

Differences in appetite, food intake, and gastric emptying responses to protein intake by older adults varying in level of physical activity: a randomised controlled trial

Article

Accepted Version

Dericioglu, D., Methven, L., Shafat, A. and Clegg, M. E. (2025) Differences in appetite, food intake, and gastric emptying responses to protein intake by older adults varying in level of physical activity: a randomised controlled trial. *Appetite*, 206. 107830. ISSN 1095-8304 doi: 10.1016/j.appet.2024.107830 Available at <https://centaur.reading.ac.uk/120122/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.appet.2024.107830>

Publisher: Elsevier

the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

[Click here to view linked References](#)

1 **Differences in appetite, food intake, and gastric emptying responses to protein intake by
2 older adults varying in level of physical activity: A randomised controlled trial**

3

4 Dilara Dericioglu^{1,3}, Lisa Methven^{2,3}, Amir Shafat⁴, Miriam E. Clegg⁵

5 ¹Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences,
6 University of Reading, Whiteknights, Reading, RG6 6DZ, UK.

7 ²Food Research Group, Department of Food and Nutritional Sciences, University of Reading,
8 Whiteknights, Reading, RG6 6DZ, UK.

9 ³Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6
10 6EU, UK.

11 ⁴Physiology, School of Medicine, University of Galway, Galway, H91 W5P7, Ireland.

12 ⁵School of Food and Nutritional Sciences, University College Cork, Cork, T12 Y337, Ireland.

13

14 Corresponding author:

15 Dr Miriam Clegg,

16 School of Food and Nutritional Sciences, University College Cork, Cork, T12 Y337, Ireland.

17 Ph: 353 (021) 4901424

18 Email: MClegg@ucc.ie

19

20 E-mail addresses:

21 d.dericioglu2@reading.ac.uk (D. Dericioglu),

22 l.methven@reading.ac.uk (L. Methven),

23 amir.shafat@universityofgalway.ie (A. Shafat),

24 mclegg@ucc.ie (M.E. Clegg)

25

26 Declarations of interest: none

27

28 Abbreviations: BMI Body Mass Index; CNAQ Council on Nutrition Appetite Questionnaire;
29 TFEQ Three Factor Eating Questionnaire; DEBQ Dutch Eating Questionnaire; GPPAQ General
30 Practice Physical Activity Questionnaire; VAS Visual Analogue Scale; CO₂ Carbon dioxide; T_{lag}
31 Lag Phase; T_{half} Half Time; T_{lat} Latency Phase; T_{asc} Ascension Time; AUC Area Under the Curve;
32 ANOVA Analysis of Variance; SD Standard Deviation; δVPDB Delta Vienna Pee-Dee Belemnite.

33 **Abstract**

34 Older adults are encouraged to increase their protein intake and engage in more physical
35 activity to preserve muscle mass. However, since protein is considered the most satiating
36 macronutrient, this advice might lead to a decrease in overall energy consumption. Physical
37 activity is also recommended to older adults to enhance appetite, as it has been shown to
38 help regulate appetite in younger adults, yet there is limited evidence to support this in older
39 populations. The objective of this study was to investigate the impact of physical activity and
40 protein on food intake, perceived appetite, and gastric emptying in older adults. Nineteen
41 active and 19 less active older adults completed a single-blind, randomised, crossover trial
42 involving two test days at home. Participants received a standard breakfast, followed by an
43 isovolumetric (250 ml) and isocaloric (~300 kcal) high- or low-protein preload milkshake (57%
44 versus 17% energy as protein) matched for sensory properties. Three hours after the preload,
45 participants were offered an *ad libitum* meal. Food intake was weighed, perceived appetite
46 was measured by 100 mm visual analogue scales, and gastric emptying via the ¹³C-octanoic
47 acid breath test. Higher protein intake did not affect subsequent energy intake or appetite
48 ratings in both active and less active groups. Gastric emptying half time was longer following
49 the high-protein milkshake compared to the low-protein milkshake. The active group had a
50 lower perceived appetite, but faster gastric emptying time compared to the less active group.
51 In conclusion, while higher protein intake slows gastric emptying, it did not reduce appetite
52 or subsequent food intake in older adults, regardless of physical activity level. Additionally,
53 being physically active suppresses perceived appetite and accelerates gastric emptying
54 without affecting food intake.

