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Abstract 

The past decade has seen a growth of natural capital accounting both internationally and 

nationally. The term natural capital refers to the elements of nature that directly and indirectly 

produce value or benefits to people, including ecosystems, species, freshwater, land, minerals, 

the air and oceans, as well as natural processes and functions (Natural Capital Committee 

2014). As an approach it emphasises the process of valuation, namely estimating the relative 

importance, worth, or usefulness of natural capital to people, typically to enable better 

governance. In this thesis, I explore the potential of big data and associated techniques to 

operationalise the natural capital framework at a national scale in England, through a better 

understanding of the relationship between natural capital assets and the benefits that flow 

from them. I take an interdisciplinary approach, using the literature review in Chapter 1 to 

identify key gaps in the state of the art, and addressing these gaps in the following chapters, 

finishing with a discussion of the implications of these findings in the final chapter (Chapter 

5). The results from this thesis demonstrate how diverse and emerging environmental datasets 

can capture important aspects of sociocultural value that are otherwise hard to include in a 

formal valuation process (Chapter 2), enable spatially targeted management (Chapter 3), and 

facilitate natural capital monitoring (Chapter 4). In Chapter 2, I demonstrate the potential of 

crowdsourced data to capture the sociocultural value of designated areas and show that 

species richness has a significant positive effect on public interest in designated areas. In 

Chapter 3, I show that population density is a driver of the relative importance of agricultural 

land use as a source of N and P in river catchments in England. In Chapter 3, I demonstrate 

that significant dependency exists between the quantity, quality and spatial configuration of 

green spaces in London, and that there is potential to maintain highly biodiverse areas in 

cities, without assigning large areas to this. Taken together, these results realise some of the 

potential of the big data era to support the natural capital framework and its implementation, 

as well as pointing to some of the limitations of this approach.  
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Chapter 1: Introduction and literature review 

1. Introduction 

Human activity is leading to global biodiversity loss and increasing pressure on natural 

resources, compromising the ability of the planet’s natural environment to sustain future 

generations (Watson et al. 2005; FAO 2019; IPBES 2019). A growing recognition that 

environmental degradation has a negative impact on human wellbeing has shifted the framing 

and purpose of conservation towards balancing the requirements of both biodiversity and 

people, recognising the importance of sustainable and resilient interactions between human 

societies and the natural environment (Mace 2014), and looking for synergies between the 

development and conservation agendas (Allam and Naser 2018). The United Nations 

Environment Programme (UNEP) Millennium Ecosystem Assessment (MEA), which ran 

between 2001 and 2005, focused global efforts on assessing the consequences of ecosystem 

change for human well-being and the scientific basis for action needed to enhance the 

conservation and sustainable use of those systems (Watson et al. 2005). The recognition 

within the MEA of the economic contribution of nature to human well-being has been very 

influential (Mace 2014), as has a focus on ecosystem services – defined in the MEA as the 

benefits people obtain from ecosystems (Watson et al. 2005). These benefits are commonly 

divided into provisioning services such as food, water and timber; regulating services such as 

floods and disease control; cultural services that provide recreational, aesthetic, and spiritual 

benefits; and supporting services such as soil formation and photosynthesis (Watson et al. 

2005). 

The focus on a sustainable provision of ecosystem services has led to the emergence of 

natural capital accounting, aimed at measuring and reporting on natural capital and the flow of 

benefits we receive from it in a systematic way (SEEA 2023). The term natural capital refers to 

the elements of nature that directly and indirectly produce value or benefits to people, 

including ecosystems, species, freshwater, land, minerals, the air and oceans, as well as natural 
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processes and functions (Natural Capital Committee 2014a). In England the concept of 

natural capital became central to environmental discourse when the government pledged to 

take a natural capital approach in its 25 Year Environment Plan (Defra 2018a). This 

framework necessitates regular monitoring of the nation’s natural capital assets to ensure 

efficient management of resources, to maximise the benefits we receive from nature and 

ensure that the integrity of our natural capital is not compromised for future generations 

(Defra 2018a).  

Monitoring natural capital at a national scale is a huge challenge because it means collecting, 

storing, and processing large datasets, overcoming data gaps, and developing suitable 

indicators for the status of natural capital and the benefits we receive from it (Defra 2018b, 

Natural England 2018). Big data offers new opportunities to face this challenge. Big data 

broadly refers to the increasing volume, variety, and velocity of data streams over the past 20 

years or so (Hampton et al. 2013; Chen et al. 2014). Developments in this area make it 

possible to harness new types of information, such as remote sensing data (Pettorelli et al. 

2016) and crowdsourced data (Isaac et al. 2014); to use increased processing power through 

platforms such as Google Earth Engine (Gorelick et al. 2017); and to apply new methods 

developed to process and analyse large and varied datasets, such as machine learning 

algorithms (Willcock et al. 2018). 

This PhD aims to explore the potential of big data to increase our understanding of the 

relationship between natural capital assets and the benefits that flow from them, taking an 

interdisciplinary approach, and through this contribute to the operationalisation of the natural 

capital framework at a national scale. This first chapter combines the introduction with a 

literature review, to set the context for the work overall and define key terms and concepts, as 

the results chapters (Chapters 2, 3 and 4) are presented in the format of papers, and thus 

include the relevant literature for each topic. The literature review will start (in Section 1.2.1) 

with an outline of the policy context that led to the emergence of the natural capital 
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framework, followed in Section 1.2.2 by a comparison of the various frameworks currently 

used to account for nature and the benefits we derive from it. Section 1.2.3 focuses on the 

natural capital framework as it is being used in the UK, including an overview of the different 

conceptual models that are used when implementing the natural capital framework and a 

description of some of the major work that has been carried out using the natural capital 

framework nationally. Section 1.2.4 examines the importance of valuing natural capital in 

decision making, and the central role of understanding the link between natural capital assets 

and benefits that flow from them in the valuation process. Section 1.2.5 examines natural 

capital as a big data challenge, including the potential of new datasets, methods and platforms 

to contribute to monitoring efforts. Finally, Section 1.2.6 lays out the research questions my 

thesis aims to answer, that target key gaps in knowledge identified in the previous sections. 

 

1.2 Literature review and research objectives  

 1.2.1 Policy context 

The MEA fundamentally changed approaches to policy internationally, moving policy 

discourse away from a “nature for itself” framing (Mace 2014), and emphasising the specific, 

quantifiable benefits that society receives from nature (Hungate and Cardinale 2017, Pan and 

Vira 2019). For example, the EU Biodiversity Strategy to 2020 addressed the need to account 

for ecosystem services through biophysical mapping and valuation (Maes et al. 2012), and the 

concept of payment for ecosystem services has become increasingly popular (Farley and 

Constanza 2010). Payment for ecosystem services describes schemes in which the 

beneficiaries, or users, of ecosystem services provide payment to the providers of ecosystem 

services (Defra 2013). In this context, the concept of natural capital has gained traction 

internationally, sharpening the focus on both the biodiversity and non-biodiversity assets that 

underpin the ecosystem services we receive from nature, and the need to conserve it for future 

generations. UNEP produced a global map of natural capital in 2014 (Dickson et al. 2014) and 
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the concept of natural capital features prominently in the European Union’s seventh 

Environment Action Programme ‘Living well, within the limits of our planet’ (European 

Parliament and Council 2013) as well as in “The Economics of Biodiversity: The Dasgupta 

Review” (Dasgupta 2021). Most recently, the 2022 “Assessment Report on Diverse Values 

and Valuation of Nature”, by the Intergovernmental Science-Policy Platform on Biodiversity 

and Ecosystem Services (IPBES), emphasises the need for decision-makers to understand and 

account for the wide range of nature’s values in policy decisions. 

In the UK, the UK National Ecosystem Assessment (UKNEA 2011) was followed by the 

Government White Paper, ‘The Natural Choice: Securing the Value of Nature’, which aimed 

to ‘put natural capital at the centre of economic thinking and at the heart of the way we 

measure economic progress nationally’ (Defra 2011, p. 4). To help achieve this, the Natural 

Capital Committee was set up in England in 2012 and ran until December 2020 as an 

independent advisory committee to advise the government on the sustainable use of natural 

capital in England, including helping the government develop its 25 Year Environment Plan 

for protecting and improving the environment (Natural Capital Committee 2020, Defra 

2018a), some of which was made legally binding through the Environment Act 2021 

(Environment Act 2021). The Office for National Statistics now publishes national natural 

capital accounts annually (Office for National Statistics 2023a), as the UK Government 

continues to take a natural capital approach to environmental policy.  

 

 1.2.2 Frameworks to account for nature and the benefits it provides  

The recognition within policy of the economic contribution of nature to human well-being 

has led to a plethora of different frameworks to account for these benefits, including 

ecosystem services, natural capital and nature’s contributions to people. 

Within the ecosystem services framework ecosystems provide ecosystem services to humans. 

Ecosystems refer to a dynamic complex of plant, animal, and microorganism communities 
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and their non-living environment interacting as a functional unit (UKNEA 2011). Ecosystem 

services can be defined as the conditions and processes through which natural ecosystems, 

and the species that make them up, sustain and fulfil human life (Goulder and Kennedy 1997). 

This includes services such as pollination, purification of air and water, mitigation of floods 

and droughts, provision of timber, recreational opportunities, and aesthetic beauty (Goulder 

and Kennedy 1997). Natural capital refers to the elements of nature that directly and indirectly 

produce value or benefits to people, including ecosystems, species, freshwater, land, minerals, 

the air and oceans, as well as natural processes and functions (Natural Capital Committee 

2014a). Natural capital is thus broader than ecosystems, as these elements need not be 

interacting, as is implicit in the definition of an ecosystem (Mace et al. 2015), and the term 

includes fossil fuels and minerals (Mace 2019).  

The term natural capital has its roots in economics (Missemer 2018) and refers to the 

economy’s environment and natural resource endowment (Barbier 2013). In economics, 

natural capital sits alongside produced or manufactured capital (roads, machines, buildings) 

and human capital (health, knowledge, institutions, culture). Together these three types of 

capital underpin our economy and ultimately human wellbeing (Mace 2019). This shift 

towards language and concepts taken from economics can be seen an attempt to ensure that 

nature is properly valued by decision makers and planners, and to engage businesses in 

conservation efforts. However, critics of the natural capital approach to conservation highlight 

that the value of nature is infinite and boiling this down to a series of benefits means 

essentially “selling out” on nature (McCauley 2006, Schröter et al. 2014). 

Within the natural capital framework stocks of natural capital support a flow of benefits to 

society. This explicit use of language taken from economics is one of the elements that 

distinguished the natural capital framework from the ecosystem services framework, which 

have been closely equated (e.g. Kareiva et al. 2011). Within the natural capital framework, the 

flows from the stocks of natural capital are sometimes referred to as ecosystem services (e.g. 
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Harrison et al. 2017, Jones et al. 2016), but in other publications they are referred to as 

benefits, which can include both services and goods (e.g. Mace et al. 2015). These terms will 

be addressed in more detail in the next section, but generally in the literature the distinction 

between ecosystem services and benefits is not clear-cut and they often refer to much the 

same thing. Thus, the natural capital framework is closely related to the ecosystem services 

framework but uses language from economics to speak more directly to economic planning 

and development efforts, as well as sharpening the focus on the stocks of natural capital that 

underpin the benefits humans receive from nature. Thus, most framings of natural capital 

treat ecosystem services as a subset of natural capital, representing flows of benefits from the 

stocks. 

Another framework that has emerged more recently from the IPBES is nature’s contributions to 

people (Díaz et al. 2018). Within this framework nature’s contributions to people are all the 

contributions, both positive and negative, of living nature (diversity of organisms, ecosystems, 

as well as their associated ecological and evolutionary processes) to people’s quality of life 

(Díaz et al. 2018). This framework was put forward as it was felt that the development of the 

ecosystem services and natural capital frameworks were dominated by knowledge from the 

natural sciences and economics, and that both have failed to engage with perspectives from 

the social sciences (Díaz et al. 2018, Norgaard 2010), or those of local practitioners, especially 

indigenous peoples (Díaz et al. 2018). However, Braat (2018) strongly refuted these claims, 

pointing to (i) the fact that more than half of the 650 publications in the journal “Ecosystem 

Services” in the period 2012–2017 address social aspects and are based on social science 

methods; (ii) the publication of dozens of articles on cultural ecosystem services in the journal 

in the same period; and (iii) the small but increasing number of publications on Indigenous 

Knowledge. In a response to Díaz et al. (2018), de Groot and colleagues (2018) call for 

nature’s contributions to people and ecosystem services to be regarded as synonyms, 

suggesting that their use may simply differ based on the audiences and purposes. 
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This plurality of frameworks, and the fact that some terms have multiple definitions, creates 

some challenges with regards to maintaining scientific cohesion, and threatens to undermine 

the challenging process of securing international commitments (Peterson et al. 2018). But 

building practical knowledge for sustainability in a diverse world is likely to require a diversity 

of approaches, each of which develops with its own history and policy context. The next 

section follows the development of a conceptual model for natural capital in the UK.  

 

 1.2.3 The natural capital framework 

1.2.3.1 Scope 

The decision of the UK government to take a natural capital approach in the 25 Year 

Environment Plan (Defra 2018a) has meant that this approach has become central to 

environmental discourse and policy in England. For the most part, the proposals in the 25 

Year Environment Plan apply to England only because environmental policy is devolved and 

responsibility rests with the Scottish Government, Welsh Government and Northern Ireland 

Executive. Strictly speaking, since the UK Government is responsible for a number of policies 

and programmes which affect sectors across the UK and internationally, some aspects of the 

25 Year Environment Plan apply to the UK as a whole (Defra 2018a). It is, for example, the 

UK that is signatory to international treaties such as the UN Convention on Biodiversity, 

rather than the individual countries that make up the union. However, the uptake of the 

natural capital framework varies between the countries that make up the union. Significantly, 

Wales has not explicitly adopted the natural capital framework, instead opting for and using 

the term “natural resources”, and focusing policy on the wellbeing of future generations 

(Welsh Government 2015). This being said, because the natural capital approach is part of 

academic discourse to a greater or lesser extent in all of the countries that make up the union, 

this section looks in detail at the conceptual models and applications for natural capital that 

are being used in the UK.  
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1.2.3.2 The development of a conceptual model for natural capital 

In the UK, different conceptual models for natural capital have emerged (Harrison et al. 

2017). They have some elements in common, specifically the idea of stocks of natural capital 

and flows from them that contribute to human wellbeing and livelihood. A stock is the amount 

of the natural resource (biotic/abiotic) which make up natural capital; a flow relates to the 

services and benefits arising from natural capital (Harrison et al. 2017). Benefits flow from the 

stocks of natural capital (e.g. Defra 2018a, Mace et al. 2015; Figure 1), with benefits defined as 

an advantage or good effect (Harrison et al. 2017). For example, from our stocks of soils, 

fresh water and species we receive the benefit of food. Likewise, our stock of forests provides 

the benefits of timber, CO2 sequestration and flood protection.  

Natural capital stocks can be organised into classes called “assets” (Mace et al. 2015), defined 

as “things of value” (Harrison et al. 2017). The Natural Capital Committee conceptualises 

natural capital as a series of overlapping assets that are formed and maintained by natural 

processes (Mace 2019). Some models define the assets they consider in a structured way. For 

example, Mace and colleagues 2015 considers the following as natural capital assets: species, 

ecological communities, soils, freshwaters, land, minerals, atmosphere, subsoil assets, oceans, 

and natural processes and functions. However, even when natural capital assets are listed 

explicitly in this way, it is often broad habitat classes that are taken as the “accountancy units” 

of natural capital, by using the major land use classes (e.g. Natural Capital Committee 2014a, 

Mace et al. 2015). In other cases, the natural capital assets are not clearly listed within the 

framework and the categories considered are much more flexible, depending on what is being 

studies - an asset could be lakes (Harrison et al. 2017), green infrastructure features in urban 

areas (Office for National Statistics 2023b) or riverine vegetation (Harrison et al. 2017).  
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Figure 1: Conceptual model for natural capital, following the simplified framework in Mace et 

al. 2015. 

 

In some conceptual models of natural capital, the flows from the stocks of natural capital are 

called ecosystem services rather than benefits (e.g. Jones et al. 2016, Harrison et al. 2017), 

providing a clear link to the ecosystem services framework. In various other models the flows 

from natural capital are broken down into ecosystem services, goods and benefits (e.g. Mace 

et al. 2015, Natural Capital Committee 2014a, Dickie et al. 2014; Figure 2), with other types of 

capital (human, manufactured) combining with natural capital at various stages. However, the 

terms ecosystem services, goods and benefits are not defined clearly in these publications so 

the difference between them and how they lead on from each other is not clear. Presumably, 

the difference between goods and services relates to the economic terms, with goods relating 

to the physical objects and services an activity that is performed. However, this difference 

between services, goods and benefits in the context of natural capital is a bit nebulous and 

creates challenges when implementing the natural capital framework. 
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Figure 2: Example of a conceptual model for natural capital in which flows from natural 

capital are broken down into ecosystem services, goods and benefits. Taken from Natural 

Capital Committee (2014a). 

 

Whilst the basic building blocks of the natural capital framework are the concepts of stocks of 

natural capital assets and flows of benefits/ecosystem services, some conceptual models for 

natural capital include other elements such as pressures on natural capital assets and societies’ 

responses (Harrison et al. 2017). Other models make more refined distinctions, for example 

between potential supply of ecosystem services and actual supply where user demand exists 

(Jones et al. 2016).  

In this work, a simple natural capital framework will be adopted, with stocks of natural capital 

assets and flows of benefits from them (Figure 1). This means that benefits and ecosystem 

services are considered synonyms and used interchangeably throughout. I hope that by using 

the simple natural capital framework it is possible to maximise overlap with other work and 

minimise confusion due to differences in terminology.  
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Natural capital here refers to the elements of nature (living and non-living) that produce value 

or benefits to people (directly and indirectly), such as the stock of forests, rivers, land, 

minerals and oceans, as well as the natural processes and functions that underpin them 

(Natural Capital Committee 2013). 

1.2.3.3 Work using the natural capital framework in the UK 

A range of work has been carried out using the natural capital framework, in both academic 

and more applied settings. There is a large body of work that maps or otherwise records 

natural capital at a particular place and time, as a kind of “stock-take” or “asset-register” of 

natural capital. An example of this type of work is the Mapping Natural Capital (RP02404) 

project, a collaboration between the Centre for Ecology and Hydrology (CEH) and Natural 

England (CEH and Natural England 2017). The aim of this project was to produce a series of 

England-wide natural capital maps at a 1 km scale, to contribute to our understanding of 

where our natural capital is. They mapped 10 different aspects of natural capital: soil carbon, 

soil nitrogen, soil pH, soil phosphorus, soil bacteria, soil invertebrates, headwater stream 

quality, carbon in vegetation, nectar plant diversity for bees, and plant indicators for habitats 

in good condition (CEH and Natural England 2017). Many similar natural capital mapping 

projects have been carried out more locally, for example at a county (e.g. Lear et al. 2021) or 

city level (e.g. Birmingham City Council 2013, Mayor of London 2017). These types of 

mapping projects help highlight the benefits provided by the natural environment, and can 

help planners and decision makers protect and restore the natural environment for the benefit 

of people. However, they are static, as they simply provide a snapshot of a particular time and 

place. It is of course possible to repeat these mapping projects with the aim of detecting 

change, but this is not usually done and thus it is not clear if the methods used in these studies 

will be sensitive enough to allow change detection in stocks and flows at the magnitude and 

speed that they are occurring. 
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The work to develop natural capital accounts for the UK by the Office for National Statistics 

and the Department for Environment, Food and Rural Affairs (Defra) has a clear focus on 

methods to map and quantify assets on a regular basis in order to detect changes in stocks and 

flows. Their aim is to incorporate natural capital into the UK Environmental Accounts, 

including changes to the extent and condition of the physical environmental assets and to the 

value of services provided by ecosystems. In addition to annual national capital accounts 

(Office for National Statistics 2023a), they create habitat accounts for urban areas (Office for 

National Statistics 2023b), woodland (Office for National Statistics 2022a) and health benefits 

from recreation (Office for National Statistics 2022b). The natural capital estimates are 

measured in physical units (for example, how many trees or acreage of forest there are), in 

terms of their condition (using condition indicators) and in monetary terms (what the value of 

woodland is) (Bright et al. 2019). Compared to the rest of the work discussed in this section, 

there is a strong focus here on the final step of valuing natural capital stocks in monetary 

terms, which they calculate as the net present value of current and future service flows. These 

final monetary estimates appear low even to those involved in the project (Bright et al. 2019). 

One reason for this is that the risk and cost of an asset deteriorating beyond some biological 

threshold and collapsing (a fish population, for example) is not factored into the valuation 

process, including the costs that would incur during recovery.  

There are various studies that do link the status of assets to whether the asset is at risk of 

failing to provide the benefits that society requires of it, providing a “risk-register” to sit 

alongside an “asset-register”. For example, the risk register in Mace et al. 2015 uses the asset-

benefit relationship for ten classes of benefit (food, timber, energy, aesthetics, freshwater 

quality, recreation, clean air, wildlife, hazard protection and equable climate) across eight 

broad habitat types in the UK, to assess the status and trends of natural capital assets relative 

to societal targets. They use existing regulatory limits and policy commitments to allocate a 

score of high, medium or low risk to the asset-benefit relationships, enabling monitoring 
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efforts and protection to be assigned to those natural assets where benefits are at highest risk 

(Mace et al. 2015). A combination of an “asset register” and a “risk register” can also be found 

elsewhere, for example in the Natural Capital Asset Check Approach proposed in the UK 

National Ecosystem Assessment Follow-on (Dickie et al. 2014), which aims to identify the 

amount and condition of natural assets, and then make an assessment of their current and 

future performance, with performance measured in terms of their ability to support human 

well-being (eftec 2012). More recently, Rees and colleagues (2022) created a natural capital risk 

register for marine systems in North Devon. 

