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Abstract

Studying the microbial communities within the gastrointestinal tract of vertebrate species can
provide insights into biodiversity, disease ecology, and conservation. Currently, we have very
limited understanding of the composition of endogenous microbiota in wildlife, particularly in
high biodiversity tropical areas. Knowledge is limited by the logistical and ethical challenges
of obtaining samples for free-living animals. Roadkill carcasses offer a largely untapped
source for biological material, including endogenous gut microbiota. These animals that have
died on roads due to collisions with vehicles are suitable for accessible, opportunistic sam-
pling. Here, we used metabarcoding for the V3—V, region of the 16S rRNA gene in gut sam-
ples of nine roadkill samples collected from a road in Ecuador representing two vertebrate
species: the speckled worm lizard (Amphisbaena bassleri) and the smooth-billed ani (Croto-
phaga ani). We successfully identify microbial phyla in both samples including Firmicutes,
Bacteroidetes, and Proteobacteria for A. bassleri, and Firmicutes and Actinobacteria for C.
ani. Our study provides the first description of the gut microbiota for these two vertebrates,
and demonstrates the feasibility of studying endogenous microbial communities from roadkill
material that can be opportunistically collected and preserved in biobanks.

Introduction

In recent years, studies on the gut microbial communities of wildlife have increased consider-
ably. However, most reports have focused on captive non-human vertebrates from laboratories
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or zoos using fecal samples [1], which likely do not reflect the reality of the microbiome com-
position in free living organisms [2]. There is a gap of knowledge regarding the endogenous
microbial communities of wild animals [3], which is essential to understand natural biodiver-
sity as well as the impact that different natural and anthropogenic factors have on enteric
microbial communities.

Ecuador encompasses one of top biodiversity hotspots on the planet, the Tropical Andes
[4] and is home to 4,801 vertebrate species (Instituto Nacional de Biodiversidad, http://inabio.
biodiversidad.gob.ec/. Accessed on 15 October, 2024). Many of these species die due to colli-
sions with vehicles on Ecuadorian roads, with birds and reptiles being the most frequently
roadkill taxa [5]. While wildlife-vehicle collisions are a worrying conservation issue [6], these
roadkill specimens offer a sampling opportunity for biological information [7]. Sampling road-
kill has no direct negative impact to wildlife [8] and poses few, if any, of the ethical or logistical
concerns associated with sampling free-living organisms. Roadkill can offer opportunities to
sample poorly studied groups like reptiles [9] and many birds [10], and can contribute to a bet-
ter understanding of the microbiota associated with native species in Ecuador [11, 12].

Here we showcase the value of samples from roadkill specimens by providing the first initial
description of the gut bacterial communities of two vertebrates: the reptile Amphisbaena bas-
sleri Vanzolini, 1951 and the bird Crotophaga ani Linnaeus, 1758. A. bassleri is a blind reptile
with fossorial behavior, which feeds on invertebrates [13]. C. ani is a bird belonging to Cuculi-
dae family, distributed along South America. These birds feed on insects, small reptiles, and
fruits [14]. We used samples from nine specimens collected from the Napo province, Ecuador
[15] and next-generation sequencing (NGS) of the hypervariable V;—V, region from the 16S
rRNA gene to describe for the first time the gut bacterial community of two native Ecuadorian
species. We also qualitatively evaluated the relationship between the time elapsed between
death and sample preservation and the composition of bacterial communities, as an approach
to understand the natural decomposition process.

Materials and methods
Sample collection

We used samples from carcasses collected during a systematic roadkill survey of 240 km of
roads in the Tropical Andes in the Amazonian province of Napo, Ecuador [15]. Sampling was
carried out between September 19", 2020, and March 23", 2021; all dead specimens found on
the roads were taken to the laboratory for tissue dissection, and samples were preserved in a
biobank at -80°C until their processing, as previously described [7]. Of these, we selected sam-
ples for this study that met essential requirements: 1) those belonging to animals from the
same species, 2) those in which the roadkill animal (carcass) was relatively intact after the acci-
dent as required to allow dissection and obtention of uncontaminated intestine samples. From
the 590 specimens collected, only nine specimens from two species met these criteria and
could be included in the study. Therefore, the gut samples selected for this work were from
four specimens of the reptile A. bassleri and five specimens of the bird C. ani. Details of the
samples used, including timing and location of collection are provided in Table 1.

