Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. *Waste Management*, 72, 99–118. <https://doi.org/10.1016/J.WASMAN.2017.11.011>

707 Nastaj, M., & Sołowiej, B. G. (2020). The effect of various pH values on foaming
 708 properties of whey protein preparations. *International Journal of Dairy Technology*,
 709 73(4), 683–694. <https://doi.org/10.1111/1471-0307.12705>

710 Noriega, D., Zuñiga, M. E., Soto, C., MohdMadin, N., Michael, N., & Jauregi, P. (2018).
 711 Colloidal Gas Aphrons separation to obtain polyphenol rich fractions from
 712 artichoke agro-industrial discards. *Food and Bioproducts Processing*, 110, 50–59.
 713 <https://doi.org/10.1016/j.fbp.2018.04.007>

714 Omoarukhe, E. D., Harbourne, N., & Jauregi, P. (2023). The Effect of Cinnamon and
 715 Ginger Spices on Anthocyanins in Sweetened Roselle Beverages. *Beverages*, 9(1),
 716 24. <https://doi.org/10.3390/beverages9010024>

717 Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein-phenolic interactions
 718 and associated changes. In *Food Research International* (Vol. 51, Issue 2, pp. 954–
 719 970). <https://doi.org/10.1016/j.foodres.2013.02.009>

720 Pertuzatti, P. B., Mendonça, S. C., Alcoléa, M., Guedes, C. T., Amorim, F. da E.,
 721 Beckmann, A. P. S., Gama, L. A., & Américo, M. F. (2020). Bordo grape marc (*Vitis*
 722 *labrusca*): Evaluation of bioactive compounds in vitro and in vivo. *Lwt*,
 723 129(January), 109625. <https://doi.org/10.1016/j.lwt.2020.109625>

724 Prasad, K. N., Spigno, G., Jauregi, P., Misra, N. N., & Cullen, P. J. (2015). Emerging macro-
 725 and micromolecules separation. *Food Waste Recovery: Processing Technologies*
 726 and Industrial Techniques, 227–248. <https://doi.org/10.1016/B978-0-12-800351-0.00010-9>

728 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999).
 729 Antioxidant activity applying an improved ABTS radical cation decolorization assay.
 730 *Free Radical Biology and Medicine*, 26(9–10), 1231–1237.
 731 [https://doi.org/10.1016/S0891-5849\(98\)00315-3](https://doi.org/10.1016/S0891-5849(98)00315-3)

732 Russo, B., Picconi, F., Malandrucco, I., & Frontoni, S. (2019). Flavonoids and Insulin-
 733 Resistance: From Molecular Evidences to Clinical Trials. *International Journal of*
 734 *Molecular Sciences*, 20(9), 2061. <https://doi.org/10.3390/ijms20092061>

735 Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and
 736 Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization.
 737 *Comprehensive Reviews in Food Science and Food Safety*, 17(3), 512–531.
 738 <https://doi.org/10.1111/1541-4337.12330>

739 Sazdanić, D., Krstonošić, M. A., Ćirin, D., Cvejić, J., Alamri, A., Galanakis, C., & Krstonošić,
 740 V. (2023). Non-ionic surfactants-mediated green extraction of polyphenols from
 741 red grape pomace. *Journal of Applied Research on Medicinal and Aromatic Plants*,
 742 32. <https://doi.org/10.1016/j.jarmap.2022.100439>

743 Sharma, K., Kaur, R., Kumar, S., Saini, R. K., Sharma, S., Pawde, S. V., & Kumar, V. (2023).
 744 Saponins: A concise review on food related aspects, applications and health

745 implications. In *Food Chemistry Advances* (Vol. 2). Elsevier Ltd.
 746 <https://doi.org/10.1016/j.focha.2023.100191>

747 Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with
 748 Phosphomolybdic-Phosphotungstic Acid Reagents. *American Journal of Enology
 749 and Viticulture*, 16, 144–158.
 750 <http://www.ajevonline.org/content/16/3/144.full.pdf+html>

