

The BnamiR827–BnaA09.NLA1–BnaPHT1 module regulates phosphate homeostasis, pollen viability, and seed yield in Brassica napus

Article

Accepted Version

Wu, T., Han, B., Wang, Y., Zhang, B., Wang, C. ORCID: <https://orcid.org/0000-0002-7663-7433>, Wang, S. ORCID: <https://orcid.org/0000-0002-9166-0578>, Cai, H. ORCID: <https://orcid.org/0000-0002-1430-5126>, Liu, Z., Hammond, J. P. ORCID: <https://orcid.org/0000-0002-6241-3551>, Kant, S., Ding, G. ORCID: <https://orcid.org/0000-0003-3702-5087>, Xu, F. ORCID: <https://orcid.org/0000-0003-3564-1644> and Shi, L. ORCID: <https://orcid.org/0000-0002-5312-8521> (2025) The BnamiR827–BnaA09.NLA1–BnaPHT1 module regulates phosphate homeostasis, pollen viability, and seed yield in *Brassica napus*. *Journal of Experimental Botany*, 76 (4). pp. 1333-1350. ISSN 1460-2431 doi: [10.1093/jxb/erae484](https://doi.org/10.1093/jxb/erae484)
Available at <https://centaur.reading.ac.uk/120146/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1093/jxb/erae484>

Publisher: Oxford University Press

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 RESEARCH PAPER
2 The regulatory module *BnamiR827-BnaA09.NLA1-BnaPHT1s* modulates
3 phosphate homeostasis, pollen viability and seed yield in *Brassica napus*

4

5 Running title:

6 *BnamiR827-BnaNLA1* module regulates Pi homeostasis and seed yield in *B. napus*

7

8 Tao Wu^{1,2}, Bei Han^{1,2}, Yajie Wang^{1,2}, Bingbing Zhang^{1,2}, Chuang Wang², Sheliang
9 Wang^{1,2}, Hongmei Cai², Zhu Liu¹, John P. Hammond³, Surya Kant⁴, Guangda Ding^{1,2},
10 Fangsen Xu^{1,2}, Lei Shi^{1,2*}

11

12 ¹ National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural
13 University, Wuhan 430070, China

14 ² Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle
15 and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs,
16 Huazhong Agricultural University, Wuhan 430070, China

17 ³ School of Agriculture, Policy and Development, University of Reading, Reading RG6
18 6AR, UK

19 ⁴ School of Agriculture, Biomedicine & Environment, La Trobe University, AgriBio, 5
20 Ring Rd, Bundoora, Vic 3083, Australia

21

22 *Correspondence: Lei Shi (leish@mail.hzau.edu.cn)

23

24 Address: National Key Laboratory of Crop Genetic Improvement, Huazhong
25 Agricultural University, Wuhan 430070, China

26 Tel: 0086-27-87286871

27 Fax: 0086-27-87280016

28 **Abstract**

29 Phosphorus (P) is an essential macronutrient for the growth and yield of crops. However,
30 there is limited understanding of the regulatory mechanisms of phosphate (Pi)
31 homeostasis, and its impact on growth, development, and yield-related traits in *Brassica*
32 *napus*. Here, we identified four *NITROGEN LIMITATION ADAPATATION1* (*BnaNLA1*)
33 genes in *B. napus*, their expression was predominant in roots and suppressed by Pi
34 starvation-induced *MicroRNA827s* (*BnamiR827s*). All the *BnaNLA1* proteins have
35 similar sequences, subcellular localizations, and abilities to rescue the growth defects
36 of *atnla1* mutant. One of the genes, *BnaA09.NLA1* expressed abundantly in roots, and
37 also in old leaves, anthers and pollens. Knocking out of *BnaNLA1*(s) or overexpressing
38 *BnamiR827* resulted in increased concentrations of Pi in leaves as well as in stamen and
39 had reduced pollen viability thereby negatively impacting seed yield. BiFC and split-
40 ubiquitin Y2H analyses demonstrated that *BnaA09.NLA1* interacted with seven Pi
41 transporters highly expressed in roots and/or anthers (i.e., *BnaPT8/10/11/27/35/37/42*)
42 to regulate Pi uptake and Pi allocation in anthers. Taken together, this study
43 demonstrates that the *BnamiR827-BnaA09.NLA1-BnaPHT1s* module is involved in
44 regulating Pi uptake and Pi allocation in floral organs, which is vital for the growth,
45 pollen viability and seed yield of *B. napus*.

46

47 **Keywords:** *BnamiR827*, *BnaNLA1*, phosphate transporters, *Brassica napus*, pollen
48 viability, seed yield

49

50 **Highlight:** The *BnamiR827-BnaA09.NLA1-BnaPHT1s* module is involved in
51 regulating Pi uptake and Pi allocation in floral organs, which is vital for the growth,
52 pollen viability and seed yield of *B. napus*.

53 **Introduction**

54 Phosphorus (P) is an indispensable macronutrient for plant growth and productivity. P
55 is constituent of many macromolecules such as nucleic acids and phospholipids, and
56 involved in numerous physiological processes including energy metabolism, signal
57 transduction, photosynthesis, and respiration (White and Hammond, 2008). Plants
58 acquire P in the form of inorganic phosphate (Pi), the concentration of which is often
59 limited in the soil solution, since P is commonly present in organic and insoluble P
60 forms (Raghothama and Karthikeyan, 2005; Lambers *et al.*, 2008). The application of
61 inorganic P fertilizers has greatly contributed to increment of yield and crop production
62 (Syers *et al.*, 2008). However, the excessive application of Pi fertilizers not only
63 increases the cost of agricultural activities, but also leads to significant environmental
64 problems, such as eutrophication and soil acidification (Zhang *et al.*, 2013). Therefore,
65 understanding how plants adapt to low and fluctuating soil Pi concentrations can
66 facilitate crop breeding strategies to develop varieties with high P use efficiency, thus
67 reducing the requirement for Pi fertilizers and contributing to sustainable agricultural
68 practices.

69 Plants have evolved a series of adaptive strategies to improve Pi uptake and utilization
70 efficiency (Wang *et al.*, 2019). During short-term P starvation, intracellular Pi is
71 maintained relatively constant at the cost of vacuolar Pi (Wang *et al.*, 2015; Xu *et al.*,
72 2019; Han *et al.*, 2022). After the vacuolar Pi is exhausted, the plant cells synthetize
73 and secrete acid phosphatases, ribonucleases and organic acids to liberate Pi fixed to
74 soil minerals or present in organic forms, which are then taken up by root Pi transporters
75 (Abel *et al.*, 2000; Du *et al.*, 2022; Liu *et al.*, 2022). With a combination of high- and
76 low-affinity Pi transporters, the Pi uptake system in plant roots operates over a broad
77 range of Pi concentrations to optimize Pi uptake in this heterogeneous environment (Ai
78 *et al.*, 2009; Jia *et al.*, 2011). Pi transporters (PHTs) have been divided into five families,
79 i.e., PHT1, PHT2, PHT3, PHT4 and PHT5, playing key roles in Pi uptake, allocation
80 and redistribution (Daram *et al.*, 1999; Mudge *et al.*, 2002; Guo *et al.*, 2008; Liu *et al.*,
81 2016; Versaw and Garcia, 2017).

82 PHT1;1 and PHT1;4 play major roles in Pi uptake, Pi uptake rate of the *pht1;1/pht1;4*

83 double mutant was reduced by 50% and 75% at low and high P concentration,
84 respectively, compared with wild-type *Arabidopsis* (Shin *et al.*, 2004; Catarecha *et al.*,
85 2007). The expression of *PHT1;1* and *PHT1;4* was induced by P deficiency to enhance
86 Pi uptake. Several mechanisms for *PHT1;1* and *PHT1;4* regulation have been reported.
87 PHOSPHATE RESPONSEs (PHRs), WRKYs, and ABA INSENSITIVE5 (ABI5) acts
88 as transcription factors (TFs) for *PHT1;1* (Nilsson *et al.*, 2007; Wang *et al.*, 2014; Su
89 *et al.*, 2015; Zhang *et al.*, 2022a). In addition to transcriptional regulation, post-
90 transcriptional modification controls the abundance and activity of PHT1 proteins.
91 PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR 1 (PHF1) is involved in the
92 trafficking of PHT1s from the endoplasmic reticulum (ER) to the plasma membrane
93 (PM), where they mediate Pi uptake (Gonzalez *et al.*, 2005; Bayle *et al.*, 2011; Guo *et*
94 *al.*, 2022). In rice, CASEIN KINASE2 (OsCK2) phosphorylates OsPT8 under P-
95 sufficient conditions, and the phosphorylated OsPT8 cannot interact with OsPHF1,
96 resulting in their retention in the ER (Chen *et al.*, 2015). Whereas, under P-deficient
97 conditions the protein PHOSPHATASE95 (OsPP95) dephosphorylates OsPT8,
98 promoting its ER exit and trafficking to the PM (Yang *et al.*, 2020). In addition,
99 endosomal trafficking also regulates PHT1 abundance in the PM, where the cytosolic
100 protein ALIX associates with the multivesicular bodies (MVB) by interacting with
101 ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole for
102 degradation in *Arabidopsis* (Cardona-López *et al.* 2015). Moreover, Sorting Nexin1
103 (SNX1) also plays a key role in the modulation of PHT1;1 protein stability and PM
104 accumulation (Zhang *et al.*, 2022b). The Rho of plant GTPase (AtROP6) acts as a
105 molecular switch to modulate Pi uptake by inhibiting the activities of AtPHT1;1 and
106 AtPHT1;4 in *Arabidopsis* (Gao *et al.*, 2021). The RING-type ubiquitin ligase
107 NITROGEN LIMITATION ADAPATATION1 (NLA1) and the ubiquitin-conjugating
108 enzyme PHOSPHATE2 (PHO2) mediates the ubiquitination and degradation of PHT1
109 transporters in *Arabidopsis* and rice (Hu *et al.*, 2011; Huang *et al.*, 2013; Lin *et al.*,
110 2013; Yue *et al.*, 2017; Yang *et al.*, 2020). *MicroRNA399* (*miR399*) suppresses the
111 expression level of *PHO2* in *Arabidopsis*. However, *MicroRNA827* (*miR827*) targets
112 *NLA1* and *OsSPX-MFS1* in *Arabidopsis* and rice, respectively (Pant *et al.*, 2008; Hsieh

113 *et al.*, 2009; Kant *et al.*, 2011; Wang *et al.*, 2012).

114 Besides being involved in Pi uptake, the *PHT1* family genes also play integral roles in
115 Pi homeostasis in floral organs. Among the *OsPHT1* gene family, the transcript of
116 *OsPHT1;7* was most abundant in anthers. In *Ospt1;7* mutants, anther development
117 was significantly suppressed accompanied by a significant decrease in P concentration
118 and inhibition of germination of pollen grains and pollen viability, leading to a
119 reduction in seed-setting rate and grain yield (Dai *et al.*, 2022). The *osnla1* mutant had
120 reduced pollen fertility as well as impaired grain production. Also, the P concentration
121 in the anther was higher in mutant revealing an association between P and pollen
122 viability (Yang *et al.*, 2020). *OsPHT1;7* has been demonstrated to be a direct target of
123 *OsNLA1*, with altered P concentrations in anthers and impaired pollen viability,
124 indicating that P concentration in anthers need to be precisely maintained to ensure
125 normal development of anthers and pollens (Yang *et al.*, 2020; Dai *et al.*, 2022).

126 Oilseed rape (*Brassica napus* L., genome A_nA_nC_nC_n) was formed about 7500 years ago
127 by spontaneous hybridization between *Brassica rapa* (genome A_rA_r) and *Brassica*
128 *oleracea* (genome C_oC_o), followed by chromosome doubling, a process known as
129 allopolyploidy (Chalhoub *et al.*, 2014). These polyploidy events led to numerous
130 duplicated segments and homoeologous regions within the oilseed rape genome
131 (Chalhoub *et al.*, 2014). Thereby, a total of 49 *PHT1* genes have been identified in the
132 genome of *B. napus*, namely *BnaPT1* to *BnaPT49* (Li *et al.*, 2019), however, only
133 *BnaPT11* and *BnaPT37* have been characterized. *BnaPT11* has been shown to be
134 involved in Pi uptake, seed germination and early seedling growth in *B. napus* (Ren *et*
135 *al.*, 2014; Huang *et al.*, 2019), while *BnaPT37* might be involved in Pi translocation
136 from root to shoot and Pi distribution from source to sink (Li *et al.*, 2023). Since *B.*
137 *napus* is highly susceptible to P deficiency, it is important to understand the regulatory
138 mechanisms of Pi uptake, transport and utilization in this allotetraploid crop.

139 Here, we report four *BnaNLA1* genes, expressed mainly in roots and are suppressed by
140 P starvation and by miRNA; *BnamiR827*. All the BnaNLA1 proteins are homologs of
141 *Arabidopsis* AtNLA1, and have similar sequences, subcellular localizations and
142 abilities to rescue the growth defects of *nla1* mutation in *Arabidopsis*. BnaA09.NLA1

143 is shown to be involved in regulating Pi uptake, likely via degradation of several
144 BnaPHT1 Pi transporters. Further, the *BnamiR827-BnaA09.NLA1* module is shown to
145 be involved in pollen viability and seed production, a novel finding in dicotyledon
146 species. A decline in pollen viability was due to an increase of Pi concentration in
147 stamen, rather than in pistil. Importantly, *BnaA09.NLA1* and *BnaC08.NLA1*
148 redundantly regulated Pi uptake, but *BnaA09.NLA1* played major roles in Pi allocation
149 in anthers, suggests that a functional differentiation of *BnaNLA1* members evolved in
150 *B. napus*. This work highlights the importance of the *BnamiR827-BnaA09.NLA1-*
151 *BnaPHT1s* module in regulating Pi uptake in roots and Pi allocation in floral organs,
152 which is vital for the growth, pollen viability and seed yield of *B. napus*.

153 **Materials and methods**

154 **Plant materials and growth conditions**

155 The *B. napus* cultivar ‘Westar10’ (W10) and *Arabidopsis thaliana* ecotype Columbia
156 (Col-0) were used as wild-type in this study.

157 Nutrient solution experiments:

158 To evaluate whether *BnaNLA1s* are able to rescue the growth defects of the *Arabidopsis*
159 *nla1* mutant, we grew Col-0, *nla1*, and *35S::BnaNLA1s* seedlings under a sufficient N
160 supply (+N, 10 mM NO₃⁻) and a deficient N supply (-N, 0.1 mM NO₃⁻) for two weeks
161 as previously described (Peng *et al.*, 2007; Liu *et al.*, 2017).