The permissions used to collect samples were granted by the Ministerio del Ambiente,
Agua y Transicion Ecologica (MAATE) from Ecuador with No. MAAE-DBI-CM-2021-0215
and MAAE-ARSFC-2020-0791.

DNA extraction and sequencing

Total genomic DNA (gDNA) was isolated from 15 mg of each gut sample with ZymoBIO-
MICS™ DNA Miniprep Kit (Zymo Research, Irvine, CA, United States) according to the
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Table 1. Description of the samples from two vertebrate species analyses for this study.

Sample
SW001
SW002
SW003
SW004
SW005
SW006
SW007
SW008
SW009

Species
Amphisbaena bassleri
Amphisbaena bassleri
Amphisbaena bassleri
Amphisbaena bassleri

Crotophaga ani
Crotophaga ani
Crotophaga ani
Crotophaga ani
Crotophaga ani

Estimated time since death Landscape Latitude Longitude
0 hours Altered area -0.84761 -77.78706

0 hours Altered area -0.85528 -77.79068

2 hours Altered area -0.77437 -77.79246

6 hours Unaltered area -0.82108 -77.77457

1 hours Unaltered area -1.10526 -77.79806

1 hours Altered area -1.03703 -77.77536

2 hours Altered area -1.06761 -77.63735

6 hours Altered area -0.39962 -77.82664

48 hours Unaltered area -1.04709 -77.78982

Description of the samples including the biobank sample ID, estimated time since death at the time of collection, and the coordinates and surrounding landscape of the

collection site described as “Altered area” for landscapes with human land uses (agriculture, pastureland, or built-up areas) and “Unaltered area” for areas with natural

land covers.

https://doi.org/10.1371/journal.pone.0313263.t001

®

manufacturer’s protocol, quantified with a Qubit™ Fluorometer (Invitrogen, Life Technologies,
CA, USA) and stored immediately at -20°C for subsequent analysis. To identify bacterial com-
munities, a single amplicon of approximately 550 bp corresponding to the V;—V, hypervari-
able region of prokaryotic 16S rRNA gene was amplified with the forward primer 341F (5-
CCTACGGGNGGCWGCAG-3’) and the reverse primer 805R (5-GACTACHVGGGTATCTAATCC-
3’) [16]. Each PCR reaction contained 12.5 pL 2x KAPA HiFi HotStart Ready Mix (Kapa Bio-
systems Inc., MA, USA) which includes 0.3 mM dNTPs, 2.5 mM MgCl,, and 0.5 U of HiFi
DNA Polymerase), 0.5uL of each primer (0.2 uM), 12.5 ng of template gDNA, and PCR-grade
water to reach a final volume of 25 pL. Thermal cycle conditions according to [17] consisted of
an initial denaturation at 95°C for 3 min, followed by 25 cycles at 95°C for 30 sec (denatur-
ation), 55°C for 30 sec (annealing), and 72°C for 30 s (extension). This was followed by a final
extension at 72°C for 5 min. The resultant PCR products were purified using Agencourt
AMPure XP (Beckman Coulter, Brea, CA, USA). Finally, the preparation of libraries was based
on dual-index barcodes of Nextera XT Index Kit (Illumina Inc., San Diego, CA, USA) accord-
ing to manufacturer’s instructions. The libraries were purified, quantified and sequencing on
Mumina MiSeq platform with paired-end reads of 300 bp using MiSeq reagent kit v3 (600
cycles PE) (Illumina Inc., San Diego, CA, USA).