751 Sinrod, A. J. G., Li, X., Bhattacharya, M., Paviani, B., Wang, S. C., & Barile, D. (2021). A
 752 second life for wine grapes: Discovering potentially bioactive oligosaccharides and
 753 phenolics in chardonnay marc and its processing fractions. *Lwt*, 144(February),
 754 111192. <https://doi.org/10.1016/j.lwt.2021.111192>

755 Skenderidis, P., Petrotos, K., Giavasis, I., Hadjichristodoulou, C., & Tsakalof, A. (2017).
 756 Optimization of ultrasound assisted extraction of goji berry (*Lycium barbarum*)
 757 fruits and evaluation of extracts' bioactivity. *Journal of Food Process Engineering*,
 758 40(5), 1–12. <https://doi.org/10.1111/jfpe.12522>

759 Skrt, M., Benedik, E., Podlipnik, Č., & Ulrich, N. P. (2012). Interactions of different
 760 polyphenols with bovine serum albumin using fluorescence quenching and
 761 molecular docking. *Food Chemistry*, 135(4), 2418–2424.
 762 <https://doi.org/10.1016/j.foodchem.2012.06.114>

763 Sonu, K. S., Mann, B., Sharma, R., Kumar, R., & Singh, R. (2018). Physico-chemical and
 764 antimicrobial properties of d-limonene oil nanoemulsion stabilized by whey
 765 protein–maltodextrin conjugates. *Journal of Food Science and Technology*, 55(7),
 766 2749–2757. <https://doi.org/10.1007/s13197-018-3198-7>

767 Spigno, G., Amendola, D., Dahmoune, F., & Jauregi, P. (2015). Colloidal gas aphrons
 768 based separation process for the purification and fractionation of natural phenolic
 769 extracts. *Food and Bioproducts Processing*, 94, 434–442.
 770 <https://doi.org/10.1016/j.fbp.2014.06.002>

771 Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time,
 772 temperature and solvent on concentration and antioxidant activity of grape marc
 773 phenolics. *Journal of Food Engineering*, 81(1), 200–208.
 774 <https://doi.org/10.1016/j.jfoodeng.2006.10.021>

775 Stojadinovic, M., Radosavljevic, J., Ognjenovic, J., Vesic, J., Prodic, I., Stanic-Vucinic, D., &
 776 Cirkovic Velickovic, T. (2013). Binding affinity between dietary polyphenols and β -
 777 lactoglobulin negatively correlates with the protein susceptibility to digestion and
 778 total antioxidant activity of complexes formed. *Food Chemistry*, 136(3–4), 1263–
 779 1271. <https://doi.org/10.1016/j.foodchem.2012.09.040>

780 Tazeddinova, D., Toshev, A. D., Abylgazinova, A., Rahman, Md. R., Matin, Md. M., Bin
 781 Bakri, M. K., & Ayan, O. (2022). A review of polyphenol and whey protein-based
 782 conjugates. *BioResources*, 17(4).
 783 <https://doi.org/10.15376/biores.17.4.Tazeddinova1>

784 Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2022). Sources and relative stabilities of
 785 acylated and nonacylated anthocyanins in beverage systems. *Journal of Food*
 786 *Science and Technology*, 59(3), 831–845. <https://doi.org/10.1007/s13197-021-05054-z>

788 von Staszewski, M., Pilosof, A. M. R., & Jagus, R. J. (2011). Antioxidant and antimicrobial
 789 performance of different Argentinean green tea varieties as affected by whey
 790 proteins. *Food Chemistry*, 125(1), 186–192.
 791 <https://doi.org/10.1016/j.foodchem.2010.08.059>

792 Wen, P., Zong, M. H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel
 793 nano-encapsulation approach for bioactive compounds. *Trends in Food Science and*
 794 *Technology*, 70(May), 56–68. <https://doi.org/10.1016/j.tifs.2017.10.009>

795 Yang, L. P., Ling, W. H., Du, Z. C., Chen, Y. M., Li, D., Deng, S. Z., Liu, Z. M., & Yang, L. L.
 796 (2017). Effects of anthocyanins on cardiometabolic health: A systematic review and
 797 meta-analysis of randomized controlled trials. *Advances in Nutrition*, 8(5), 684–
 798 693. <https://doi.org/10.3945/AN.116.014852>

799 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid
 800 contents in mulberry and their scavenging effects on superoxide radicals. *Food*
 801 *Chemistry*, 64(4), 555–559. [https://doi.org/10.1016/S0308-8146\(98\)00102-2](https://doi.org/10.1016/S0308-8146(98)00102-2)

802

803

804

805

806 **Figure Captions:**

807

808 **Figure 1.** (A) Recovery of total phenol content, (B) total flavonoid content, and (C) total
 809 monomeric anthocyanins content from grape marc and red goji skins extract separated
 810 through CGA(WPI) and CGA(Tween 20). * Denotes a significant difference $p<0.05$.