From the beginning, the natural capital approach has attempted to reach beyond those 

working in a traditional conservation setting and appeal to decision-makers more broadly, 

including economists and planners. There are a range of tools that have been created to help 

the public, private and third sector organisations to manage the environment as an asset that 

delivers benefits for society (Ecosystems Knowledge Network 2019). These are tools that are 

capable of analysing information and producing an output that can inform decision-making. A 

widely used tool in this area is InVEST, created by the Natural Capital Project at Stanford 

University (Sharp et al. 2018). This tool combines a suite of open-source models that map and 

value a range of ecosystem services, including carbon storage and sequestration, crop 

pollination, recreation, sediment retention, scenic quality and water purification (Sharp et al. 

2018). InVEST models are spatially-explicit and define how changes in an ecosystem’s 

structure and function are likely to affect the flows and values of ecosystem services across a 

land- or a seascape (Ecosystems Knowledge Network 2019). InVEST enables decision-makers 

to assess quantified trade-offs associated with alternative management choices and to identify 

areas where investment in natural capital can enhance human development and conservation. 

There are other tools designed to assess a range of ecosystem services, such as ARIES 

(ARtificial Intelligence for Ecosystem Services), EcoServ-GIS, which is a Geographic 

Information System (GIS) toolkit for mapping ecosystem services at a county or regional 
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scale, and NCRAT (Natural Capital Register and Account Tool), which is a publicly accessible, 

excel-based natural capital accounting tool (Environment Agency 2023a). In addition to these, 

there are a range of tools designed with specific assets and services in mind, for example i-

Tree Eco, which is designed to quantify the structure and environmental effects of urban 

forests or trees, and their value to communities (Ecosystems Knowledge Network 2019).  

Finally, there are also publications that study natural processes within the natural capital 

framework, whether it be the processes that link stocks and flows, or the processes that 

control trade-offs and synergies between benefits. An example of this is the work on context 

dependency by Spake et al. (2019), which addresses the challenge of identifying both why and 

where management actions are most effective for enhancing natural capital across large 

geographic areas. The work puts forward a framework to achieve this by creating ‘effect maps’ 

across large spatial extents, which quantify how the effects of key drivers of ecosystem 

responses vary across broad geographic extents. Whilst this work is firmly framed within the 

natural capital framework, the findings on ‘cross-scale interactions’ will be of interest more 

broadly to those working in environmental management or studying landscape ecology. This 

kind of work thus provides important understanding on natural processes, targeted at the 

monitoring and implementation needs of the natural capital framework. 

  

1.2.4 Valuing natural capital through an understanding of the asset-benefit 

relationship 

In environmental economics, valuation refers to the process of estimating the relative 

importance, worth, or usefulness of natural capital to people (Natural Capital Coalition 2016). 

Critics of the natural capital framework raise concerns about the commodification of nature 

during the valuation process (Silvertown 2015), and concerns that the process of valuation 

itself overlooks the intrinsic value of nature (Díaz et al. 2018).  
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However, others argue that if the benefits provided by nature are not assigned a value, they 

will, by default, be assigned no value in decision making processes (Mace 2019). In addition, 

the process of valuation of nature does not necessarily involve monetisation (Constanza et al. 

2012). The work by the Office for National Statistics to incorporate natural capital into 

national accounts, described in the previously in Section 1.2.3.3, does involve putting a final 

monetary label on natural capital assets and benefits. However, there are a range of other ways 

in which nature is more commonly valued (Pearson 2016), and this valuation can be 

qualitative, quantitative, monetary or a combination of these, much in the same way as with 

ecosystem services. There are, for example, non-monetary techniques that focus on human 

expressions of preference, which can be studied through various methods including surveys, 

focus groups, participative mapping and official national statistics (Kelemen et al. 2016). 

Seeking to value natural capital assets through some kind of natural accounting process is in 

fact what any natural capital approach aims to achieve, as decision makers are often faced with 

trade-offs between different assets and questions about where best to invest limited financial 

resources to maximise benefits. As well as supporting decision making, valuation should be a 

way for governments, institutions and individuals to take responsibility for the natural capital 

assets that underpin society, monitor the condition of these assets over time and ensure that 

their condition do not fall below critical levels (Mace 2019). 

A full valuation of our natural environment is challenging, as it underpins every aspect of our 

life and can thus be considered of infinite value. In addition, the question “of value to 

whom?” or “of benefit to whom?” quickly appears in relation to valuing natural assets 

(Ghermandi and Sinclair 2019, Wilkins et al. 2021), as not everybody values the same thing, 

and most benefits are not distributed equally through space and amongst people. Various 

approaches to natural capital accounting and valuation have developed in parallel. Mace (2019) 

outlines some of the existing approaches, including the ecosystem-service based approach, 

which uses the value of the flows of benefits from assets to assess their value. This is similar 
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to the approach found in the Parliament’s POSTnote from December 2016, which considers 

the value of a natural capital asset as the overall benefit it adds to society (POSTnote 542). In 

contrast, the ecosystem-capability approach accounts for the fundamental and irreplaceable 

properties of natural capital through metrics that measure natural capital assets condition in 

terms of its potential to support these functions without interventions (Mace 2019). Whatever 

approach is taken, using metrics to account for the full value of assets is challenging, as a 

range of different metrics are needed to reflect the multiple benefits received from natural 

capital assets, and many of these metrics still need to be developed to operationalise the 

approach. 

Understanding the relationship between assets and the benefits they provide is central to 

valuation and natural capital accounting, in order to map certain benefits to particular assets 

(Harrison et al. 2017) or to understand the relationship between the condition of an asset and 

the value of the benefit provided to people (Mace et al. 2015). When relating assets to benefits 

it is common to assume that a single asset provides a particular benefit (e.g. Mace et al. 2015, 

Natural England 2018). However, this is a simplification as it is often the case that multiple 

assets come together to provide benefits. For example, no single assets can provide us with 

the benefit of drinking water, and instead it is provided by a range of different assets coming 

together at a landscape scale. Indeed, multiple assets are combining to provide multiple, 

sometimes conflicting benefits, such as clean drinking water and food production (Nisbet et 

al. 2022). This is where bringing natural capital into spatial planning is important, as it can 

enable decision-makers to assess quantified trade-offs associated with alternative management 

choices, identify areas where investment in natural capital can enhance ecosystem service 

benefits for people (Dasgupta 2021) and better understand context dependency, that is the 

way in which actions vary according to wider environmental conditions (Spake et al. 2019). 

More research is needed into the potential of big data and associated techniques to enable 
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spatially targeted management, and support conservation and restoration through careful land-

use planning to balance economic, social and environmental trade-offs. 

The condition of assets is of interest because it is likely to affect the benefits delivered, and 

thus the value of the asset. The condition or status of an asset can be seen as having three 

aspects: quantity, quality and spatial configuration (Natural England 2018, Natural Capital 

Committee 2014b, Mace et al. 2015). Quantity refers to the amount of an asset – its area, 

volume or mass. Quality refers to a range of conditions of the natural assets that affect 

benefits through the presence or absence of certain conditions or processes. Spatial 

configuration refers to the location of the asset and the spatial patterning in the landscape 

(Mace et al. 2015). Spatial configuration influences the delivery of benefits in various 

important ways, for example through habitat connectivity in the case of wildlife conservation 

(Isaac et al. 2018), distance from urban centres in the case of the recreational benefit of green 

spaces (Public Health England 2014) and the distribution of woodland in a catchment for 

flood protection (Mitchell et al. 2015). In the case of wildlife conservation, the quality of a 

habitat and its level of connectivity may be as important as the total area of habitat (Lawton et 

al. 2010; Isaac et al. 2018). However, the three aspects of asset condition can be highly related 

– for example, what appears as fragmentation when viewed at a fine resolution may be 

considered habitat degradation at a coarser scale. This is an area that needs more research, as it 

has practical implications for monitoring and understanding the relationship between asset 

condition and benefit delivery in more detail. 

The relationship between asset condition and the flow of benefits is important for decision 

making and management because if the state of an assets falls below a certain level, it will 

affect the benefits that people receive. There is thus a target level for the benefit that society 

requires or desires, based on a safe level of the natural asset condition. For example, we may 

want to be able to harvest a certain amount of timber each year for economic reasons. The 

simplest case is a linear relationship between asset condition and the benefits received (Figure 
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3 a). For example, in the case of timber production, the value of the timber is likely to 

decrease linearly with the quantity of timber remaining, until all the timber has been harvested. 

In other cases, there will be thresholds below which the benefit rapidly decreases and the self-

sustaining nature of natural capital is lost, leading to a non-linear response curve between asset 

condition and benefit received (Figure 3 b) (Mace et al. 2015). An example of this could be the 

way in which forests guard against soil erosion in a river catchment. An initial degradation in 

quality and selective removal of trees may have little effect on soil erosion, but beyond a 

certain threshold or critical level the amount of erosion increases suddenly and dramatically, 

with large quantities of soil washed away and reestablishment of forest or other vegetation 

difficult without management interventions (Pinard et al. 1995). Thus, the target level of forest 

cover and condition may be different when considering the benefit of protection against soil 

erosion to that of provision of timber, as is the effect of falling below this threshold in the 

response curve in each case. 
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Figure 3: Different forms the asset-benefit relationship can take. The dotted line represents a 

threshold beyond which the decline in the benefit is very rapid. The thick grey line in each 

case represents a target level for the benefit, based on a safe level of the natural asset required 

by society. Environmental degradation can lead to a decline in the condition or status of a 

natural assets, moving from right to left on the x axis. In both (a) and (b) the benefit received 

reduces with asset condition, but in (b) the benefit received reduces very quickly after the 

threshold is reached, whereas in (a) the decline is slow and consistent. Taken from Mace et al. 

2015. 

 

Understanding thresholds in the response curve between asset condition and benefit delivery 

are important when setting target levels for benefits and natural asset condition, to ensure that 

benefits are secured for society, particularly when non-linear relationships are present. In 

some cases, these target levels are set based on critical levels that affect human health (such as 

the level of Mercury or Lead in water bodies), underpinned by legislation (e.g. The Water 

Framework Directive), and monitored to ensure compliance (European Commission 2016). 
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But for other assets, such as species diversity, there is no clear critical level, and there is no 

simple answer as to how much species diversity is enough for society. This makes setting 

targets challenging. 

 

1.2.5 From theory to practice: Natural capital as a big data challenge 

A proliferation of major public and private investments in data-intensive science has expanded 

the possibilities for scientific discovery and led to the rise of “big data”, which broadly refers 

to the increasing volume, variety, and velocity of data streams over the past 20 years or so 

(Hampton et al. 2013, Chen et al. 2014). There is no strict definition of what constitutes big 

data, but the term is usually applied to large-volume, complex, growing datasets with multiple, 

autonomous sources (Wu et al. 2014). These large volumes of complex data are not readily 

handled by the usual data tools and practices (Hampton et al. 2013), which has led to new 

developments in machine learning (Jordan et al. 2015), cloud computing (Gorelick et al. 2017), 

data storage, and data collection capacity (Wu et al. 2014). Operationalizing natural capital is 

inherently a big data problem because 1) it often involves large volumes of data, either 

because assessments and research are carried out over broad spatial extents ,  long time 

periods or because a large number of different assets are considered, 2) a large variety of data 

needs to be sourced and incorporated in order to model indicators of asset status or flow of 

benefits, and 3) some of the datasets available are being expanded on continually, creating a 

“stream” of data that require new pre-processing and analytical methods (e.g. Zhu and 

Woodcock 2014), including close to real-time applications (Popkin 2016).  

Whilst using large, varied, growing datasets from various sources undoubtably involves 

challenges in terms of storage and processing, it also presents opportunities to harness the 

information provided by novel data types and methods to monitor natural capital assets and 

the benefits that flow from them. The following sections will look at recent developments in 
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available data types, methods and platforms that are relevant to monitoring within the natural 

capital framework.  

1.2.5.1 Data 

Various sources of big data can provide information on natural assets and the benefits that 

flow from them, including satellite remote sensing data (Pettorelli et al. 2016), camera trap 

data (Norouzzadeh et al. 2018), acoustic monitoring data (Oliver et al. 2018), ecological 

geolocated crowdsourced data (Isaac et al. 2014) and geolocated data from social media sites 

(Mancini et al. 2018). 

Satellite remote sensing data enable large scale monitoring of land cover change, facilitated by 

the free and open data policy of both the USA’s Landsat mission and the European Sentinel 

fleet (Liu et al. 2018). In the UK, satellite imagery is already the basis for the national CEH 

land cover maps for 1990, 2000, 2007, 2015, 2017, 2018, 2019 and 2020 which are widely used 

in natural capital accounting at a national (e.g. Office for National Statistics 2023a) and local 

level (e.g. Rouquette 2016) to quantify and map assets. Satellite remote sensing data has been 

identified as potentially providing other indicators of natural asset condition and flows of 

benefits at large scales (Ayanu et al. 2012, Andrew et al. 2014), as satellite derived indices have 

been shown to correlate with ground-based measures of ecological importance, and can thus 

be used as a proxy where ground measurements are unavailable (Morton et al. 2015). An 

example of this is the use of the normalized difference vegetation index (NDVI) as a proxy 

for above ground net primary productivity (Morton et al. 2015), which can be used to assess 

degradation of assets (Meneses-Tovar 2011) or predict agricultural crop yield (Panda et al. 

2010).  

Motion‐activated cameras (or “camera traps”) are becoming a mainstream tool in 

conservation and ecology (Rowcliffe and Carbone 2008), enabling ecologists to study 

population sizes and distributions, and evaluate habitat use (Norouzzadeh et al. 2018). Digital 

camera traps can take millions of images (Norouzzadeh et al. 2018), and advances in 
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automated species identification in camera trap images has reduced the reliance on experts or 

community volunteers to extract knowledge from these images (Wearn et al. 2017, 

Norouzzadeh et al. 2018). Acoustic monitoring is another technique that has been developed 

to collect data on animals remotely (Armitage and Ober 2010). Autonomous digital recorders 

are capable of recording and storing enormous datasets and it is possible to detect the calls of 

animal species of interest from field recordings (Browning et al. 2017). 

The widespread uptake of apps and social media platforms has meant that large quantities of 

crowdsourced data are now available. Ecological data collected using crowdsourcing 

techniques, such as smart phone application software and online platforms, are increasingly 

being used as quantitative measures of the stock and rate of change in biodiversity to assess 

species’ risk of extinction (Isaac et al. 2014). These opportunistic biological records are 

relatively unstructured but vast in quantity, so can fill gaps where long-term, standardised 

monitoring schemes are lacking (Lin et al. 2017). Another example of geolocated 

crowdsourced data is photos scraped from social media platforms, such as from the photo-

sharing platform Flickr. A common use for this type of data is to use the number of photos in 

green space as a proxy for visitation rates, and thus as an indicator of cultural benefits 

(Mancini et al. 2018; Wood et al. 2013). For example, Mancini et al. 2019 used pictures of 

wildlife posted on Flickr to quantify wildlife watching activities in Scotland, to study the 

overlap between recreational and conservation value of natural areas.  

Whilst large and novel datasets have exciting applications within the natural capital 

framework, particularly for monitoring at large scales, it is important to highlight that they do 

not replace more traditional datasets collected in the field. Indeed, analysis using novel and 

large datasets are almost always combined with or compared against data collected in the field 

(e.g. Wood et al. 2013). In the light of current gaps in environmental monitoring and the 

decision to scale back the Countryside Survey (Countryside Survey 2019), it is important not 



32 

 

to overpromise on what big data can deliver, especially in the absence of field measurements 

to “ground truth” results. 

1.2.5.2 Methods 

Harnessing the potential of big data poses challenges when it comes to pre-processing and 

analysis, which has led to a range of advances in methodology. Statistical techniques have been 

developed to extract patterns of change from noisy ecological data collected by volunteers 

(Isaac et al. 2014). As described previously, data collected using crowdsourcing techniques, or 

“opportunistic data”, are increasingly being used as quantitative measures of the stock and rate 

of change in biodiversity to assess species’ risk of extinction (Maes et al. 2015). These 

opportunistic biological records have an inherent sampling bias, referred to as “variation in 

recorder activity”, due to uneven recording intensity over time and space, uneven sampling 

effort per visit and uneven detectability (Isaac and Pocock 2015). In order to remove this 

noise from the data various statistical techniques have been developed, including filtering the 

data to remove bias, applying a statistical correction procedure to treat recorder activity and 

using occupancy–detection models to estimate the conditional probability that a species is 

recorded when present (Isaac et al. 2014), although none of these methods corrects for all 

forms of variation in recorder activity. 

Many studies are exploring the potential of machine learning as a method to extract 

information from large datasets. Machine learning is a method within the area of artificial 

intelligence in which algorithms learn from data, rather than being programmed manually by 

anticipating the desired response for all possible inputs (Jordan et al. 2015). The most widely 

used machine-learning methods are supervised learning methods (Hastie et al. 2017), which 

use predefined input-output pairs and learn how to derive outputs from inputs (Willcock et al. 

2018), without being explicitly programmed. Machine learning is increasingly being used to 

study ecosystem services (Scowen et al. 2021), for example, Willcock and colleagues (2018) 

have shown that machine learning techniques can be successfully used to model ecosystem 
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service flow. They used the Weka machine learning algorithms to model firewood use in 

South Africa, with comparable accuracy as conventional modelling techniques (54–77% 

accuracy). They also modelled biodiversity value in Sicily and highlight the benefit of the 

uncertainty information provided by the machine learning algorithms to help inform decision 

making (Willcock et al. 2018). Machine learning techniques are also a well-established way to 

create land cover maps using satellite data (Maxwell et al. 2018) and are central to recent 

developments in automated analysis of data from camera traps (Tabak et al. 2019) and 

acoustic monitoring (Browning et al. 2017). More recently deep learning has emerged as a 

“family” of machine learning algorithms, which show superior performance in some 

situations, and are starting to be used in ecosystem science (Perry et al. 2022), for example to 

better understand cultural preferences for biodiversity (Havinga et al. 2023) and map habitats 

using remote sensing data (Kattenborn et al. 2021). However, some challenges still remain in 

the use of deep learning approaches, such as the need for large quantities of reference data to 

train the model (Safonova et al. 2023), the technical knowledge needed to work with deep 

learning models, and the way deep learning models are seen as a “black box” by many, which 

makes the results harder to trust (Pichler and Hartig 2023). 

The rapid spread of digital media and the digitization of a substantial proportion of the 

world’s historical written resources has led to the rise of culturomics, which is the study of 

human culture through the analysis of changes in word frequencies in enormous digital text 

databases (Michel et al. 2011). Words can provide insights into human–nature interactions and 

through this provide new metrics and tools for near-real-time environmental monitoring and 

to support conservation decision making (Ladle et al. 2016). For example, Proulx et al. (2014) 

used Google Trends to report the seasonal trend of internet search terms, such as mosquitoes 

and pollen, to convey information about the biotic environment. Culturomics can also provide 

information on cultural benefits, by calculating the relative internet representation (a proxy of 

cultural saliency) of different species (Ladle et al. 2016). 



34 

 

1.2.5.3 Software and platforms 

Uptake of the data and methods described in the previous section has been aided by an 

increase in open source software, including widely used programs such as QGIS, but also 

software that is designed specifically with the natural capital framework in mind, such as 

Artificial Intelligence for Ecosystem Services (ARIES 2019, Villa et al. 2014) and the other 

natural capital assessment tools described in Section 1.2.3.3. It is also becoming increasingly 

common to provide code as supplementary material in publications, which helps to 

disseminate new methods.  

One of the challenges that emerges when working with big data is the need for a large amount 

of processing power and storage. This is particularly a problem for those working in the not-

for-profit sector, as they usually have limited ability to pay for access to high-performance 

computing systems. In some areas free platforms are emerging that allow analysis to be run on 

a cloud. One example of this is Google Earth Engine, which is a free cloud-based platform 

that enables access to high-performance computing resources for processing very large 

geospatial datasets (Gorelick et al. 2017). There are still some concerns about data ownership 

and control when using Google Earth Engine, but alternatives are also appearing outside of a 

commercial setting. For example, the European Space Agency’s Research and User Support 

Service currently provides free virtual machines to analyse remote sensing data (Copernicus 

Research and User Support 2023) as well as other web-based services that allow exploration, 

visualization, and analysis of datasets without having to download them (e.g. JupyterLab) 

(Copernicus Data Space Ecosystem 2023). 

There is an abundance of “blue-sky thinking” about online platforms that leverage the new 

technologies associated with big data and artificial intelligence to create a “dashboard for the 

planet”, with up-to-the-minute data on natural capital assets continuously feeding in (Green 

2018). Whilst this remains for the most part a dream of those working in big tech companies, 

there are examples of projects that are moving in this direction, such as the open-source web 
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application Global Forest Watch that monitors global forests in near real-time (World 

Resources Institute 2014). Whilst the quality of the data it provides is variable, it remains a 

good example of the power of platforms to harness the potential of big data whilst reaching a 

broad audience. 

 

 1.2.6 Research aims and thesis structure 

Developing a better understanding of the link between natural capital assets and the benefits 

they provide society is key to support evidence-based decision making and efficiently manage 

our natural capital assets. To better understand this relationship and operationalise natural 

capital accounting at a national level it is necessary to fill in some of the gaps in our current 

ability to monitor assets and benefits at a national scale.  

My first data chapter focuses on the flow of benefits from conservation areas in England. As 

described in Section 1.2.4, a full valuation of the benefits that flow from natural capital assets 

is important for decision making and requires indicators to help capture the different flows of 

benefits. Whilst the principal aim of designated areas is to protect biodiversity, the cultural 

flow of benefits from designated areas is not always recognised and is difficult to capture at 

large scales. As described in section 1.2.5, big data offers new opportunities for indicators to 

be developed to fill gaps in what can be monitored at a national scale. Chapter 2 will explore 

the potential of an emerging dataset from the collaborative encyclopaedia Wikipedia to 

capture and communicate the diverse socio-cultural values of nature, building on the strengths 

of more established crowdsourced data (Figure 4a).  
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Figure 4: Overview of how the three research chapters in this thesis contribute to the 

operationalisation of the natural capital framework, including a brief summary of the assets 

and benefits they address, the data used and the key aims of each chapter. 