Metabarcoding sequence processing

Initially, quality of the raw read data was checked visually with FastQC v.0.12.1 [18]. The bac-
terial taxonomic annotation was done with the open-source single software platform mothur
v.1.45.0 [19] by following the standard operating procedure to process 16S rRNA gene
sequences from Illumina’s MiSeq platform described on the mothur website (https://mothur.
org/wiki/miseq_sop/) (accessed on 28 June 2023) [20]. Paired-end reads were merged into
contigs and then filtered to retain sequences with a minimum overlap of 20 bp, minimum
length of 350 bp and a maximum of 560 bp. Additionally, those sequences with homopolymers
longer than 14 bp and/or ambiguous nucleotides were removed. The resulting sequences were
deduplicated to reduce redundancy and cluster unique sequences. These unique sequences
were aligned against the SILVA release 132 SSU Ref NR dataset [21], which was previously cus-
tomized for V;—V region. This region was defined between positions 6,428 and 23,440 within
the non-redundant SILVA v132 reference alignment. Sequences that did not cover the full
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alignment were filtered starting at position 2 and ending at position 17,012. Subsequently, the
alignments underwent processing to remove columns containing gap or dot characters. Once
again, we performed a new round of sequence deduplication in case the previous step had gen-
erated additional redundant sequences. To denoise data, sequences that were very similar (up
to one nucleotide difference between them) were preclustered, and then using the VSEARCH
algorithm [22], chimeras were removed from all samples when an abundant sequence was
flagged as chimeric in one sample. The taxonomic annotation of the sequences was based on
reference taxonomy database of SILVA release 132 and done by the Wang method [23] which
use a naive Bayesian classifier with a 70% bootstrap threshold. Sequences that belong to taxa
like chloroplasts, mitochondria, and Eukaryota were unsuitable for our purpose, and thus,
were removed from the dataset. The final sequences were clustered by the OptiClust algorithm
[24] into operational taxonomic units (OTUs) with the similarity cut-off value of 99%. The
most abundant sequence of each OTU was picked to do a consensus taxonomy classification
from phylum to genus level and determinate the number of representative sequences.

Microbial communities analysis

Microbial community data were analyzed using R version 4.3.1 [25] and RStudio version
2023.6.0.421 [26]. Final output files from mothur’s pipeline were imported to R with phyloseq
package version 1.44.0 [27] to generate a phyloseq object with added metadata information for
each sample. OTUs were grouped at genus level, and we reviewed the kingdom and phylum
levels to remove archaea, unknown taxa, unclassified bacteria and all singletons. Samples were
separated by vertebrate species (Amphisbaena bassleri and Crotophaga ani) into two phyloseq
objects for further independent analysis. The composition of bacterial communities was
explored through bar plots of relative abundance to identify the most abundant phyla. We
established a threshold value to retain phyla with a relative abundance higher than 3% in at
least one sample. Those phyla with a relative abundance below this threshold were grouped in
an “Others” category.

Diversity analyses

Alpha diversity. We adapted the methods from [11] with a-diversity indexes Chaol,
Shannon and Simpson calculated with the phyloseq package in R using the function estima-
te_richness. Downstream analyses of both vertebrate species were done using OTUs abun-
dances belonging to the Genus-level taxonomic classifications. To compare median
similarities in alpha diversity of genus data among samples from each species, we performed a
Kruskal-Wallis test followed by a post hoc Bonferroni test using the free software for scientific
data analysis, PAST [28]. We used adjusted p-values, considering significant results at
p < 0.05.

Rarefaction curves for gut microbiota in A. bassleri, and C. ani samples were estimated by
the ranacapa package version 0.1.0 [29] in R, using steps of 600 samples with the back-end
functions. The overall absolute abundance at family level was visualized on heatmaps gener-
ated with ComplexHeatmap package version 2.16.0 [30, 31] in R. To select the 25 most abun-
dant families, we did a logarithmic transformation to avoid overplotting, for A. bassleri
sequences, the cut-off was log(x + 1) > 10.3 and for C. ani sequences, the cut-off was log(x + 1)
> 17.9. The selected families were hierarchically clustered with the unweighted pair group
method (UPGMA on Euclidean distances). Finally, we used a Venn diagram to represent the
core microbiome in A. bassleri and C. ani with VennDiagram package version 1.7.3 [32]. For
this purpose, we selected genus level with cut-off values of 90% of prevalence and 0.01% of
abundance [11].
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Beta diversity. To assess B-diversity we used a principal coordinate analysis (PCoA).
Prior to this analysis, sampling depth was standardized by incorporating the minimum
sequencing depth value across all samples for each specimen. Specifically, the sequencing
depths were 26,185 for A. bassleri and 44,409 for C. ani samples. A distance matrix using the
Bray-Curtis distance measure was used to quantify the differences between samples. Then, the
PCoA was applied using the ordinate function from phyloseq package to represent the variabil-
ity between samples and evaluate their relative arrangement in a multidimensional space [33].