811

812 **Figure 2.** Antioxidant capacity by (A) ABTS and (B) FRAP in feedstock, CGA(WPI) and
 813 CGA(Tween 20) fractions. Different letters mean significant differences within the
 814 phenolics source ($p<0.05$). Values are expressed as mean \pm sd ($n=6$).

815

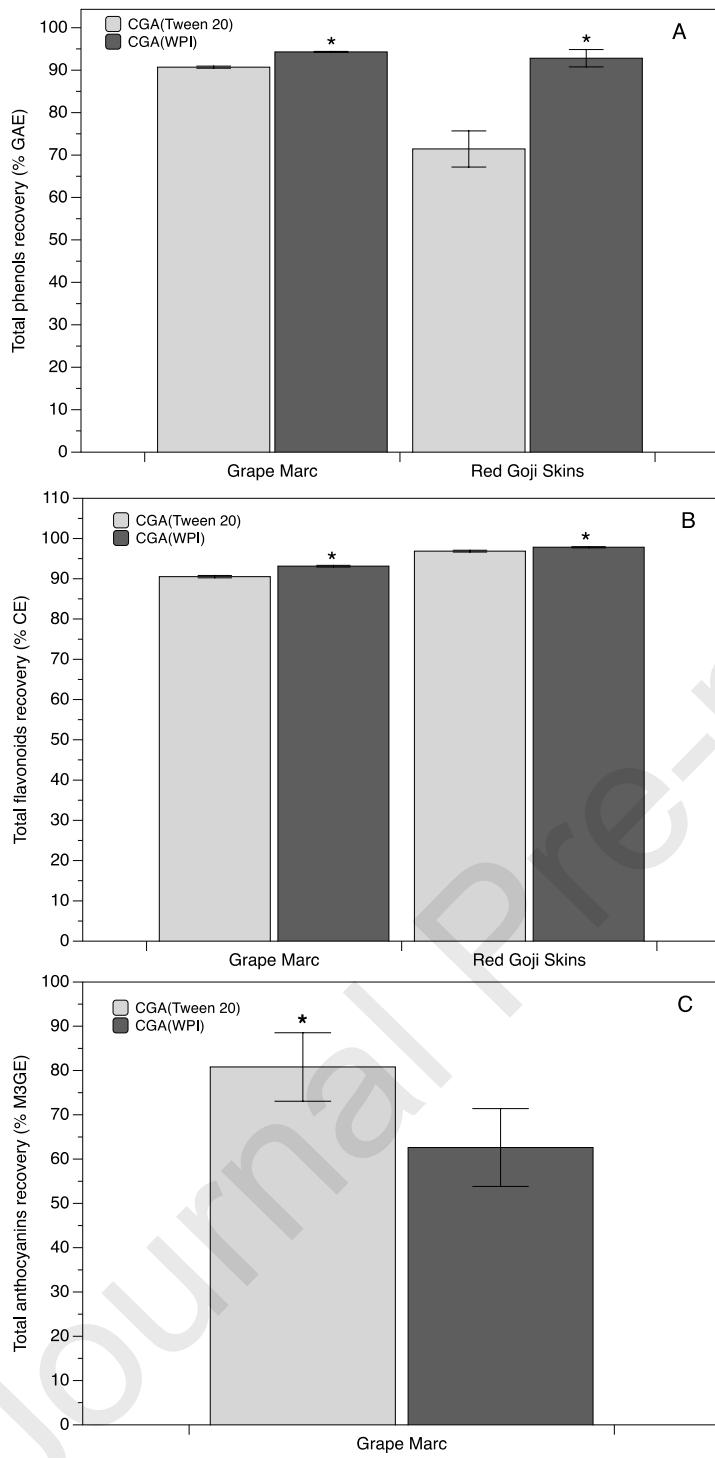
816 **Figure 3.** Decrease of anthocyanins content over time represented as natural logarithm
 817 of the ratio of anthocyanins at a given time at time zero during storage at 40°C for 30
 818 days. Values are expressed as mean \pm sd ($n=2$).