 

Chapter 3 focuses on water quality in streams in England, specifically concentrations of 

nitrogen (N) and phosphorus (P). As identified in Section 1.2.4, the way in which assets come 

together to provide multiple benefits is an understudied area of natural capital. In Chapter 3, I 

will explore the potential of diverse data on the environment and statistical techniques to 

model this complexity, and to support spatially targeted management to balance the 

conflicting benefits of good water quality and agricultural production at a national scale in 

England (Figure 4b). 

Chapter 4 focuses on green spaces in urban areas and examines the interdependency of the 

three different dimensions used to describe asset condition – quantity, quality and spatial 

configuration – that are widely used to assess the condition of natural capital assets. As 

described in Section 1.2.4, the need to monitor three different aspects for each asset 

significantly adds to the complexity of monitoring efforts, and yet no systematic study of their 

interdependency has been carried out. My analysis will use Greater London as a case study, 
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and assess to what extent indicators of the quality, quantity and spatial configuration of green 

space are correlated (Figure 4c). 

The thesis closes with a discussion of the implications of the work presented in this thesis, 

highlighting the lessons learnt, limitations of the work, technical challenges encountered and 

future opportunities within the study area. 

Together, I hope this work will contribute to natural capital accounting efforts by addressing 

knowledge gaps that hinder the operationalisation of the natural capital framework at a 

national scale, including ways in which new sources of data can be harnessed to provide a 

more complete valuation of assets, how diverse environmental data can be harnessed to 

manage trade-offs between different benefits through spatially targeted management, and the 

extent to which the three different aspects of asset condition are dependent. The progress 

made throughout the three chapters in understanding asset-benefit relationships will support 

decision making efforts to maximise the benefits we receive from nature whilst ensuring 

sustainable stewardship of the natural capital assets that underpin them. 
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Chapter 2: Using geotagged crowdsourced data to assess the diverse 

sociocultural values of  conservation areas: England as a case study 

 

The work presented in this chapter has been published in the following journal paper: 

 

Crowson, M., Isaac, N. J. B., Wade, A. J., Norris, K., Freeman, R., and Pettorelli, N. (2023). 

Using geotagged crowdsourced data to assess the diverse socio-cultural values of conservation 

areas: England as a case study. Ecology and Society, 28(4):28. https://doi.org/10.5751/ ES-

14330-280428 

 

Visual Abstract 
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Abstract 

Humanity benefits immensely from nature, including through cultural ecosystem services; 

geotagged crowdsourced data provide an opportunity to characterize these at large scales. 

Flickr data, for example, have been widely used as an indicator of recreational value, while 

Wikipedia data are increasingly being used as a measure of public interest, potentially 

capturing often overlooked and less-tangible aspects of sociocultural value (such as 

educational, inspirational and spiritual value). So far, few studies have explored how various 

geotagged crowdsourced data complement each other, or how correlated these may be, 

particularly at national scales. To address this knowledge gap, we here compare Flickr and 

Wikipedia datasets in their ability to help characterise the sociocultural value of designated 

areas in England, and assess how this value relates to species richness. 

Our results show that there was at least one Flickr photo in 35% of all designated areas in 

England, and at least one Wikipedia page in 60% of them. The Wikipedia and Flickr data were 

shown not to be independent of each other and were significantly correlated. Species richness 

was positively and significantly associated with the presence of at least one geotagged 

Wikipedia page; more biodiverse designated areas, however, were not any more likely to have 

at least one Flickr photo within them. Our results highlight the potential for new, emerging 

datasets to capture and communicate the sociocultural value of nature, building on the 

strengths of more established crowdsourced data. 

 

2.1 Introduction 

Historically, arguments for conservation have promoted intrinsic values within a “nature for 

itself” framing (Mace 2014), but contemporary debate emphasizes the specific, quantifiable 

benefits that society receives from nature (Hungate and Cardinale 2017, Pan and Vira 2019). 

This shift in focus is illustrated by the growth of natural capital accounting both 

internationally (SEEA 2013) and nationally (Natural Capital Committee 2019, The White 
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House 2022). Natural capital is another term for the stock of renewable and non-renewable 

natural resources (e.g. plants, animals, air, minerals, freshwaters) that combine to yield a flow 

of benefits to people (Mace et al. 2015). Natural capital accounting is an umbrella term 

covering efforts to use an accounting framework to measure and report on natural capital and 

the flow of benefits we receive from it in a systematic way (SEEA 20). As an approach it 

emphasizes the process of valuation, namely estimating the relative importance, worth, or 

usefulness of natural capital to society (Natural Capital Coalition 2016). This usually involves 

some form of quantification, if not monetisation, to be used within decision making and 

planning. The goal of conducting valuations of nature is to determine in which ways nature is 

valuable and for whom, typically to enable better governance (TEEB, 2010, IPBES 2022). 

Critics of natural capital accounting highlight that the value of nature can be considered 

infinite and boiling this down to a series of benefits means essentially “selling out” on nature 

(McCauley 2006, Schröter et al. 2014). Proponents of the natural capital approach argue that if 

the benefits provided by nature are not assigned a value they will, by default, be assigned a 

value of zero, as so often happens within interactions between society and life-supporting 

ecosystems (Mace 2019).  

A full valuation of our natural environment is challenging, however, as it underpins every 

aspect of human well-being, and different values emerge from different world views (IPBES 

2022). A range of different metrics are needed to reflect the diverse values of nature (Harrison 

et al. 2017, IPBES 2022), and many of these metrics still need to be developed to 

operationalise the approach. Cultural ecosystem services, which include non-material benefits 

such as spiritual enrichment, cognitive development, recreation and aesthetic experiences 

(Millenium Ecosystem Assessment 2005), are usually hard to quantify and are often omitted 

from the valuation process despite being an important aspect of social-ecological systems. A 

range of methods have been developed to study cultural ecosystem services and the values 

associated with them, including contingent valuation (willingness to pay), choice experiments 
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(Cheng et al. 2019), questionnaires (Schirpke et al. 2022), deliberative methods (Allen et al. 

2021), interviews, photo elicitation of values (Graves et al. 2017) and participatory mapping 

(Jaligot et al. 2019, Muñoz et al. 2020). These methods shed important light on people’s 

relationship with nature, but as “stated preference” methods they rely on capturing an 

accurate account of people’s preferences and values, which is not always straightforward (e.g. 

Nassauer 1983, Häfner et al. 2018). In addition, whilst these methods have important 

strengths at a local scale, they are very difficult to apply nationally, due to practical 

considerations around recruiting enough participants. 

User-generated digital data has the potential to characterize diverse sociocultural values at 

large scales. Various studies have shown the potential of geotagged crowdsourced data from 

social media sites, such as Flickr, as an indicator of nature-based recreation at a national and 

regional scale (Wood et al. 2013, Graham and Eigenbrod 2019, Muñoz et al. 2020). This has 

led to a body of work on valuing cultural ecosystem services focusing on visitation rates, and 

the spatial and temporal variation in human engagement with the natural environment (see e.g. 

Van Zanten et al. 2016, Mancini et al. 2018, Calcagni et al. 2019). New opportunities are 

emerging to identify digital data that have the potential to characterize human perceptions of 

nature at large scales (Ladle et al. 2016, 2019, Schuetz and Johnston 2021) and capture public 

interest in species and ecosystems. A range of studies have looked at how people’s interest in 

particular species has varied over time, using data on Wikipedia page views (Millard et al. 

2021) or Google Trends (Schuetz and Johnston 2021). The collaborative encyclopaedia 

Wikipedia offers a powerful data source to map public interest at large spatial scales, making 

use of the activity of a huge community of existing users. Many Wikipedia pages are geotagged 

and these can be mapped to see what areas or landmarks are of interest to the public. Recent 

work, for example, modelled public interest in protected areas in Brazil using Wikipedia page 

views (Guedes-Santos et al. 2021). 
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However, it is not currently clear how the public interest in Wikipedia pages relates to 

different sociocultural values. There is some evidence that Wikipedia pages relating to 

attractions and events can predict visitation (Khadivi et al. 2016), but some users may decide 

to read and write Wikipedia pages because of an interest in a place or topic that is not directly 

related to visitation. This means that Wikipedia data could potentially capture a range of other 

non-tangible sociocultural values, such as educational, inspirational, aesthetic and spiritual 

value, sense of place and cultural heritage (Hernández-Morcillo et al. 2013), that are often 

systematically overlooked due to being ‘intangible’ or ‘messy’ benefits (Milcu et al. 2013, Chan 

et al. 2020).  

There are currently no large-scale studies comparing the informational signature of Wikipedia 

data with the information contained in other geo-tagged datasets known to directly correlate 

with visitation rates, such as Flickr. Yet doing so would help identify what aspects of the 

sociocultural value of nature Wikipedia data is able to capture. To address this gap, we here 

compare Flickr and Wikipedia data in their ability to characterise the sociocultural value of 

designated areas in England. We also assess how they each relate to species richness. We 

chose England as there is good data on the natural environment readily available and 

widespread use of both Flickr and Wikipedia.  

2.2 Study area 

The scope of this study is limited to terrestrial ecological systems and includes designated 

areas on mainland England. The designation types considered are National Parks, Areas of 

Outstanding Natural Beauty (AONBs), Ramsar Sites, Special Areas of Conservation (SACs), 

Special Protection Areas (SPAs), Local Nature Reserves (LNRs), National Nature Reserves 

(NNRs) and Sites of Special Scientific Interest (SSSIs) (n = 6349; Figure 5). These types of 

designations were chosen as the most relevant for nature conservation in England following 

Lawton and colleagues (2010). National Parks and AONBs are designated for their cultural, 

landscape and (in the case of National Parks) recreational value, but also have nature 



43 

 

conservation as part of their primary statutory purpose (Lawton et al. 2010). Ramsar Sites, 

SACs, SPAs, LNRs, NNRs and SSSIs have nature conservation as their primary designation 

purpose and have a high level of protection. Three of these types of statutory sites are a result 

of international treaties and obligations (Ramsar Sites, SACs, and SPAs). SSSIs and NNRs 

include some of the highest quality wildlife areas, whilst LNRs are designated by local 

authorities. There are spatial overlaps between some of the designations, for example 24% of 

the total area of National Parks and 12% of the area of AONBs are also designated SSSI 

(Lawton et al. 2010). Designated areas with the exact same extent and with more than one 

designation were only included once. Designated areas with offshore areas were clipped to the 

coastline (at low tide). 
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Figure 5: Map of designated areas considered in this study, broken down by designation type. 

Designation types considered are Local Nature Reserves (LNR), National Nature Reserves 

(NNR), Sites of Special Scientific Interest (SSSI), Areas of Outstanding Natural Beauty 

(AONB), National Parks (NP), Ramsar Sites (RAMSAR), Special Areas of Conservation 

(SAC) and Special Protection Areas (SPA). 
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2.3 Materials and methods 

 

2.3.1 Data acquisition 

To create a metric from the Flickr data, we assessed whether, or not, a given designated area 

had at least one Flickr photo associated with it; to create a metric from the Wikipedia data, we 

assessed whether, or not, a given designated area had at least one geotagged Wikipedia page 

within it. To assess if each designated area in England had at least one Flickr photo associated 

with it, the Flickr application programming interface (API) was queried to create a dataset of 

photos taken within designated areas between 2016 and 2019, which coincides with the period 

for which reliable Wikipedia data was available. The packages RCurl (Temple Lang 2020a), 

XML (Temple Lang 2020b) and httr (Wickham 2020) were used in R (R Core Team 2020) to 

request and download the data. The user and photograph ID, the date when the photo was 

taken and the geographic coordinates of where it was taken were downloaded. These data are 

anonymous, with the user ID not personally identifying the user in any way, in line with data 

protection regulation and data privacy concerns (Di Minin et al. 2021). Designated areas were 

categorised into two groups: those with no Flickr photos and those with one or more Flickr 

photos.  

To assess if each designated area in England had at least one geotagged Wikipedia page within 

it, a dataset was created containing all Wikipedia pages (written in the English language) with 

geotags within designated areas on the 1st of May 2019. The number of Wikipedia pages has 

increased from year to year since at least 2004 (Wikimedia Statistics 2021), so the pages that 

exist on a particular day broadly represent those created in the period leading up to that date. 

The most recent list of unique pages and their associated geotags is available for the English-

language edition of Wikipedia as a dump (https://dumps.wikimedia.org/enwiki/). A spatial 

filter was applied in QGIS to select the pages within designated areas. As with the Flickr 
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photos, the areas were categorised into two groups, those with no Wikipedia pages and those 

with at least one Wikipedia page. 

For the biodiversity indicator we used a freely available dataset on the estimated species 

richness of birds, butterflies and vascular plants at a 100 km2 scale, which was compiled for 

the period 2000 to 2013 (Dyer and Oliver 2016), derived from species occurrence data from 

the Biological Records Centre. To create a single species richness indicator from the three 

taxonomic groups considered (birds, butterflies and vascular plants) we scaled each group, by 

subtracting the mean from the original data and dividing them by the standard deviation. We 

then selected the maximum value for species richness found within each designated area for 

each taxonomic group, and finally added the three values together.  

In addition to the variables described above, we included variables that have been shown to 

influence cultural ecosystem service value in previous studies, namely distance to major towns 

and cities, population density, coastal location, public transport connectivity, elevation, 

presence of rivers and presence of waterbodies (Graham and Eigenbrod 2019, Mancini et al. 

2019, Muñoz et al. 2020). To estimate the distance from designated areas to urban centres we 

obtained the vector boundaries for major towns and cities in England for 2015 (Office for 

National Statistics 2015) and calculated the minimum distance between each designated area 

and the closest major town or city. To quantify the connectivity of designated areas to urban 

centres, we used data from OpenStreetMap (2020) to obtain the number of bus stops and 

train stations within the “pedestrian shed” of designated areas (a 500 m buffer). A radius of 

500 metres is considered in literature as a convenient pedestrian shed to capture proximity 

dynamics (Carpio-Pinedo 2014). We extracted the maximum population density for each 

designated area from the SEDAC Gridded Population of the World dataset for 2015, with a 

resolution of 30 arc-seconds (~1 km) (SEDAC 2018).  

We used the Office for National Statistics shapefile of the extent of realm (coastline) to 

identify coastal designated areas (Office for National Statistics 2019). We extracted the 
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maximum height within each designated area from the Shuttle Radar Topography Mission 

90m digital elevation model data (Jarvis et al. 2008). We used data from OpenStreetMap 

(2020) to create a factor identifying whether each designated area has at least one river within 

it or not and at least one waterbody within it or not; waterbodies considered included lakes, 

reservoirs and wetlands.  

 

2.3.2 Analysis 

Pearson’s chi-squared test was used to test for independence between the Flickr data and the 

Wikipedia data, and Spearman’s Rank correlation was used to assess the direction and strength 

of correlation between these metrics. 

We used binomial generalized linear models (glm) with a logit link function to model the 

probability of obtaining a Flickr picture or a Wikipedia page within a given designated area, 

implemented using the function glm from the core R stats package (R Core Team 2020). We 

chose glm as a method because interpretability of the model is a priority, and the coefficients 

are a robust way to gain insight into the relationships between the independent variables and 

the Flickr and Wikipedia data. Fixed covariates considered for both models were the log of 

the area of the designated area; species richness of birds, butterflies and vascular plants; the 

log of the distance to the closest major town or city; the log of the number of public transport 

links; population density; coastal location (categorical with two levels); maximum height; 

presence of at least one river (categorical with two levels); and presence of at least one 

waterbody (categorical with two levels). Akaike's Information Criterion (AIC) was used as the 

selection criteria for covariates to be included in our final best models. We used a stepwise 

approach, starting with a ‘maximal’ model including all the fixed covariates and conducting 

backward model selection (Zuur et al. 2009) using the function step in the stats package (R 

Core Team 2020). 
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All the covariates were standardised so that the coefficients were comparable. Model 

assumptions were verified by plotting residuals versus fitted values and against each covariate. 

We assessed the residuals for spatial autocorrelation by calculating Moran’s I, creating a map 

of the residuals for visual inspection and by plotting a distance-based semivariogram. The 

percentage of variance explained by our best models was calculated using the rsq package 

(Zhang 2020). To evaluate the accuracy of our predictive model, we used the pROC package 

(Robin et al. 2011) to create a receiver-operating characteristic (ROC) curve and calculate the 

area under the curve (AUC) (Zou et al. 2007). 

 

2.4 Results 

With regards to the distribution of Flickr photos and geotagged Wikipedia pages, in total 2194 

areas had at least one Flickr photo (34.6% of all designated areas) and 3829 areas had at least 

one geotagged Wikipedia page associate with them (60.3% of all designated areas).  

In relation to comparing the Wikipedia and Flickr data to assess what sociocultural values 

Wikipedia data have the potential to capture, the Pearson’s chi-squared test for independence 

between the Flickr and the Wikipedia data gave a test statistic of χ2 = 522.64 (df = 1, p < 

0.001), meaning that the two datasets were not independent of each other. The Spearman 

correlation coefficient for the relationship between the Flickr and Wikipedia data was rs = 

0.29, with the two datasets shown to be significantly and positively correlated (p < 0.001). 

Designated areas with both a Flickr photo and a Wikipedia page made up 27.5% of the total, 

whilst 32.6% of all areas had neither a Flickr photo nor a Wikipedia page (Table 1). 
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Table 1: Contingency table showing the relationship between the binary variables from the Flickr and 

Wikipedia data for all designated areas (n = 6349). The Flickr data is used to categorise designated areas 

into those with at least one Flickr photo (Y) and those with no photos (N). Likewise, Wikipedia data is used 

to split designated areas into those with at least one geotagged Wikipedia page (Y) and those with none (N). 

 

 
 Flickr data  

W
ik

ip
ed

ia
 d

at
a 

 Flickr: Y Flickr: N  

Wiki: Y 1747 2082 3829 

Wiki: N 447 2073 2520 

  
2194 4155 6349 

 
 

In relation to understanding the relationship between the value of designated areas and species 

richness, our best models for the Flickr and Wikipedia data explained 38% and 27% of the 

variability in the probability of a given designated area having a Flickr picture or a Wikipedia 

page associated with it, respectively. The AUC score for the best model of the Flickr data was 

0.84, and for the best model of the Wikipedia data it was 0.80 (see Figure A1.1, in Appendix 1, 

for the corresponding ROC curves). These best models (Table 2 and Table 3) showed that 

designated areas with high values for species richness were significantly more likely to have at 

least one geotagged Wikipedia page associated with them (p-value < 0.001), but this was not 

the case for geotagged Flickr photos (p-value = 0.08) (see Appendix 2, Figure A2.1, for the 

prediction plots for species richness). 
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Table 2: Estimated regression parameters, standard errors, z-values and p-values for the binomial glm of the 

Flickr data. Model R2 is 0.38. The independent variables are the log of the geographical extent of the 

designated area, species richness, coastal location, the presence of a water body, population density in the 

designated area and the log of the number of public transport links. 

  Estimate Std. error z value p-value 

Intercept -1.18 0.05 -25.44 < 0.001 

LogArea 1.53 0.06 27.48 < 0.001 

SpeciesRichness -0.06 0.03 -1.72 0.08 

Coastal : Yes 1.83 0.13 13.70 < 0.001 

Waterbody : Yes 0.45 0.07 6.39 < 0.001 

PopulationDensity 0.19 0.04 4.13 <0.001 

LogPublicTransportLinks 0.25 0.05 5.34 <0.001 

 

 

Table 3: Estimated regression parameters, standard errors, z-values and p-values for the binomial glm of the 

Wikipedia data. Model R2 is 0.27. The independent variables are the log of the geographical extent of the 

designated area, species richness, maximum height of the landscape in the designated area, coastal location, the 

presence of a river, population density in the designated area and the log of the number of public transport links. 

  Estimate Std. error z value p-value 

Intercept 0.80 0.05 17.17 < 0.001 

LogArea 1.56 0.05 30.90 < 0.001 

SpeciesRichness  0.38 0.03 11.13 < 0.001 

MaxHeight -0.25 0.04 -6.58 < 0.001 

Coastal: Yes -0.38 0.13 -3.02 0.002 

River: Yes -0.27 0.06 -4.09 < 0.001 

PopulationDensity 0.15 0.04 3.51 < 0.001 

LogPublicTransportLinks  -0.17 0.04 -3.81 < 0.001 

 

Moran’s I analyses suggested that spatial autocorrelation in the residuals of both best models 

remained significant, but was very small in the case of both the Flickr data (observed = 0.03, 

expected = -0.0002, p-value < 0.001) and the Wikipedia data (observed = 0.04, expected = -

0.0002, p-value < 0.001). Analysis of the spatial autocorrelation using semi-variograms and 

subsampling our data showed that this amount of spatial autocorrelation did not affect our 

conclusions (see Appendix 3). 
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2.5 Discussion 

Although Flickr and Wikipedia data have been used separately to study the relationship 

between humans and the natural world, we have shown for the first time that these two data 

sources are not independent of each other. Our results provide evidence that Wikipedia data 

captures patterns of visitation to designated areas to some extent, which makes sense given 

that people are likely to be interested in places that they plan to visit or have visited. However, 

the correlation between the Wikipedia and Flickr datasets was found to be relatively small, so 

it is likely that some of the signal from the Wikipedia data captures less-tangible aspects of the 

value of nature, such as educational, inspirational and spiritual value. The results also highlight 

that the diverse sociocultural values of nature are closely intertwined and hard to separate into 

neat categories, with visitation closely linked to public interest as captured by digital, user-

generated data. This is relevant to the debate about whether designated areas should be “set 

aside” for nature, or managed as shared spaces between people and biodiversity (Adams et al. 

2014), as a lack of access may lead to a fall in public interest in a site. Our work also shows 

that Wikipedia and Flickr data have different relationships with species richness, providing 

further support for the idea that the two datasets contain different signals, and highlighting 

that species richness has a significant positive effect on public interest in designated areas in 

England.  

Interestingly, our results suggest that species richness is not generally an important driver of 

visitor numbers in designated areas in England, as measured by Flickr data. Previous research 

is mixed in this area, with some studies finding a positive relationship between designated 

landscapes (protected for their high biodiversity value) and the number of Flickr photos at a 

regional (Gliozzo et al. 2016) and national (Graham and Eigenbrod 2019) scale, whilst other 

found no evidence that designation increased the number of Flickr photos (Hornigold et al. 