162 *B. napus* seeds were surface-sterilized and sown on moistened gauze, after 5 days of
163 germination, uniform seedlings were transplanted and grown in black plastic containers
164 filled with modified Hoagland solution. The seedlings were grown in a sufficient P
165 supply (+P, 1 mM KH₂PO₄) for 8 days and then supplied with +P or a deficient P supply
166 (-P, 5 µM KH₂PO₄) for a further 7 days to investigate seedling phenotypes and quantify
167 gene expression. The full strength solution contained 5 mM KNO₃, 5 mM
168 Ca(NO₃)₂·4H₂O, 2 mM MgSO₄·7H₂O, 50 µM EDTA-Fe (II), 0.32 µM CuSO₄·5H₂O,
169 0.77 µM ZnSO₄·7H₂O, 9.14 µM MnCl₂·4H₂O and 0.37 µM Na₂MoO₄·2H₂O, pH 5.8.
170 The P-sufficient solution (+P) contained 1 mM KH₂PO₄; the P-deficient solution (-P)
171 contained 5 µM KH₂PO₄ and KCl was used to maintain K concentrations in the -P
172 nutrient solution. All the plants were grown at 20 °C under a 16 hrs light/8 hrs dark

173 photoperiod with light intensity at 300-320 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and the nutrient solution was
174 replenished every 4 days.

175 Field trial and pot experiment:

176 The field trial and pot experiment were conducted at the experimental site of Huazhong
177 Agricultural University in Wuhan (114.3° E, 30.5° N), Hubei Province, China from
178 October 2022 to May 2023. The field soil is a yellow-brown (Alfisol) with pH 6.6,
179 organic matter 10.70 g kg⁻¹, NH₄OAc-extracted potassium 120.20 mg kg⁻¹, available N
180 (alkalihydrolysable N) 25.60 mg kg⁻¹, and P (Olsen-P) 8.30 mg kg⁻¹. The fertilizer
181 application rates were: N 108 kg N ha⁻¹ (supplied as urea, N ≥ 46%), P 90 kg P₂O₅ ha⁻¹
182 (supplied as calcium superphosphate, P₂O₅ ≥ 12%), K 120 kg K₂O ha⁻¹ (supplied as
183 potassium chloride, K₂O ≥ 60%), and boron 15 kg ha⁻¹ (supplied as Na₂B₄O₇·10H₂O).
184 These fertilizers were thoroughly mixed and applied in bands near the crop rows. For
185 N, 60% was applied at initial basal stage and the remaining 40% N was top dressed
186 during the overwintering stage.

187 The pot experiment was conducted at the farm with canopy of net screen. Two plants
188 per pot (15 cm×20 cm) were grown, filled with 7 kg soil collected from the field. Each
189 pot was supplied with 1,000 ml of nutrient solution containing 6.60 g (NH₄)₂SO₄, 2.01
190 g KH₂PO₄, 1.11 g KCl, 1.75 g MgSO₄·7H₂O, 7 ml Arnon stock solution (1,000×) as
191 micronutrient and 7 ml FeSO₄·EDTA Hogland stock solution (200×). Each pot received
192 an additional 1 g of urea twice during the growth period. The Pi concentrations and
193 pollen viability at the reproductive stage were measured, and the seed yield and yield
194 related traits were measured at the maturity stage.

195 **Vector construction and plant transformation**

196 For the *BnaA09.NLA1/BnaC08.NLA1* CRISPR vector, a pair of target sequences
197 sgRNA1 (GATCCGATATCATTAAACCTGCGG) and sgRNA2
198 (TAGAGATCCTCCAATCACCATGG) were designed using CRISPR-P 2.0
199 (<http://crispr.hzau.edu.cn>) and then cloned into the CRISPR-Cas9 expression vector
200 PKSE401 as per previously described method (Yang *et al.*, 2017). To construct the
201 overexpression vectors, the full-length coding sequences of *BnaNLA1s* and a DNA
202 fragment (332 bp) including primary sequence of *BnamiR827* were amplified by PCR

203 and then cloned into the vector PBI121-GUS at the *Bam*H I and *Sac* I restriction sites
204 driven by the CaMV35S promoter. To generate the GUS reporter vectors, the promoter
205 sequences of *BnaA09.NLA1* (2160 bp), *BnaA09.miR827* (1556 bp), *BnaC08.miR827a*
206 (1522 bp) and *BnaC08.miR827b* (1537 bp) were amplified by PCR from genomic DNA
207 and then introduced into the DX2181b-GUS plasmid at the *Sma* I restriction site.
208 Transgenic *Arabidopsis* plants were produced using the previously reported ‘floral dip’
209 method (Clough and Bent 1998). All the *BnaNLA1s* overexpression vectors were
210 delivered into *Arabidopsis nla1* mutant to generate complementary lines. The
211 *proBnaA09.NLA1::GUS*, *proBnaA09.miR827::GUS*, *proBnaC08.miR827a::GUS* and
212 *proBnaC08.miR827b::GUS* vectors were delivered into Col-0 background. The
213 transformation of *B. napus* was performed using the hypocotyls of ‘Westar10’ by
214 Agrobacterium infiltration (De Block *et al.*, 1989) with *BnaA09.NLA1/BnaC08.NLA1*
215 CRISPR vector, *BnamiR827* overexpression vector, and *proBnaA09.NLA1::GUS* vector.
216 Positive transgenic plants were confirmed by PCR analysis. The T3 generation of
217 homozygous *BnaNLA1* mutants, overexpression plants and GUS reporter lines were
218 used for physiological and biochemical experimental analysis. The primer sequences
219 used for cloning are listed in Table S1.

220 **RNA isolation and RT-qPCR**

221 Total RNA was extracted from plant tissues using an RNA isolation kit (Promega,
222 Madison, WI, USA), then the first-strand cDNA was reverse transcribed by a cDNA
223 synthesis kit (CWBIO, China). The real-time quantitative PCR (qRT-PCR) was carried
224 out using a qRT-PCR master mix (SYBR® Premix Ex TaqTM II, Takara, Kyoto, Japan)
225 with a real-time PCR detection system in Bio-Rad’s ICYCleriQS fluorescent
226 quantitative PCR instrument. The primer efficiency was assessed with Bio-Rad CFX
227 Manager software (Bio-Rad, Hercules, CA, USA). The stem-loop reverse transcription
228 PCR was used to quantify the mature *BnamiR827* according to the method by Chen *et*
229 *al.* (2005), and the *BnaU6* small nuclear RNA (snRNA) was used as an internal control
230 for each reaction (Cheng *et al.*, 2017). The housekeeping genes *BnaTubulin* and
231 *BnaEF1- α* were used as internal standards to normalize the expression level of
232 *BnaNLA1s* genes. Three biological replicates and one plant per replicate were used for

233 gene expression analysis. The primer sequences used for qRT-PCR are shown in Table
234 S1.

235 **GUS histochemical analysis**

236 Germinated *proBnaA09NLA1::GUS* transgenic *B. napus* seeds were grown in standard
237 Hoagland nutrient solution for 10 days and then transferred to the nutrient solutions of
238 1 mM Pi (+P) or 5 μ M Pi (-P) for 7 days. The *proBnaA09.miR827::GUS*,
239 *proBnaC08.miR827a::GUS* and *proBnaC08.miR827b::GUS* transgenic plants were
240 germinated on 1/2 MS medium for 5 days and then transplanted to medium with 625
241 μ M Pi (+P) and 6.25 μ M Pi (-P) for 3 days, respectively. Whole plants were submerged
242 in GUS staining solution and incubated in the dark at 37°C for 8 hrs. GUS histochemical
243 staining was performed using a GUS staining kit (SL7160, Coolaber). After staining,
244 the tissues were washed with 75% ethanol to remove chlorophyll and imaged using
245 microscope (SMZ25, Nikon).

246 **Subcellular localization and Biomolecular Fluorescence Complementation (BiFC)**

247 For transient expression analysis of the subcellular localization of BnaNLA1 proteins
248 in *Arabidopsis* protoplasts, the full-length coding sequence of each *BnaNLA1* genes
249 were amplified from cDNA of ‘Westar 10’ and then cloned into the PM999-GFP vector
250 driven by the CaMV35S promoter using the In-Fusion HD Cloning kit (Takara Bio).
251 Transformation of *Arabidopsis* mesophyll protoplasts was performed according to Yoo
252 *et al.* (2007). After 12-16 hrs incubation, the transformed protoplasts were imaged using
253 confocal laser-scanning microscope (TCS SP8, Leica).

254 *BnaA09.NLA1* gene was cloned into N-terminal fragments of YFP, and *BnaPHT1s*
255 genes were cloned into C-terminal fragments of YFP vectors. The resulted constructs
256 were transiently co-expressed in 4-week-old tobacco (*Nicotiana benthamiana*) leaves
257 by Agrobacterium-mediated infiltration, as described previously (Walter *et al.*, 2004).
258 The YFP fluorescence signals in tobacco leaves were imaged 2 days after infiltration
259 using confocal laser-scanning microscope (TCS SP8, Leica). Excitation/emission
260 wavelengths were 488 nm/495–520 nm for GFP, 552 nm/575–630 nm for mCherry, and
261 514 nm/520–550 nm for YFP.

262 **Split-ubiquitin yeast two-hybrid (Y2H) assay**

263 The DUALmembrane Starter Kits (Dualsystems Biotech, Schlieren, Switzerland), was
264 used for Y2H assays. The coding regions of seven BnaPHT1s and BnaA09.NLA1^{C275A}
265 were cloned into vectors pBT3-N (containing the C terminal half of ubiquitin) and
266 pPR3-N NubG (containing the mutated N-terminal half of ubiquitin), respectively. The
267 primers used are listed in Table S1. The pNubG-Fe65 and pTSU2-APP plasmid
268 combination was used as the positive control, while the pPR3-N and pBT3-N-BnaPHT1
269 plasmids were co-transformed into yeast cells as the negative controls and self-
270 activation controls. Yeast strain NMY51 was co-transformed with the two constructs,
271 and the transformed yeast cells were grown on SD (synthetic deficient)-Leu-Trp (SD-
272 LW), SD/-Leu-Trp-His (SD-LWH) and SD/-Leu-Trp-His-Ade (SD-LWHA) at 30°C for
273 3 days to test the protein interactions.

274 ***In vitro* ubiquitination assay**

275 *In vitro* ubiquitination assays were performed as described previously (Zhou *et al.*
276 2014). In brief, recombinant proteins AtUBA1-His, AtUBC8-His, MBP-AtNLA1, and
277 MBP-AtNLA1^{C279A} were purified from *Escherichia coli*. 100 ng AtUBA1-His, 250 ng
278 AtUBC8-His, 500 ng MBP-AtNLA1 (or MBP-AtNLA1^{C279A}), and 100 ng Flag-Ub
279 (Boston Biochem) were mixed and incubated in 30 µL of a 1× ubiquitination reaction
280 buffer (50 mM Tris-HCl pH 7.4, 5 mM MgCl₂, 2 mM ATP, 2 mM DTT, 0.1 mM ZnSO₄)
281 at 30°C for 2 h. Samples were then heated to 95°C for 10 min before separation by
282 SDS-PAGE and immunoblot analysis using anti-Flag antibody (Progeingene, 1:5000
283 dilution).

284 **Measurement of Pi concentrations and total P concentrations**

285 Tissue Pi concentrations were measured using the method described previously (Han *et*
286 *al.*, 2022). Briefly, 50 mg of fresh tissue samples were homogenized with 50 µl of 5 M
287 H₂SO₄ and 1.5 ml of ddH₂O. After centrifugation at 12,000 g for 10 min at 4 °C, the
288 supernatant was diluted and mixed with malachite green reagent (19.4 mM H₃BO₃,
289 27.64 mM (NH₄)₆MO₇O₂₄.4H₂O, 2.38 M H₂SO₄, 627.5 µM malachite green, and 0.1%
290 polyvinyl alcohol) in a 3:1 ratio for 30 min. Then, 200 µL of the reaction mixture was
291 taken to measure the absorbance at 650 nm using a microplate assay (Spark, Tecan,
292 Switzerland). The Pi concentration was calculated based on a standard curve generated

293 using varying concentrations of KH₂PO₄.
294 For measurement of total P concentrations, 150 mg of dried and grounded plant tissue
295 was pre-digested overnight in the glass tubes with concentrated sulfuric acid. The glass
296 tubes were then heated to 120 °C and 4–5 drops of 30% H₂O₂ were added every 30 min
297 until the solution turned colourless. After 30 min extension of heat digestion, total P
298 concentrations were determined by molybdenum blue colorimetry at 700 nm using a
299 microplate assay (Spark, Tecan, Switzerland).

300 **Measurement of total chlorophyll concentrations**

301 Leaf total chlorophyll was extracted with 80% acetone (v/v) at 4 °C for 24 hrs in
302 darkness, and total chlorophyll per fresh weight was determined spectrophotometrically
303 according to Arnon (1949).

304 **Pollen viability assay**

305 Pollen viability assay was performed as per previously reported method (Dai *et al.*,
306 2022). Anthers were collected from five buds per branch, and three branches per plant
307 were sampled one day before anthesis and submerged in 2% (w/v) I₂–KI solution for
308 starch staining. Stained pollen grains were counted under microscope in bright field.
309 Pollen viability was categorized into three groups: fertile with fully stained (black),
310 partially stained (brown), and not stained (yellow or transparent). Three glass slides of
311 each line and three fields of view of each glass slide were observed. In each field of
312 view, no less than 100 pollen grains were assessed.

313 **Accession numbers**

314 Sequence data from this article can be found in the Arabidopsis Information Resource
315 (TAIR, <https://www.arabidopsis.org/>) and the CNS-Genoscope genomic database
316 (<https://www.genoscope.cns.fr/brassicanapus/>) under the following accession numbers:
317 *AtNLA1* (At1g02860), *AtmiR827* (At3g59884), *BnaC05.NLA1* (BnaC05g01480D),
318 *BnaA10.NLA1* (BnaA10g01450D), *BnaA09.NLA1* (BnaA09g51130D), *BnaC08.NLA1*
319 (BnaC08g45940D), *BnaPT8* (BnaA04g22280D), *BnaPT10* (BnaA05g06210D),
320 *BnaPT11* (BnaA05g06230D), *BnaPT27* (BnaA09g34510D), *BnaPT35*
321 (BnaC04g06480D), *BnaPT37* (BnaC04g46050D) and *BnaPT42* (BnaC08g25460D).