55 Keywords: Protein, Physical Activity, Appetite, Energy intake, Older Adults

56

57

58

59

60

61

62

63

64 **1. Introduction**

65

66 Ageing brings about various changes at the cellular, organ, and whole-body levels, which are
67 known to contribute to a decrease in appetite and a reduction in the intake of energy and
68 nutrients (Dericioglu et al., 2024). These changes are linked to a decline in muscle mass, an
69 increased risk of developing malnutrition, poorer healthcare outcomes, and most
70 importantly, higher mortality rates (Brownie, 2006; Morley & Silver, 1988; Pilgrim et al., 2015;
71 Wilson et al., 2005). Preserving muscle mass and function is vital for maintaining functional
72 independence and optimal health among older adults (Wolfe, 2012). Protein has been
73 consistently identified by numerous studies as a crucial nutrient for supporting muscle health
74 in this age group (Baum et al., 2016). Notably, older adults have a diminished anabolic
75 stimulus response to lower doses of amino acids compared to younger adults. (Katsanos et
76 al., 2006). As a result, they require a higher intake of amino acids to effectively stimulate
77 muscle protein synthesis (Moore et al., 2015; Wolfe, 2012). Therefore, it is recommended
78 that older adults increase their protein intake to address this issue and maintain muscle mass
79 and function (Jürgen Bauer et al., 2013; Deutz et al., 2014).

80

81 There is a widespread belief that protein is the most satiating macronutrient (Paddon-Jones
82 et al., 2008), suggesting that increasing protein intake in older adults could potentially lead to
83 a further reduction in appetite, a common issue with ageing (Dericioglu et al., 2024).
84 Therefore, when considering an increase in protein intake for older adults, it is also important
85 to consider their total energy intake (Baum et al., 2016). While a recent meta-analysis
86 suggested that protein supplementation may be a viable solution to increase protein intake
87 in healthy older adults without adversely affecting total energy intake due to appetite
88 suppression (Ben-Harchache et al., 2021), it did not examine responses in individuals with
89 different levels of physical activity, leaving a gap in understanding whether physical activity
90 modulates these effects. Thus, further research is needed to identify the optimal balance
91 between protein and energy intake in older adults with varying physical activity levels.

92

93 Along with recommendations to increase protein intake to maintain muscle mass with ageing,
94 physical activity and exercise remain essential for preserving muscle mass and function (Deer
95 & Volpi, 2015). Extensive evidence supports the notion that physical activity stimulates

96 muscle protein synthesis (Deutz et al., 2014) and is recognised as another modifiable factor
97 associated with better health outcomes, including improvements in muscle strength and
98 function, reduced frailty, and lower mortality in older adults (Arem et al., 2015; Chou et al.,
99 2012; Marzetti et al., 2017). Furthermore, physical activity may not only be effective in
100 preserving muscle mass in older adults but also potentially regulate appetite by influencing
101 the satiety signaling system, affecting food choices and macronutrient preferences, and
102 altering the hedonic response to foods (Blundell et al., 2003). Consequently, various
103 professional organisations, including the NHS and Age UK, recommend increasing physical
104 activity to maintain or increase appetite in older adults (Age UK, 2017; NHS, 2018). However,
105 the regulation of energy intake and appetite involves a complex interplay of multiple systems
106 (Gregersen et al., 2011). While a systematic review has shown that habitual physical activity
107 improves appetite control in younger individuals (Beaulieu et al., 2016), its effects in older
108 adults are less clear (Crabtree et al., 2023). In fact, due to a lack of conclusive evidence, it
109 remains uncertain whether physical activity effectively influences appetite control and food
110 intake in older adults. Some have suggested that current guidelines recommending increased
111 physical activity to enhance the appetite in older population lack sufficient supporting
112 evidence (Clegg & Godfrey, 2018).