2016, Mancini et al. 2018). In our study geodiversity, such as coastal location and the presence 

of a water body, plays an important role (Table 2). Local population density and the number 
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of public transport links both have small positive effects on the probability of finding a Flickr 

photo in a designated area, whilst distance to the nearest major town or city do not have a 

significant effect. These findings are surprising, as other studies have shown that connectivity 

and proximity to urban areas have a large positive influence on visitor numbers (e.g. van 

Zanten et al. 2016 for Europe, Mancini et al. 2019 for Scotland). However, these studies are 

from countries that, unlike England, are not densely populated, and where most designated 

areas are relatively inaccessible. Distance to towns was also not important in explaining visitor 

numbers in Vermont (Sonter et al. 2016), where conserved lands exist throughout the state 

and the maximum distance between any conserved land and a town is less than 100 km.  

 

Using crowdsourced geotagged data to study the diverse values of high biodiversity areas is in 

the spirit of other recent work in “culturomics” that uses digital data to capture less tangible 

aspects of the relationship between humans and nature by, for example, capturing national 

park visitors’ sentiment from social media text (Hausmann et al. 2020), track species 

awareness through time using Wikipedia page views (Millard et al. 2021) and using expressions 

in photographs to reflect an aesthetic judgment of natural areas (Do 2019). The challenge with 

this approach is that it can be very difficult to validate the digital data using independent, non-

digital sources (Correia et al. 2021). The evidence that Flickr data is a good measure of 

visitation is strong (Wood et al. 2013, Mancini et al. 2018), but there is less evidence for what 

precise sociocultural values Wikipedia data can capture. Our study finds that local population 

density has a significant effect on the likelihood of finding a geotagged Wikipedia page within 

a designated area. People are often more interested in local entities and part of this is likely to 

be due to the ease with which they can be visited. Indeed, a study of online public interest in 

birds, measured by Wikipedia pageviews, found that those more commonly encountered in 

the wild attracted more pageviews (Mittermeier et al. 2021a). Given the lack of information on 

the motivation of Wikipedia users (Mittermeier et al. 2021b) it is hard to know what 
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proportion of public interest is unrelated to visitation, and indeed it may be unproductive to 

compartmentalise value into such neat categories. 

There are various methodological considerations that need to be considered when interpreting 

data sourced from Wikipedia and which point to other limitations for this study. Firstly, there 

are various considerations around the geography of Wikipedia data that have implications for 

the interpretation of our results. Because Wikipedia is organised by language rather than by 

country, language becomes the best proxy for country (Mittermeier et al. 2021b), which is why 

we chose to use the Wikipedia pages in English. This leads to two limitations. Firstly, there are 

English speakers across the entire world, whilst those who post georeferenced photographs 

on Flickr are more likely to have easy access to the area. Secondly, by choosing to consider 

only the English language Wikipedia pages we overlook the potential value from people 

originating from non-English speaking countries (or indeed whose favoured language is not 

English). More generally, there is the known bias in who contributes to Wikipedia and Flickr. 

In the case of Wikipedia, the demographic of editors is known to be predominantly white and 

male (Wagner et al. 2015), whilst high Flickr photograph density has been shown to correlate 

with high densities of well‐educated white people (Li et al. 2013). Indeed, any study using data 

from internet users excludes those who do not use the internet. Failing to include certain 

sectors of the population when drawing conclusion about value is a clear limitation of this 

kind of “big data” approach, as the question “of value to whom?” remains an issue (Milcu et 

al. 2013, Ghermandi and Sinclair 2019, Wilkins et al. 2021). Whilst directly addressing these 

issues is either not technically possible or beyond the scope of this study, taking them into 

account is important when interpreting the results. 

It is possible that the way Wikipedia data is used could affect what is being captured. 

Wikipedia data has already been used to create metrics and indicators in a range of ways, and 

our approach of using geotagged pages within designated areas is cutting edge, capturing a 

broad range of spatial entities within designated areas that contribute to their value, from 
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streams to stone circles. However, future work could develop indicators that make use of 

additional variables associated with the online encyclopaedia, such as page size (Wong and 

Rosindell 2021), page name (Chua et al. 2021), page views (Nolan et al. 2022), page edits and 

the distribution of languages and users (Mittermeier et al. 2021a). 

A further limitation of our study is the species richness data used to model value. The spatial 

resolution of this data is 100 km2 (Dyer and Oliver 2016a), which is a course resolution given 

the small size of many designated areas in England (the median size of LNRs in this study is 

0.1 km2, for example). This means that variation in species richness at a scale relevant to the 

smaller designated areas may not be captured by the dataset, in cases where these designated 

areas are small hotspots of biodiversity. In addition, the taxonomic groups included (birds, 

bees, and vascular plants) do not include other groups that are likely to be of interest to 

people, for example mammals. Whilst the data used is currently the best available at a national 

scale, there is room for improvement should other data be published in the future. In 

addition, future work could explore to what extent particular “charismatic species” increase 

visitor numbers, rather than more general measures of species richness. There is, for example, 

evidence that people will pay more or stay longer in a protected area if they have the 

possibility of encountering particular wildlife species (Mustika et al. 2020). It is also possible 

that the abundance of species influences recreational value, as visitors are more likely to be 

able to see species that are present in large numbers. Exploring further what aspects of 

biodiversity people care about and are more likely to visit is a promising direction for future 

work in this area.  

Understanding the values of nature is a fundamental step to comprehend and manage the 

interlinkages between people and other-than-human nature (Díaz et al. 2015). This study, as is 

the case for all attempts to value nature, emerges from a particular regional context and world 

view. The natural capital approach in England pushes for a national scale assessment of the 

value of stocks and the benefits that flow from them (Natural Capital Committee 2020), and 
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regular reporting of these within national accounts by the government (Office for National 

Statistics 2022c). It is within this type of valuation exercise that it is important to find datasets 

that are relevant to national policy and which can give a static “snap shot” of the state of the 

environment and the values we derive from nature. However, it is possible that any national 

assessment of value will remain very limited, as people’s experience of the natural world is 

primarily local. There are other ways of setting up valuation exercises that these data could 

also be used for, at various scales, including valuation exercises that highlight the importance 

of directing ecosystem service assessment and valuation exercises towards specific trade-offs 

and decision making (Posner et al. 2016, Chan et al. 2020). In the case of characterizing the 

diverse values of nature to inform environmental decision-making, the “culturonomics” 

approach taken within this study is probably best combined with more discursive and 

deliberative methodologies, both to ensure public participation and reflection (Allen et al. 

2021) and to help define the cultural ecosystem services through the lens of the beneficiaries 

themselves (Katz-Gerro and Orenstein 2015). Finally, the fact that the Flickr and Wikipedia 

data used in this study have a spatial dimension means that they can be used in mapping 

exercises, and through this enhance the visibility and communication of cultural ecosystem 

services, which is another important aspect of valuation exercises (Hernández-Morcillo et al. 

2013).  

The intrinsic value of high biodiversity areas remains a strong moral argument for their 

continued conservation, however the focus within policy on including the benefits humans 

receive from nature into decision-making in a formal way requires new approaches to 

capturing value, including attempts at quantification. This study has shown that there is 

potential for new, emerging datasets to capture and communicate the sociocultural value of 

nature, building on the strengths of more established crowdsourced data. However, in 

addition to critically assessing new datasets as we have done in this study, it is important to 

recognise that no single indicator can be expected to represent the value of a landscape and 
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can, in fact, be used against conservation efforts. For example, many of the designated areas 

did not have any Flickr or Wikipedia data associated with them, but this does not mean that 

they do not have any value to people. Going forward it would be interesting to use a series of 

case studies on different designated areas, at various scales, with different characteristics and 

designation types, and combine “stated preference” and more deliberative methods with 

digital data to understand in more detail the processes at work, including people’s motivations. 
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Chapter 3: Quantifying the relative importance of  agricultural land use 

as a predictor of  catchment nitrogen and phosphorus concentrations 

 

Visual Abstract 

 

Highlights 

• The relative importance of N and P sources in rivers was assessed nationally. 

• A data-driven, statistical, approach focused on population density was used. 

• Agricultural sources of N and P dominate in catchments with low population density. 

• Waste water treatment works dominate in catchments with high population density. 

• The findings inform spatially targeted management. 
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Abstract 

Human society receives the benefits of food production and good water quality from its 

endowment of natural capital, however there can be conflict between the provision of these 

two benefits. Agriculture is a major source of nitrogen (N) and phosphorus (P) in freshwater 

ecosystems, and different management strategies exist to reduce farmland nutrient losses and 

thus mitigate freshwater eutrophication. The importance of agricultural sources of N and P as 

drivers of water quality is known to vary spatially, but quantification of the relative importance 

of the nutrient sources and transport pathways shaping this variability remains challenging, 

especially with reference to inputs from waste water treatment works. Addressing this 

knowledge gap is key for targeting management strategies to where they are likely to have the 

greatest effect. To advance our understanding in this area, this study assesses the impact of 

population density as a driver of the relative importance of agricultural land use for predicting 

mean Total Oxidised Nitrogen (TON) and Reactive Phosphorus (RP) concentrations in rivers 

in England, using two different data-driven, statistical approaches: a generalised linear model 

and random forest. Our results show that agricultural N and P sources dominate in 

catchments with low population density, where stream water concentrations are lower and 

waste water treatment works are numerous, but smaller in terms of the population equivalent 

served. Agricultural N and P sources are not important predictors of N and P in catchments 

with high population density, where point source contributions from waste water treatment 

works dominate and the mean TON and RP concentrations are higher. These results require 

cautious interpretation, as model validation outcomes show that high TON and RP 

concentrations are consistently underpredicted by both statistical approaches. Altogether, our 

results lend support to the idea that the relative contribution of agricultural sources may be 

overestimated in densely populated catchments, relative to point sources from waste water 

treatment works, and that management strategies to reduce the contribution of agriculture to 
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N and P in rivers may be better targeted towards catchments with lower population density, as 

this is where agricultural land use is the primary source of N and P in rivers. 

 

3.1 Introduction 

Natural capital needs to be managed in a way that balances the different benefits it provides 

society. Here, natural capital is another term for the renewable and non-renewable natural 

resources (e.g. plants, animals, air, minerals, freshwaters) that combine to yield a flow of 

benefits to people (Mace et al. 2015). However, these benefits are sometimes conflicting, for 

example, the benefit of agricultural food production can conflict with good water quality, as 

agriculture disrupts nitrogen (N) and phosphorus (P) cycling through organic and inorganic N 

and P fertiliser application, and livestock rearing, increasing stream water N and P 

concentrations (Howden et al. 2010). In freshwater ecosystems, increased levels of N and P 

can result in eutrophication, with its associated shift to plant communities dominated by fast-

growing competitive species (Mainstone and Parr 2002, O'Hare et al. 2018), excess growth of 

aquatic weeds and phytoplankton, blooms of harmful algae and the associated negative 

impacts on invertebrates and fish (Smith and Schindler 2009). This in turn adversely impact 

on a range of water uses and societal benefits, including drinking water abstraction and 

treatment, livestock watering, water sports, angling, amenity value and tourism (Environment 

Agency 2019). 

Agriculture is known to be a major source of N and P, and nutrient runoff from agricultural 

practice is an underlying cause of eutrophication in many catchments (Carpenter et al. 2011, 

Moss 2008), N and P reach streams through wash-off and leaching of nutrients from fertiliser 

and manure applications to arable landscapes, and through soil disturbance and sediment 

runoff due to land management practices and livestock grazing (Nisbet et al. 2022). A range of 

measures have been developed to reduce diffuse pollution from agriculture, including reduced 

fertiliser usage, reduced tillage, and crop rotation (Luna Juncal et al. 2023). There are concerns 
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that these measures do not go far enough to reach water quality targets, which has led to the 

focus being increasingly put on land cover change, usually from crop to forest, peatland or 

wetland, that is, from land use that inputs N and P into river systems to one that can capture 

N and P (Nisbet et al. 2022). This type of natural habitat restoration often targets key areas 

around the sources, pathways, or receptors of N and P, whilst delivering many other benefits 

such as habitat creation, shade creation, carbon sequestration and increase access for 

recreation (Langhans et al. 2022). 

However, most of the management strategies aimed at reducing diffuse agricultural sources of 

N and P are costly to implement and have implications in terms of reduced yield or added 

management effort for farmers. In some cases, farmers receive renumeration for carrying out 

management strategies on their land, through payment schemes funded in various ways, for 

example through taxes (e.g. the Environmental Land Management schemes in England) or 

water utility companies (Nisbet et al. 2022). Land cover change comes at both an economic 

and social cost, as taking agricultural areas out of production has implications for food 

security. To address human society’s need for both food production and good water quality, it 

is important for management strategies to be spatially targeted to the sites where the measures 

will have the biggest positive effect on improving water quality in rivers (Withers et al. 2014), 

through an understanding of the effect of key drivers in different contexts (Spake et al. 2019). 

There is some evidence that in densely populated regions the contribution of agriculture to P 

concentrations in rivers may be less important than previously thought (Withers et al. 2014). A 

comparison of 10 countries in northwest Europe showed that mean P concentration in rivers 

were more strongly correlated with discharges associated with urban populations than with 

agricultural variables (Foy 2007). In addition to this, a regional study of N concentration in an 

urban-dominated region showed that urban is the land characteristic which is most important 

in determining nitrate concentrations (Davies and Neal 2004), but when the analysis was 

applied to landscapes across the UK, the area of arable land proved to be more important 
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(Davies and Neal 2007). This could mean that catchments with a low population density are a 

better choice for mitigation measures targeting agricultural sources of N and P, if they are 

shown to be the dominant cause of nutrient enrichment in these rivers, and thus more likely 

to respond to interventions with improved water quality. However, it is also possible that 

point sources from waste water treatment works (WWTWs) dominate in catchments with low 

population density, but with lower concentrations of N and P than catchments with higher 

population density. To date, no studies have compared catchments with low population 

density to catchments with high population density explicitly and at a national scale, with 

respect to the relative contribution of agricultural sources to N and P concentration. This 

study aims to fill this gap by using statistical models to test a series of hypotheses, using 

England as a case study. Data-driven, statistical, approaches provide an interesting and useful 

contrast to other models that define the relative inputs or flux transfers from different 

nutrient sources at the outset, for example, export co-efficient modelling and similar (Johnes 

et al. 1996), since the statistical models determine the relationship between source and 

instream concentration through model fitting. England was chosen because of the availability 

of water quality and environmental data, and because catchments with a range of different 

population densities are available, including catchments with very high population densities. 

Based on previous work, we expected agricultural sources to be the most important predictor 

of N and P concentrations in catchments with low population density (Foy 2007, Davies and 

Neal 2007) (H1). We expected effluent from WWTWs to be the most important predictor of 

N and P concentrations in catchments with high population density, with agricultural sources 

being less important (Davies and Neal 2004, Davies and Neal 2007) (H2). 
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3.2 Materials and Methods 

3.2.1 Data 

3.2.1.1 Dependent variables 

We used data from the Water Quality Data Archive (Environment Agency 2021) on 

concentrations of Total Oxidised Nitrogen (TON) (Total Oxidised as N in mg/l, determinand 

notation 116) and Reactive Phosphorus (RP) (Reactive Phosphorus as P in mg/l, determinand 

notation 180, “Orthophosphate”), filtered for measurements taken on a river or running 

surface water, and taken for monitoring purposes (as opposed to compliance). We chose these 

forms of N and P because they are much more commonly measured that total N and total P 

for monitoring purposes in England. For example, the 2019 dataset has 32,753 records for the 

determinand TON compared to 6,064 for Total N, and 30,875 records for RP and none for 

Total P. We downloaded the data for the years 2015 to 2019 and filtered all available 

monitoring stations within England to those that had at least one measurement per season per 

year for this time period, providing us with 528 monitoring stations for TON and 507 for RP. 

We did this as there is likely to be substantial seasonal variation in the TON and RP 

concentrations (Shen et al. 2020), and we wanted to make sure that this is captured within the 

data for all monitoring stations included in the study. We then took the mean value for all the 

TON and RP concentration measurements for each monitoring station across the five years. 

We chose to use the mean value rather than the median, as the mean concentration of N and 

P is currently used in relation to standards for N and P in rivers in England within policy 

documents (e.g. Defra 2014). We chose the period 2015-2019 after initial investigations 

showed that extending this period meant a drop in monitoring stations that met the criteria of 

having at least one measurement per season, particularly as during the COVID pandemic the 

number of measurements taken at some monitoring stations dropped considerably, leaving 

seasonal gaps. 
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3.2.1.2 Catchments 

To create catchments for the monitoring stations included in the study we snapped the 

geolocation of each monitoring station to the Centre for Ecology and Hydrology (CEH) 

1:50,000 Watercourse Network dataset (Moore et al. 1994) using the r.stream.snap function 

(Jasiewicz 2021) in GRASS GIS (GRASS Development Team 2022) with 2 km as the 

maximum distance tolerance. We then used the Watershed tool (Spatial Analysis) in ArcGIS 

Pro (ESRI 2022) in batch mode, with the Integrated Hydrological Digital Terrain Model 

(IHDTM) Outflow Direction raster in its native 50 m resolution (Morris and Flavin 1990, 

1994) to automatically delineate a catchment for each monitoring station. The CEH 

Watercourse Network dataset is consistent with the IHDTM Cumulative Catchment area, so 

the step of snapping the monitoring station avoids spatial discrepancies between the 

monitoring stations and the IHDTM Cumulative Catchment Area that would lead to large 

mistakes in the catchment delineation step. 

There were some instances in which the above process did not work, particularly in flat 

regions such as East Anglia. These cases were usually easy to spot as the resulting catchments 

were very small (< 0.05 Km2). In these cases, the catchments were created manually through 

visual inspection of the data and existing maps of catchment available through The National 

River Flow Archive (2023) and the Defra Catchment Explorer (2023). 

There were a few instances in which catchments could not be reliably defined using the 

methods described above, and these were removed from the dataset. In addition, a few 

catchments were removed because they fall mostly in Scotland and Wales, which are beyond 

the scope of this study and in some cases have differences in data availability. Finally, one 

catchment was removed because the monitoring station was immediately downstream from a 

fertiliser factory and had extremely high values for TON concentration. This process left a 

total of 515 monitoring stations to model concentrations of TON and 494 monitoring 

stations to model concentrations of RP. However, many of these catchments overlap, that is, 
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they contain each other due to them being on the same river or branch of a river. The 

observations at monitoring stations that are downstream from each other are not independent 

from each other (Schreiber et al. 2022), as the water passing through them will be affected by 

the same conditions, processes and events, leading to pseudoreplication, which is an issue 

when interpreting the models used in this study (Mets et al. 2017). To avoid this bias, we 

grouped the catchments that overlap, and selected the catchments with the highest elevation 

outlet within each group. This means that there is a bias towards catchments with a greater 

ratio of upland to lowland land cover types, but it maximises the number of non-overlapping 

catchments. This is because, for example, it was possible to keep various monitoring stations 

with catchments on different branches of a river by removing a monitoring station lower in 

the landscape that contained the above. This process left a total of 404 monitoring stations to 

model concentrations of TON and 383 monitoring stations to model concentrations of RP 

(Appendix A4, Figure A4.1). As can be seen in Figure A4.1 in Appendix 4, most of the 

monitoring stations are included in both datasets (379), with a few only included in the TON 

dataset (25) or the RP dataset (4). 

3.2.1.3 Independent variables 

We chose the independent variables to include in the models for TON and RP based on 

environmental characteristics of the catchment that may impact on the concentration of N 

and P in rivers, namely proportion of the catchment with arable and horticultural land cover, 

proportion of area covered by forest, mean population density in the catchment, cattle and 

calf density in the catchment, sheep and lamb density in the catchment, maximum mean 

precipitation in the catchment, mean slope in the catchment, channel density for the 

catchment, the estimate of the base flow index based on the Hydrology of Soil Types 

classification (BFIHOST), proportion of the catchment designated for conservation and/or 

recreation, catchment area and population equivalent of the WWTWs within the catchment. 

Population equivalent is a parameter for characterizing the polluting potential of industrial 
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wastewaters (in terms of biodegradable organic matter). For the models of TON, we also 

included the mean atmospheric deposition of N. For the model of RP, we assumed 

atmospheric P deposition is relatively low, occurring only from windblown dust, and is 

unlikely to show any systematic spatial variation at a small scale (Tipping et al. 2014). A 

summary of independent variables included can be found in Table 4. 

 

Table 4: Independent variables included in the models for TON and RP. All variables are continuous. The 

independent variable marked with * was only used for the models of TON. 

Variable Type Independent variable Abbreviation 

Land cover Proportion arable and horticultural land cover ArableHortProp 

Land cover Proportion broadleaved and coniferous woodland 
land cover 

ForestProp 

Waste Water 
Treatment Works 

Population equivalent of waste water treatment 
works in the catchment. Population equivalent is a 
parameter for characterizing the polluting potential 
of industrial wastewaters (in terms of biodegradable 
organic matter). It expresses the polluting load of a 
WWTW in terms of the population (number of 
people) that could produce the same polluting load. 
 