322 **Results**

323 **Identification and expression analysis of *BnaNLA1* genes in *B. napus***

324 To identify the *BnaNLA1* genes in *B. napus*, the *AtNLA1* gene sequence was used to
325 perform a BLAST search in the genome of Westar10 (Song *et al.*, 2020; 2021). A total
326 of four homologs of *AtNLA1* were identified, namely, *BnaC05.NLA1*, *BnaC08.NLA1*,
327 *BnaA09.NLA1* and *BnaA10.NLA1*. Gene structure analysis showed that each *BnaNLA1*
328 genes had six exons, and the length of their encoding proteins varied from 330 to 333
329 amino acids, and all of them had a SPX domain and a RING domain (Supplementary
330 Fig. S1, S2, S3). Phylogenetic analysis showed that four *BnaNLA1* proteins were
331 clustered into SPX-RING1 (NLA1) instead of SPX-RING2 (NLA2) subfamily, and
332 they showed more than 83% identities and 88% similarities with their *Arabidopsis*
333 homologs based on sequence alignments (Supplementary Fig. S1, S4).

334 To determine the expression patterns of *BnaNLA1s* in *B. napus* under different Pi
335 availabilities, a time-course of transcript abundance was monitored using qRT-PCR.
336 *BnaNLA1s* were expressed predominantly in roots and very less expression in leaves at
337 the seedling stage in *B. napus* (Fig. 1A). Notably, *BnaNLA1s* were down-regulated in
338 roots with increasing time after transfer to the low Pi availability, in contrast to leaves
339 (Fig. 1A). The tissue-specific expression pattern of *BnaNLA1s* was determined at
340 flowering time by qRT-PCR, showing that *BnaNLA1s* were still highly expressed in
341 roots, compared to the different shoot tissues (Fig. 1B). In addition, *BnaC05.NLA1* and
342 *BnaA10.NLA1* showed some notable expression in the root-shoot node, and
343 *BnaA09.NLA1* in flowers (Fig. 1B).

344 To understand the details of tissue-specific expression, we generated transgenic
345 *Arabidopsis* and *B. napus* lines expressing *proBnaA09.NLA1::GUS*. In *Arabidopsis*,
346 GUS staining was observed in root epidermis, cortex, vascular bundle and root hairs at
347 the four-leaf stage, while almost none was observed in leaves (Supplementary Fig.
348 S5A-C). At the eight-leaf stage, *BnaA09.NLA1* was expressed mainly in roots,
349 cotyledons and senile rosette leaves (Supplementary Fig. S5D). At the reproductive
350 stage, *BnaA09.NLA1* was expressed mainly in roots, senescent rosette leaves, anthers
351 and pollen (Supplementary Fig. S5E-K). In agreement with the qRT-PCR results and
352 the GUS signal in transgenic *Arabidopsis*, *BnaA09.NLA1* was expressed strongly in *B.*

353 *napus* roots, including root epidermis, cortex and vascular bundle, and the overall
354 expression was reduced after 7 days P starvation (Fig. 2A-E). In addition, expression
355 of *BnaA09.NLA1* was also observed in cotyledons, the 1st leaf and the 2nd leaf, but the
356 expression was not suppressed by P starvation (Fig. 2F, G). At the reproductive stage
357 of *B. napus*, GUS staining was mainly observed in anthers, sepals and pollens (Fig. 2H,
358 I). These data suggest that *BnaA09.NLA1* was involved in regulating cellular Pi status
359 in multiple tissues, mainly in roots, old leaves, anthers and pollens.

360 **Regulation of *BnaNLA1s* expression by phosphate-starvation-induced *miR827***

361 The *miR827* conservatively targets *PHT5* homologs in most angiosperms, but it
362 preferentially targets *NLA1* homologs in *Brassicaceae* and *Cleomaceae* (Lin *et al.*,
363 2018). Our previous results reported that there were no *miR827*-binding sites in the
364 transcripts of *BnaPHT5;1s* (Han *et al.*, 2022), suggesting they may target *BnaNLA1s*.
365 To identify the *BnamiR827* genes in *B. napus*, the primary transcript sequence of
366 *AtmiR827* was used to BLAST against the W10 genome. A total of three close
367 homologs of *AtmiR827* were identified, namely, *BnaA09.miR827*, *BnaC08.miR827a*
368 and *BnaC08.miR827b*. Although the primary transcript sequences of all these
369 *BnamiR827* genes had several mismatched bases as per sequence alignments, their
370 mature sequences were identical (Supplementary Fig. S6A). All three *BnamiR827*
371 genes showed a typical “stem-loop” secondary structure according to the results
372 predicted by RNAfold web server (Guber *et al.*, 2008; Supplementary Fig. S6B),
373 indicating that they were *miRNA* precursor genes. The *miR827*-binding site was then
374 identified in the transcripts of *BnaNLA1s* and the results predicted by psRNATarget
375 (<http://plantgrn.noble.org/psRNATarget/>) showed that all the *BnaNLA1s* possessed an
376 effective *miR827*-binding site in their 5'-UTR (Supplementary Fig. S3).

377 To determine the expression patterns of *BnamiR827s* under different Pi availabilities,
378 the transcript abundance of the precursor- and mature-*BnamiR827* were detected using
379 qRT-PCR. Both the precursor- and mature-*BnamiR827* were significantly induced in
380 roots and leaves following the transfer of plants to P-deficient conditions for seven days
381 (Fig. 3A). The promoters of three *BnamiR827* genes were separated and transgenic
382 *Arabidopsis* lines expressing *proBnaA09.miR827::GUS* (*pA09:GUS*),

383 *proBnaC08.miR827a::GUS* (*pC08a:GUS*) and *proBnaC08.miR827b::GUS*
384 (*pC08b:GUS*) were generated. GUS staining results revealed that these three
385 *BnamiR827* genes were significantly induced in both roots and leaves after three days
386 of P starvation (Fig. 3B). At the reproductive stage, GUS stains of *proBnamiR827::GUS*
387 transgenic *Arabidopsis* lines were observed in roots, rosette leaves, flowers, and
388 siliques (Supplementary Fig. S7).

389 The expression of all *BnaNLA1s* was down-regulated, while the expression of
390 *BnamiR827s* was up-regulated, in roots under P deficiency. Together with the location
391 of *BnamiR827* binding sites in the 5'-UTR of the *BnaNLA1s* it suggests that
392 *BnamiR827s* may directly suppress the expression of *BnaNLA1s* in *B. napus* roots in
393 response to P deficiency. To determine this, transgenic *B. napus* lines overexpressing
394 *BnaC08.miR827a* were constructed and the expression level of *BnamiR827s* and
395 *BnaNLA1s* were quantified (Fig. 3C). The expression levels of all four *BnaNLA1s* were
396 significantly decreased in the lines overexpressing *BnamiR827* (Fig. 3C). Consequently,
397 we suggest that *BnaNLA1s* are down-regulated by *BnamiR827* in the roots of *B. napus*
398 under P deficiency.

399 ***BnaNLA1s* functionally complement growth defects and early senescence of *Atnla1*
400 under nitrogen deficient conditions**

401 *BnaC05.NLA1*, *BnaA10.NLA1*, *BnaA09.NLA1* and *BnaC08.NLA1* proteins shared
402 85.29%, 84.46%, 84.32% and 83.98% identities with *AtNLA1* protein at the amino acid
403 level, respectively (Supplementary Fig. S1). The high protein sequence identities
404 between *BnaNLA1s* and *AtNLA1* imply that *BnaNLA1* proteins have PM localizations
405 and ubiquitin E3 ligase activities like *AtNLA1* and thus have similar functional
406 properties. To validate the subcellular localizations of *BnaNLA1* proteins, the coding
407 sequences of *BnaNLA1s* were fused to C-terminus of GFP (GFP::*BnaNLA1*), and
408 expressed transiently in *Arabidopsis* protoplasts using a PEG-mediated transformation
409 system. GFP::*BnaNLA1* proteins were detected mainly in the PM, merging with a PM
410 marker *AtPIP2a::mCherry*. These results indicate that *BnaNLA1s* proteins were
411 localized in PM (Fig. 4).

412 To examine conserved functionality of *BnaNLA1s*, we overexpressed four *BnaNLA1s*

413 in *Arabidopsis nla1* mutant background and observed their phenotypes under N
414 sufficient (+N, 10 mM NO₃⁻) and deficient (-N, 0.1 mM NO₃⁻) conditions (Fig. 5).
415 Under N sufficient conditions, all plants had comparable shoot fresh weight (SFW) and
416 total chlorophyll concentrations, however, under N deficient conditions, *Arabidopsis*
417 *nla1* mutant had significantly lower SFW and total chlorophyll concentrations
418 compared to Col-0. While 35S::*BnaNLAs* lines had comparable SFW and total
419 chlorophyll concentrations to Col-0 (Fig. 5A-C). This suggests that *BnaNLAs* function
420 similarly to rescue the growth defects and early senescence phenotype of the
421 *Arabidopsis nla1* mutant under N deficient conditions.

422 **The *BnamiR827-BnaA09.NLA1* module regulates Pi uptake in *B. napus***

423 Given that all the *BnaNLAs* have high similarities in expression profiles, sequence
424 identities, subcellular localizations and protein functions, we chose *BnaA09.NLA1*, and
425 its closest homolog *BnaC08.NLA1*, to construct knock-out mutants using a CRISPR-
426 Cas9 based gene editing system (Supplementary Fig. S8). First, we evaluated the effects
427 of knocking out *BnaA09.NLA1* and *BnaC08.NLA1* double gene together (A09/C08-
428 KOs) or *BnaA09.NLA1* alone (A09-KOs) on the growth performance of *B. napus*
429 seedlings (Fig. 6A). A09-KO and A09/C08-KO lines had reduced shoot biomass
430 compared to W10 under Pi sufficient conditions, but total root length did not show any
431 significant differences between W10 and A09-KO, A09/C08-KO lines (Fig. 6B-C). Pi
432 and total P concentrations were elevated in cotyledons or in leaves of A09-KO and
433 A09/C08-KO lines compared to W10 under both P sufficient and P deficient conditions
434 (Fig. 6D-G). Importantly, Pi and total P concentrations in cotyledons or in leaves of
435 A09/C08-KO lines were higher than that of A09-KO lines (Fig. 6D-G), suggesting that
436 *BnaA09.NLA1* and *BnaC08.NLA1* redundantly regulates Pi uptake in *B. napus*.

437 Considering that the transcript abundances of *BnaNLAs* were down-regulated by
438 overexpressing *BnamiR827* (Fig. 3C), we speculated that *BnamiR827* overexpressing
439 lines (miR827-OEs) would phenocopy the A09-KO and A09/C08-KO lines. There were
440 no significant differences in SFW or total root length between W10 and miR827-OE
441 lines (Fig. 6I-J). Tissue Pi concentrations of the miR827-OE lines were significantly
442 higher than those of W10 under P sufficient conditions (Fig. 6K), but only the Pi

443 concentrations in older leaves (L1 and L2) were significantly higher in miR827-OE
444 lines than W10 under P deficient conditions (Fig. 6L). This suggests that *BnamiR827*
445 affected P accumulation by suppressing the expression of *BnaNLA1s* in *B. napus*.
446 It has been reported that NLA1 regulates tissue Pi status in a nitrate-dependent manner
447 in *Arabidopsis* (Kant *et al.*, 2011), however, there were inconsistent results in rice (Yue
448 *et al.*, 2017; Zhong *et al.*, 2017; Yang *et al.*, 2020). To determine if *BnaA09.NLA1*
449 regulates tissue Pi status in a nitrate-dependent or -independent manner, germinated
450 seedlings were grown under sufficient Pi (1 mM) solution with three different
451 concentrations of nitrate (10 mM, 1 mM and 0.1 mM). After 15 days, the cotyledon and
452 1st leaf were harvested for Pi analysis. Pi concentrations in the cotyledon and 1st leaf of
453 W10 plants were significantly higher under low-nitrate supply (1 and 0.1 mM N) than
454 under high N supply (10 mM N) (Supplementary Fig. S9). However, there were not
455 significant differences of Pi concentrations in the cotyledon and 1st leaf of A09-KO,
456 A09/C08-KO, and miR827-OE lines under different N supplies (Supplementary Fig.
457 S9). Thus, *BnamiR827* and *BnaNLA1s* regulate tissue Pi status in a nitrate-independent
458 manner at the seedling stage in *B. napus*.

459 **The *BnamiR827-BnaA09.NLA1* module is involved in pollen development and seed
460 yield**

461 Since *BnaA09.NLA1* promoter was active in reproductive organs (Fig. 2H, I;
462 Supplementary Fig. S4I, J), the role of *BnaA09.NLA1* in regulating tissue P status in
463 floral organs and pollen development at flowering stage were further investigated.
464 Pollen viability was assessed by the iodine staining method, with the intensity of pollen
465 staining showed the presence of starch content in pollen, reflecting the pollen fertility
466 (Fig. 7A). The W10 had 91% pollen fertility (fully stained), whereas decreased pollen
467 fertility was observed in two independent lines in each A09-KO with 72% and 69%,
468 A09/C08-KO with 69% and 74%, and miR827-OE with 58% and 56% (Fig. 7B). The
469 W10 had 8% partially stained pollens, whereas, proportions for partially stained pollens
470 was higher in A09-KO lines of 26% and 31%, A09/C08-KO lines of 30% and 26%, and
471 miR827-OE lines of 39% and 39% (Fig. 7B). Moreover, the amount of sterile pollens
472 (not stained) in miR827-OE lines was significantly higher compared to W10 plants, but

473 there was not significant difference in the amount of sterile pollen among W10, A09-
474 KO, and A09/C08-KO lines (Fig. 7B).

475 In line with the impairment of pollen viability in A09-KO, A09/C08-KO, and miR827-
476 OE lines, Pi concentrations in stamens (anthers) of these lines were higher than that of
477 W10 plants (Fig. 7C). Additionally, petal and sepal Pi concentrations were higher in
478 A09-KO, A09/C08-KO, and miR827-OE lines compared to W10 (Fig. 7C) though Pi
479 concentrations in pistils were largely comparable between W10 plants and A09-KO,
480 A09/C08-KO, and miR827-OE lines (Fig. 7C). These results indicate that the
481 *BnamiR827-BnaA09.NLA1* module may regulate Pi status in stamens (anthers), which
482 contributed to an impairment of pollen viability.