Results
Sequencing data analysis

In this study, next-generation sequencing results were employed to describe the gut microbiota
of 4 A. bassleri and 5 C. ani from roadkill specimens. A total of 2,201,434 paired-end raw
sequences were generated from the nine gut samples, representing 576.2 Mb of data. For A.
bassleri, the reads ranged from 69,538 to 268,832, with a mean and SD of 183,542 + 90,721 per
sample. For C. ani, the number of reads ranged from 121,826 to 518,250, with mean and SD of
293,453 + 147,704 per sample. All reads were assembled in 1,100,717 contigs with an average
read length of 431 bp. The quality control filter implemented by mothur eliminated 31.6% of
the sequences. The filtered assembled sequences included 752,856 contigs, most of which had
lengths ranging between 439 and 515 bp. Clustering sequences to reduce redundancy resulted
in 309,872 unique sequences that were aligned with the customized V-V, region of the non-
redundant SILVA v132 reference dataset. After the alignment refinement, the number of
sequences was reduced to 703,791. After data denoising, pre-clustering, and removal of chime-
ras and undesirable lineages, the final number of sequences was 695,970. These represented
38,777 OTUs which were classified into six taxonomic ranks (Kingdom, Phylum, Class, Order,
Family, Genus) and then binned into 313 and 416 genera for A. bassleri, and C. ani, respec-
tively, of which 295 and 381 were unique to each vertebrate species (Table 2).

NCBI’s Sequence Read Archive (SRA) with the BioProject is available by the accession
number: PRINA1061813.

Microbial communities analysis

Amphisbaena bassleri. We identified 19 unique phyla associated to A. bassleri specimens
(Fig 1A). The complete data obtained in the microbiome analyses of the four specimens of A.
bassleri collected can be consulted in S1 Data. Firmicutes was a superabundant phylum com-
mon to all samples. Both samples collected immediately after collision (estimated time since
death 0 hours, SW001 and SW002) showed a high relative abundance of Firmicutes, 95.42%
and 98.13%, respectively. Sample SW003 (estimated time since death 2 hours) had many

Table 2. Number of unique taxa.

Amphisbaena bassleri Crotophaga ani
Phylum 19 21
Class 35 43
Order 83 99
Family 136 170
Genus 295 381

Description of unique taxa obtained in the gut samples from four reptile species of A. bassleri and five bird species of

C. ani.

https://doi.org/10.1371/journal.pone.0313263.t1002

PLOS ONE | https://doi.org/10.1371/journal.pone.0313263 December 30, 2024 5/16


https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1061813/
https://doi.org/10.1371/journal.pone.0313263.t002
https://doi.org/10.1371/journal.pone.0313263

PLOS ONE

Microbiome from roadkill animals in Ecuador

A 1.00

B P  Timesince death
I andscape

. Peptostreptococcaceae
Clostridiaceae 1
Lachnospiraceae
Ruminococcaceae
Erysipelotrichaceae
Family XIII
Christensenellaceae
Akkermansiaceae
Eggerthellaceae . .
Peptococcaceae Time since death
Rikenellaceae 0 hours
Bacteroidaceae B 2 hours
Bacillaceae M 6 hours

0.75 1

Phylum

. Firmicutes

. Verrucomicrobia

0.50 1 Bacteroidetes

Relative Abundance

Proteobacteria

' Others

Cyanobacteria

Enterobacteriaceae

Unclassified Clostridiales

Tannerellaceae
Desulfovibrionaceae

Landscape

B Altered area
Unaltered area

Veillonellaceae

Mollicutes RF39 fa
Unclassified Bacteroidales
Chroococcidiopsaceae
Burkholderiaceae
Prevotellaceae

Clostridiales vadinBB60 group
Pseudomonadaceae
Uncultured Bacteria

0.25 -

W002
003

SW001

<
o
o
S
»