113

114 While it is generally accepted that younger individuals with higher physical activity levels
115 exhibit better meal-induced satiety, as they can more effectively adjust energy intake after
116 consuming preloads varying in energy content (Blundell, 2011; Donnelly et al., 2009), findings
117 are not always consistent. For example, some studies have found no significant differences in
118 hunger and satiety ratings following preloads of varying energy content, whether assessed in
119 randomised controlled trials (Long et al., 2002) or after an exercise intervention program
120 (Martins et al., 2013). Similarly, another study reported no differences in energy intake
121 between high and low physical activity groups after consuming high-fat or high-carbohydrate
122 preloads (Beaulieu et al., 2017). Despite these mixed findings, research exploring the effects
123 of physical activity on appetite and food intake in older adults remains limited (Apolzan et al.,
124 2009; de Jong et al., 2000; Shahar et al., 2009; Van Walleghen et al., 2007). Furthermore, no
125 studies have specifically investigated how older adults with differing habitual physical activity
126 levels respond to preloads high and low in protein, leaving an important gap in the literature.

128 Therefore, the aims of this study are:

129 (i) to investigate food intake, appetite, and gastric emptying between active and less
130 active older adults (≥ 65 years),

131 (ii) to compare the effect of meals with high- or low-protein level, which are equal in
132 energy and volume, on food intake, appetite, and gastric emptying in both active
133 or less active older adults (≥ 65 years).

134 Based on these aims, we hypothesise that (i) active older adults will have a higher food
135 intake, and consequently, a higher protein intake, increased appetite, and faster gastric
136 emptying compared to less active older adults, and (ii) high-protein meals will lead to
137 longer gastric emptying times but will only lead to reduced food intake and appetite in
138 older adults where physical activity is low.

139

140 **2. Material and Methods**

141 **2.1. Study design and participant criteria**

142

143 The study was a two-way, crossover, randomised, single-blind controlled trial consisting of
144 two test days. The research protocol was approved by the University of Reading Research
145 Ethics Committee (study number UREC 21/40; Clinical Trials Database Registration ID
146 NCT05507801), and the study was conducted at participants' homes due to the COVID-19
147 restrictions.

148

149 Thirty-eight older adults (≥ 65 years) (19 active and 19 less active) participated in the study.
150 Inclusion criteria were as follows: being healthy and living independently (free from diabetes
151 or any disease likely to influence physical activity or appetite), the ability to walk
152 independently; the capacity to understand and undertake the study procedures; a Body mass
153 index (BMI) $< 30 \text{ kg/m}^2$; not using any medication that could impact on appetite, food intake,
154 or body weight in the past three months; no changes in diet and exercise, and no unexpected
155 or voluntary weight loss in the past three months; not smoking more than ten cigarettes a
156 day; no allergies to any of the test foods; and meeting the cut-off points criteria based on the
157 accelerometer data from a previous study. Low activity was defined as $\leq 108.3 \text{ min/ per day}$ of
158 moderate and vigorous activity for women, and $\leq 97.0 \text{ min/ per day}$ for men. High activity

159 was defined as ≥ 162.0 min/per day for women ≥ 133.3 min/per day for men (Dericioglu,
160 Methven, et al., 2023).

161

162 • **Pre-screening**

163 Prior to starting the study, participants were provided with an information sheet and asked
164 to complete a two-stage pre-screening process. Firstly, they completed a health and lifestyle
165 questionnaire online to determine their health status. Participants who met the inclusion
166 criteria were then contacted with further information about the study, and informed consent
167 was obtained online.