PopEquiWWTW 

Catchment size Catchment area CatchmentArea 

Soil and geology Estimate of the base flow index based on the 
Hydrology of Soil Types classification (BFIHOST) 
  

HOSTBaseFlowIndex 

Precipitation Maximum mean annual precipitation for 2015-2019 MaxPrecipitation 

Population Population density PopDensity 

Slope Mean slope in the catchment MeanSlope 

Atmospheric 
deposition* 

Mean atmospheric deposition of N 2015-17* AtmosDeposition 

Channel density  Channel density  ChannelDensity 

Land use Cattle density  CattleDensity 

Land use Sheep density  SheepDensity 

Land use Proportion of catchment designated for 
conservation or recreation 

DesignatedAreaProp 

 

All of the data preparation steps were carried out in R (R Core Team 2022), unless otherwise 

stated. To calculate the proportion of each catchment with arable and horticultural land cover 

we used the CEH Land Cover Map of Great Britain for 2017 at 25 m resolution (Morton et al. 
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2020). We used the same dataset to calculate the area covered by forest in each catchment, 

considering the classes “Broadleaved woodland” and “Coniferous Woodland” together. We 

acquired a list of all WWTWs from the Environment Agency, which included the population 

equivalent for larger works covered by the Urban Waste Water Treatment Directive, 

specifically those works that serve population equivalents greater than 2000 (Environment 

Agency 2023). For the smaller WWTWs (those that serve population equivalents < 2000) we 

assigned a value of 1000 for the population equivalent, to represent the central tendency of 

this group, in the absence of more specific data. We mapped the WWTWs based on the grid 

reference of the outlet, and added together the population equivalent of all WWTWs that fall 

within each catchment. 

Mean population density within each catchment was determined using the Output Areas from 

the 2011 Census for Population Density (Office for National Statistics 2011). We calculated 

the mean of the Output Areas within the catchment, weighted by the area of each intersection 

between the Output Areas and the catchment. To estimate mean cattle density and mean 

sheep density within each catchment we used data from the England Agricultural Census 2016 

at 5 km resolution on the total number of cattle and calves, and the total number of sheep and 

lambs (England Agricultural Census 2016). In each case, the total number was added across 

the catchment and divided by the area of the Agricultural Census grids that intersect with the 

catchment to estimate stocking densities.  

To calculate the maximum mean annual precipitation for each catchment we used the 

HadUK-Grid rainfall data, averaged by year, on a 1 km grid over the UK (Met Office 2020). 

We took the mean by grid for the years 2015 to 2019 and chose the maximum value that fell 

within each catchment. 

Mean slope was computed for each catchment using the Slope tool (Spatial Analysis) in 

ArcGIS and the IHDTM Digital Elevation Model (Morris and Flavin 1990, 1994). To 

determine channel density, we used the CEH 1:50,000 Watercourse Network dataset (Moore 
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et al. 1994) to calculate the length of channels within each catchment and divided this by the 

catchment’s total area (Rahman and Rahman 2020). To account for the soil and geology we 

calculated a base flow index (BFIHOST) for each catchment. We used the Hydrology of Soil 

Types (HOST) dataset (Boorman et al. 1995, Griffin et al. 2019) as the basis for our 

calculations, following the area-weighting method in the Flood Estimation Handbook volume 

5 (Bayliss 1999, Griffin et al. 2019). 

To calculate the proportion of each catchment designated for conservation or recreation, we 

acquired the shapefiles for terrestrial designated areas on mainland England, based on those 

described in Lawton et al. (2010). The designation types considered are National Parks, Areas 

of Outstanding Natural Beauty, Ramsar Sites, Special Areas of Conservation, Special 

Protection Areas, Local Nature Reserves, National Nature Reserves and Sites of Special 

Scientific Interest (SSSIs) (n = 6349).  

For the models of TON concentration, we included the mean atmospheric deposition of N in 

the catchment, based on N deposition data at 1 km resolution, from the UK CEH 

Environmental Information Data Centre (Tomlinson et al. 2020). We used the period 2015-

17, as this data was not available for after 2017. We took the mean value from all points within 

the catchment for each of the four forms of atmospheric deposition (dry deposition of 

reduced N, dry deposition of oxidised N, wet deposition of reduced N and wet deposition of 

oxidised N) and added them together to produce a single value. 

 

3.2.2 Analysis 

Our analysis uses catchments characteristics to explain the variation in N and P 

concentrations at monitoring stations at a national scale. The dependent variable used in the 

statistical models is either the mean TON or mean RP concentration at monitoring stations 

between 2015-2019 (as described previously in Section 3.2.1.1). Thus, each row in the dataset 

represents a monitoring station, and there is a single summary value of TON and/or a single 
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summary value of RP for that site. The independent variables are a series of catchment 

characteristics summarised to a single value for each monitoring station’s catchment (such as 

proportion of different land cover types, mean slope, etc, as described previously in Section 

3.2.1.3). Agricultural land use is represented by three different variables: proportion of 

catchment with arable and horticultural land cover, cattle density and sheep density, 

representing the main agricultural sources of N and P in England (Defra 2024a and b).  

To test our first hypothesis, we selected the catchments from the TON dataset with a 

population density below the first quantile for population density (population density < 0.41 

people/ha, n = 101, Figure 6) to create a group of catchments to represent low population 

conditions. We did the same thing for the RP dataset (population density < 0.40 people/ha, n 

= 96, Figure 6).  
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Figure 6: Mean TON (top two maps) at monitoring stations with catchments with low 

population density and catchments with high population density for the years 2015-2019 (n = 

101 in each case). Mean RP (bottom two maps) at monitoring stations with catchments with 

low population density and catchments with high population density for the years 2015-2019 

(n= 96 in each case). Catchments with low population density are those below the first 

quantile for population density in the full dataset (population density < 0.41 people/ha for 

TON, population density < 0.40 people/ha for RP), and catchments with a high population 

density are those above the fourth quantile for population density in the full dataset 

(population density > 3.61 people/ha for TON, population density > 3.25 people/ha for RP). 
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To test our second hypothesis, we selected catchments from the TON dataset with population 

density above the fourth quantile for population density (population density > 3.61 

people/ha, n = 101, Figure 6) to create a group of catchments to represent high population 

conditions. We repeated the process with the RP dataset (population density > 3.25 

people/ha, n = 96, Figure 6). We chose the lower and upper quantile as cut off points for our 

two groups of catchments because this allows us to look for differences between two strongly 

contrasting groups. 

Histograms of the distribution of the dependent variable for each of these four datasets can 

be seen in Appendix 4, Figure A4.2. We ensured that the independent variables were not 

strongly correlated in each case (Pearsons correlation coefficient < 0.75), as this is a 

requirement when interpreting the statistical methods used in this paper. The distribution of 

the independent variables for each of the four datasets can be found in Appendix 4 (Figure 

A4.3 for TON and Figure A4.4 for RP). 

We used two methods to model each of the four datasets: 1) negative binomial generalised 

linear model and 2) random forest. We chose to use both a negative binomial generalised 

linear model and random forest model in each case to check for consistency of results across 

models, and to make use of the different strengths of the two approaches. Generalised linear 

models are a common tool in environmental science, and are highly interpretable, as the 

coefficients are a robust way to gain insight into the relationships between the independent 

and dependent variables, and the relative importance of the dependent variables (Zuur et al. 

2009). Random forest is a widely used machine learning technique, including in environmental 

science (e.g. Cutler et al. 2007, Molnar 2023, Ross et al. 2021), largely due to its ability to deal 

with nonlinear interactions and excellent predictive capability (Yu et al. 2021). Random forest 

has been successfully used in the past to model and predict N and P concentrations at a 

national scale in the USA (Shen et al. 2020). 
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3.2.2.1 Model training and validation 

We split each dataset into training and test data using a 70/30 split, and used the same training 

and test dataset for both the generalised linear model and random forest model in each case. 

We used the negative binomial model with a log link function to model the concentrations of 

RP and TON, implemented using the function glm.nb in the MASS package in R (Venables 

and Ripley 2002, R Core Team 2022). We converted the concentrations to integer values 

(multiplication by 1000). Fixed covariates considered for the models of TON and RP were the 

proportion of arable and horticulture land cover within the catchment; log of the proportion 

of forest land cover; log of the population equivalent of the waste water treatment works 

within the catchment; population density; log of the density of cattle in the catchment; log of 

the density of sheep; log of the maximum mean precipitation; the mean slope in the 

catchment; channel density; the HOST base flow index; log of the proportion of the 

catchment that is designated for conservation and/or recreation; log of the total area of the 

catchment. The atmospheric deposition of N was also included as a fixed covariate for the 

model of TON.  

Akaike’s Information Criterion (AIC) was used as the selection criteria for independent 

variables to be included in our final best models. We used a stepwise approach, starting with a 

‘maximal’ model including all the fixed covariates and conducting backward model selection 

(Zuur et al. 2009) using the function stepAIC in the MASS package (Venables and Ripley 

2002). 

All the covariates were standardised (by subtracting the mean from the original data and 

dividing them by the standard deviation) so that the coefficients were comparable. Model 

assumptions were verified by plotting residuals versus fitted values and against each covariate.  

To build random forest models for RP and TON, we trained the randomForest function in 

the R package randomForest (Liaw and Wiener 2002). We set the parameter ntree to the 

default of 500, based on various trial runs and recommendations in the literature (Belgiu& 
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Drăgu 2016). We used the function tuneRF, also in the randomForest package (Liaw and 

Wiener 2002), to set the value for mtry (mtry = 3 for the model of TON for catchments with 

low population density, mtry = 4 for the model of TON for catchments with low population 

density, and mtry = 3 for the model of RP for catchments with low population density, mtry 

= 1 for catchments with high population density). We trained the random forest using the 

same independent variables as were selected in the best negative binomial generalised linear 

model, however we did not log any of the variable or scale them, as random forest is invariant 

to such transformations of the independent variables, and they make model interpretation 

more difficult.  

For all eight models we calculated the root mean square error (RMSE), plotted the test data 

against the concentrations predicted by the model, and calculated the strength of the 

correlation between these observed and predicted concentrations using Pearson’s correlation 

coefficient. The variation explained by our generalised linear models and random forest 

models was calculated using the test data, following the method implemented in the 

randomForest package, using the formula: 1 – mse / Var(y). 

We assessed the model’s residuals for spatial autocorrelation by creating a map of the residuals 

for visual inspection, calculating Moran’s I, and by plotting a distance-based semivariogram.  

3.2.2.2 Effect size and variable importance 

For the negative binomial generalised linear model, we created effect plots for the 

independent variables, with all other variables kept at their mean. For the random forest 

models, we extracted variable importance measures using the importance function in the 

randomForest package (Liaw and Wiener 2002). There is little consensus in the machine 

learning literature on how to best calculate the relative importance of different independent 

variables (Yu et al. 2021), so we report two widely used methods to rank predictor variables 

associated with random forest: mean decrease in accuracy and mean decrease in node 

impurity. Mean decrease in accuracy is computed by permuting each independent variable in 



73 

 

the random forest, comparing the prediction error using the out of bag data, and assessing the 

increase in error (mean square error) when each target variable is randomized (permuted) 

(Liaw and Wiener 2002; Yu et al. 2021). Mean decrease in node impurity is the total decrease 

in node impurities (residual sum of squares) from splitting on the variable, averaged over all 

trees. Both are implemented within the randomForest package (Liaw and Wiener 2002). 

3.3 Results 

3.3.1 Model validation 

The Pearson correlations between predicted and observed values for the models of TON are 

in the range of 0.6 - 0.9 (df = 28, p < 0.001 in all cases) across the testing sets (Figure 7), and 

for the RP datasets they are in the range of 0.39 – 0.84 (df = 28, p < 0.001 in all cases) across 

the testing sets (Figure 8). The models for RP and TON underestimate the higher values in the 

dataset. The RMSE for the models are shown in Figure 7 and Figure 8.  

The best negative binomial models for TON explain 41% of the variation in the test data for 

catchments with low population density and 35% in catchments with high population density. 

The best negative binomial models for RP explain 47% of the variation in the test data in 

catchments with low population density and 61% for the catchments with high population 

density. The variation in the test data explained by random forest is 77% for the TON model 

of catchments with low population density, 44% for the TON model of catchments with high 

population density, 5% in the case of the RP model for catchments with low population 

density and 27% for the RP model of catchments with high population density. Moran’s I 

analyses on the residuals of the generalised linear model and random forest residuals shows no 

significant spatial autocorrelation in the residuals of any of the models (p-value > 0.05) 

relevant to the scale of analysis. 
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Figure 7: Correlation plots for the out-of-bag test data (n=30) for the negative binomial 

generalised linear model (a) and random forest model (b) of TON in catchments with low 

population density, and the negative binomial generalised linear model (c) and random forest 

model (d) of TON in catchments with high population density. Horizontal axes show the true 

values from the test data set, multiplied by 1000 to obtain an integer, whilst the vertical axes 

show the values predicted by the model. The dashed line shows the linear regression of the 

data points and the solid line represents the 1:1 relationship. The box in the upper left corner 

gives the Pearson coefficient and the value for RMSE for each model. The labels GLM and 

RF refer to generalised linear model and random forest respectively. 
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Figure 8: Correlation plots for the test data (n=29) for the negative binomial generalised 

linear model (a) and random forest model (b) of RP in catchments with low population 

density, and the negative binomial generalised linear model (c) and random forest model (d) of 

RP in catchments with high population density. Horizontal axes show the true values from the 

test data set, multiplied by 1000 in order to obtain an integer, whilst the vertical axes show the 

values predicted by the model. The dashed line shows the linear regression of the data points 

and the solid line represents the 1:1 relationship. The box in the upper left corner gives the 

Pearson coefficient and the value for RMSE for each model. The labels GLM and RF refer to 

generalised linear model and random forest respectively. 
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3.3.2 Effect size and variable importance 

As expected under (H1), the generalised linear model for TON shows that agricultural 

sources, namely arable and horticultural land cover, and cattle density, are significant positive 

predictors of TON in catchments with low population density, whilst the population 

equivalent of WWTWs is not a significant predictor of TON in these catchments (Table 5a). 

This is confirmed by the random forest models of TON in catchments with low population 

density, as it ranks arable and horticultural land use as one of the top two predictors of TON 

(with the other predictor being the HOST base flow index) (Figure 9). 

The results from the models of RP in catchments with low population density lend some 

support to (H1), as arable and horticultural land use, and cattle density, are both significant 

positive predictors of RP in the negative binomial generalised linear model of catchments with 

low population density (Table 5b), and have a bigger effect size than the population equivalent 

of WWTWs in the same model (Table 5b, and Figure A5.1 in Appendix 5). However, the 

population equivalent of WWTWs is still a significant predictor in catchments with low 

population density, and sheep density has a negative effect. The results from the random 

forest model of RP in catchments with low population density show that arable and 

horticultural land use and cattle density rank higher than the population equivalent from 

WWTWs (Figure 9), however the low R2 for this random forest model, as well as the evidence 

of overfitting (Figure 8b), means that these results should be interpreted with caution.  
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Table 5: Formula, estimated regression parameters, standard errors, z-values and p-values for the minimum 

adequate negative binomial generalised linear models of catchments with low population density for the TON 

data (a) and RP data (b), and of catchments with high population density for the TON data (c) and RP data 

(d). Model R2 are 0.41, 0.47, 0.35, and 0.61 respectively.  

 

(a) 

TONlow pop ~ ArableHortProp + MeanSlope + LogCatchmentArea + LogCattleDensity + 

PopDensity + LogMaxPrecipitation + HOSTBaseFlowIndex + LogDesignatedAreaProp 

 

 Estimate Std. error z value p-value 

Intercept 7.55 0.04 180.35 < 0.001 

ArableHortProp 0.35 0.08 4.52 < 0.001 

MeanSlope 0.26 0.08 3.22 < 0.05 

LogCatchmentArea 0.09 0.05 1.79 0.073 

LogCattleDensity 0.30 0.05 6.17 < 0.001 

PopDensity 0.22 0.05 4.07 < 0.001 

LogMaxPrecipitation -0.57 0.08 -6.94 < 0.001 

HOSTBaseFlowIndex 0.36 0.05 7.08 < 0.001 

LogDesignatedAreaProp -0.15 0.06 -2.29 < 0.05 

 

(b)  

RPlow pop ~ LogForestProp + ArableHortProp + ChannelDensity + LogCatchmentArea + 

LogCattleDensity + LogSheepDensity + PopDensity + LogPopEquiWWTW 

 

  Estimate Std. error z value p-value 

Intercept 3.68 0.07 51.11 < 0.001 

LogForestProp 0.17 0.10 1.74 0.081 

ArableHortProp 0.31 0.10 3.09 < 0.01 

ChannelDensity 0.19 0.10 2.01 < 0.05 

LogCatchmentArea -0.49 0.11 -4.68 < 0.001 

LogCattleDensity 0.45 0.11 4.30 < 0.001 

LogSheepDensity -0.33 0.14 -2.40 < 0.05 

PopDensity 0.33 0.11 2.94 < 0.01 

LogPopEquiWWTW 0.30 0.09 3.34 < 0.001 
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(c) 

TONhigh pop ~ MeanSlope + ChannelDensity + LogCatchmentArea + LogCattleDensity + 

HOSTBaseFlowIndex + LogPopEquiWWTW 

 Estimate Std. error z value p-value 

Intercept 8.71 0.05 188.26 < 0.001 

MeanSlope -0.25 0.05 -4.77 < 0.001 

ChannelDensity -0.13 0.05 -2.50 < 0.05 

LogCatchmentArea -0.24 0.07 -3.55 < 0.001 

LogCattleDensity 0.08 0.05 1.47 0.141 

HOSTBaseFlowIndex 0.13 0.05 2.61 < 0.01 

LogPopEquiWWTW 0.52 0.07 7.62 < 0.001 

 

(d)  

RPhigh pop ~ ArableHortProp + LogCatchmentArea + LogMaxPrecipitation + 

HOSTBaseFlowIndex + LogPopEquiWWTW 

  Estimate Std. error z value p-value 

Intercept 5.65 0.09 65.63 < 0.001 

ArableHortProp -0.25 0.11 -2.32 < 0.05 

LogCatchmentArea -0.57 0.12 -4.69 < 0.001 

LogMaxPrecipitation -0.31 0.11 -2.92 < 0.01 

HOSTBaseFlowIndex -0.35 0.09 -3.78 < 0.001 

LogPopEquiWWTW 1.06 0.12 9.28 < 0.001 

 

The independent variables are the proportion of arable and horticultural land cover; channel density; 

the HOST base flow index for the catchment; log of the catchment area; log of the cattle density; log 

of the proportion of the catchment designated for recreation or nature conservation; log of the 

proportion of forest land cover; log of maximum average yearly precipitation; log of the population 

equivalent for all the WWTWs in the catchment; log of the sheep density; mean slope; population 

density. 
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Figure 9: Variable importance for the random forest for TON in catchments with low 

population density (a), RP in catchments with low population density (b). In each case the left 

hand panel shows the permutation importance and the right hand panel the Gini importance.  
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As expected under (H2), the generalised linear model for TON in catchments with high 

population density shows that arable and horticultural land cover and sheep density are not 

significant predictors of TON, whilst the population equivalent of WWTWs is a significant 

positive predictor of TON (Table 5c), with a large effect size (Table 5c, Figure A5.2a in 

Appendix 5). The random forest model for TON in catchments with high population density 

also supports (H2), with the population equivalent of WWTWs ranking as the top predictor of 

TON (Figure 10). 

The results for RP in catchments with high population density also support (H2), as arable 

and horticultural land cover is a negative predictor of RP (Table 5d), while the population 

equivalent of WWTWs has a comparatively large positive effect on RP concentrations in these 

catchments (Table 5d, Figure A5.2c in Appendix 5). The random forest for RP in catchments 

with high population density confirmed this, with the population equivalent of WWTWs 

ranking as one of the top predictors (with the other being catchment area) (Figure 10).  
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Figure 10: Variable importance for the random forest for TON in catchments with high 

population density (a) and RP in catchments with high population density (b). In each case the 

left hand panel shows the permutation importance and the right hand panel the Gini 

importance.  
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3.4 Discussion 

In this study we use statistical techniques to model N and P concentrations nationally in 

England, comparing the results from catchments with low population density to catchments 

with high population density, and demonstrate how these techniques can be used to 

understand the relative importance of different sources of N and P in a way that is relevant to 

management and policy. Our models for N and P show satisfactory predictive ability for the 

most part, showing there is potential to use this approach more widely, although they 

consistently underestimate very high mean TON and RP concentrations (approx. > 12 mg/l 

N and approx. > 0.8 mg/l P), and the model validation results were poor for some of the 

models of RP. With regards to our first hypothesis, our results show that agricultural sources 

of N dominate in catchments with low population density in England, as was expected, and 

this is true to some extent for P. In terms of management and policy, this is important 

because it suggests that an emphasis on agriculture in low population watersheds is needed to 

mitigate nutrient impairment, although of course reductions of inputs from small WWTWs 

(and septic tanks) will also be beneficial. Our results also confirm our second hypotheses, as 

they show that in catchments with high population density, WWTWs are the most important 

sources of N and P, and thus management efforts in these catchments should prioritise 

reducing inputs from these point sources. These results lend support to previous suggestions 

(e.g. Withers et al. 2014) that the contribution of agricultural sources may be overestimated in 

catchments that are densely populated, relative to point sources from waste water treatment 

works, as the later dominates as a predictor of N and P concentrations in these catchments. 

This study has shown that agricultural sources of N and P are comparatively more important in 

catchments with lower population density. The mean concentrations of TON and RP are 

lower in the catchments with lower population density, so WWTWs could have been just as 

important in determining these concentrations as the WWTWs in the higher population 

density catchments (because the concentrations are lower and therefore, even though the 
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WWTWs are smaller, their relative effect could have been the same or greater). It seems likely 

that as population increases so do other sources of N and P that were not directly included in 

the model – such as runoff from roads and urban areas, industrial effluent, illegal discharges 

and septic tanks– which could cumulatively become an important source of N and/or P, and 

thus makes agricultural sources comparatively less important as a predictor in these 

catchments. There is a slight correlation between population density and the population 

equivalent from WWTWs (Pearson’s correlation < 0.37 for all datasets), as would be expected, 

and this will go some way towards explaining why the population equivalent of WWTWs is an 

important predictor of N and P concentration in watersheds with high population density. 

Previous studies have suggested that P enrichment is more likely to be the cause of nutrient 

impairment in lowland, high alkalinity rivers (Jarvie et al. 2018), and with this in mind, a 

continued emphasis on RP reduction at WWTWs in urban areas is likely to be the right 

approach to improving water quality in catchments with high population density.  