0.00- [}

log OTUs Abundance

SW001
W002
W003

SW004

[72] (2]
Sample ID 0 5 10

Fig 1. Microbiota composition in roadkill samples of A. bassleri. (A) Stacked bar plots of relative abundance labelling the most abundant phyla (>3%), and the
category “Others” grouping all phyla with relative abundance <3%. (B) Heatmap at family level depicting the most abundant 25 different OTUs according to
postmortem hours and hierarchical clustering of the OTUs and the samples.

https://doi.org/10.1371/journal.pone.0313263.9001

Verrucomicrobia, comprising 25.77% of the sequenced material. In contrast, this phylum was
rare (2.69%) in sample SW001 which was collected near shrubs close to a human settlement.
Bacteroidetes and Proteobacteria appeared to become more abundance with longer times
since death, both found as <1% in the two samples collected at 0 hours since death, <2% in
the sample collected after 2 hours, and to 5.87% and 4.89% respectively in the sample collected
after 6 hours (sample SW004).

We identified 33 families within Proteobacteria, 29 within Firmicutes, 23 within Actinobac-
teria, and 11 within Bacteroidetes. The heatmap displays the distribution of the 25 most abun-
dant families (Fig 1B). Both samples SW001 and SW002 (0 hours postmortem) showed similar
abundances in families such as Peptostreptococcaceae, Clostridiaceae_1, Lachnospiraceae, Ery-
sipelotrichaceae, and Family_XIII. Of these, Peptostreptococcaceae, Clostridiaceae_1, and Lach-
nospiraceae were the most abundant in both samples. Sample SW003 was primarily dominated
(> 25% relative abundance) by Akkermansiaceae and Lachnospiraceae families, although other
families such as Clostridiaceae_1, Ruminococcaceae, and Peptostreptococcaceae exhibited a rel-
ative abundance close to 10%. In the sample SW004 (6 hours postmortem), we observed two
predominant families within its bacterial community: Clostridiaceae_1 and Peptostreptococca-
ceae. Only three families were not present in some samples, Chroococcidiopsaceae and
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Prevotellaceae were missing from sample SW001, while Mollicutes_RF39_fa was not present in
sample SW002. Additionally, approximately 19% of the total composition comprised various
other families. Although some changes in communities appear in samples collected at different
estimated times since death, the limited sample size precluded further analyses.

Crotophaga ani. Gut microbial composition in these five bird specimens revealed 21
unique phyla. The complete data obtained in the microbiome analyses of the C. ani specimens
can be consulted in S2 Data. For all samples, Firmicutes and Actinobacteria were the most
common abundant phyla (Fig 2A). The sample SW006 found in road surrounded by forest
and pastureland was mainly constituted by Firmicutes in 97.90%.

Also, Proteobacteria were present in all the samples, with sample SW007 showing the high-
est proportion (16.53%) (Fig 2A). Epsilonbacteraeota was detected in two samples, SW005
and SWO007, the latter exhibiting the highest relative abundance at 18.83%. The sample SW005,
collected from forest shrubs at 1 hour postmortem, had the highest relative abundance of Acti-
nobacteria (25.34%), and was the only sample that showed Chlamydiae (5.02% of its composi-
tion). Actinobacteria was also detected in samples SW007, SW008, and SW009 with relative
abundances of 12.80%, 17.52%, and 20.08%, respectively. Despite the relative abundance of
Bacteroidetes being <1% in most of the samples, sample SW009 exhibited a relative abun-
dance of 3.27% for this phylum.

B
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Fig 2. Microbiota composition in roadkill samples of C. ani. (A) Stacked bar plots of relative abundance labelling the most abundant phyla (>3%), and the
category “Others” grouping all phyla with relative abundance <3%. (B) Heatmap at family level depicting the most abundant 25 different OTUs according to
postmortem hours and hierarchical clustering of the OTUs and the samples.

https://doi.org/10.1371/journal.pone.0313263.9g002
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We identified 41 families in Proteobacteria, 38 in Actinobacteria, 30 in Firmicutes, and 12
in Bacteroidetes. In C. ani we found no clear differences in communities associated to time of
death or the landscape where samples were found (Fig 2B). For example, the two samples col-
lected at 1 hour postmortem in unaltered landscapes (SW005, SW006) showed very different
patterns (Fig 2B). The abundance distribution of the top 25 bacterial families showed that
eleven families, including Atopobiaceae, Bacteroidaceae, Coriobacteriaceae, unclassified Cor-
iobacteriales, Eggerthellaceae, Erysipelotrichaceae, Eubacteriaceae, Family XIII, Peptococca-
ceae, Ruminococcaceae, and Tannerellaceae, were entirely absent in sample SW006 (Fig 2B).
This observation could be related with low diversity of this sample (see alpha diversity). More-
over, the family Coriobacteriales Incertae Sedis was not present in samples SW006 and
SW007.