168

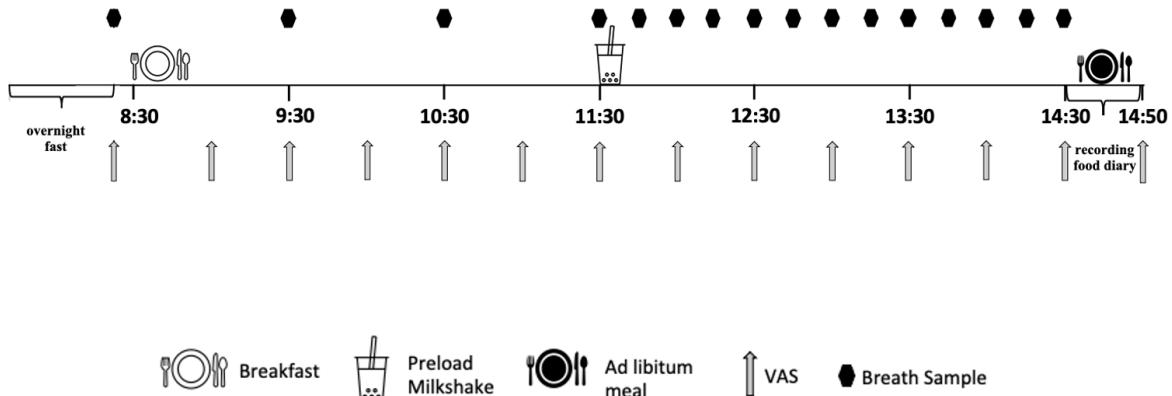
169 Afterwards, participants were delivered a study box containing a tape measure, a bioelectrical
170 impedance scale (OMRON VIVA Smart Scale and Body Composition Monitor - HBF-2222T-EBK;
171 UK), an accelerometer (AX3, 3-Axis Logging Accelerometer; Newcastle, UK), and a series of
172 self-administered questionnaires (in paper format). The box included clear written
173 instructions, and participants also received a video demonstration on how to use the
174 equipment and complete the questionnaires. Further assistance was also provided via email,
175 phone, or video chat as needed. After four days, one of the researchers collected the study
176 boxes from the participants' homes.

177

178 On one morning during the screening period, participants were asked to measure their height,
179 waist, and hip circumference in cm using the provided tape measure. For waist circumference,
180 participants were instructed to measure at the narrowest part of the torso, typically just
181 above the navel, and for hip circumference, at the widest part of the hips, following standard
182 anthropometric procedures. For height, participants were instructed to stand straight against
183 a wall with heels together and head level, measuring from the floor to the top of their head.
184 Additionally, there were instructed to weigh themselves using the bioelectrical impedance
185 scale for measurements of body weight in kg, percentage of body fat and muscle mass, and
186 visceral fat, while fasted (before having breakfast and consuming water) and after using the
187 toilet. They also completed questionnaires including the Council on Nutrition Appetite
188 Questionnaire (CNAQ) to assess appetite (with scores of 8-16 indicating at risk for anorexia
189 and the need for nutrition counselling, 17-28 indicating the need for frequent reassessment

190 to due to the risk of anorexia, and scores >28 indicating not currently at risk) (Wilson et al.,
191 2005). Additionally, the Dutch Eating Questionnaire (DEBQ) (Van Strien et al., 1986) and the
192 Three Factor Eating Questionnaire (TFEQ) (Stunkard & Messick, 1985) were used to identify
193 restrained eating (with scores > 2.5 and >10, respectively indicating restrained eating
194 behaviours), along with the General Practice Physical Activity Questionnaire (GPPAQ)
195 (Department of Health, 2009).