The findings of this study have implications for the debate around the relative importance of 

agricultural diffuse sources and point sources from WWTWs to nutrient concentrations in 

rivers, and help understand which management strategies are most likely to be effective in 

different contexts. However, the relationships we found are a generalisation based on a large-

scale assessment, so for local decision making many other aspects will be relevant, including 

the local environmental conditions, and social and economic aspects. Moreover, this approach 

is limited to making recommendations around large-scale land cover and land management 

(e.g. livestock density) changes. Quantification of the overall effectiveness of smaller scale 

measures, for example buffer strips, contour ploughing, at the national, or catchment, scale 

remain elusive.  

There are also several limitations to the data used in the study. Firstly, the geographical 

distribution of the catchments with low population and high population density used in this 

study are not identical (as seen previously in Figure 6), which means we cannot completely 
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rule out that the signal being picked up is due to some other variable that varies regionally and 

is not accounted for by the model, such as the main crop type in arable areas, or the 

distribution of industry. We also did not have access to the type of treatment applied to waste 

water at the different WWTWs, nor the exact population equivalent for the smaller WWTWs 

(those with population equivalent < 2000). Access to this information at a national scale 

would help provide a more nuanced picture of the contribution of WWTWs to N and P in 

freshwater ecosystems. 

There are other considerations when interpreting the results. Firstly, the findings of this study 

cannot be applied to catchments with characteristics outside of the range available for 

inclusion in this study, such as upland catchments. Secondly, a limitation of this study is that 

the models are not giving information about particulate transport of N and P, and not 

separating between organic and inorganic forms. This means that the results are only able to 

present a partial picture of N and P retention, and this is likely to be particularly important for 

P, as the particulate transport pathways are known to be important (Reaney et al. 2011). 

However, the use of TON and RP means that the focus is on the predominant forms that 

affect plant growth, as they are readily available for uptake (Prasad and Chakraborty 2019, 

GRDC 2013). There is also not currently enough data available on Total N and Total P 

concentrations, or organic N and P, at monitoring stations in England to use the approach 

presented in this study on these deteminands, but this could be an interesting avenue of future 

study. Thirdly, there is the question of spatial configuration of the catchment characteristics. 

The models give insight into the importance of various catchment characteristics which have 

been summarised at a catchment level, in generally large catchments, but the situation may be 

very different at a local scale. Certain catchments characteristics, such as the proportion of 

area covered by forest, were not generally shown to be important to predict TON and RP in 

this study, but they may or may not play a role more locally in patches or as buffer zones 

along a river. Finally, defining the catchment for each of the monitoring stations in an 
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automated way was challenging, and although we carried out a large quality-control effort 

through visual inspection and comparison with other available datasets, it is possible that 

some mistakes remain in catchment definition, which would then affect all independent 

variables for that monitoring station.  

Much progress has been made to better understand the sources and dynamics of natural and 

anthropogenic inputs of N and P into rivers (e.g. Jarvie et al. 2018, Johnes et al. 2022). 

However, modelling N and P in rivers at large scales remains challenging, and different 

approaches have emerged to tackle the problem, including empirical models, such as the 

export coefficient models (e.g. Redhead et al. 2018, Johnes et al. 1996), as well as processed 

based models (e.g. the LTLS Freshwater Model described in Bell et al. 2021). The increasing 

availability of large and often publicly available datasets with water quality measurements and 

other environmental data has led to an increase in the use of statistical techniques to study 

water quality (Schreiber et al. 2022, Spake et al. 2019, Moorhouse et al. 2018, Tate et al. 2003), 

as we have done in this study. These techniques are in the spirit of a wider body of work that 

aims to develop data science and artificial intelligence techniques for the natural environment 

(Blair 2021, Scowen et al. 2021, Breiman et al. 2001, Lucas 2020), in the hope that 

environmental science and ecology can reap the benefit of the increasing quantity and 

diversity of data available to researchers. However, the approach we used has limitations, 

including inconsistent results between different measures of variable importance in some 

cases, and results that may not make sense from a process perspective, such as the negative 

effect of arable and horticultural land use on RP concentrations in the generalised linear 

model for catchments with high population density. Overall, however, the results from the 

generalised linear models and random forest models were fairly consistent with each other for 

each dataset, which is reassuring. The model validation results do, however, highlight that 

outliers have a strong effect on the models and that particularly random forest tended to 

overfit in these situations.  
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An interesting avenue going forward would be to use the models in this study to make 

predictions, that would allow a more nuanced discussion of the decrease in nutrient 

concentration that could be expected to result if land cover change were to take place in 

different contexts. In addition to this, adapting the approach to take seasonality into account 

in some way is probably important to be able to discuss to what extent the findings of this 

study are ecologically meaningful, as variable importance may well vary seasonally and the 

effect of changes to catchment characteristics may also be sensitive to seasonality. For 

example, it would help to consider ecologically sensitive periods in spring and summer when 

rooted aquatic plants and algae grow (Jarvie et al. 2006). Finally, conducting this type of study 

in other countries or regions would help understand to what extent the findings of this study 

are specific to England or represent more general patterns due to the nature of N and P 

transport and retention. 

3.5 Conclusion 

The sources and dynamics of natural and anthropogenic inputs of N and P into rivers remains 

a complex problem, and despite substantial domain knowledge about these processes it 

remains challenging to model. However, understanding the relative importance of diffuse 

sources from agriculture, and how this varies in different contexts, is important because it 

allows us to spatially target management strategies to the places where they are likely to have 

the strongest positive effect, and through this balance the provision of food production and 

good water quality. The results of this study need to be interpreted with some caution, but 

they do provide some insight and recommendations. Firstly, our results suggest that 

management strategies aimed at reducing N and P from agricultural sources might be better 

suited to catchments with low population density, although local factors would of course also 

be important in any decision-making process. Secondly, they suggest that to reduce the 

concentration of TON and RP in catchments in England with high population density, a 

continued focus on WWTWs as point sources should be a priority. Going forward, more 
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could be done to make detailed data on WWTWs available, including their population 

equivalent and the type of treatments applied, which would make it easier to include this 

independent variable in all types of models.  

Climate change is likely to increase pressure on river systems and the benefits they support, 

which will increase the need to target management strategies to preserve the multiple benefits 

we receive from nature. The debate about the relative contribution of diffuse agricultural 

sources and point sources from WWTWs to N and P concentrations in rivers will only 

become more relevant, as these two sources are affected by climate change in different ways 

(Wade et al. 2022). One way of furthering our understanding of these processes is through 

harnessing the opportunities brought about by the increasing availability of diverse 

environmental datasets (Lavallin and Downs 2021, Blair and Henrys 2023), and the 

development of methods and approaches to use these data to gain insight (Yu et al. 2021). 

This study explored a particular approach to this, using well established methods and a broad 

range of environmental data, highlighting some of the opportunities and challenges in the 

approach. Exploring new opportunities in this area is particularly important because 

biogeochemical flows (N and P) are one of the six planetary boundaries that have been found 

currently to be transgressed, suggesting that they are contributing to the Earth being outside 

of the safe operating space for humanity (Richardson et al. 2023). 
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Chapter 4: Green spaces in cities: more, better or more connected? 

 

Visual Abstract 
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Abstract 

Urban green spaces provide a broad range of benefits to society, making them an important 

element of natural capital accounting. Environmental accounting efforts aim to capture not 

only the quantity of green space in cities, but also their quality and spatial configuration, as 

these all influence the benefits we receive from them. So far, few studies have explored the 

dependency between these three characteristics or “dimensions” of natural capital, even 

though it has implications for both monitoring efforts and management. To address this 

knowledge gap, we here assess the correlation structure between different indicators for the 

quantity, quality and spatial configuration of green spaces, using Greater London as a case 

study. Our results show that all indicators show significant dependency with each other, 

suggesting it may not always be necessary to monitor all three dimensions of natural capital. 

However, the strength of dependency was shown to vary between different indicators, with 

spatial configuration and quantity generally displaying strong positive correlation. Species 

richness, an indicator of quality, showed the weakest correlation with the quantity of green 

area; this suggests that to create highly biodiverse areas in urban settings, simply extending the 

area of habitat may not be enough and more targeted management is likely to be necessary. 

 

4.1 Introduction 

Currently more than 50% of the world’s population lives in urban areas (United Nations 

2020), which means that a large proportion of people’s experience of the natural world occurs 

in towns and cities, and many of the benefits that people receive from nature occur in an 

urban context (O'Keeffe et al. 2022, Hamel et al. 2021). There is growing awareness of the 

importance of nature in cities (Mata et al. 2020), and a call for more and better management of 

nature in cities has led to an uptake of natural capital accounting for urban areas (e.g. Phinney 

2022, Mayor of London 2017, Yang et al. 2021). Natural capital is another term for the 

world’s stock of natural assets, which include renewable and non-renewable natural resources 
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(e.g. plants, animals, air, minerals, freshwaters) that combine to yield a flow of benefits to 

people (Mace et al. 2015). Natural capital accounting is a term covering efforts to use an 

accounting framework to measure and report on natural capital assets and the flow of benefits 

we receive from it in a systematic way (SEEA 2021). The growth of cities has led to major 

changes in the amount, quality and distribution of natural habitats within urban areas and the 

services they provide to society, putting some benefits at risk (Gómez-Baggethun and Barton 

2013). The natural capital framework has emerged as an approach to monitor these changes, 

often with the aim of informing management efforts to “future-proof” urban areas against the 

challenges of climate change and rapid urbanisation (United Nations 2023).  

Urban green space in cities is a particularly important element of natural capital accounting for 

urban areas, due to the range of benefits we receive from them (Phinney 2022). Many of the 

benefits that people receive from green spaces are environmental. For example, green spaces 

can help reduce the heat gain of cities and lessen the negative impacts of heatwaves on human 

health (Heaviside et al. 2017). They can also offer opportunities for carbon sequestration 

(Wang et al. 2023), especially if green spaces are managed to increase tree cover (Ariluoma 

2021). Green spaces have moreover been shown to reduce air pollution concentrations (Jones 

et al. 2019) and reduce the risk of floods, by increasing the interception and storage capacity 

of the urban landscape, and thus reducing storm water runoff (Zimmermann et al. 2016, 

Campbell et al. 2020). Other values of green space reflect their use for recreation, with 

individuals, public services and business all benefiting from public parks across cities, as they 

create opportunities to exercise, socialise and relax, improving peoples physical and mental 

health (van den Bosch and Sang 2017). Whilst many of these benefits flow from large public 

parks, private gardens also have an important role to play, as garden use is associated with 

wellbeing, physical activity, and visiting nature (de Bell 2020). Private gardens can also provide 

refuge for wildlife (García-Antúnez et al. 2023) and increase habitat connectivity between 

larger green spaces (Rudd et al. 2002, Hanson et al. 2021).  

https://www.sciencedirect.com/topics/social-sciences/physical-activity
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Accounting for green space within a natural capital framework involves reporting on the 

different characteristics of green spaces that determine the benefits we receive from them. 

These characteristics or “dimensions” of natural capital are the quantity, quality and spatial 

configuration of assets, as all of these have implications for the benefits we receive (Mace et 

al. 2015). Quantity refers to the “amount” of the asset, in this case the amount of green space. 

The “quality” of green space refers to its condition, and it will be particularly important if the 

presence or absence of a certain component or process affects the benefits we receive from 

green spaces (Mace et al. 2015), for example a degraded park may be less enjoyable to visit and 

will provide limited carbon sequestration. Finally, the spatial configuration of an asset refers to 

the spatial patterning and fragmentation of the asset, which can influence the benefits that 

flow from green spaces. For example, the connections (including proximity) between green 

spaces facilitate metapopulation dynamics between them (Hanski 2015) and decreases the heat 

island effect (Li and Zhou 2019, Chen et al. 2014, Kong et al. 2014), whilst evenly distributed 

green space throughout a city means that a higher proportion of the population will have easy 

access to them and be able to enjoy the recreational benefits they provide (Handley et al. 

2003). 

Monitoring the quantity, quality and spatial configuration of urban green space is important 

within urban natural capital accounting, and existing work uses, for example, the extent of 

green space and broad habitats as measures of quantity (Office for National Statistics 2023b), 

compositional species indicators and urban trees as measures of quality (Office for National 

Statistics 2023b), and patch size, shape and edge as measures of spatial configuration (Natural 

England 2018). Considering all three dimensions of natural capital leads to a substantial effort 

in terms of gathering data, developing indicators for the different dimensions of natural 

capital, and reporting on them. As an approach it treats the quantity, quality and spatial 

configuration of assets as implicitly “orthogonal”, that is, conceptually as if mapping out asset 

condition as a three dimensional space, in which all dimensions are needed to describe asset 
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status. It is not clear, however, whether the indicators of these three dimensions are 

systematically mutually independent in this way. For example, there is evidence of dependency 

between measures of quantity and some common measures of spatial configuration, namely 

landscape metrics (Neel et al. 2004, Wang et al. 2014). This means that there may be some 

redundancy in the information provided by the indicators for the three dimensions of natural 

capital. Any dependency between the three dimensions of natural capital may also have 

implications for management, as if they are closely related it should be possible to develop 

approaches that boost more than one dimension. 

However, to our knowledge, no study has tested the degree of dependency between indicators 

of all dimensions of natural capital assets (namely their quantity, quality, and spatial 

configuration), despite the relevance to monitoring efforts and management. To fill this gap in 

knowledge, we assess the degree of dependency that exists between the quantity, quality and 

spatial configuration of green spaces in the largest and most populated capital in western 

Europe, namely London in the United Kingdom (UK). We aim to test the following 

hypotheses: Firstly, based on previous works, we expect dependency between the three 

dimensions of natural capital assets (Jaganmohan et al. 2016, Smith et al. 2009) (H1). 

Secondly, we expect the dependency between quantity and spatial configuration to be the 

strongest, as this was previously reported for landscape metrics and habitat abundance (Neel 

et al. 2004, Wang et al. 2014) (H2). Thirdly, the strength of the correlation will vary depending 

on the indicator chosen for each of the three dimensions (Neel et al. 2004, Wang et al. 2014) 

(H3). Finally, we expect the dependency between the three dimensions of natural capital assets 

to persist at different scales of analysis (H4). 
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4.2 Materials and methods 

4.2.1 Study area 

Greater London is the administrative area of London, the capital of the UK, covering an area 

of 1,569 km² and situated in the south-east of England (Figure 11). It has a temperate oceanic 

climate, with mild winters and temperate summers. Precipitation is fairly evenly distributed 

throughout the year, with a total annual precipitation of 585 mm (Britannica 2023). London’s 

mid-2021 population was 8.797 million (GLA Data Store 2023) and it is considered one of the 

greenest cities in the world for its size, although this greenspace is unequally distributed 

(Greenspace Information for Greater London CIC 2023a).  

 

Figure 11: Map of Greater London showing green spaces and large water bodies. Data from 

Greater London Authority’s Green and Blue Cover dataset (GLA City Intelligence 2019). 

 

Greater London comprises more than 47% greenspace (London Councils, 2018); 33% of 

London is natural habitats within open space according to surveyed habitat information 

(Greenspace Information for Greater London CIC 2023b) and an additional 14% is estimated 
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to be vegetated private, domestic garden land (Smith et al. 2011). The median garden size for a 

house in London is 140 m2, and one in five households in London do not have a private 

garden (Office for National Statistics 2020). Priority habitats in London’s open green space 

includes woodland, acid grassland, chalk grassland and heathland (Greenspace Information 

for Greater London CIC 2009). Most public green spaces are managed by the London 

Boroughs, other public agencies (such as The Royal Parks and Lea Valley Regional Park 

Authority) and environmental organisations (such as London Wildlife Trust). 

 

4.2.2 Data acquisition 

We created indicators for the quantity, quality and spatial configuration of green spaces (Table 

6) across Greater London at 300 m resolution. We chose eleven indicators in total, including 

indicators that are commonly used within natural capital reporting, and other that are logically 

consistent with the natural capital concept and have a clear link to benefit provision. We 

included five indicators for quality, five indicators for spatial configuration, and only one 

indicator for quantity (total green space area), as it is the only indicator of the quantity of 

green space that we found being used in the literature. To calculate the indicators at 300 m 

resolution, we created a grid across Greater London with each square 300 by 300 m, and 

assigned a value for each indicator to each cell in the grid. We chose this spatial resolution as 

our primary scale of analysis as it is the finest resolution that can be used meaningfully with 

the coarser resolution datasets, especially the species data, and a fine scale resolution allows 

gardens and smaller green areas to be considered (Myint et al 2011, Crowson et al. 2024). All 

data preparation steps were carried out in R (R Core Team 2022) unless otherwise stated. 
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Table 6: Indicators used in this study for the quantity, quality and spatial configuration of green spaces in 

Greater London. 

Dimension Indicator Definition 

Quantity Total area of green space Amount of green space in a 

given 300 x 300 m grid. 

Quality Species richness Number of species in a given 

300 x 300 m grid. 

Quality Normalized difference vegetation 

index (NDVI) 

Mean NDVI of green spaces in 

a given 300 x 300 m grid 

Quality Total area of tree canopy cover Area covered by trees in a given 

300 x 300 m grid. 

Quality Total length of footpaths Length of footpath in a given 

300 x 300 m grid 

Quality Total area classified as a habitat of 

principal importance 

Area of green space classed as a 

habitat of principal importance 

in a given 300 x 300 m grid. 

Spatial 

configuration 

Area weighted mean core area index 

(CAI_AM) 

 

CAI_AM for green spaces in a 

given 300 x 300 m grid, 

calculated as a class metric. The 

metric CAI_AM quantifies core 

area of green space as a 

percentage of total green space 

area.  

Spatial 

configuration 

Landscape shape index (LSI) LSI for green spaces in a given 

300 x 300 m grid, calculated as a 

class metric. The metric LSI is 

the ratio between the actual edge 

length of green space and the 

hypothetical minimum edge, if 

green space were maximally 

aggregated. 

Spatial 

configuration 

Largest patch index (LPI) LPI for green spaces in a given 

300 x 300 m grid, calculated as a 

class metric. The metric LPI is 

the percentage of the grid 

covered by the corresponding 

largest patch of green space.  

Spatial 

configuration 

Number of patches (NP) Number of patches of green 

space in a given 300 x 300 m 

grid, calculated as a class metric. 

Spatial 

configuration 

Landscape connectivity Mean omni-directional 

landscape connectivity for green 

spaces in a given 300 x 300 m 

grid. 



96 

 

For the indicator of quantity of green space in Greater London we calculated the total area of 

green space in each 300 by 300 m cell. The total area or extent of a habitat is a common 

indicator for the quantity of an asset (Natural England 2018), including for natural capital 

assessments of green spaces in an urban setting (Office for National Statistics 2023b, Natural 

England 2021, Phinney 2022). To calculate the area of green space we used the Greater 

London Authority’s Green Cover dataset (GLA City Intelligence 2019) which maps vegetated 

land cover in London (as opposed to man-made surfaces), based on high resolution (25 cm) 

near-infrared aerial imagery. This dataset is provided as a vector, so we rasterized the dataset 

at the original 25 cm resolution using the terra package (Hijmans 2022), and to reduce the 

error in the data and make it consistent with the other indicators we masked the data to 

include only areas identified as open space or gardens, identified by the London-wide database 

of open spaces (Greenspace Information for Greater London CIC 2023c) and the OS 

MasterMap Greenspace Layer (Ordnance Survey Limited 2022). From this we calculated the 

total vegetated area within each 300 x 300 m cell across Greater London.  

We chose five indicators for the quality of green space, (1) species richness, (2) Normalized 

Differential Vegetation Index (NDVI), (3) extent of tree canopy cover, (4) length of footpaths 

and (5) extent of habitats of principal importance. Species richness was chosen to capture 

highly biodiverse areas, which can be considered high quality areas (Natural England 2018). 

NDVI is an indicator of vegetation productivity derived from remote sensing data (Pettorelli, 

2013), and has widely been used to reflect the vegetation quality in urban areas (Wang et al. 

2019, Sarkar et al. 2015), especially in applications that study the urban thermal environment 

(Jaganmohan et al. 2016; Yang et al. 2017). NDVI can also be an indicator of the capacity of 

urban green space to provide certain ecosystem services, such as carbon sequestration, and 

water cycling (Zurlini et al. 2014). We chose the extent of tree canopy cover as an indicator of 

the quality of green space because the number or density of trees has been used to represent 

the quality of greens space in the past (Sarkar et al. 2015, Zhou et al. 2017), and trees are 
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strongly related to many of the benefits we receive from green space, as they intercept rain, 

clean the air, and provide shade and habitat. The total length of footpaths in greens spaces has 

previously been used as an indicator of the quality of green spaces in urban environment 

(eftec 2017), because it relates to the accessibility of green spaces for people, which in turn is 

important for the provisions of opportunities for sport and leisure. The total area of green 

spaces classified as Natural Environment and Rural Communities Act (2006) Section 41 

habitats of principal importance has been used previously in natural capital assessments (Holt 

2017) to capture habitats that are at risk or are of importance for key species, and are thus 

providing important biodiversity conservation benefits (Maddock 2011).  

Species richness was calculated using the species records for London’s Priority Species List 

(Greenspace Information for Greater London CIC 2023d), which includes species that are 

national priorities for conservation and those that are believed to be declining in London or 

beyond. The species occurrence records are from a range of dates, collected by different 

organisations in different ways. We included all terrestrial species that are relevant to green 

spaces, including birds, terrestrial mammals, reptiles, invertebrates, plants and fungi. To create 

the indicator of species richness, we added up the number of different species in each 300 by 

300 m grid.  

To calculate NDVI we used PlanetScope images of Greater London from the 7th of August 

2022 (3 m resolution, Planet Labs PBC 2022). The date was chosen as there was full coverage 

of our study area with 0% cloud cover, and deciduous trees had their leaves on. The NDVI is 

a vegetation index derived from the red (RED) to near-infrared (NIR) reflectance ratio, 

calculated as NDVI = (NIR – RED)/(NIR + RED). The resulting values range from -1 to 

+1, with green leaves and vegetation resulting in positive NDVI values, bare soil and concrete 

resulting in NDVI values close to zero, and water resulting in negative NDVI values 

(Pettorelli 2013). For each 300 by 300 m grid, we took an average of the NDVI value for 
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pixels within green spaces (defined using the Greater London Authority’s Green Cover 

dataset, used previously to create the indicator of quantity).  