Alpha diversity

In both species sample size was limited, and results should be interpreted with caution. To
understand the diversity of the samples, we calculated Shannon, Simpson and Chao-1 indexes
(Table 3). For A. bassleri samples excluding sample SW003, the observed OTUs were closer to
the estimated number of OTUs by Chaol index (Table 3), therefore we reported at least more
than 87% of all communities present in each sample. We found significant differences in bacte-
rial diversity across samples (Kruskal-Wallis test H = 20.35, p = 0.00013) with SW003 being
different to SW002 (p = 0.0106) and SW004 (p = 0.00032). Differences based on pairwise com-
parison using the Bonferroni test). According to Shannon’s and Simpson’s indexes, SW004
was the sample with higher diversity. Bacterial diversity did not consistently change with time
since death.

For C. ani, sample SW006 had the lowest diversity according to Shannon’s and Simpson’s
indexes, while the other samples had moderate diversity (Table 3). Analysis revealed that in
SW006 we identified 68% of the estimated OTUs by Chaol index (Table 3), while other sam-
ples reached more than 87% of estimated OTUs. Bacterial diversity in C. ani showed significa-
tive differences between samples (H = 16.52, p = 0.0023), with sample SW007 different from
SWO005 (p = 0.013) and SW008 (p = 0.0045). Despite of the existence of differences in bacterial
richness, variation was not clearly associated with the time since death.

Beta diversity

There was no clear pattern of microbiome composition related with the time of death based on
Principal Coordinate Analysis (PCoA). For A. bassleri samples SW001 and SW002 at 0 hours
since death were similar, but samples collected at 2 hours (SW003) and 6 hours (SW004) were
uniquely distributed (Fig 3A). For C. ani (Fig 3B) both samples collected at 1 hour since death

Table 3. Alpha diversity indexes for samples collected of A. bassleri and C. ani.

SampleID Amphisbaena bassleri Crotophaga ani
SWo001 SW002 SW003 SW004 SW005 SW006 SW007 SW008 SW009
OTUs Observed 156 157 170 156 199 82 209 218 133
Shannon 2.5077 2.1036 2.7228 3.2328 2.3375 0.3936 2.9774 2.7680 2.5425
Simpson (1-D) 0.1702 0.2136 0.1344 0.0972 0.1679 0.8766 0.1182 0.0875 0.1305
Chaol 179.25 171.62 215.04 165.50 215.71 120.25 223.62 224.84 152.00
T. s. death 0 hours 0 hours 2 hours 6 hours 1 hours 1 hours 2 hours 6 hours 48 hours

T. s. death, Time since death.

https://doi.org/10.1371/journal.pone.0313263.t003
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Fig 3. Principal Coordinates Analysis of bacterial communities among (A) A. bassleri, and (B) C. ani samples. Hours since death indicated the estimated time
since death due to wildlife-vehicle collision of the sampled roadkill specimens.

https://doi.org/10.1371/journal.pone.0313263.g003

(SW005 and SW006) differ, but samples SW008 and SW009 were near each other, despite
their difference in collection time (6 and 48 hours since death).

Core gut microbiota

Analyzing the common bacterial taxa present in the gut microbiota among samples from each
animal species allowed us to identify certain genera that could represent the core microbiota
for A. bassleri and C. ani.

The core gut microbiota structure of A. bassleri included 41 genera shared among all four
specimens (Fig 4A). Most of these genera belonged to the order Clostridiales (phylum Firmi-
cutes), which represented 78.05% of the core microbiota and included 9 families: Christense-
nellaceae, Clostridiaceae_1, unclassified Clostridiales, Clostridiales_vadinBB60_group,
Family_XIII, Lachnospiraceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococca-
ceae. At the phylum level, Firmicutes was the major contributor in the core microbiota, with
Bacteroidetes and Actinobacteria also present. Additionally, coliform bacteria that inhabit the
intestines of most animal species and belong to the family Enterobacteriaceae (phylum Proteo-
bacteria) were also part of the core microbiota for A. bassleri.