483 To investigate the growth performance and yield-related traits, W10, A09-KO, and
484 A09/C08-KO lines were grown under field conditions and in pots under semi-
485 controlled environment. Both A09-KO and A09/C08-KO lines had shorter plant height
486 and lower shoot dry weight compared to W10 plants (Fig. 8A, C, D). There was
487 significant decrease in branch number, pod number per plant, seed number per pod and
488 seed yield in A09-KO, A09/C08-KO lines compared to W10 plants (Fig. 8B, F-I).
489 Although there was no significant difference in 1000-seed weight between W10 plants
490 and A09-KO, A09/C08-KO lines (Fig. 8J). Consistent with the field trial, an impairment
491 in growth performance and a reduction in seed yield were also observed in the pot
492 experiment, although there was no significant difference in plant height and branch
493 numbers between W10 plants and A09-KO, A09/C08-KO lines (Supplementary Fig.
494 S10).

495 In the field trial, overexpression of *BnamiR827* also led to a decrease in plant height,
496 shoot dry weight, pod number per plant, seed number per pod and seed yield, but there
497 was no significant difference in branch number and 1000-seed weight when compared
498 to W10 plants (Fig. 8K-N, P-T). In addition, there was a significant increase in P
499 concentration in the straw of miR827-OE lines when compared to W10 plants at harvest,
500 which was also observed in A09/C08-KO2 line (Fig. 8E, O). These results indicate that
501 the *BnamiR827-BnaA09.NLA1* module is required for the reproductive growth, pollen
502 development, seed yield and yield-related traits in *B. napus*.

503 **BnaA09.NLA1^{C275A} interacts with BnaPT8, BnaPT10, BnaPT11, BnaPT27,
504 BnaPT35, BnaPT37 and BnaPT42**

505 As in *Arabidopsis*, BnaA09.NLA1 might also regulate the protein levels of Pi
506 transporters in *B. napus* because of the conservation of protein sequences and topologic
507 structures between AtNLA1 and BnaNLA1s. To further determine which Pi transporters
508 might be the potential targets of BnaA09.NLA1 in *B. napus*, we queried the BnIR
509 (*Brassica napus* multi-omics information resource) database (Yang *et al.*, 2023), and
510 found that *BnaPT11*, *BnaPT17*, *BnaPT35* and *BnaPT37* had abundant expression in
511 roots from the seedling stage to the flowering stage (Supplementary Fig. S11A).
512 Moreover, *BnaPT8*, *BnaPT10*, *BnaPT11*, *BnaPT17*, *BnaPT35* and *BnaPT37* had
513 abundant expression in anthers, and *BnaPT27* and *BnaPT42* were expressed
514 specifically in anthers (Supplementary Fig. S11B). To examine whether these
515 BnaPHT1s were direct targets of BnaA09.NLA1, the physical interactions between
516 BnaA09.NLA1 and seven BnaPHT1 transporters were confirmed by BiFC assay in
517 tobacco (*Nicotiana benthamiana*) leaves. These Pi transporters were chosen because of
518 their predominate expression in roots and/or anthers (Supplementary Fig. S11),
519 showing a co-expression with *BnaA09.NLA1* in the same tissues (Fig. 2; Supplementary
520 Fig. S5).

521 When *BnaA09.NLA1* was co-expressed with the selected seven *BnaPHT1s*, no
522 reconstituted yellow fluorescent protein (YFP) signals were observed (Fig. 9A). Then
523 we mutated the conserved Cys (residue 275) to Ala (BnaA09.NLA1^{C275A}) in the RING
524 domain of BnaA09.NLA1 protein and observed YFP signals in the PM resulting from
525 the co-expression of *BnaA09.NLA1^{C275A}* with the seven *BnaPHT1s* (Fig. 9B). This
526 interaction was specific because there was no YFP signal when *BnaA09.NLA1^{C275A}* or
527 *BnaPHT1s* co-expressed with a PM-located boron transporter *NIP5;1* (Supplementary
528 Fig. S12).

529 The last metal ligand residues are conserved between AtNLA1 (C279) and
530 BnaA09.NLA1 (C275) (Supplementary Fig. S2). The *in vitro* ubiquitination assay
531 revealed that mutation of C279 to A279 in AtNLA1 significantly decreased the E3
532 ubiquitin ligase activity (Fig. 9C). These results suggest that the compromise of

533 BnaA09.NLA1^{C275A} E3 ubiquitin ligase activity alleviates the degradation of
534 BnaPHT1s in tobacco leaves. The split-ubiquitin Y2H assays were employed to retest
535 the interactions between BnaA09.NLA1^{C275A} and BnaPHT1s. The NMY51 strain yeast
536 cells co-expressing BnaA09.NLA1^{C275A} with BnaPHT1s were able to grow on the triple
537 dropout medium (SD/-Leu/-Trp/-His, SD-LWH) and quadruple dropout medium
538 (SD/-Leu/-Trp/-His/-Ade, SD-LWHA) (Fig. 9D), indicating that there were
539 interactions between BnaA09.NLA1^{C275A} and BnaPHT1s. Taken together, our results
540 reveal that seven BnaPHT1 family Pi transporters (i.e., BnaPT8, BnaPT10, BnaPT11,
541 BnaPT27, BnaPT35, BnaPT37 and BnaPT42) are potential targets of BnaA09.NLA1
542 in *B. napus*.

543 Discussion

544 ***BnamiR827* regulates the expression of *BnaNLA1s* in response to Pi supply**

545 Previous studies reported mechanisms regarding the Pi dependent regulation of *NLA1*
546 expression in *Arabidopsis* and rice, i.e., *AtNLA1* expression is regulated by P deficiency
547 induced by *AtmiR827*, while the expression of *OsNLA1* is controlled by upstream open
548 reading frame (uORF)-mediated translational regulation (Kant *et al.*, 2011; Yang *et al.*,
549 2020). Here, we showed that all *BnaNLA1s* transcripts contain a *miR827*-binding site
550 in their 5'-UTR (Supplementary Fig. S3). qRT-PCR analyses revealed that the
551 expression of *BnaNLA1s* were down-regulated in roots with increasing expression of
552 *BnamiR827* as Pi deficiency increased (Fig. 1A, 2A-E, 3A-B). Additionally, the
553 expression of *BnaNLA1s* were repressed in roots of *BnamiR827* overexpression lines
554 (Fig. 3C).

555 Shoot-derived *miR399* has been shown to function as a long-distance signal to suppress
556 the expression of *PHO2* in roots (Chiang *et al.*, 2023; Lin *et al.*, 2008; Pant *et al.*, 2008).
557 The present study shows the induction of precursor-*BnamiR827* in roots priors to that
558 in leaves after Pi deficiency (Fig. 3A), and stronger GUS signals in the roots of
559 transgenic *Arabidopsis* than in leaves after 3 days of Pi starvation (Fig. 3B). These
560 results revealed that mature-*BnamiR827* were derived from both roots and shoots to
561 down-regulate the expression of *BnaNLA1s* under P deficiency in *B. napus*.

562 The Pi dependent expression of *AtNLA1s* in leaves is also regulated by *AtmiR827* in
563 *Arabidopsis* (Lin *et al.*, 2013). Although *BnamiR827* expression was also induced
564 significantly by P deficiency in leaves, the expressions of *BnaNLA1s* in leaves were not

565 suppressed as in roots (Fig. 1A, 2F-G, 3A-B). Besides transcript cleavage, *AtmiR827*
566 could regulate *AtNLA1* expression through translational repression (Liu *et al.*, 2017).
567 Further research is required to determine whether *miR827* regulates *NLA1* expression
568 in *B. napus* roots by transcript cleavage, and in leaves by translational repression.
569 Overall, our results suggest a different mechanism of *NLA1s* expression regulation in
570 leaves between *Arabidopsis* and *B. napus*.

571 **The *BnamiR827-BnaNLA1* module regulates Pi uptake in *B. napus***

572 The genome of *B. napus* has undergone complex polyploidization events, as a result,
573 the members of many gene families have expanded (Chalhoub *et al.*, 2014). For
574 example, there are only nine *PHT1* Pi transporter family members in the *Arabidopsis*
575 genome, while there are up to 49 members in the *B. napus* genome (Li *et al.*, 2019).
576 Here, we identified four *NLA1* members in *B. napus*, which exhibited similar gene
577 expression patterns, subcellular localizations, and abilities to rescue the growth defects
578 of *Arabidopsis nla1* mutant. Phenotype analysis revealed that Pi and P concentrations
579 were elevated in cotyledons or leaves of A09-KO and A09/C08-KO lines (Fig. 6D-G).
580 Notably, the P accumulation was higher in A09/C08-KO lines than in A09-KO lines,
581 indicating the functional redundancy of *BnaNLA1* members in regulating Pi uptake (Fig.
582 6D-G).

583 It was the mutated version of *BnaA09.NLA1* (*BnaA09.NLA1^{C275A}*), but not the wild-type
584 *BnaA09.NLA1*, that can reconstitute YFP signals when they are co-expressed with
585 *BnaPHT1s* (Fig. 9), which suggests that the wild-type *BnaA09.NLA1* might mediate
586 the degradation of *BnaPHT1s*. Similar to *Arabidopsis*, rice, and soybean,
587 *BnaA09.NLA1* regulated Pi uptake by mediating the degradation of *BnaPHT1* family
588 members in roots (e.g., *BnaPT11*, *BnaPT35* and *BnaPT37*) (Fig. 10), indicating that the
589 mechanism of *NLA1* in regulating Pi uptake among different species is conservative
590 (Lin *et al.*, 2013; Park *et al.*, 2014; Yue *et al.*, 2017; Du *et al.*, 2020; Yang *et al.*, 2020;
591 Zhou *et al.*, 2022).

592 It has been reported that *NLA1* regulates tissue Pi status in a nitrate-dependent manner
593 in *Arabidopsis* (Kant *et al.*, 2011), however, this observation is not consistent across
594 species (Yue *et al.*, 2017; Zhong *et al.*, 2017; Yang *et al.*, 2020). In this study, we found
595 that there was no significant change in the cotyledon and 1st leaf Pi concentrations in
596 the *BnaNLA1* mutants and *BnamiR827* overexpression lines when the external nitrate
597 concentrations changed (Supplementary Fig. S9), indicating that the *BnaNLA1* mutants
598 and *BnamiR827* overexpression lines take up Pi in a nitrate-independent manner at the

599 seedling stage. However, these differences could be due to species and plant growth
600 stage specific, varying growing conditions and/or nitrate concentrations in growth
601 media.

602 **The *BnamiR827-BnANLA1* module regulates pollen viability and seed yield in *B.***
603 ***napus***

604 Plant reproductive success requires a fine balance of nutrients, including P, to be
605 available in the floral organs during pollen germination and fertilization (Luan *et al.*,
606 2019; Dai *et al.*, 2022). In *Arabidopsis*, Pi concentrations of floral organs including
607 stamen, pistil, petal, and sepal were increased in the *vpt1/vpt3* mutant, with the
608 excessive accumulation of Pi in the pistil leading to an impairment to reproductive
609 growth (Luan *et al.*, 2019). In contrast, P concentration in anther was significantly
610 reduced in the rice *Ospht1;7* mutants, but significantly increased in anthers of the
611 *Osnla1* mutants, both resulting in impaired pollen viability (Yang *et al.*, 2020; Dai *et*
612 *al.*, 2022). In the current study, mutation of *BnaA09.NLA1* resulted in a disruption of
613 tissue Pi concentrations in the floral organs, with an increase in Pi concentration in
614 anthers, resulting in a reduction in pollen viability (Fig. 7). The
615 *BnaA09.NLA1/BnaC08.NLA1* double gene mutants had a significantly low pollen
616 viability compared to W10, however it was comparable to the *BnaA09.NLA1* mutants
617 (Fig. 7), indicating that *BnaA09.NLA1* might play major role in maintaining tissue Pi
618 concentrations in the floral organs. There was no significant difference of Pi
619 concentrations in the pistil among W10 plants, A09-KO, A09/C08-KO and miR827-OE
620 lines, except one of A09/C08-KO lines (Fig. 7C). These results and the evident
621 expression of *BnaA09.NLA1* in anthers and pollens (Fig. 2H, 2I) suggest that
622 *BnaA09.NLA1* regulates the male floral tissue Pi concentrations, which is different from
623 the *VPT* genes (Luan *et al.*, 2019).

624 Transcriptome data showed that within the entire *BnaPHT1* family, *BnaPT8*, *BnaPT10*,
625 *BnaPT11*, *BnaPT17*, *BnaPT35* and *BnaPT37* were expressed abundantly in anthers, and
626 *BnaPT27* and *BnaPT42* were expressed specifically in anthers (Supplementary Fig.
627 S11B). The BiFC and Y2H analyses had validated seven *BnaPHT1*s (i.e., *BnaPT8*,
628 *BnaPT10*, *BnaPT11*, *BnaPT27*, *BnaPT35*, *BnaPT37* and *BnaPT42*) as potential targets

629 of BnaA09.NLA1 (Fig. 9), suggesting that BnaA09.NLA1 acts on these BnaPHT1
630 members to regulate Pi allocation in male floral organs and pollen viability.

631 Improving the Pi uptake efficiency of crops is an effective strategy to enhance crops
632 yield. Overexpression of *TaPHR1-A1* or *TaPHR3-A1* genes promotes Pi uptake and
633 increases grain yield mainly by improving grain number in wheat (Wang *et al.*, 2013;
634 Zheng *et al.*, 2020). Mutation of *TaPHO2-A*, one homologous gene of *TaPHO2*
635 members in wheat, increases Pi uptake efficiency and results in 14%-17% increase of
636 wheat yield (Ou *et al.*, 2016). In soybean, yield positively correlates with Pi absorption
637 capacity, and *GmPHF1* was identified as a locus to improve Pi absorption and yield
638 (Guo *et al.*, 2022).

639 In this study, we aimed to improve plant Pi uptake efficiency by knocking out some
640 copies of *BnaNLA1s* (this cannot be achieved in rice because only one *NLA1* gene
641 existed), thereby increasing seed yield of *B. napus*. Unexpectedly, both *BnaA09.NLA1*
642 and *BnaA09.NLA1/BnaC08.NLA1* mutants showed sharp decreases in pollen viability
643 and thereby reduced seed yield (Fig. 7, 8; Supplementary Fig. S10). These results
644 highlight the importance of tissue specific Pi status in maintaining reproductive
645 performance and ultimately seed yield in *B. napus*. Therefore, we should evaluate the
646 potential effects particularly on the Pi concentrations in the floral organs and pollen
647 viability when a key future genetic locus for consideration in improving Pi uptake and
648 utilization efficiency and seed yield in crops. Applying CRISPR/Cas9 system to edit
649 the promoter (Li *et al.*, 2020) to knock down the expression of *BnaA09.NLA1* in the
650 root without changing its expression in anthers is a possible strategy to improve Pi
651 uptake efficiency and seed yield of *B. napus*. Given that mutation of *BnaC08.NLA1* in
652 the A09-KO background further increases the P concentrations in shoots of *B. napus*
653 but had lesser impact on the pollen viability and seed yield (Fig. 6-8), whether
654 *BnaC08.NLA1* can be used as a target to improve Pi uptake efficiency of *B. napus*
655 should be investigated in the future.