To calculate the third indicator for quality, the area of canopy cover within green areas, we 

used an existing canopy map of Greater London, created at 25 cm resolution using colour 

infrared imagery (Breadboard Labs 2018). To calculate the fourth indicator of quality, total 

length of footpaths within green spaces, we used OpenStreetMap (2024) data on “paths 

unsuitable for cars”, which includes footpaths, paths for horse riding and paths for cycling. 

Finally, to calculate the total green area classified as a habitat of principal importance we used 

Natural England’s Priority Habitat Inventory V2.3 (Natural England 2024), and included all 

terrestrial habitats found within green spaces. 

We used five indicators for the spatial configuration of green space, (1) Area Weighted Mean 

Core Area Index (CAI_AM) (McGarigal et al. 2012), (2) Landscape Shape Index (LSI) 

(McGarigal et al. 2023), (3) Largest Patch Index (LPI), (4) Number of patches (NP) and (5) 

omni-directional landscape connectivity (Landau et al. 2021). Landscape metrics are one of the 

most common metrics for spatial configuration used within the Natural Capital framework 

(Natural England 2018) and we chose to use CAI_AM, LSI, LPI and NP because they capture 

different aspects of patches of green space (core area, aggregation, area/edge, and shape 

respectively), and existing work suggests that CAI_AM should not correlate as strongly with 

habitat extent as some other landscape metrics (Neel et al. 2004, Wang et al. 2014). In addition 

to the landscape metrics, we included an indicator for landscape connectivity, as this is an 

important aspect of spatial configuration and is central to the UK Government’s target of 

making areas of semi-natural habitat “more, bigger, better and joined up” (Mancini et al. 

2022). We chose to use the connectivity measure from Omniscape.jl because it does not 

require the user to divide the landscape into core areas to be connected and because the 

algorithm it implements calculates connectivity in all directions, which sets it apart from other 
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similar methods that require the user to set a direction across which to measure connectivity 

(for example north to south) (McRae et al. 2016). 

We calculated CAI_AM, LSI, LPI and NP as class metrics in Fragstats 4.2 (McGarigal et al. 

2012) for each 300 m grid cell, with green space as the class of interest, based on the Greater 

London Authority’s Green Cover data (GLA City Intelligence 2019) aggregated to 3 m 

resolution (Figure 12). The metric CAI_AM quantifies core area of green space as a 

percentage of total green space area, and edge depth was fixed at 5 m based on the resolution 

of the underlying data and previous studies (Karimi et al. 2021, Grafius et al. 2018). The 

metric LSI is calculated as the ratio between the actual edge length of green space and the 

hypothetical minimum edge, if green space were maximally aggregated. The metric LPI is the 

percentage of each 300 m x 300 m grid covered by the corresponding largest patch of green 

space, and is a simple measure of dominance. The metric NP is the number of patches of 

green space in each 300 m by 300 m grid (McGarigal et al. 2012). 
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Figure 12: Generalised work flow for the metrics of spatial configuration used in this study, 

namely the landscape metrics Area Weighted Mean Core Area Index (CAI_AM), Landscape 

Shape Index (LSI), Largest Patch Index (LPI), Number of Patches (NP) and omni-directional 

landscape connectivity. The map of landscape connectivity was calculated using data on land 

use provided by Greenspace Information for Greater London CIC 2023c. 

 
To create an indicator for landscape connectivity we used the software package Omniscape.jl 

(Landau et al. 2021, McRae et al. 2016), which uses circuit theoretic methods to model 

ecological flow as electrical current, informed by continuous spatial data (a habitat suitability 

map) (Figure 12). To create the habitat suitability map for London, we created a land use map 

at 30 m resolution based on a London-wide database of open spaces (Greenspace Information 

for Greater London CIC 2023c), supplemented by information from OS MasterMap 

Greenspace Layer, such as the location and extent of private gardens (Ordnance Survey 

Limited 2022). We assigned resistance values to the different categories of land use, which 

represent traversal cost, based on the example provided by the Omniscape.jl documentation, 

our knowledge of land use in Greater London and various trial runs (see Table A6.1 in 

Appendix 6 for the resistance values). The source strength raster was set as the inverse of the 

resistance raster, with all open spaces able to act as sources. We set the radius size of the 

search window to 3 km based on previous studies using Omniscape in an urban environment 
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(Choe and Tohorne 2019, Park et al. 2023). We did not include the Thames River as a barrier 

to movement, as it would not be a sufficient barrier for flying animals or to the dispersal of 

plant seeds. To mitigate for edge effects, we extended the habitat suitability map beyond the 

boundary of study area (McRae et al 2016). We ran the Omniscape algorithm at a resolution of 

30 m, and then averaged the values of connectivity for green spaces (as defined by the Greater 

London Authority’s Green Cover data) within each 300 by 300 m grid. 

The above data acquisition steps created a raster stack at 300 m resolution, with each layer 

representing a different metric. We applied a 300 m interior buffer to the raster, as an edge 

effect was seen for some of the metrics (especially the landscape metrics) and in some cases 

the underlying data was not available beyond Greater London, which made extending the 

study area unfeasible. Finally, we extracted the values from the raster using the function values 

from the terra package (Hijmans 2022), to create a data frame of metrics for Greater London. 

Finally, we carried out the data acquisition workflow described above again but using a grid 

size of 1200 m x 1200 m, and 5000 m x 5000 m. The spatial resolution of 1200 m was chosen 

as it would be a good choice of resolution for cities where less fine resolution data is available. 

The spatial resolution of 5000 m was chosen as it is as coarse a scale as is possible whilst 

allowing for enough grid cells over Greater London for statistical analysis to be meaningful. 

Both spatial resolutions would be relevant to national scale assessments of assets and benefits 

(e.g. Maskell et al. 2016, Mancini et al. 2018).  We used the same input datasets for the 

indicators, and followed the same data processing steps, simply changing the size of the grid 

for their calculation. 
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4.2.3 Analysis 

To test for dependency between the three dimensions of natural capital assets (H1 and H4) we 

conducted a principal component analysis on the data frame of metrics to understand the 

correlation structures in the data, using prcomp from core R stats package (R Core Team 

2022). We used principal component analysis because it is a good choice to reveal structure in 

data and relationships when multiple variables are present. We tested for the significance (p < 

0.05) of the principal components and the loadings using the PCAtest function in the PCAtest 

package (Camargo 2024), which implements permutation-based statistical tests to evaluate the 

significance of each PC axis and of contributions of each observed variable to the significant 

axes (Camargo 2022). We used the function fviz_eig to create a scree plot and the function 

fviz_pca_var to plot the loadings of the PCA, both from the package factoextra (Kassambara 

2020). 

We used Pearson correlation to test whether the dependency between quantity and spatial 

configuration is the strongest (H2) and whether the strength of correlation varies with the 

indicator chosen (H3), as it allows us to understand the relationship between specific metrics, 

and we visualised the correlation matrix using the function ggcorrplot in the ggcorrplot 

package (Kassambara 2023). 

4.3 Results 

Our results confirm our first hypothesis, as the first principal component of the indicators 

calculated at 300 m spatial resolution was found to be statistically significant, explaining 56.3% 

of the variance in the data, and all variables have statistically significant loadings for the first 

principal component (Table 7), highlighting a strong correlation structure among the variables 

(Figure 13). The second principal component was also found to be statistically significant, 

although none of the variables had significant loadings for this axis (Figure A6.1 in Appendix 

6). 
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Table 7: Loadings for the first (PC1) and second (PC2) principal components from the indicators for 

quantity, quality and spatial configuration for Greater London calculated for a 300 m grid, showing the 

contribution of each variable. The first principal component explains 56.3% of the variance in the data and the 

second principal component explains 13.4% of the variance in the data, and were chosen as they were found to 

be statistically significant using a permutation-based statistical tests (Camargo 2022). The signs of the loadings 

are arbitrary, and randomly assigned, so may differ between different programs for principal component analysis 

(R Core Team 2022). 

Dimension  Indicator PC1* PC2* 

Quantity Area green space -0.36* 0.23  
Quality Species richness -0.12* -0.36 
Quality NDVI -0.26* -0.36 
Quality Total area of tree canopy cover -0.29* -0.35 
Quality Total length of footpaths -0.24* -0.32 
Quality Total area of habitat of principal importance -0.30* -0.32 
Spatial configuration CAI_AM -0.36* 0.27 
Spatial configuration LSI 0.33* -0.32 
Spatial configuration LPI -0.35* 0.28 
Spatial configuration NP 0.32* -0.25 
Spatial configuration Landscape connectivity -0.29* -0.20 

*Indicates statistically significant (p < 0.05) 
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Figure 13: Loadings plot for the principal component analysis of the indicators of quantity, 

quality, and spatial configuration, calculated at 300 m, showing the contribution of the 

different variables to the first and second principal component. The angles between the 

vectors tell us how variables correlate with one another - when two vectors are close, forming 

a small angle, the two variables they represent are positively correlated. When they diverge and 

form a large angle (close to 180°), they are negative correlated. The length of the vector 

indicates the contribution to the principal component. 

 

Our results also broadly support our second hypothesis, with the four highest Pearson 

correlation coefficients found for the relationship between quantity and spatial configuration 

(Figure 14), specifically between the total area of green space and the landscape metric 

CAI_AM (r = 0.90, df = 16812, p < 0.001), the total area of green space and the landscape 

metric LSI (r = -0.75 , df = 16812, p < 0.001),  the total area of green space and the landscape 
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metric LPI (r = 0.92, df = 16812, p < 0.001), and the total area of green space and the 

landscape metric NP (r = -0.76 , df = 16812, p < 0.001). However, the correlation between 

the total area of greens space and landscape connectivity was not as high (r = 0.52, df = 

16812, p < 0.001). All the correlation coefficients were statistically significant (p < 0.001). The 

fact that a negative correlation was found between total area of green space and LSI and NP is 

not a problem, as this study is testing for whether indicators are correlated, irrespective of 

whether the relationship is positive of negative. 

 

 

Figure 14: Pearson correlation coefficients for the indicators used in this study, calculated for 

a 300 m grid. The correlation coefficients were all statistically significant with p < 0.001. 

 
Our results lend support to the third hypothesis, as species richness is only weakly correlated 

with all the other indicators, including the other indicators for the quality of green space (area 
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of canopy cover and NDVI) (Figure 13, Figure 14). Overall, there is no obvious tendency for 

bivariate correlations to be higher within pairs of indicators representing a particular 

dimension, than between pairs of indicators representing different dimensions, with most 

Pearson correlation coefficients falling within the range of 0.3 and 0.6. 

Finally, our results confirm our fourth hypothesis, as the first principal component of the 

indicators calculated with grid sizes 1200 m and 5000 m were also found to be statistically 

significant, explaining 60.7% and 54.2% of the variance in the data, respectively, and all of the 

variables have statistically significant loadings for the first principal component (Appendix 7, 

Table A7.1), highlighting a strong correlation structure among the variables. The Pearson 

correlation coefficients between individual indicators is very similar for the indicators 

calculated using the 1200 m grid to those calculated using the 300 m grid, but this changes at 

5000 m spatial resolution, where the indicators for quantity and quality are generally more 

strongly correlated than for quantity and spatial configuration (Appendix 7, Figure A7.1 a and 

b). 

 
4.4 Discussion 

In this study we assess the strength of dependency between the quantity, quality and spatial 

configuration of green space in Greater London. Our results show that the indicators for the 

three dimensions of natural capital have a statistically significant correlation structure, which 

suggests that it may not be strictly necessary to monitor all three dimensions of natural capital 

to capture asset condition, and thus resolve how much benefits are affected by deterioration in 

the condition of natural assets (Mace et al. 2015). However, the strength of dependency varies 

depending on the choice of indicator for quality and spatial configuration, highlighting that 

the choice of indicator is an important step and should be informed first and foremost by the 

purpose of the natural capital assessment or study. Many studies on green spaces in the urban 

environment are motivated by wanting to understand the benefits they provide, such as 

recreation or carbon storage, and this should inform which indicators are most relevant. The 
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strength of correlation between the different indicators also changed when they were 

calculated at a courser resolution (using the 5000 m grid), which is in line with previous work 

that show that indicators can change with scale in different ways, sometimes predictably and 

in other cases erratically (Wu et al. 2002). Finally, our work provides further evidence that 

landscape metrics and the quantity of habitat correlate strongly, and shows that landscape 

connectivity also correlates with asset quantity, but that this correlation is less strong than for 

the landscape metrics. The correlation between indicators for the quantity and spatial 

configuration of natural capital assets poses a challenge for a broader body of work that 

attempts to partition the explanatory effect of these two dimensions on, for example, 

communities of carabids (Neumann et al. 2016), the urban heat island effect (Li and Zhou 

2019), and landscape susceptibility to processes such as fire or disease (Bierwagen 2007). 

Some green space urban management plans aim to conserve and expand highly biodiverse 

areas of the city, to conserve local biodiversity, create opportunities for environmental 

education, and improve human well-being (Dearborn and Kark 2010). The results from this 

study show that it is unlikely to be enough to increase the total area of green space within 

urban areas when the aim is to create more highly biodiverse green spaces, but rather that 

more active management strategies will be needed, such as reintroducing natural species, 

planting street verges, fencing, managing threats, tree planting and restoring grasslands 

(Soanes et al. 2023). However, this may be different in other contexts – for example, in larger 

rural areas, passive rewilding projects have shown that it is possible for species to reassemble 

by taking a “wait-and-see” approach (Elphick et al. 2024). It is thus possible that the measures 

of quantity and species diversity would correlate more strongly in habitats outside of urban 

areas, as has been suggested elsewhere (Loke et al. 2019)There are various considerations 

when interpreting the results, especially when drawing implications for management. 

Importantly, some of the patterns of dependency found in the study are due to historical 

change with a very different starting point than we have today and are the result of 
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urbanization encroaching onto existing habitat (Foster et al. 2003). Thus, not all the results 

will be relevant to enhancing the extent, quality and spatial connectivity of existing green 

spaces today. For example, there are small pocket of high quality remnant habitat in Greater 

London, but it is likely that these were established in a situation where open green space was 

more widespread. Whilst ancient woodland or small areas of wetland have survived urban 

encroachment by receiving protected status, if we want to re-establish new areas like this it is 

possible that larger areas will be needed to provide enough buffering for species to establish 

themselves in the face of the pressure of urban edge effects (Wang and Yang 2022), and to 

mitigate against the added climatic stress brought about by climate change (Weiskopf et al. 

2020). In addition to this, the historical land use of urban green areas influences their 

condition. For example, forest sites in New York City with a history of agriculture, lawn, or 

built environments were found to have more invasive species groundcover, and the longer a 

forest had no historical sign of human disturbance, the higher the native basal area (Pregitzer 

and Bradford 2023). This highlights that what is found when looking at historical change may 

not always work when implementing future management decisions on preserving, and where 

possible, reinstating priority natural habitats. 

There are also various considerations around the data and indicators used in this study. Firstly, 

some of the data used to create indicators for quantity and quality – namely the total area of 

green space, tree canopy area and NDVI – are all sourced from remote sensing images. Whilst 

they are sourced from different sensors and have undergone different post-processing steps, 

they still may have underlying similarities in the errors and noise in the data, and some of the 

correlation between them may be due to them coming from a similar data source. An example 

of this would be confusing trees and green space in classification, or artificial turf and green 

space (Crowson et al. 2024). It is likely that choosing to use datasets with different sources is a 

good way to minimise correlation between indicators. Secondly, a limitation of this study is 

that the work on connectivity, using the Omniscape.jl algorithm, does not consider the river 
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Thames to be a barrier for connectivity. This is legitimate for some species, such as birds, that 

are well represented in our species data. However, for some other species the river Thames 

represents a real barrier to movement, as would smaller rivers such as the River Lea, and 

London’s canal system. Finally, the species data used to calculate species richness was sourced 

from records compiled mostly by volunteers, for different organisations and purposed 

(Greenspace Information for Greater London CIC 2023d). This type of data is known to have 

a bias due to volunteers’ preference for recording particular taxa or at particular sites (Boakes 

et al. 2016), including a preference towards areas of higher species richness (Tulloch et al. 

2013). 

To be able to generalise the findings, it would be interesting to see if similar results are found 

for other cities, with different geographies and histories. For example, Greater London is a 

comparatively old urban centre, constrained by a green belt. Previous work has shown that 

older urban areas have had more time for the adverse impacts of urbanisation to be realised 

(Norton et al. 2016). Younger cities may have larger extinction debts, that is, the number of 

species expected to go extinct as the adverse impacts of urbanisation are realised over time 

(Hans et al. 2009), and thus different relationships might be found between the number of 

species and other indicators. It would also be interesting to see if similar relationships exist 

between the quantity, quality and spatial configuration for other assets or habitats outside of 

urban areas, such as forests, where similar questions about quantity, quality and spatial 

configuration arise. Another interesting avenue of future study would be to attempt to 

understand the scale effect not only from a change in extent (that is, the different grid sizes 

used to calculate indicators in this study), but also from a change in zoning (by shifting the 

grids spatially, without changing their extent) and from the grain size of the underlying data 

(the effect of raster resolution), as these all contribute to the problems of scale effects and 

spatial aggregation in landscape ecology (Wu et al. 2002).  

4.5 Conclusion 
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In this study the indicators for the three dimensions of natural capital – quantity, quality and 

spatial configuration – were shown to be significantly correlated, and thus contain some 

redundancy. This may mean that it is not useful to implicitly conceptualise the three 

dimensions of natural capital as mutually independent, as set out in the introduction. 

Alternatively, the redundancy of information may be because the indicators used in this study 

are not fully or reliably describing the dimension they set out to capture, due to problems with 

the underlying data, or other issues around how they are calculated.  

Either way, it remains important to use multiple indicators when assessing the condition of 

urban green spaces, and to choose these based on the purpose of the natural capital 

assessment or study. The quality, quantity and spatial configuration of natural capital is a 

useful starting point to consider what characteristics of natural capital assets underpin the 

benefits they provide. However, other work points to other characteristics of natural capital 

that are relevant to the benefits we receive, such as pressures on assets (Harrison et al. 2017) 

and demand for benefits (e.g. recreation, Liu et al. 2020). These aspects are particularly 

important for urban green spaces, as these areas are placed under intense pressure due to 

urban development, and are unequally distributed spatially, with high demand and low 

provision in some neighbourhoods (Wolch et al. 2014, Greenspace Information for Greater 

London CIC 2023a). 
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Chapter 5: Discussion and Conclusion 

The aim of this thesis was to explore the potential of big data and associated techniques to 

operationalise the natural capital framework at a national scale in England, through a better 

understanding of the relationship between natural capital assets and the benefits that flow 

from them. In Chapter 2, I demonstrated the potential of emerging datasets to capture 

important aspects of sociocultural value that are otherwise hard to include in a formal 

valuation process (Figure 15a). In Chapter 3, I showed how a range of different environmental 

datasets can be combined with statistical techniques to understand the complex ways that 

assets come together to provide benefits, namely the benefits of good water quality and 

agricultural production, and how this approach can be used to enable spatially targeted 

management when these benefits conflict (Figure 15b). Finally, through the work in Chapter 4 

I showed that there is significant dependency between the indicators for quantity, quality and 

spatial configuration of natural capital assets, suggesting that monitoring all three dimensions 

of natural capital leads to some redundancy of information (Figure 15c).  
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Figure 15: Overview of how the three research chapters in this thesis contribute to the 

operationalisation of the natural capital framework, including the key findings from each 

chapter. 

The most novel finding of the work in Chapter 2, using Wikipedia data to capture the diverse 

sociocultural values of designated areas in England, is that species richness has a significant 

positive effect on public interest in designated areas in England, which points to the way 

people are interested in and have a relationship with species that is not necessarily linked to 

direct contact with them. The lack of relationship between species richness and visitation is in 

line with previous research that showed that high natural and conservation value and areas of 

high recreational value do no tend to overlap (Mancini et al 2019). In terms of visitation, our 

study adds to an existing body of research on peoples’ choices of where they spend their times 

outdoors, which has also been shown to vary between longer destination trips and more local 

trips (Graham and Eigenbrod 2019). 
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The most important finding of the water quality work in Chapter 3 is that population density 

was shown to be a driver of the relative importance of waste water treatment works and 

agricultural land use as sources of N and P. Whilst it may seem intuitive that agricultural 

sources of N and P are likely to dominate in catchments with low population density, 

compared to point sources from WWTWs, the fact that mean N and P concentrations are 

lower in these catchments means that WWTWs could still have been comparatively more 

important. Conversely, whilst previous work has proposed that the agriculture’s contribution 

to N and P concentrations in rivers may be less important than previously thought in densely 

populated regions (Withers et al. 2014, Foy 2007), I was able to test this for the first time at a 

national scale. The results feed into a wider debate around the relative contribution of “point 

sources” of sewage effluent from WWTWs and “diffuse” sources associated with agricultural 

land use, which is the starting point for environmental management in this area (Neal et al. 

2010), although the grouping of anthropogenic sources of N and P into two groups (“point 

sources” and “diffuse sources”) has been accused of being simplistic in a number of ways 

(Withers and Jarvie 2008). Other drivers of context dependency are likely to exist, of course, 

and we could have split our data into groups in various ways – for example, watersheds with 

high or low precipitation, and watersheds with geology that is more or less permeable. I 

carried out initial investigations into the effect of forest land cover on N and P concentration, 

and the effect was not strong enough to be picked up at a national level by the models, which 

shows that some drivers of context dependency are stronger than others at a landscape scale 

(Spake et al. 2019). 

Finally, the work in Chapter 4 on the quantity, quality and spatial configuration of green space 

in Greater London data is novel in terms of its focus on the urban environment, which is 

often overlooked within studies of biodiversity and natural capital. This also means that some 

of the findings may be unique to urban environments. The most unexpected finding from this 

work was the way that the indicator derived from species data did not correlate with other 
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indicators, including the quantity (area) of green space, whilst reliably picking out high 

biodiversity area in London (based on visual inspection of the species richness data and my 

own knowledge of green spaces in London). This shows that there is potential to maintain 

highly biodiverse areas in cities, without needing to assign large areas for this. However, other 

benefits will scale more linearly with the quantity and primary productivity of green space in 

the city, such as the cooling effect of green spaces (Kong et al. 2014). 