The core microbiota for C. ani was limited just to three genera found in all samples:
Methylobacterium (family Beijerinckiaceae), Bacillus (family Bacillaceae), and Pseudomonas
(family Pseudomonadaceae), with most genera commonly found in single individual samples
(Fig 4B).

Discussion

The present study represents a pioneering effort aimed at describing the endogenous microbial
communities of free-living vertebrates in the Amazon region of Ecuador. Our results provide

the first description of the bacterial community profiles in two vertebrate species, contributing
to a topic that is poorly understood particularly in this high biodiverse region. The two studied
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Fig 4. Gut core microbiota. Gut core microbiota at Genus level showing the number of shared OTUs across all the samples for (A) A. bassleri and (B) C. ani.

https://doi.org/10.1371/journal.pone.0313263.9g004

vertebrates were found as roadkill in our study area but were not the only species detected [5]
which highlights the opportunities to sample and describe microbiomes in wildlife using this
approach. We hope our study motivates further explorations but acknowledge limitations with
our sample size. Roadkill surveys primarily aim to quantify road impacts but offer an addi-
tional opportunity to sample roadkill animals. These samples general represent diverse taxo-
nomic group and can include threatened species from which live capture may not be possible
or ethical, but can be limited by relatively few replicates or samples per taxon. Previous studies
using other types of opportunistic sampling, and thus having limited sample sizes, have con-
tributed to the literature, for example collecting data from stranded cetaceans [34, 35] or dol-
phins [36, 37]. Another challenge of using dead specimens like roadkill is that during the
postmortem period there could be an uncontrolled proliferation of microorganisms leading to
changes in bacterial community profiles because of microbial colonization on the surfaces of
animal carcasses [38]. This aspect should be further explored but our preliminary analyses did
not find strong clear pattern of changes associated to the duration of the postmortem period.

Gut microbiota in Amphisbaena bassleri

All samples of A. bassleri were primarily dominated by Firmicutes, which ranged from 69.51%
to 98.13%, while Bacteroidetes (0.22-5.86%), Proteobacteria (0.17-4.89%), and Verrucomicro-
bia (0.56-25.77%) constituted relatively minor components of the gut microbiota. No other
studies have reported on the gut microbiome composition in the family Amphisbaenidae or
any families within the infraorder Amphisbaenia. There are some microbiome analyses of spe-
cies of the family Lacertidae, which is the most phylogenetically related to the genus Amphis-
baena. However, these reports were not obtained from direct gut tissue samples. For the
Lacertidae lizard Eremias argus, the predominant phyla are Firmicutes, Proteobacteria,
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Actinobacteria, Bacteroidetes and Verrucomicrobia [39]. The first four phyla also showed high
abundance in lizard species of the genus Podarcis [40]. In addition, the composition is similar
to the endogenous microbiota reported for other reptiles, such as the wild Burmese pythons
(Python bivittatus), Gopher tortoises, Australian saltwater crocodiles (Crocodylus porosus),
American alligators (Alligator mississippiensis), cottonmouth snakes (Agkistrodon piscivorus),
and some lizards (Phrynocephalus viangalii), where Firmicutes and Bacteroidetes consistently
were identified as the dominant phyla [3, 41]. The abundance of these two phyla has been asso-
ciated with metabolic processes during fasting periods or active digestion, respectively [3].
Additionally, Proteobacteria has been identified as a common phylum in reptile microbiomes,
showing variable abundance in samples obtained from the small gut or cloaca [42], while Ver-
rucomicrobia can reach up to 4% in some reptilian species [43], and in other cases, even be the
dominant phylum [44].