656 Here, we propose a functional model (Fig. 10) that P deficiency induces *BnamiR827* to
657 regulate the expression of *BnaNLA1s* at a post-transcriptional level, and BnaA09.NLA1
658 mediates the degradation of several BnaPHT1s (i.e., BnaPT8, BnaPT10, BnaPT11,

659 BnaPT27, BnaPT35, BnaPT37 and BnaPT42) to regulate Pi uptake and homeostasis in
660 anthers, pollen viability, and effect on seed yield in *B. napus*.

661

662 **Supplementary data**

663 The following supplementary data are available at *JXB* online.

664 Fig. S1 Visualization of domains, and the sequence identity and similarity among NLA1
665 proteins.

666 Fig. S2 Sequence alignment of AtNLA1 and BnaNLA1 proteins.

667 Fig. S3 Gene structures of *NLA1s* and their *miR827* binding site in *Arabidopsis* and *B.*
668 *napus*.

669 Fig. S4 The phylogenetic tree of the SPX-RING proteins in different species.

670 Fig. S5 Tissue-specific expression pattern of *BnaA09.NLA1* in transgenic *Arabidopsis*
671 in different plant organs.

672 Fig. S6 Sequence alignment of primary transcript and the secondary structure of
673 *BnamiR827s*.

674 Fig. S7 Tissue-specific expression patterns of *BnamiR827* genes in transgenic
675 *Arabidopsis* in different plant organs.

676 Fig. S8 The mutation types of (A) *BnaA09.NLA1* knockout lines and (B)
677 *BnaA09.NLA1/BnaC08.NLA1* knockout lines generated by the CRISPR-Cas9 system.

678 Fig. S9 Mutation of *BnaA09.NLA1/BnaC08.NLA1* and overexpression of *BnamiR827*
679 increase the P accumulation at different nitrate concentrations.

680 Fig. S10 Growth performance and yield related traits of W10, A09-KO and A09/C08-
681 KO lines in the pot experiments.

682 Fig. S11 Expression profiles of the *BnaPHT1* family genes under sufficient P supply.

683 Fig. S12 Interaction of nYFP-BnaA09.NLA1 or nYFP-BnaA09.NLA1^{C275A} with
684 NIP5;1-cYFP, cYFP-BnaPHT1s with NIP5;1-nYFP, and NIP5;1-nYFP with NIP5;1-
685 cYFP in BiFC assay.

686 Table S1 Primers used in this study.

687

688 **Acknowledgments**

689 We thank Prof. Steven J. Rothstein (Department of Molecular and Cellular Biology,
690 University of Guelph, Canada) for kindly providing the *Arabidopsis nla1* mutant seeds,
691 and Prof. Wexue Li (National Key Facility for Crop Gene Resources and Genetic
692 Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences,
693 China) for his help in sending the mutant seeds.

694

695 **Author contributions**

696 Lei Shi and Tao Wu planned and designed the research. Tao Wu performed experiments,
697 Bei Han, Yajie Wang and Bingbing Zhang helped in constructing the genetic materials,
698 or performing physiological experiments. Tao Wu and Lei Shi analyzed the data and
699 drafted the manuscript. Chuang Wang, Sheliang Wang, Hongmei Cai, Zhu Liu, John P.
700 Hammond, Surya Kant, Guangda Ding and Fangsen Xu gave critical comments during
701 study and revisions of the manuscript. Lei Shi agrees to serve as the author responsible
702 for contact and ensuring communication.

703

704 **Conflict of interest**

705 The authors declare no conflict of interest.

706

707 **Funding**

708 This work was supported by the STI 2030 – Major Project (2023ZD04072) and
709 National Nature Science Foundation of China (Grants No. 32172662 and 31972498).

710

711 **Data availability**

712 The data supporting the findings of this study are available within the manuscript and
713 within its supplementary data published online.

714

715 **References**

716 **Abel S, Nürnberg T, Ahnert V, Krauss GJ, Glund K.** 2000. Induction of an
717 extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic

718 activity during phosphate starvation of cultured tomato cells. *Plant Physiology* **122**,
719 543–552.

720 **Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, et al.**
721 2009. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different
722 functions and kinetic properties in uptake and translocation. *The Plant Journal* **57**,
723 798–809.

724 **Arnon DI.** 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta*
725 *vulgaris*. *Plant Physiology* **24**, 1–15.

726 **Bayle V, Arrighi J-F, Creff A, Nespolous C, Vialaret J, Rossignol M, Gonzalez E,**
727 **Paz-Ares J, Nussaume L.** 2011. *Arabidopsis thaliana* high-affinity phosphate
728 transporters exhibit multiple levels of posttranslational regulation. *The Plant Cell* **23**, 1523–1535.

730 **Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen ML, Gil E, Puga MI,**
731 **Bligny R, Nussaume L, Geldner N, et al.** 2015. ESCRT-III-associated protein
732 ALIX mediates high-affinity phosphate transporter trafficking to maintain
733 phosphate homeostasis in *Arabidopsis*. *The Plant Cell* **27**, 2560–2581.

734 **Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano**
735 **R, Paz-Ares J, Leyva A.** 2007. A mutant of the *Arabidopsis* phosphate transporter
736 PHT1;1 displays enhanced arsenic accumulation. *The Plant Cell* **19**, 1123–1133.

737 **Chalhoub, B, Denoeud, F, Liu, S, Parkin, IA, Tang, H, Wang, X, et al.** 2014. Early
738 allopolyploid evolution in the post-neolithic *Brassica napus* oilseed genome.
739 Science **345**, 950–953.

740 **Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al.** 2005. Real-
741 time quantification of microRNAs by stem-loop RT-PCR. *Nucleic Acids Research*
742 **33**: e179.

743 **Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF, et**
744 **al.** 2015. The rice CK2 kinase regulates trafficking of phosphate transporters in
745 response to phosphate levels. *The Plant Cell* **27**, 711–723.

746 **Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, et al.** 2017. Integrative RNA- and
747 miRNA-profile analysis reveals a likely role of BR and auxin signaling in branch
748 angle regulation of *B. napus*. International Journal of Molecular Sciences **18**: 887.

749 **Chiang CP, Li JL, Chiou TJ.** 2023. Dose-dependent long-distance movement of
750 microRNA399 duplex regulates phosphate homeostasis in Arabidopsis. New
751 Phytologist **240**, 802–814.

752 **Clough SJ, Bent AF.** 1998. Floral dip: a simplified method for Agrobacterium-
753 mediated transformation of *Arabidopsis thaliana*. The Plant Journal **16**, 735–743.

754 **Dai C, Dai X, Qu H, Men Q, Liu J, Yu L, Gu M, Xu G.** 2022. The rice phosphate
755 transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther
756 development. Plant Physiology **188**, 2272–2288.

757 **Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M.** 1999. Pht2;1
758 encodes a low-affinity phosphate transporter from Arabidopsis. The Plant Cell **11**,
759 2153–2166.

760 **De Block M, De Brouwer D, Tenning P.** 1989. Transformation of *Brassica napus* and
761 *Brassica oleracea* using Agrobacterium tumefaciens and the expression of the bar
762 and neo genes in the transgenic plants. Plant Physiology **91**, 694–701.

763 **Du W, Ning L, Liu Y, Zhang S, Yang Y, Wang Q, Chao S, Yang H, Huang F, Cheng
764 H, et al.** 2020. Identification of loci and candidate gene *GmSPX-RING1*
765 responsible for phosphorus efficiency in soybean via genome-wide association
766 analysis. BMC Genomics **21**, 725.

767 **Du Z, Deng S, Wu Z, Cai H, Xu F, Shi L, Wang S, Ding G, Wang C.** 2022.
768 Characterization of the PHOSPHATE RESPONSE 2-dependent and -independent
769 Pi-starvation response secretome in rice. Journal of Experimental Botany **73**,
770 6955–6970.

771 **Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C.** 2021. GTPase
772 ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1
773 and PHT1;4 in *Arabidopsis thaliana*. Journal of Integrative Plant Biology **63**,
774 1775–1786.

775 **González E, Solano R, Rubio V, Leyva A, Paz-Ares J.** 2005. PHOSPHATE

776 TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related
777 protein that enables the endoplasmic reticulum exit of a high-affinity phosphate
778 transporter in Arabidopsis. *The Plant Cell* **17**, 3500–3512.

779 **Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL.** 2008. The vienna
780 RNA websuite. *Nucleic Acids Research* **36**, W70–W74.

781 **Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK.** 2007. Functional
782 analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters.
783 *New Phytologist* **177**, 889–898.

784 **Guo Z, Cao H, Zhao J, Bai S, Peng W, Li J, Sun L, Chen L, Lin Z, Shi C, et al.**
785 2022. A natural uORF variant confers phosphorus acquisition diversity in soybean.
786 *Nature Communications* **13**, 3796.

787 **Han B, Wang C, Wu T, Yan J, Jiang A, Liu Y, Luo Y, Cai H, Ding G, Dong X, et al.**
788 2022. Identification of vacuolar phosphate influx transporters in *Brassica napus*.
789 *Plant, Cell & Environment* **45**, 3338–3353.

790 **Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ.** 2009
791 Uncovering small RNA-mediated responses to phosphate deficiency in
792 Arabidopsis by deep sequencing. *Plant Physiology* **151**, 2120-2132.

793 **Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C.** 2011. LEAF TIP
794 NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation
795 responses in rice. *Plant Physiology* **156**, 1101–1115.

796 **Huang KL, Wang H, Wei YL, Jia HX, Zha L, Zheng Y, Ren F, Li XB.** 2019. The
797 high-affinity transporter BnPHT1;4 is involved in phosphorus acquisition and
798 mobilization for facilitating seed germination and early seedling growth of
799 *Brassica napus*. *BMC Plant Biology* **19**, 156.

800 **Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen**
801 **PM, Liu TY, et al.** 2013. Identification of downstream components of ubiquitin-
802 conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in
803 Arabidopsis roots. *The Plant Cell* **25**, 4044–4060.

804 **Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G.** 2011. The
805 phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice.

806 Plant Physiology **156**, 1164–1175.

807 **Kant S, Peng M, Rothstein SJ.** 2011. Genetic regulation by NLA and microRNA827
808 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS
809 Genetics **7**, e1002021.

810 **Lambers H, Raven J, Shaver G, Smith S.** 2008. Plant nutrient-acquisition strategies
811 change with soil age. Trends in Ecology & Evolution **23**, 95–103.

812 **Li C, Li W, Zhou Z, Chen H, Xie C, Lin Y.** 2020. A new rice breeding method:
813 CRISPR/Cas9 system editing of the *Xa13* promoter to cultivate transgene-free
814 bacterial blight-resistant rice. Plant Biotechnology Journal **18**, 313–315.

815 **Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G.** 2019. Molecular
816 identification of the phosphate transporter family 1 (PHT1) genes and their
817 expression profiles in response to phosphorus deprivation and other abiotic
818 stresses in *Brassica napus*. PLoS One **14**, e0220374.

819 **Li Y, Wang X, Zhang H, Ye X, Shi L, Xu F, Ding G.** 2023. Phosphate transporter
820 *BnaPT37* regulates phosphate homeostasis in *Brassica napus* by changing its
821 translocation and distribution in vivo. Plants (Basel) **12**, 3362.

822 **Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ.** 2008.
823 Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant
824 Physiology **147**, 732–746.

825 **Lin WY, Huang TK, Chiou TJ.** 2013. Nitrogen limitation adaptation, a target of
826 microRNA827, mediates degradation of plasma membrane-localized phosphate
827 transporters to maintain phosphate homeostasis in Arabidopsis. The Plant Cell **25**,
828 4061–4074.

829 **Lin WY, Lin YY, Chiang SF, Syu C, Hsieh LC, Chiou TJ.** 2018. Evolution of
830 microRNA827 targeting in the plant kingdom. New Phytologist **217**, 1712–1725.

831 **Liu T, Deng S, Zhang C, Yang X, Shi L, Xu F, Wang S, Wang C.** 2023.
832 Brassinosteroid signaling regulates phosphate starvation-induced malate secretion
833 in plants. Journal of Integrative Plant Biology **65**, 1099–1112.

834 **Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, Wang FN, Chiang SF, Tsai SY,**
835 **Lu WC, Chiou TJ.** 2016. Identification of plant vacuolar transporters mediating

836 phosphate storage. *Nature Communications* **7**, 11095.

837 **Liu W, Sun Q, Wang K, Du Q, Li WX.** 2017. Nitrogen Limitation Adaptation (NLA)
838 is involved in source-to-sink remobilization of nitrate by mediating the
839 degradation of NRT1.7 in *Arabidopsis*. *New Phytologist* **214**, 734–744.

840 **Luan M, Zhao F, Han X, Sun G, Yang Y, Liu J, Shi J, Fu A, Lan W, Luan S.** 2019.
841 Vacuolar phosphate transporters contribute to systemic phosphate homeostasis
842 vital for reproductive development in *Arabidopsis*. *Plant Physiology* **179**, 640–655.

843 **Mudge SR, Rae AL, Diatloff E, Smith FW.** 2002. Expression analysis suggests novel
844 roles for members of the Pht1 family of phosphate transporters in *Arabidopsis*. *The
845 Plant Journal* **31**, 341–353.

846 **Nilsson L, Müller R, Nielsen TH.** 2007. Increased expression of the MYB-related
847 transcription factor, PHR1, leads to enhanced phosphate uptake in *Arabidopsis*
848 *thaliana*. *Plant, Cell & Environment* **30**, 1499–1512.

849 **Ouyang X, Hong X, Zhao X, Zhang W, He X, Ma W, Teng W, Tong Y.** 2016. Knock
850 out of the *PHOSPHATE 2* gene *TaPHO2-A1* improves phosphorus uptake and
851 grain yield under low phosphorus conditions in common wheat. *Scientific Reports*
852 **6**, 29850.

853 **Pant BD, Buhtz A, Kehr J, Scheible WR.** 2008. MicroRNA399 is a long-distance
854 signal for the regulation of plant phosphate homeostasis. *The Plant Journal* **53**,
855 731–738.

856 **Park BS, Seo JS, Chua NH.** 2014. NITROGEN LIMITATION ADAPTATION
857 recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation
858 during the regulation of *Arabidopsis* phosphate homeostasis. *The Plant Cell* **26**,
859 454–464.