819

820 **Figure 4.** Diagram of incorporation of CGA in the process chain of grape marc
821 byproduct.

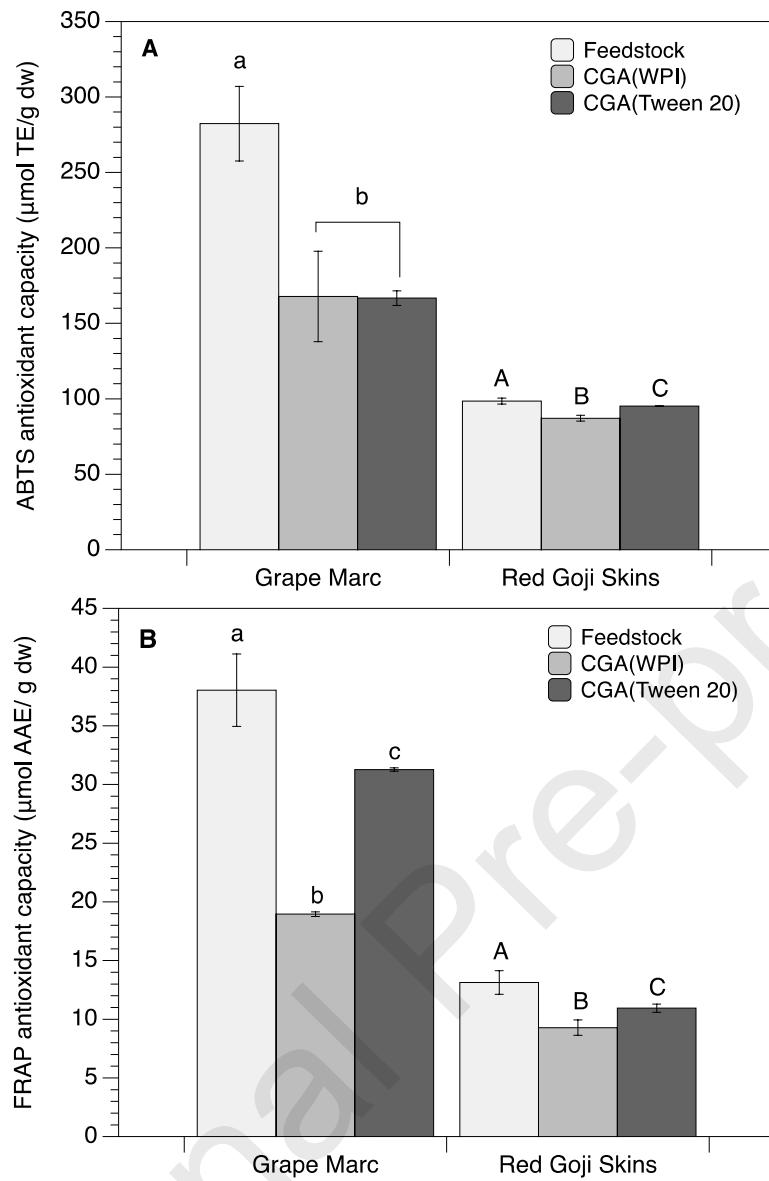
822

823 **Figure A.1.** HPLC chromatogram of mixing standards of Delphinidin, Cyanidin, Petunidin,
824 and Malvidin (20 μ mol) at 520 nm wavelength.