196


197 Lastly, they were instructed to wear the accelerometer in an elastic waterproof waistband on
198 their non-dominant wrist 24 hours a day for four consecutive days. Participants could wear it
199 on either weekdays and weekends, as the study population consisted of retired older adults
200 significant differences in activity levels between days were not expected. While a 7-day wear
201 period is common in studies assessing physical activity, we opted for 4 days to reduce
202 participant burden, particularly given the older adult population, while ensuring sufficient
203 data for accurate group classification. The accelerometers were set up using the OMGUI
204 software to record raw, triaxial acceleration at a rate of 100 Hz and a dynamic range of ± 8 g;
205 they measured the minutes per day spent in activities of four different intensities: sedentary
206 (<1.5 METS), light (≥ 1.5 METS, <4 METS), moderate (≥ 4 METS, <7 METS), and vigorous (≥ 7
207 METS) using a 60-second epoch length (Jackson, 2023). Data were extracted using the same
208 software, and participants' moderate and vigorous intensity activity time (minutes/per day)
209 was summed up. If at this stage participants did not meet the inclusion criteria for physical
210 activity level based on the accelerometer cut-off points aligned with data from our previous
211 study (Dericioglu, Methven, et al., 2023), they were excluded from continuing. Those
212 classified as moderately active were excluded from participating in the study, while those
213 participants categorised with a low or high activity level were included. Participants meeting
214 the inclusion criteria were assigned to either the active or less active group. Each eligible
215 participant was then called again and reminded of the procedures to follow before and on
216 the test day, and test days were scheduled.

217

218 • **Test days**

219 Each participant undertook two test days in a randomised order (**Fig. 1**). Prior to recruitment,
220 an online research randomiser was used to allocate eligible participants into predetermined

221 preload groups (Randomizer, 2023). The allocation was done sequentially based the
222 participants' entry into the study.

245 On the test day, participants were called before the pre-agreed start time to ensure that they
246 were ready to begin and were then reminded of the procedures via calls or texts at regular
247 intervals throughout the day. They were also asked to follow the timetable sheet listing the
248 required activities and to check off each activity as it was completed.

249

250 Firstly, participants were asked to consume a standardised breakfast meal consisting of
251 muesli, ground almonds, and milk within 15 minutes, representing 20% of their estimated
252 daily calorie intake (50% carbohydrate, 20% protein, 30% fat). This was calculated from the
253 data obtained during the pre-screening stage (height, weight, age, physical activity level –
254 assessed by the GPPAQ (Roza & Shizgal, 1984)). They then rested for three hours without any
255 more food, but they had access to water. On the first test day, water was allowed *ad libitum*,
256 and on the second test day, they were given the same amount of water to consume. During
257 these three hours, participants were permitted to read, watch TV, or do sedentary work but
258 were not allowed to be physically active or leave their houses during the test period.

259

260 Three hours later, participants were asked to consume their preload, which consisted of a
261 strawberry milkshake that was either high in protein or low in protein. The preload milkshakes
262 were equicaloric and isovolumetric on both test days (**Table 1**). Additionally, the colour of the
263 milkshakes was not noticeably different; based on the colour analysis, both the low protein
264 and high protein milkshakes were a pink hue (mean a* values of 14.3 and 14.7, p = 0.13 and
265 low mean b* values of 2.6 and 2.8, p = 0.28) and light in colour (mean L* 70.2 and 72.2, p =
266 0.05).

267

268 **Table 1.** Energy and macronutrient composition of the test meal

	Low Protein Milkshake	High Protein Milkshake
Energy (kcal)	331	337
Volume (ml)	250	250
Protein (g)	12.7	46.6
Carbohydrate (g)	47.2	22.2
Fat (g)	6.4	6.0
Protein (% of energy)	17.1	56.6
Carbohydrate (% of energy)	63.6	26.9
Fat (% of energy)	19.3	16.5
Ingredients		
Strawberry Yoghurt (g)	150	130
Whey Protein Isolate (g)	5	50
Whole milk (g)	50	70
Strawberry Nesquik (g)	25	-
Double Cream (g)	20	-
Sweetener (g)	-	4
Strawberry Flavouring	-	Approx. 15 drops
Food Colouring (g)	-	0.2