860 **Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ.** 2007. A mutation in *NLA*, which
861 encodes a RING-type ubiquitin ligase, disrupts the adaptability of *Arabidopsis* to
862 nitrogen limitation. *The Plant Journal* **50**, 320–337.

863 **Raghothama KG, Karthikeyan AS.** 2005. Phosphate acquisition. *Plant and Soil* **274**,
864 37–49.

865 **Ren F, Zhao CZ, Liu CS, Huang KL, Guo QQ, Chang LL, Xiong H, Li XB.** 2014.

866 A *Brassica napus* PHT1 phosphate transporter, BnPht1;4, promotes phosphate
867 uptake and affects roots architecture of transgenic Arabidopsis. *Plant Molecular
868 Biology* **86**, 595–607.

869 **Shin H, Shin HS, Dewbre GR, Harrison MJ.** 2004. Phosphate transport in
870 Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from
871 both low- and high-phosphate environments. *The Plant Journal* **39**, 629–642.

872 **Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R,**
873 *et al.* 2020. Eight high-quality genomes reveal pan-genome architecture and
874 ecotype differentiation of *Brassica napus*. *Nature Plants* **6**, 34–45.

875 **Song JM, Liu DX, Xie WZ, Yang Z, Guo L, Liu K, Yang QY, Chen LL.** 2020. BnPIR:
876 Brassica napus pan-genome information resource for 1689 accessions. *Plant
877 Biotechnology Journal* **19**, 412–414.

878 **Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF.** 2015. WRKY42
879 modulates phosphate homeostasis through regulating phosphate translocation and
880 acquisition in Arabidopsis. *Plant Physiology* **167**, 1579–1591.

881 **Syers JK, Johnston AE, Curtin D.** 2008. Efficiency of soil and fertilizer phosphorus
882 use: reconciling changing concepts of soil phosphorus behaviour with agronomic
883 information. FAO, Rome.

884 **Versaw WK, Garcia LR.** 2017. Intracellular transport and compartmentation of
885 phosphate in plants. *Current Opinion in Plant Biology* **39**, 25–30.

886 **Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D,
887 Grefen C, Schumacher K, Oecking C, Harter K, Kudla J.** 2004. Visualization
888 of protein interactions in living plant cells using bimolecular fluorescence
889 complementation. *The Plant Journal* **40**, 428–438.

890 **Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H.** 2012.
891 Functional characterization of the rice *SPX-MFS* family reveals a key role of
892 *OsSPX-MFS1* in controlling phosphate homeostasis in leaves. *New Phytologist*
893 **196**, 139–148.

894 **Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H.**
895 2015. Rice SPX-major facility superfamily3, a vacuolar phosphate efflux

896 transporter, is involved in maintaining phosphate homeostasis in rice. *Plant*
897 *Physiology* **169**, 2822–2831.

898 **Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF.** 2014. Arabidopsis
899 WRKY45 transcription factor activates *PHOSPHATE TRANSPORTER1;1*
900 expression in response to phosphate starvation. *Plant Physiology* **164**, 2020–2029.

901 **Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han F, et al.**
902 2013. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate
903 signalling and increases grain yield in wheat. *Annals of Botany* **111**, 1139–1153.

904 **Wang W, Ding G, White PJ, Wang X, Jin K, Xu F, Shi L.** 2019. Mapping and cloning
905 of quantitative trait loci for phosphorus efficiency in crops: opportunities and
906 challenges. *Plant and Soil* **439**, 91–112.

907 **White PJ, Hammond JP.** 2008. Phosphorus nutrition of terrestrial plants. In: *The*
908 *Ecophysiology of Plant-Phosphorus Interactions*. *Plant Ecophysiology* **7**, 51–81.

909 **Xu L, Zhao H, Wan R, Liu Y, Xu Z, Tian W, Ruan W, Wang F, Deng M, Wang J,**
910 *et al.* 2019. Identification of vacuolar phosphate efflux transporters in land plants.
911 *Nature Plants* **5**, 84–94.

912 **Yang H, Wu JJ, Tang T, Liu KD, Dai C.** 2017. CRISPR/Cas9-mediated genome
913 editing efficiently creates specific mutations at multiple loci using one sgRNA in
914 *Brassica napus*. *Scientific Reports* **7**, 7489.

915 **Yang SY, Lu WC, Ko SS, Sun CM, Hung JC, Chiou TJ.** 2020. Upstream open
916 reading frame and phosphate-regulated expression of rice *OsNLA1* controls
917 phosphate transport and reproduction. *Plant Physiology* **182**, 393–407.

918 **Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, et al.**
919 2023. BnIR: A multi-omics database with various tools for *Brassica napus*
920 research and breeding. *Molecular Plant* **16**, 775–789.

921 **Yang Z, Yang J, Wang Y, Wang F, Mao W, He Q, Xu J, Wu Z, Mao C.** 2020.
922 PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting
923 phosphate transporter trafficking in rice. *The Plant Cell* **32**, 740–757.

924 **Yoo SD, Cho YH, Sheen J.** 2007. Arabidopsis mesophyll protoplasts: a versatile cell
925 system for transient gene expression analysis. *Nat Protocols* **2**, 1565–1572.

926 **Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H.** 2017. OsNLA1, a
927 RING-type ubiquitin ligase, maintains phosphate homeostasis in *Oryza sativa* via
928 degradation of phosphate transporters. *The Plant Journal* **90**, 1040–1051.

929 **Zhang F, Chen X, Vitousek P.** 2013. Chinese agriculture: An experiment for the world.
930 *Nature* **497**, 33–35.

931 **Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, Zuo JX, Chen HH, Liu WC.**
932 2022a. Abscisic acid facilitates phosphate acquisition through the transcription
933 factor ABA INSENSITIVE5 in Arabidopsis. *The Plant Journal* **111**, 269–281.

934 **Zhang Y, Wang LF, Han SY, Ren F, Liu WC.** 2022b. Sorting Nexin1 negatively
935 modulates phosphate uptake by facilitating Phosphate Transporter1;1 degradation
936 in Arabidopsis. *The Plant Journal* **111**, 72–84.

937 **Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao
938 L, et al.** 2020. The MYB transcription factor TaPHR3-A1 is involved in phosphate
939 signaling and governs yield-related traits in bread wheat. *Journal of Experimental
940 Botany* **71**, 5808–5822.

941 **Zhong S, Mahmood K, Bi YM, Rothstein SJ, Ranathunge K.** 2017. Altered
942 expression of OsNLA1 modulates Pi accumulation in rice (*oryza sativa* L.) plants.
943 *Frontier in Plant Science* **8**, 928.

944 **Zhou J, He P, Shan L.** 2014. Ubiquitination of plant immune receptors. *Methods in
945 Molecular Biology* **1209**, 219–231.

946 **Zhou M, Li Y, Lu X, He P, Liang C, Tian J.** 2023. Diverse functions of GmNLA1
947 members in controlling phosphorus homeostasis highlight coordinate response of
948 soybean to nitrogen and phosphorus availability. *The Crop Journal* **11**, 1251–1260.

949

950 **Figure & Legends**

951 **Figure 1** Expression patterns of *BnaNLA1* genes in *B. napus*. (A) Relative expression
952 of *BnaNLA1* genes in roots and leaves during the period of Pi starvation. Germinated
953 *B. napus* seeds were grown in nutrient solution with sufficient Pi supply (1 mM Pi) for
954 nine days and then transferred to nutrient solutions with low Pi supply (5 μ M Pi) for
955 seven days. (B) Relative expression of *BnaNLA1* genes in different tissues at flowering.

956 Samples were taken from the pot experiment. Data are means (\pm SD) of three biological
957 replicates. The housekeeping genes *BnaEF1- α* and *BnaTubulin* were used as the
958 internal reference.

959

960 **Figure 2** GUS staining of *proBnaA09.NLA1::GUS* transgenic *B. napus*. GUS staining:
961 of (A-E) roots, (F-G) cotyledons and three consecutive leaves of
962 *proBnaA09.NLA1::GUS* transgenic *B. napus* under sufficient (+P) and deficient (-P) P
963 supplies. Germinated *proBnaA09NLA1::GUS* transgenic *B. napus* seeds were grown in
964 1/2 standard Hoagland nutrient solution for 10 days and then transferred to nutrient
965 solutions with 1 mM Pi (+P) and 5 μ M Pi (-P) for seven days, respectively. (H-I) GUS
966 staining of the floral organs of *proBnaA09.NLA1::GUS* transgenic *B. napus* at
967 flowering. Samples were taken from the pot experiment. Scale bars: (A) 2 cm, (B, D) 1
968 mm, (C, E) 2 mm, (F-G) 2 cm, (H) 2 mm and (I) 100 μ m.

969

970 **Figure 3** Regulation of *BnaNLA1s* by *BnamiR827* in roots under P starvation in *B.*
971 *napus*. (A) Relative expression of *BnamiR827* genes in roots and leaves during a period
972 of Pi deficiency. Germinated *B. napus* seeds were grown in nutrient solution with
973 sufficient Pi supply (1 mM Pi) for nine days and then transferred to nutrient solutions
974 with low Pi supply (5 μ M Pi) for seven days. (B) GUS staining of transgenic
975 *Arabidopsis* with *GUS* driven by the promoter of *BnamiR827s*. Transgenic plants were
976 germinated on 1/2 MS medium for five days and then transplanted to 1/2 MS medium
977 with 625 μ M Pi (+P) or 6.25 μ M Pi (-P) for three days. Scale bars: 200 μ m. (C) Relative
978 expression analysis of *BnamiR827s* and *BnaNLA1s* in *BnamiR827* overexpressing lines.
979 ‘Westar10’ and transgenic plants were grown in nutrient solution with sufficient Pi
980 supply (1 mM Pi) for 16 days and then the roots were sampled. Data are means (\pm SD)
981 of three biological replicates. Different letters indicate significant differences ($P < 0.05$,
982 the Kruskal-Wallis test followed by one-way analysis of variance, Tukey’s test).

983

984 **Figure 4** Subcellular localization of *BnaNLA1* proteins in *Arabidopsis* protoplasts. N-
985 terminal GFP fusion constructs were transformed with *Arabidopsis* protoplasts. The

986 green fluorescence was derived from 35S::GFP-BnaNLA1s. The red fluorescence was
987 derived from 35S::AtPIP2A-mCherry. Scale bars = 10 μ m.

988

989 **Figure 5** *BnaNLA1s* functionally complement *AtNLA1* in the *Arabidopsis nla1* mutant.
990 (A) Shoot growth performance, (B) shoot fresh weight and (C) total chlorophyll
991 concentration of Col-0, *nla1* mutant and 35S::*BnaNLA1/nla1* complemented lines
992 under sufficient and deficient nitrate supplies. Data are means (\pm SD) of three biological
993 replicates. Different letters indicate significant differences within each nitrate treatment
994 ($P < 0.05$, the Kruskal-Wallis test followed by one-way analysis of variance, Tukey's
995 test). Scale bars = 3 cm.

996

997 **Figure 6** Mutation of *BnaNLA1* members and overexpression of *BnamiR827* increase
998 the P accumulation of *B. napus* under both sufficient (+P) and deficient (-P) Pi supplies.
999 (A) The growth phenotype, (B) shoot fresh weight, (C) total root length, (D-E) tissue
1000 Pi concentrations and (F-G) tissue P concentrations of *BnaA09.NLA1/BnaC08.NLA1*
1001 and *BnaA09.NLA1* mutant lines and 'Westar10' under +P and -P supplies. (H) The
1002 growth phenotype, (I) shoot fresh weight, (J) total root length, and (K, L) tissue Pi
1003 concentrations of the *BnamiR827* overexpressing lines and 'Westar10' under +P and -P
1004 supplies, respectively. Data are means (\pm SD) of three biological replicates. Significant
1005 differences compared with 'Westar10' under the same P supply were determined using
1006 Student's t-test (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$). Scale bars = 2 cm. R, roots; C,
1007 cotyledon; L1 to L4, consecutive leaves from the oldest to the youngest; SBR, shoot
1008 basal region.

1009

1010 **Figure 7** *BnamiR827* and *BnaA09.NLA1* regulates pollen viability in *B. napus*. (A)
1011 Pollen viability stained by KI-I₂ solution in 'Westar10', *BnaA09.NLA1*-KO,
1012 *BnaA09.NLA1/BnaC08.NLA1*-KO, and *BnamiR827*-OE lines. Pollen grains were
1013 collected from the flowers of *B. napus*. The black, brown, and yellow or transparent
1014 dots indicated fully stained, partially stained, and not stained pollen grains, respectively.
1015 Scale bars = 100 μ m. (B) The percentage of not stained, partially stained, and fully

1016 stained pollen grains. Data are means \pm SD (n=3). Different letters indicate significant
1017 differences (P<0.05, one-way analysis of variance, Duncan's test). (C) Pi
1018 concentrations of stamen, pistil, petal, and sepal in 'Westar10', *BnaA09.NLA1*-KO,
1019 *BnaA09.NLA1/BnaC08.NLA1*-KO, and *BnamiR827*-OE lines. Data are means \pm SD
1020 (n=4). All data are plotted with box and whiskers plots. Whiskers plot represents
1021 minimum and maximum values, and box plot represents second quartile, median and
1022 third quartile. Different letters indicate significant differences among genotypes
1023 (P<0.05, one-way analysis of variance, Tukey's test).

1024

1025 **Figure 8** Growth performance and agronomy index of 'Westar10', *BnaA09.NLA1*-KO,
1026 *BnaA09.NLA1/BnaC08.NLA1*-KO, and *BnamiR827*-OE lines in the field trial. (A, K)
1027 Shoot growth phenotype. (A) Scale bars = 20 cm. (K) Scale bars = 15 cm. (B, L) Seed
1028 yield per plant. Scale bars = 2 cm. (C, M) Plant height, (D, N) shoot dry weight, (E, O)
1029 shoot P concentration, (F, P) branch numbers, (G, Q) pod numbers per plant, (H, R)
1030 seed numbers per pod, (I, S) seed yield per plant, and (J, T) 1000-seed weight of
1031 'Westar10', *BnaA09.NLA1*-KO, *BnaA09.NLA1/BnaC08.NLA1*-KO, and *BnamiR827*-
1032 OE lines. Data are means \pm SD (n=4/6). All data are plotted with box and whiskers plots.
1033 Whiskers plot represents minimum and maximum values, and box plot represents
1034 second quartile, median and third quartile. Different letters indicate significant
1035 differences among genotypes (P<0.05, one-way analysis of variance, Duncan's test).