 

5.1 Lessons learnt and recommendations. 

A common theme emerging from the research presented here is that the purpose of the 

natural capital assessment should inform how it is designed and carried out, including the 

choice of values we wish to capture, the characteristics of assets we are most interested in, the 

data sources and indicators that are best to use, and how robust the validation of results needs 

to be. As was highlighted in the introduction, natural capital assessments vary in their purpose 

within science and policy, including: regular monitoring exercises to document change (Office 

for National Statistics 2023a), accounting exercises that aim to negotiate specific trade-offs 

(Posner et al. 2016, Chan et al. 2020), valuation exercised to enhance the visibility and 

communication of cultural ecosystem services (Hernández-Morcillo et al. 2013, Hinson et al. 

2022), and studies to better understand the underlying processes of how assets provide 

benefits to society (e.g. Spake et al. 2019). This both explains and justifies the wide range of 

approaches, data sources and indicators that have been used within the natural capital 

approach so far (Fairbrass et al. 2020).  

Whilst many of the decisions around the design of a natural capital assessment will be specific 

to its objectives, there are some generalisations that can be made based on the findings 

presented in this thesis. Firstly, whilst the work on the indicators of quantity, quality and 

spatial configuration suggests that it may not be necessary to monitor all dimensions in all 

cases, as I found some redundancy of information between the indicators for each dimension, 
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taken together our work strongly suggests that multiple indicators are necessary to capture the 

value of nature. This is a way to mitigate the limitations of individual indicators, and it means 

the valuation exercise will capture different aspects of asset status and benefits, providing a 

fuller picture. This is already the approach taken within biodiversity credits (rePLANET 2024) 

and is similar to the way that consumer inflation is measured using the consumer price index, 

which is calculated by selecting household consumed goods and services that are typically 

purchased by specific groups of households, grouping them into a “basket”, and periodically 

tracking percentage changes in the cost of buying that “basket” (OECD 2023). The choice of 

goods and services included in the “basket” will vary from country to country, but that does 

not matter, as it is what people are buying in that place. 

 Secondly, when choosing different environmental datasets to use within a natural capital 

assessment or study, I would recommend prioritising datasets with different collection 

methods or sources whenever possible, as this will make it less likely that they contain similar 

noise due to the collection and processing method. Whilst certain data types, such as remote 

sensing data, are increasingly available and accessible, it is important to continue to explore 

other sources of data, and continue to fund fieldwork and other monitoring programmes to 

ensure diverse datasets are available for indicator creation, as well as to ground truth remote 

sensing data. Finally, many datasets, including widely used data such as land cover maps, are 

datasets derived from a model, rather than raw observations. Some models are better than 

others at using what is measured to create datasets and indicators (which can be thought of as 

"data quality" or "measurement error"), but there is also a risk of “concept error” if we are 

uncritical about how we use indicators to represent the concept of interest. Thus, indicators 

need to be interpreted with reference to the reason they were chosen and their original data 

source, as these things will determine what they are likely to be able to capture and not. 

Understanding and communicating this nuance is also a way to reduce the risk of the natural 

capital approach being used against conservation efforts, by arguing, for example, that the 
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absence of a certain indicators implies an absence of value, or by monetising benefits in a way 

that is not appropriate. 

 

5.2 Limitations of the approach 

A limitation of the work done for this thesis is that not much consideration has been given to 

the temporal dimension of natural capital monitoring. Whilst the exact purpose of natural 

capital assessments varies, there is a common theme running through them of wanting to 

safeguard the benefits we receive from nature for future generations. To assess progress 

towards this goal it is necessary to be able to detect change and identify trends. For example, 

can changes to the sociocultural values of designated areas be detected by new and emerging 

datasets such as Wikipedia? We use the location of Wikipedia pages as our data source in 

Chapter 2, and to introduce a temporal dimension it would probably be necessary to study the 

number of page views of a subset of Wikipedia pages.  

In terms of the water quality work in Chapter 3, the next step would be to use the statistical 

models to predict the change in N and P concentrations that would be brought about by a 

specific land use change scenario or where known changes in land use or WWTW treatment 

have occurred (e.g. Civan et al. 2018), which would allow us to assess whether these changes 

are likely to be detectable and distinguishable from temporary fluctuations. Climate change is 

also an important consideration in this context, firstly because the effects of climate change 

need to be separated from those resulting from management decisions. Secondly, climate 

change may shift the importance of particular sources of N and P from those found in this 

study. Initial research in this area shows that the two sources are affected by climate change in 

different ways, with a stronger effect of climate change on nutrient concentration in 

catchments where point sources dominate, as reduced flows lead to less dilution of sewage 

inputs (Wade et al. 2022). This may further strengthen the importance of WWTWs in 

catchments with high population density. 
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In terms of Chapter 4, it would be interesting to assess which of the indicators for the 

quantity, quality and spatial configuration of green space allow change detection, and thus 

detect progress (or lack of progress) towards policy targets and detect the effects of climate 

change. Increases in drought due to climate change will likely have a strong effect on NDVI, 

as NDVI can detect changes to the health and composition of vegetation in green spaces 

(Gascon et al. 2016). Species diversity might also change with climate change, particularly due 

to invasive species (Sparks et al. 2007, Lockwood et al. 2009). However, as an indicator 

species diversity will still be able to pick out high biodiversity areas. To detect new species 

present in green spaces or an increase in abundance of certain species it is likely that the best 

approach would be to harness the potential of crowdsourced data through species 

identification apps and other citizen science initiatives (Isaac et al. 2014), and consider a wider 

range of species. 

Being able to reliably detect change through time is a high bar against which to judge data and 

indicators. Detecting trend in species data is challenging (Isaac et al. 2014, Kéry et al. 2009), 

and so is accurately detecting land cover change in England using remote sensing data 

(Marston et al. 2023), despite land cover mapping being an area that receives a lot of 

resources. This is because accurately detecting change between classified habitat or land cover 

maps is not as straightforward as comparing maps from different time points, as real change 

needs to be differentiated from those arising due to errors and variation in methodology, and 

thus the error rate of the change detection map is larger than that of the individual maps being 

compared (Barber and Robinson 2023). Land cover maps also do not give information on 

land use, so changes to agricultural intensity or habitat quality are not identified when 

comparing land cover maps. Given the difficulty in detecting change and trends using even 

established data types and methods, it is perhaps unsurprising that the work in this thesis 

exploring new opportunities presented by data on the environment has not included progress 
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on change detection, and future work specifically on the temporal aspect of natural capital 

assessment is much needed. 

Another limitation of this theses is that it focuses only on England, which is not necessarily 

representative of other parts of the world. Many of the data sources used in this thesis would 

not be as widely available in other countries, including data from the photo sharing platform 

Flickr, and much of the data used in the study of green spaces in London. The rate of change 

in asset extent and condition is also much smaller in London than it is in the Amazon 

rainforest, for example, so some of the difficulties of detecting change in England is specific 

to a country where land cover change and changes to species composition are currently only 

happening comparatively slowly. This means that whilst this thesis contributes to the 

operationalisation of the natural capital approach in England, the approach and questions 

would be different for work supporting international environmental accounting efforts. 

 

5.3 Technical challenges to taking a big data approach within natural capital 

assessments 

Data on the natural environment in England are comparatively abundant and accessible, but 

there is still a limit to data available from long term monitoring programmes, particularly at a 

national scale. Even when an abundance of data seems to be available in the first instance, 

once various criteria have been applied to achieve a minimum data standard and assure that 

measurements are independent of each other, datasets can shrink considerably, as we found 

was the case for monitoring stations from the Water Quality Archive (Environment Agency 

2021) in Chapter 3. This highlights the continued technical challenges involved in attempting 

to apply machine learning methods in the environmental sciences, where data are costly to 

collect, and funding is limited. The availability of good quality, representative data becomes an 

ethical consideration when indicators and models go on to inform management decisions, as 

they need to undergo extensive independent validation to be trusted. As described in the 
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introduction, big data broadly refers to the increasing volume, variety, and velocity of data 

streams over the past 20 years or so (Hampton et al. 2013, Chen et al. 2014), and I would say 

that the work presented in this thesis has focused especially on the variety of environmental 

data, looking for ways to combine different datasets to tackle scientific questions and 

operationalise the natural capital framework within policy, as well as exploring new sources of 

data to add to this variety. To apply big data techniques that make use of very large volumes 

of data and harness the velocity at which is it possible to capture data, such as deep learning 

techniques based on timeseries analysis (Cheng et al. 2023) or sensors with onboard 

processing capabilities (Mahendra et al. 2020), it is necessary to identify areas that are likely to 

benefit from these kind of techniques and carry out targeted data collection. 

Another technical obstacle to applying some of the methods used in this thesis more broadly 

is the time needed to do the data processing and preparation, which would be difficult to 

justify in a more applied setting. Our studies involved a considerable effort in terms of data 

cleaning and preparation. There is potential for future developments in large language model-

based chatbots and other artificial intelligent tools to speed up some of the data processing 

involved (e.g. Agathokleous et al. 2023, Hassani et al. 2023). This, along with further 

availability of large datasets, may facilitate a wider uptake of the type of methods explored in 

this thesis in the future. There is also the option of including methods and data into decision 

making tools or packages to make them more widely available. Flickr data can now be 

accessed through the decision-making tool InVEST (Sharp et al. 2018) and the photosearcher 

R package (Fox et al. 2020), for example. 

Finally, our work using statistical techniques, including machine learning techniques, within a 

natural capital approach has shown that there are still challenges to overcome when using 

them. Statistical techniques need not stand alone, however, and can be used alongside more 

traditional models - as data exploration, validation, or as a component in a larger model 

framework (or digital twin) (Blair and Henrys 2023). Existing mixed approaches in other 
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domains of environmental science and ecology include using more traditional process-based 

models to build features or indicators to be used in statistical models (e.g. Mavromatis 2014), 

and using statistical approaches to estimate unknown parameters for process-based models 

(Maestrini et al. 2022), particularly in situations where there is limited capacity to describe the 

process in physical equations (Saha et al. 2021). Moving forward, it is important to recognise 

that new data and techniques will not necessarily replace previous approaches but 

complement them. 

 

5.4. What’s next? 

There are various new developments brought about by the big data era that are starting to be 

applied within ecology (McCrea et al. 2022) and conservation (Runting et al. 2020), and could 

potentially support the natural capital approach. An example of this is the emergence of deep 

learning, which is likely to have an important role in the future direction of methods in 

ecology and beyond (Pichler and Hartig, 2022, Perry et al. 2022, Havinga et al. 2023). Deep 

learning is as a family of machine learning algorithms that are composed of multiple 

processing layers that transfer input to output by progressively learning higher level features. 

Because of the ability of deep learning to automatically discovering the most important data 

features and relevant patterns (Borowiec et al. 2022), some anticipate it will revolutionise how 

remote sensing data can be used (Li et al. 2017), and deep learning approaches are already 

being used to fill knowledge gaps using camara traps, bioacoustics and social media data (see 

e.g. Willi et al. 2018, Stowell 2022, Havinga et al. 2023). To overcome the technical challenge 

of having to provide very large datasets to train, test and validate deep learning algorithms, 

there is work being carried out to develop foundation models (e.g. Stewart et al. 2023 for 

remote sensing data), inspired by the capabilities demonstrated by foundation models in other 

realms, including GPT (which underpins the chatbot ChatGPT) and Dall-E (which creates 

images from text). Foundation models are pre-trained to perform a general task (e.g. land 
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cover classification) and can then be fine-tuned for specific applications, although these are 

still at an early stage of development. Whilst these developments are exciting, there is still a 

need to identify promising avenues for their implementation (Pettorelli et al. in press). 

 

5.5 Conclusion 

The natural capital approach remains central to environmental policy and discourse in 

England, and environmental accounting is still in use internationally, with a shift in awareness 

towards the diverse values of nature (IPBES 2022). The opportunities provided by big data 

have been shown in this thesis to expand the diversity of values that can be included in the 

valuation process, increase our understanding of the relationship between assets and the 

benefits we receive from them, and help inform monitoring and management efforts in 

multiple ways. However, operationalising the natural capital approach remains challenging, 

particularly with regards to tracking changes in assets and their status over time in a 

meaningful way, and with regards to the need for data to validate models and develop 

methods. There remains a considerable gap between the ambitions and outcomes of national 

policy on the environment (Natural Capital Committee 2019). Whilst information is important 

to inform policy and decision making, accounting exercises need to be backed by legislation, 

public support and compliance monitoring if we want to see the large-scale changes to 

environmental stewardship required to be the first generation to leave the environment in a 

better state than we received it, as was lain out in the 25 Year Environment Plan for England 

(Defra 2018a). 
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Appendices 

Appendix 1 

(a) 

 

(b) 

 

Figure A1.1: ROC curves for (a) the best model for the Flickr data and (b) the best model for 

the Wikipedia data. The plots show the sensitivity and specificity of the model at different 

probability cutoffs. The AUC is an overall summary of diagnostic accuracy and a good model 

will have a high AUC. AUC equals 0.5 when the ROC curve corresponds to random chance 

and 1.0 for perfect accuracy (Zou et al. 2007).  
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Appendix 2 

 

 

 

 

Figure A2.1: Results of the models for (a) the Flickr data and (b) the Wikipedia data. The 

plots show the predicted probability of finding at least one Flickr photo (a) or Wikipedia page 

(b) against species richness in designated areas without a coastal location or waterbody, while 

other variables are kept at their mean. Species richness was centred around the mean and 

scaled by its SD. Ticks on the plot margins represent the data, the lines represent the 

predictions from the model and the lighter shaded areas are the 95% confidence intervals.  

(b) 
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Appendix 3 

This section briefly explains the additional analysis carried out in order to ensure that the very 

small amount of spatial autocorrelation found in the residuals of the two binomial glm models 

is not influencing the conclusions drawn. 

Overall, there is no clear spatial autocorrelation visible in the residuals of the two glm models 

for the Flickr data (Figure A3.1) and the Wikipedia data (Figure A3.2). However, Moran’s I 

for the residuals shows a very small amount of spatial autocorrelation, that is nonetheless 

significant, for both the model of the Flickr data (observed = 0.03, expected = -0.0002, p-

value < 0.001) and the model of the Wikipedia data (observed = 0.04, expected = -0.0002, p-

value < 0.001). The semivariograms shows that the spatial autocorrelation is no longer an 

issue at 4000 m, as the semivariograms levels off (Figure A3.3). 

To ensure that our conclusions are not affected by this small amount of spatial autocorrelation 

we repeatedly took a random sub-sample of the designated areas, ensuring that those included 

were more than 4000 m apart. Each sub-sample included about 2400 designated areas (from 

the total of 6349), and these were used to run binomial glms for the Flickr and Wikipedia data. 

The coefficients for the covariates in the models varied by less than 0.1 compared to the glm 

using all of the data, meaning that our conclusions remain unchanged.   
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Figure A3.1: Map of the simulated (DHARMa) residuals from the model of the Flickr data. 

Each point represents the centroid of a designated area. The range of DHARMa residuals is 0 

to 1, which makes them easier to visualise and interpret than the “raw” residuals of the model. 
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Figure A3.2: Map of the simulated (DHARMa) residuals from the best model of the 

Wikipedia data. Each point represents the centroid of a designated area. The range of 

DHARMa residuals is 0 to 1, which makes them easier to visualise and interpret than the 

“raw” residuals of the model. 
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Figure A3.3: Semivariogram for the simulated (DHARMa) residuals of the best model for the 

Flickr data (a) and the Wikipedia data (b). 

  

(b) 

(a) 
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Appendix 4 

 

 

Figure A4.1: Mean Total Oxidised Nitrogen (a) and mean Reactive Phosphorus (b) for the 

years 2015-2019 at the monitoring stations initially selected based on minimum data 

availability, and after ensuring that the monitoring stations’ catchments did not overlap, as 

described in Section 3.2.1.2. For Total Oxidised Nitrogen n = 404, for Reactive Phosphorus n 

= 383. We included a subset of this data in the study, choosing those with high and low 

population density (those below the first quartile and above the fourth quartile, respectively), 

as described in Section 3.2.2.  
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b) 

 

a) 

 

 

c) 

 

d) 

 

 

  

 

 

 

Figure A4.2: Distribution of the dependent variable of the four datasets used in this study, 

that is the mean Total Oxidised Nitrogen (TON) for catchments with low population density 

(a) and high population density (b) (n = 101 in each case), and mean Reactive Phosphorus 

(RP) for catchments with low population density (c) and high population density (d) (n = 96 

in each case). The mean of TON and RP was taken over the years 2015 to 2019. 
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Figure A4.3: Distribution of the independent variables for the models of TON (model of 

catchments with low population density and model of catchments with high population 

density). 
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Figure A4.4: Distribution of the independent variables for the models of RP (model of 

catchments with low population density and model of catchments with high population 

density). Note that the distribution of the independent variables for the models of RP are 

almost identical to those for TON (Figure A4.3) because most monitoring stations appear in 

both datasets. 
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Appendix 5 

 

 

 

Figure A5.1: Effect plots for the generalised linear model of RP in catchments with low 

population density. The plots show the predicted RP concentration*1000 against the 

proportion of arable and horticultural land cover (a), cattle density (b), sheep density (c) and 

the population equivalent of the WWTWs in the catchment (d), with all other variables kept at 

their mean. The population equivalent of the WWTWs in the catchment, cattle density and 

sheep density were exponentiated before plotting, as the predictor in the model was the log of 

the population equivalent of WWTWs, log of cattle density and log of sheep density.  

  

(c) 

(a) (b) 

(d) 
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Figure A5.2: Effect plots for the negative binomial generalised linear model of TON in 

catchments for catchments with high population density (a, b) and for the negative binomial 

generalised linear model of RP in catchments for catchments with high population density (c, 

d). The plots show the predicted TON and RP concentration*1000 against the population 

equivalent of the WWTWs in the catchment (a and c), the predicted TON against cattle 

density in the catchment (b) and the predicted RP against the proportion of arable and 

horticultural land cover in the catchments (c), with all other variables kept at their mean. The 

population equivalent of the WWTWs in the catchment and the cattle density were 

exponentiated before plotting, as the predictor in the model was the log of the population 

equivalent of WWTWs and the log of cattle density. 

 

 

(a) (b) 

(c) (d) 
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Appendix 6 

 

Table A6.1: Land use classes and corresponding resistance values used by the Omniscape algorithm (in the 

form of a habitat suitability map). The underlying land use map of Greater London includes data from a 

London-wide database of open spaces (Greenspace Information for Greater London CIC 2023c) and the OS 

MasterMap Greenspace Layer (Ordnance Survey Limited 2022). The resistance values were chosen based on 

the example in the Omniscape documentation, local knowledge of Greater London and various trial runs. 

Land use Resistance 

Allotments, Community Growing Spaces or City 
Farms 

5 

Amenity - Residential or Business 50 

Amenity - Transport 50 

Bowling Green 50 

Cemetery 5 

Camping or Caravan Park 50 

Golf Course 50 

Institutional Grounds 50 

Land Use Changing 50 

Natural 1 

Other Sports Facility 50 

Play Space 50 

Playing Field 50 

Private Garden 5 

Public Park or Garden 5 

Religious Grounds 5 

School Grounds 50 

Tennis Court 50 

Civic Spaces 50 

Green Corridors 1 

Natural and Semi-natural Urban Greenspace 1 

Other 50 

Other Urban Fringe 5 

Buildings and large rivers Absolute 
barrier 
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Figure A6.1: Scree plot of the explained variance, with each dimension representing a 

principal component. 
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(a) 
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(b) 
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(c) 

 

Figure A6.2: Pearson correlation coefficients, density plots and scatter plots for the indicators 

used in this study, showing the correlation between the indicators for quantity and quality (a), 

quantity and spatial configuration (b) and quality and spatial configuration (c). The correlation 

coefficients were all statistically significant with p < 0.001. 
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Appendix 7 

Table A7.1: Loadings for the first (PC1) and second (PC2) principal components from the indicators for 

quantity, quality and spatial configuration for Greater London calculated for a 1200 m grid (a) and a 5000 

m grid (b), showing the contribution of each variable. The signs of the loadings are arbitrary, and randomly 

assigned, so may differ between different programs for principal component analysis (R Core Team 2022). 

 
(a) 
 

Dimension  Indicator PC1* PC2* 

Quantity Area green space -0.34* 0.21 
Quality Species richness -0.20* -0.39 
Quality NDVI -0.26* -0.19 
Quality Total area of tree canopy cover -0.29* -0.20 
Quality Total length of footpaths -0.22* -0.52* 
Quality Total area of habitat of principal importance -0.31* -0.26 
Spatial configuration CAI_AM -0.35* 0.26 
Spatial configuration LSI 0.33* -0.30 
Spatial configuration LPI -0.34* 0.28 
Spatial configuration NP 0.32* -0.29 
Spatial configuration Landscape connectivity -0.29* -0.26 

*Indicates statistically significant (p < 0.05) 

 
(b) 
 

Dimension  Indicator PC1* PC2* 

Quantity Area green space -0.33*  0.15 
Quality Species richness -0.17* 0.27 
Quality NDVI -0.29* 0.07 
Quality Total area of tree canopy cover -0.26* 0.37 
Quality Total length of footpaths -0.12* 0.56* 
Quality Total area of habitat of principal importance -0.33* 0.30 
Spatial configuration CAI_AM -0.37* -0.26 
Spatial configuration LSI 0.34* 0.35 
Spatial configuration LPI -0.37* -0.19 
Spatial configuration NP 0.33* 0.35 
Spatial configuration Landscape connectivity -0.29* 0.07 

*Indicates statistically significant (p < 0.05) 
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(a) 1200 m grid 

 
(b) 5000 m grid 

 
Figure A7.1: Pearson correlation coefficients for the indicators used in this study, calculated 

for a 1200 m grid (a) and a 5000 m grid (b). The correlation coefficients were all statistically 

significant with p < 0.001. 