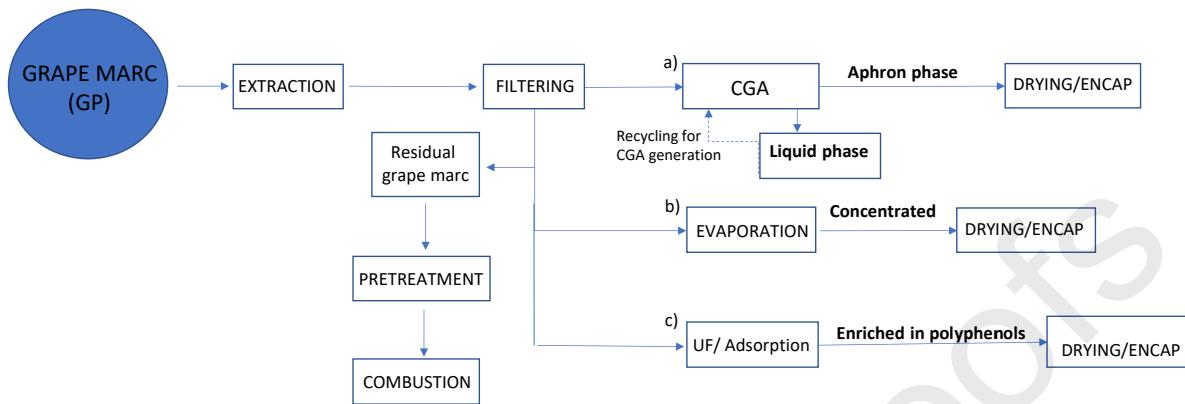

825 **Figure A.2.** Structure of anthocyanins used in this work. Figures taken from the Royal
826 Society of Chemistry-ChemSpider database (www.chemspider.com).

827

828

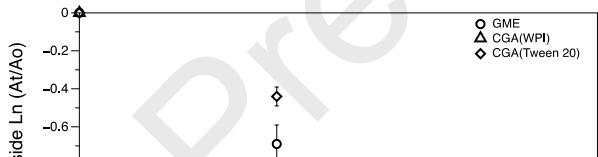

829

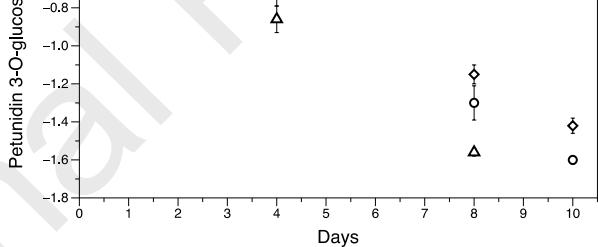
830

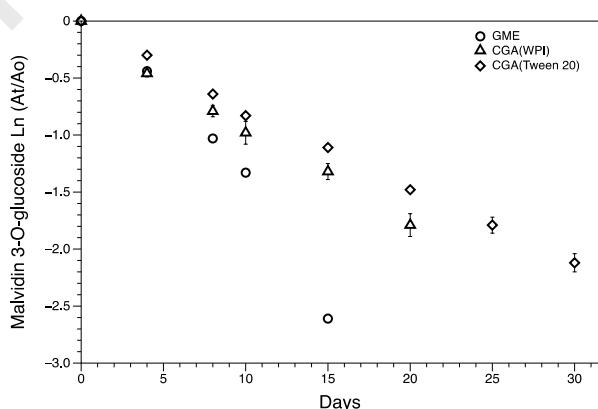

831

832

833


834


835


836

353

839 Highlights

840

- Successful recovery of phenolic by whey protein (WPI) generated CGA
- Separation of phenolics was similar with CGA(WPI) as with CGA(Tween)
- CGA(WPI) separation leads to reduction of antioxidant activity

843 • CGA made of whey protein can protect anthocyanins from degradation

844 • CGA separation integrates separation and pre-formulation of phenolics

845

846 **Author statement**

847 **Aimara V. De La Cruz Molina:** conceptualization, data curation, formal analysis,
848 methodology, investigation, writing – original draft, review and editing

849 **Gokhan Durmaz:** conceptualization, investigation, methodology, writing – review and
850 editing

851 **Maria Jose Oruna Concha:** methodology, funding acquisition, supervision, writing –
852 review and editing

853 **Dimitris Charalampopoulos:** supervision, writing – review and editing.

854 **Paula Jauregi:** conceptualization, data curation, methodology, funding acquisition,
855 supervision, investigation, validation, writing – original draft, review and editing.

856

857