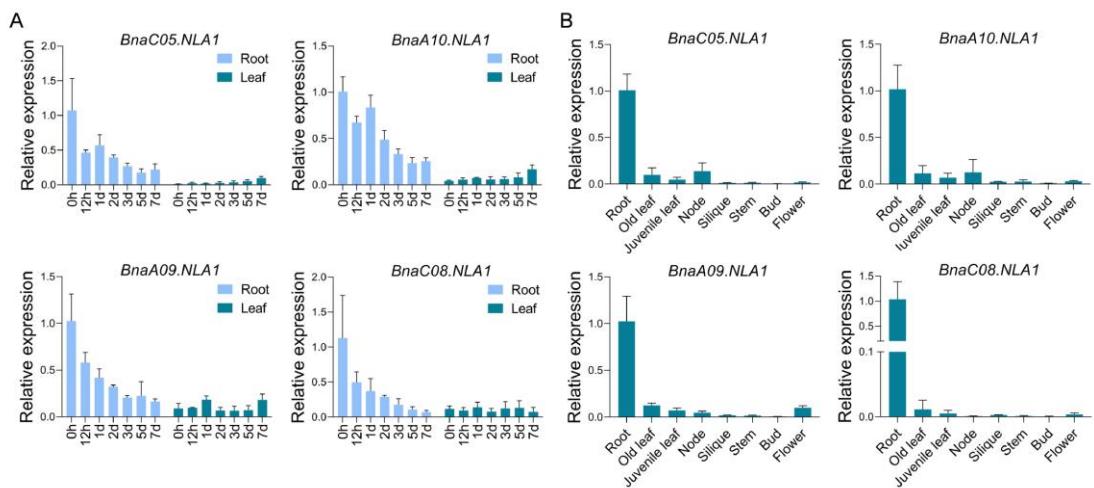
1036

1037 **Figure 9** *BnaA09.NLA1*^{C275A} interacts with several *BnaPHT1* family Pi transporters.
1038 Bimolecular fluorescence complementation (BiFC) analysis to detect the interaction
1039 between (A) *BnaA09.NLA1* or (B) *BnaA09.NLA1*^{C275A} and *BnaPT8*, *BnaPT10*,
1040 *BnaPT11*, *BnaPT27*, *BnaPT35*, *BnaPT37* and *BnaPT42* in tobacco leaves. N-terminal
1041 fragments of YFP (nYFP) were fused to N-terminus of wild-type *BnaA09.NLA1* or
1042 mutated version of *BnaA09.NLA1* (*BnaA09.NLA1*^{C275A}), and C-terminal fragments of
1043 YFP (cYFP) were fused to N-terminus of *BnaPHT1*s. Scale bars = 10 μ m. (C) E3
1044 ubiquitin ligase activities of MBP-AtNLA1 and MBP-AtNLA1^{C279A} in the presence of
1045 AtUBA1-His (E1), AtUBC8-His (E2) and ubiquitin-Flag. Anti-Flag antibody was used

1046 to detect ubiquitinated proteins. (D) Split-ubiquitin Y2H assays of BnaA09.NLA1^{C275A}
1047 interacts with BnaPHT1s. The pNubG-Fe65 and pTSU2-APP plasmid combination
1048 was used as the positive control, while the pPR3-N and pBT3-N-BnaPHT1 plasmids
1049 were co-transformed into yeast cells as the negative controls and self-activation controls.
1050 The seven experimental groups, i.e., the pPR3-N-BnaA09.NLA1^{C275A} and pBT3-N-
1051 BnaPT8 plasmids, the pPR3-N-BnaA09.NLA1^{C275A} and pBT3-N-BnaPT10 plasmids,
1052 the pPR3-N-BnaA09.NLA1^{C275A} and pBT3-N-BnaPT11 plasmids, the pPR3-N-
1053 BnaA09.NLA1^{C275A} and pBT3-N-BnaPT27 plasmids, the pPR3-N-BnaA09.NLA1^{C275A}
1054 and pBT3-N-BnaPT35 plasmids, the pPR3-N-BnaA09.NLA1^{C275A} and pBT3-N-
1055 BnaPT37 plasmids, and the pPR3-N-BnaA09.NLA1^{C275A} and pBT3-N-BnaPT42
1056 plasmids, were co-transformed into yeast cells, respectively. Yeast cells were grown in
1057 liquid culture and spotted on plates with double dropout medium (SD/-Leu/-Trp, SD-
1058 LW), triple dropout medium (SD/-Leu/-Trp/-His, SD-LWH) or quadruple dropout
1059 medium (SD/-Leu/-Trp/-His/-Ade, SD-LWHA). Successful plasmid transfection is
1060 indicated by positive yeast clones on the double dropout medium plates. The presence
1061 of clones on the triple dropout medium plates indicates successful expression of the
1062 *His3* reporter gene, while the presence of clones on the quadruple dropout medium
1063 indicates successful expression of the *Ade2* reporter gene.

1064

1065 **Figure 10** A working model of the *BnamiR827*-*BnaA09.NLA1*-*BnaPHT1s* axis in
1066 regulating Pi homeostasis, pollen viability and seed yield in *B. napus*. *BnamiR827*
1067 induced by P deficiency represses the expression of *BnaNLA1s* in roots at post-
1068 transcriptional level, and then BnaA09.NLA1 mediates the degradation of several
1069 BnaPHT1s (i.e., BnaPT8, BnaPT10, BnaPT11, BnaPT27, BnaPT35, BnaPT37 and
1070 BnaPT42) to regulate Pi uptake, Pi homeostasis in anthers, pollen viability and seed
1071 yield in *B. napus*.