We found variability in gut bacterial communities of A. bassleri, which was not clearly asso-
ciated to differences in estimated time since death. These variations may be associated with
environmental conditions, such as the surrounding landscape, as the gut microbiome in rep-
tiles begins to develop from environmental exposure during the juvenile stages of life [3]. Fur-
thermore, temperature may play a significant role in the variability and composition of the gut
microbiome. Samples were collected in a tropical environment with average temperatures
ranging from 4.63 to 23.7°C and relatively high humidity. It is possible that the low tempera-
ture and the short interval of time that has elapsed since the death in the animal did not allow
optimal growth in terms of abundance for mesophilic bacteria that typically colonize the
corpse during decomposition.

The PCoA analysis suggested similarity in both fresh samples (collected at 0 hours postmor-
tem) compared to the others. This could reflect similarities in the microbiome of living A. bas-
sleri, but further analysis with a larger sample size is necessary. Despite differences, all samples
generally had a high predominance of Firmicutes, accounting for 85.45% until 6 hours after
death. This finding contrasts with studies in mammalian corpses in which bacterial communi-
ties were dominated by Proteobacteria in the early stages, between 0- and 120- hours postmor-
tem, then strongly shifting towards Firmicutes as decomposition progressed [45].

Gut microbiota in Crotophaga ani

The crucial ecological role played by birds has prompted investigations into the composition
of their gut microbiome, encompassing both captive and wild species, with efforts to address
methodological limitations [10]. While some studies have identified Bacteroidetes and Proteo-
bacteria as the predominant phyla in birds, with low proportions of Firmicutes in wild species
[46], our analysis of five C. ani specimens primarily revealed a dominance of Firmicutes
(50.23-97.90%) and Actinobacteria (0.7-25.34%), with a minimal contribution of Proteobac-
teria (0.54-16.53%). This composition partly resembles findings in a long-distance migratory
swallow (Hirundo rustica), where Proteobacteria, Firmicutes, and Actinobacteria were the
dominant bacteria [47]. The gut microbiota described in Clamator glandarius, a species from
the family Cuculidae and phylogenetically related to the genus Crotophaga, revealed a higher
abundance of Firmicutes and Bacteroidetes [48]. In contrast, C. ani showed small relative
abundances of Bacteroidetes, ranging from 0.23% to 3.27%. Thus, studies indicate that the
microbiome of C. ani is predominantly characterized by Firmicutes, with a smaller composi-
tion of phyla such as Actinobacteria, Bacteroidetes, and Proteobacteria [49].

The only known microbiome study for the genus Crotophaga had a social approach and
focused on characterizing the preen gland and body feather microbiota of C. ani [50].
Although direct comparisons are not possible, we found one interesting similarity. The preen
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gland and feather microbiota of C. ani showed bacterial taxa corresponding to the families
Pseudomonadaceae and Lachnospiraceae, as well as the genus Methylobacterium [50], which
are the same as those reported by us in the gut samples of this species. Our results in C. ani
could be useful in contributing to knowledge in different fields related to this bird.

We also found disparity in the intestinal microbiota among samples, which may reflect
changes in time since death, environmental conditions and physiological needs or state [10].
In our limited sample, changes were not clearly associated with time since death. For example,
both samples obtained at the same time after death (1 hour), exhibited distinct microbial com-
positions and did not cluster together in the PCoA analysis. Future work using larger sample
sizes would be necessary to establish how microbiomes change with time postmortem in this
and other wildlife species. A single sample (collected 2 hours post-mortem) had the phylum
Epsilonbacteraeota, with Helicobacter as the predominant genus. Some species of Helicobacter
are known pathogens, and future work would be useful to quantify its prevalence in vertebrates
in this region.

Our study offers a first report of endogenous gut microbiota for two wild vertebrate and
showcases the potential to use roadkill samples as an innovative source of biological material
to characterize bacterial communities in wildlife without causing harm to the animals. While
inferences about the effect of time since death or habitat on microbiome diversity could not
fully explored due to the small sample size, roadkill samples can offer valuable information
about the gut microbiota of live individuals [51].

Care is needed to collect largely intact specimens later carefully dissected in a laboratory,
internal sampling (e.g. gut samples) can also help identify microorganisms more likely to be
associated to the living hosts. Roadkill samples can offer a valuable and easy to collect (accessi-
ble from roads) source of biological material, their collection and preservation in biobanks can
facilitate future studies, allow monitoring and detection of changes over time and allow to
explore many new questions about the microbial gut communities of many free-living species.
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