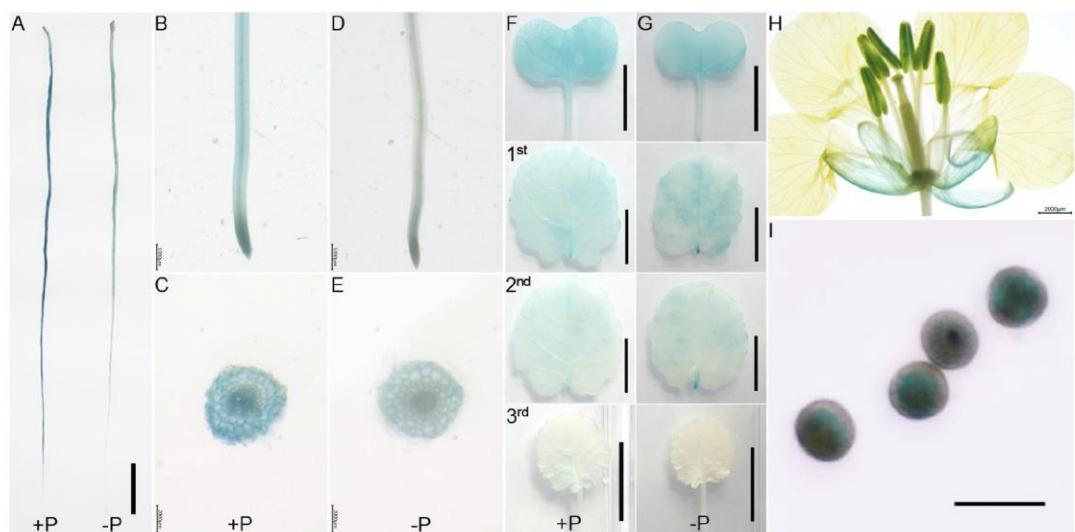

1072

1073

1074

1075 Figure 1.

1076

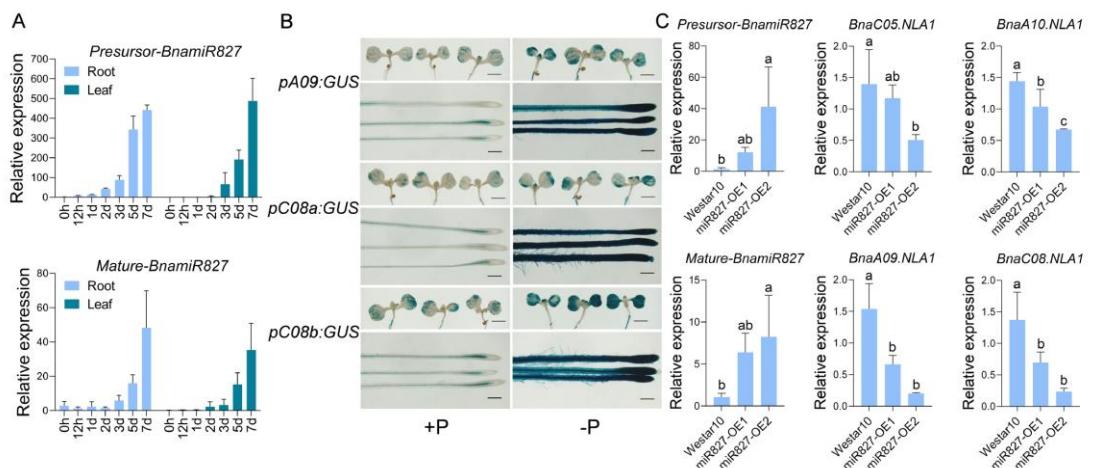

1077

1078

1079

1080 Figure 2.

1081

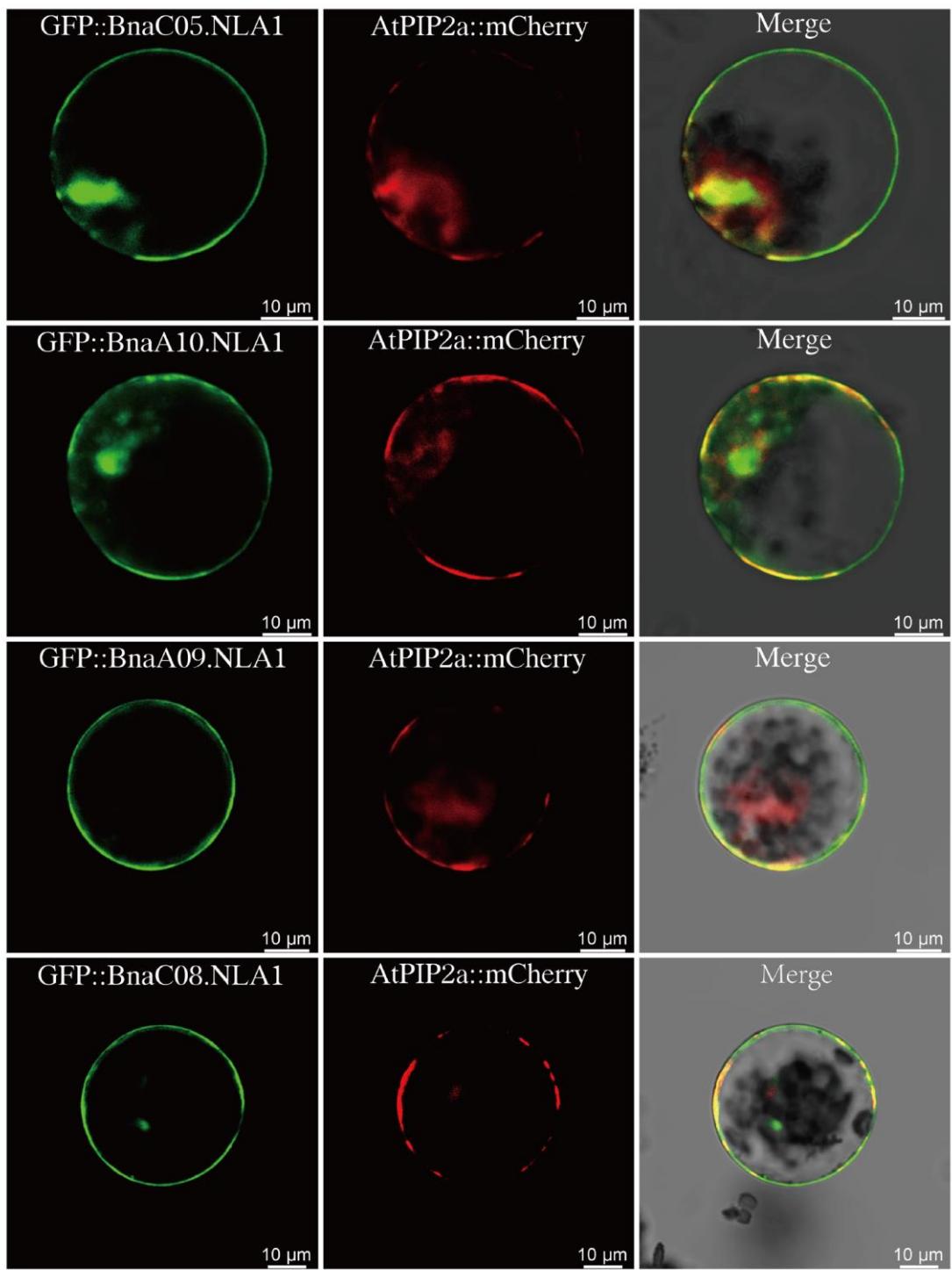


1082

1083

1084 Figure 3

1085

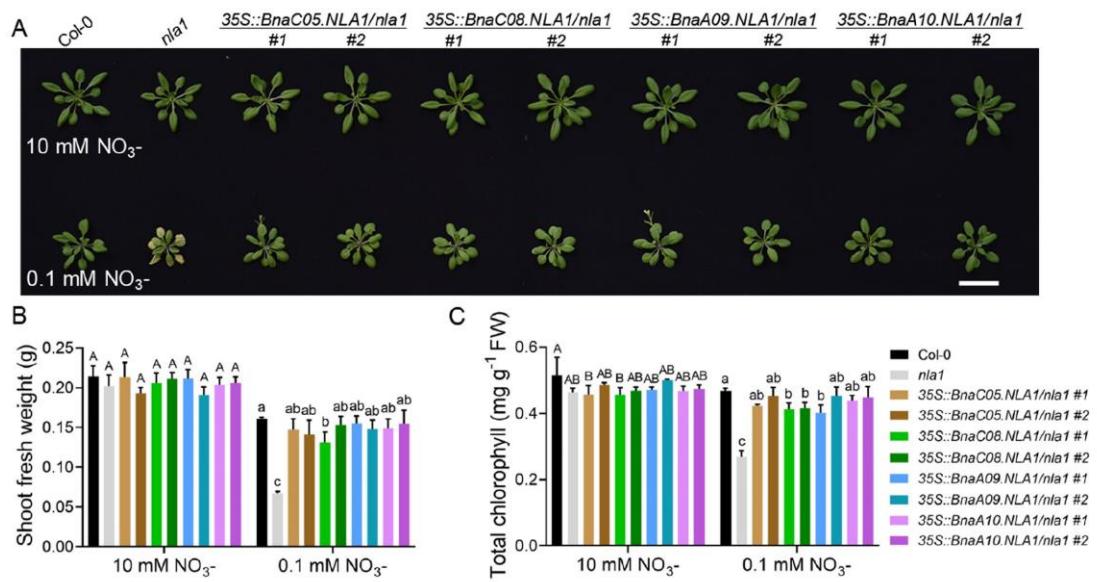

1086

1087

1088

1089 Figure 4

1090

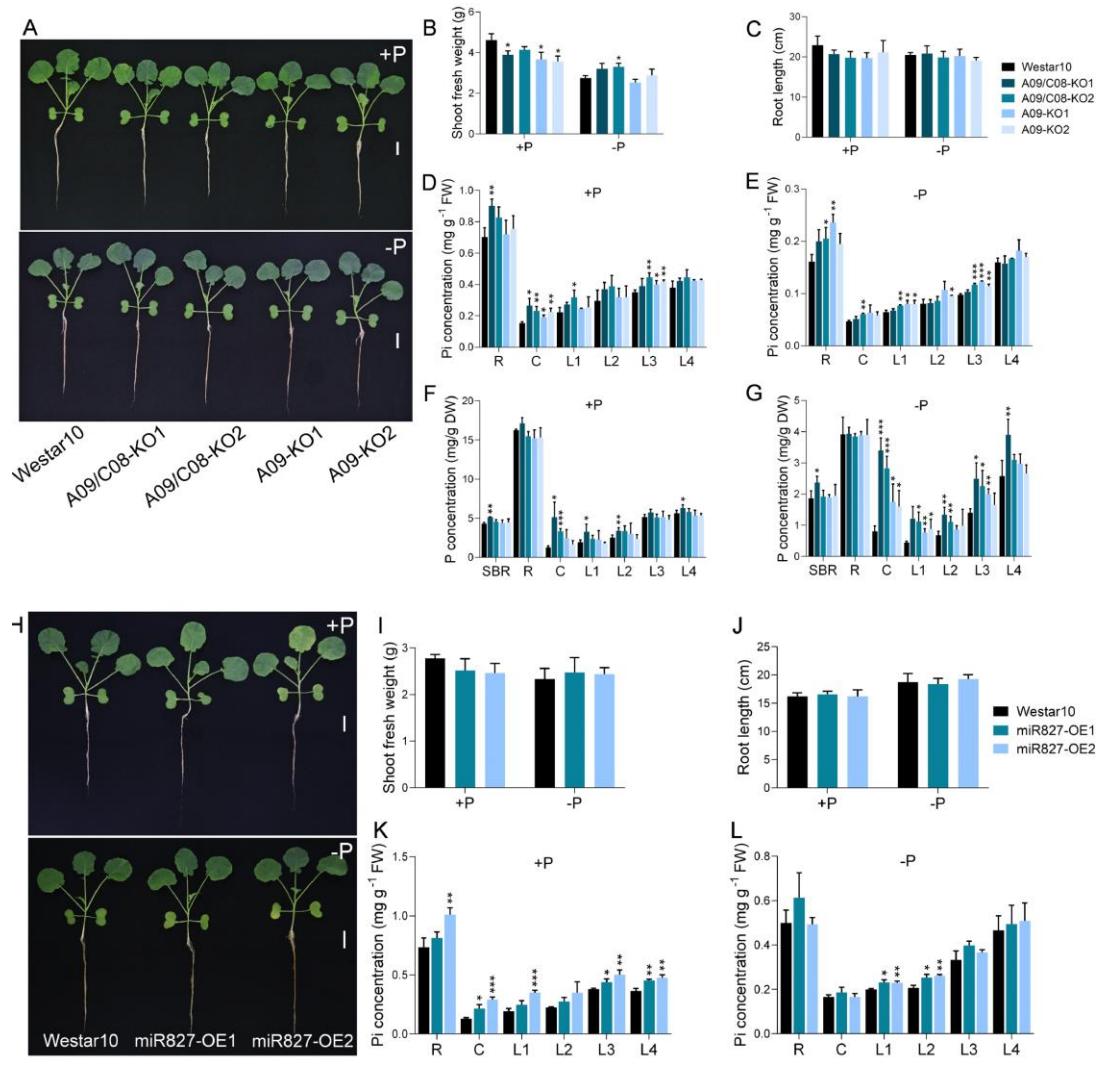


1091

1092

1093 Figure 5

1094

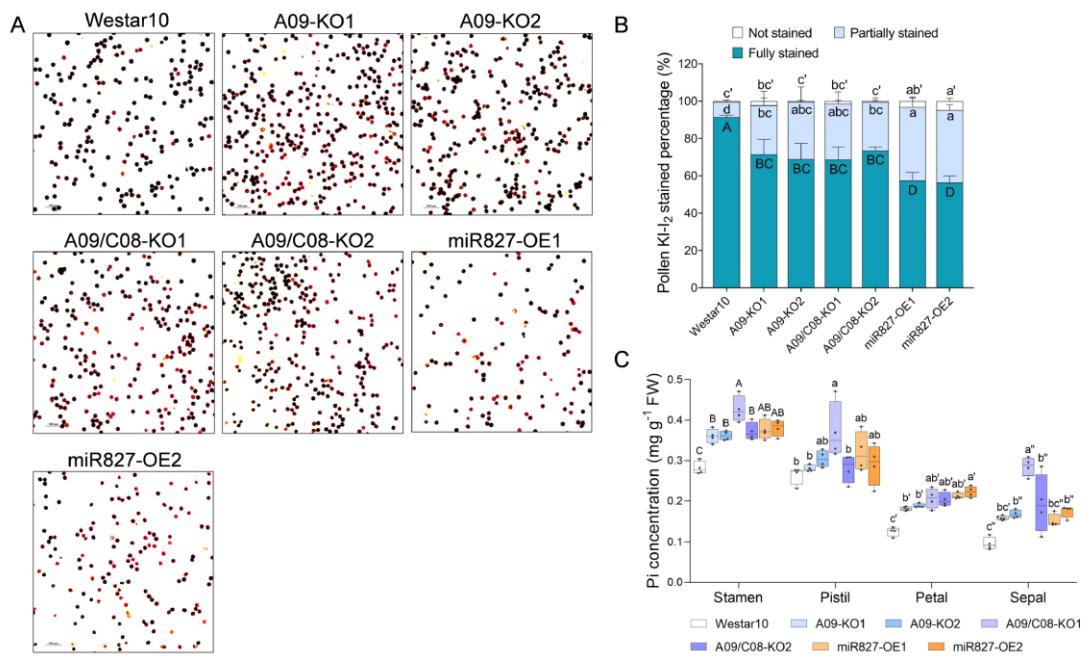

1095

1096

1097

1098 Figure 6

1099

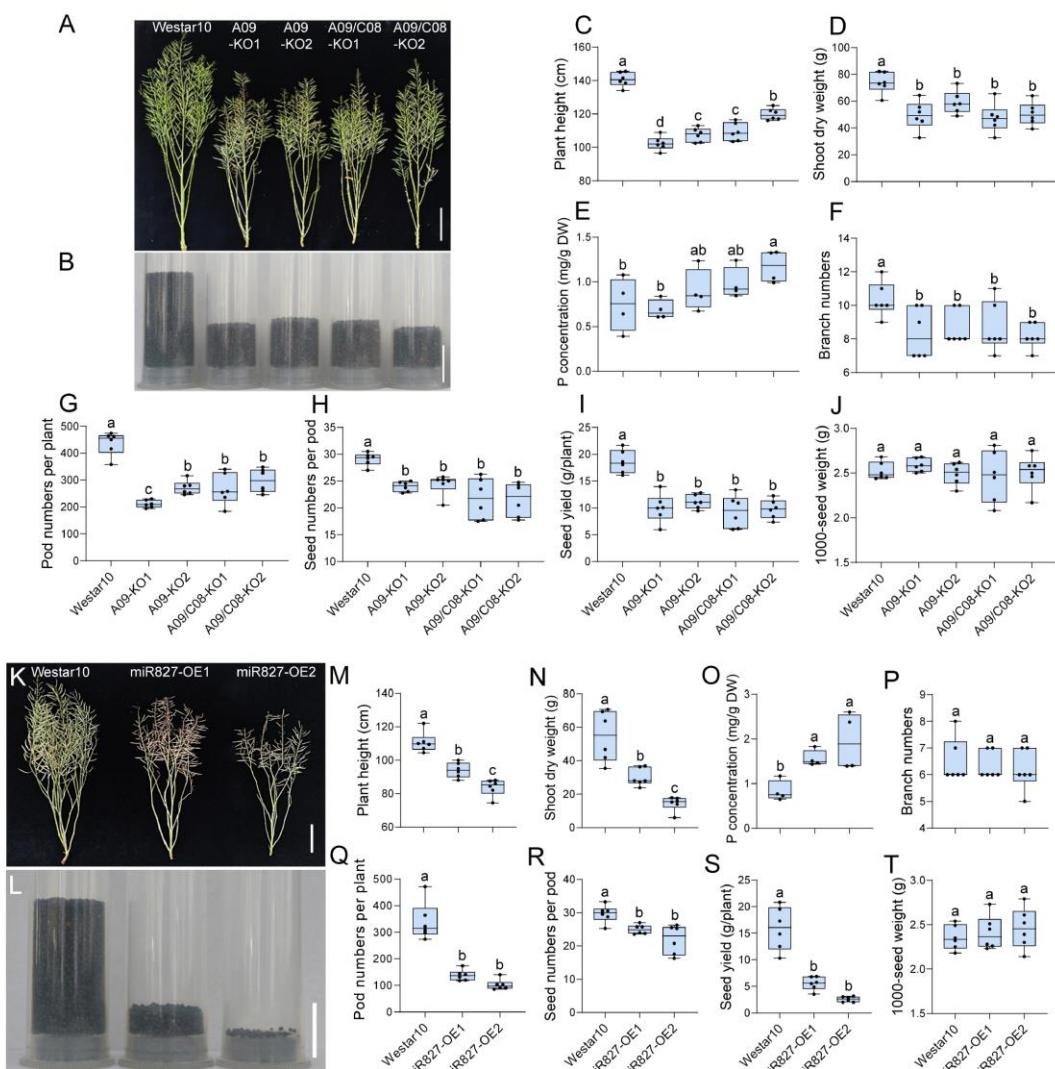

1100

1101

1102

1103 Figure 7

1104

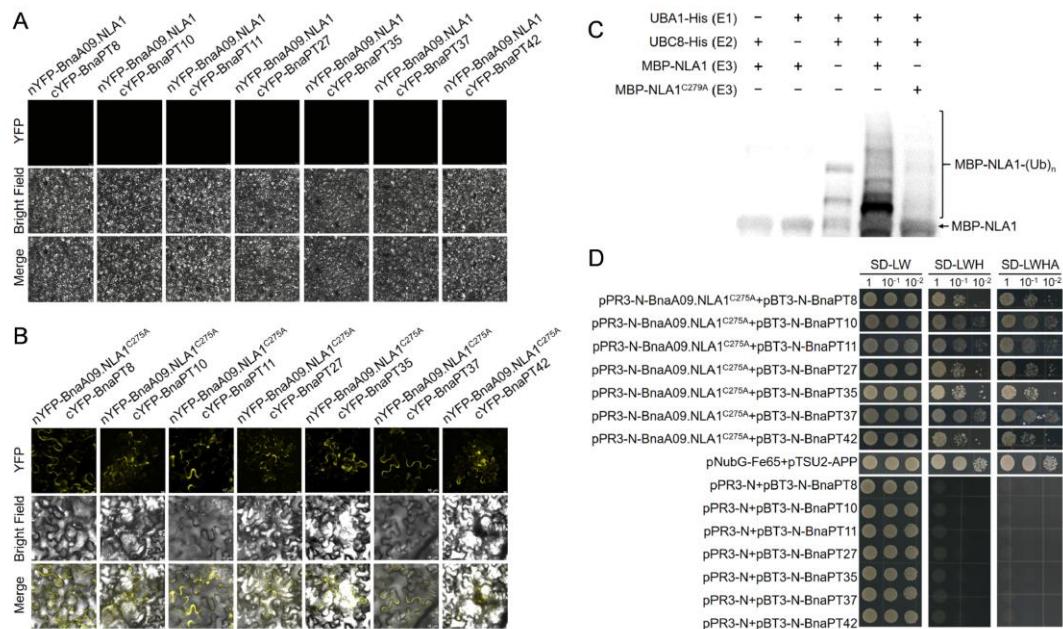

1105

1106

1107

1108 Figure 8

1109

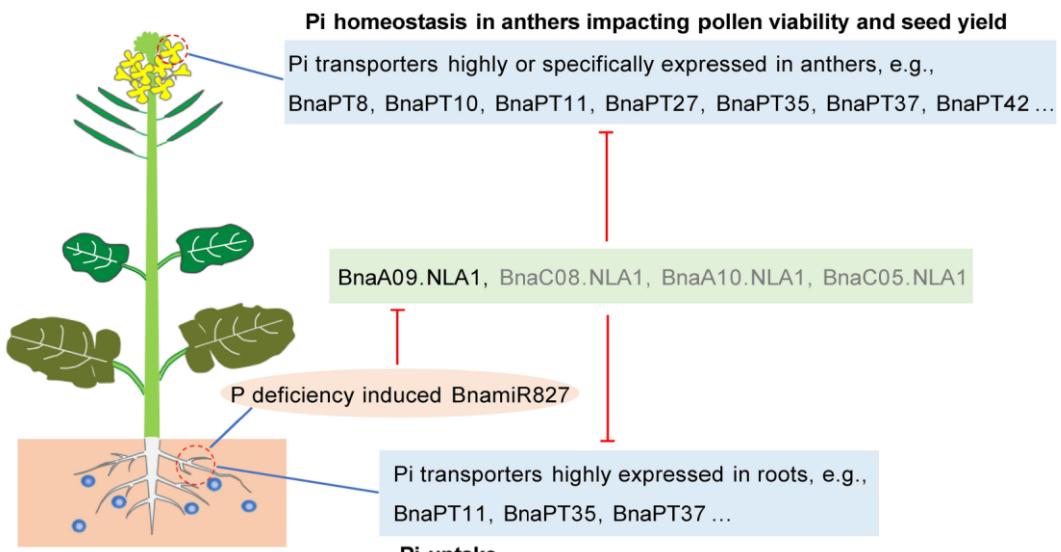

1110

1111

1112

1113 Figure 9

1114


1115

1116

1117

1118 Figure 10

1119

1120