269

270 Three hours after consuming the preload, participants were given up to 20 minutes to
 271 consume an *ad libitum* buffet meal until they were comfortably full. Before the first test day,
 272 participants were asked to choose two sandwiches from a menu of eight equicaloric options
 273 (egg mayonnaise, cheese and tomato, tuna mayonnaise, chicken salad, cheese and pickle,
 274 hummus and salad, ham and cheese, or roast beef and tomato) (Clegg & Thondre, 2014). They
 275 were provided with two of each sandwich (4 sandwiches in total-8 slices of bread) along with
 276 snacks (grapes (~250 g), flapjack (~100 g), and mini cheddars (~70 g)) for the *ad libitum* buffet
 277 meal (~2700 kcal; 48% carbohydrate, 12% protein, 40% fat) (**Supplementary Table 1**). All
 278 meals were freshly prepared the day before the test day, and participants were asked to
 279 consume their meal alone with no distractions. After the meal, one of the researchers
 280 collected the leftovers from participants' homes and weighed them. Finally, participants were
 281 asked to keep a weighed food diary of everything they ate or drank for the rest of the day.
 282 The test day was repeated for two different preloads, with at least 3 days and no more than
 283 4 weeks between test days.

284 **2.2. Outcome measures**

285

286 Participants were delivered a pre-weighed *ad libitum* meal, and food consumption at this
287 meal was measured by weighing the leftover food. They were also asked to record their food
288 and drink intake for the rest of the day using weighed food diary sheets.

289

290 Four subjective feelings of appetite (hunger, fullness, desire to eat, and prospective
291 consumption) were assessed using 100 mm VAS fixed with the terms 'not at all' and
292 'extremely'. Before breakfast and every 30 minutes throughout the test day, participants
293 were asked to mark on this scale how hungry they felt, how full they felt, how strong their
294 desire to eat was, and how much food they thought they could eat. Additionally, participants
295 were asked to rate the preload milkshakes for appearance, aroma, flavour, pleasantness, and
296 texture liking on a VAS after the first sip and after consuming the entire preload to test
297 whether the preloads were perceived as similar.

298

299 Before breakfast and every hour until the test meal and every 15 minutes for 3 hours after
300 the test meal, participants collected exhaled breath samples for measurement of gastric
301 emptying by blowing into a small glass tube through a straw (with a nose clip worn to prevent
302 possible nasal exhalation). One hundred mg of 1^{13}C octanoic acid (CK Isotopes,
303 Leicestershire, UK) was added to the preload milkshakes, which is a safe, reliable and valid
304 method for measuring gastric emptying (Davies, 2020; Ghoos et al., 1993). Octanoic acid,
305 rapidly absorbed in the duodenum and transported to the liver via the portal venous system,
306 appears in the breath as completely oxidized ^{13}C labelled Carbon dioxide (CO_2) (Schwabe et
307 al., 1964).

308

309 An isotope ratio mass spectrometer (ABCA, Sercon LTD, Cheshire, UK) was used to determine
310 the ratio of $^{13}\text{CO}_2 / ^{12}\text{CO}_2$ recovered in the breath sample, relative to a single point calibration
311 (Werner & Brandt 2001) cylinder gas (5% CO_2 95% He, -37.17 ± 0.04 Delta Vienna Pee-Dee
312 Belemnite (δVPDB) which was commercially calibrated against NBS-19 ($n=15$, Iso-analytical,
313 Crewe, UK). Abundance in δVPDB units was converted to atom fraction and used to calculate
314 gastric emptying. The following assumptions were used for CO_2 production: CO_2 production
315 assumed to be 300 mmol/m² body surface area per hour (Shreeve et al., 1970). Participants'

316 body surface area was calculated from height and weight according to Haycock et al. (Haycock
317 et al., 1978). Data were displayed as percentage of ^{13}C dose recovered per hour and fitted
318 into a gastric emptying model (Ghoos et al., 1993). Lag phase (T_{lag}), which is time taken to
319 maximal rate of $^{13}\text{CO}_2$ excretion, and the half time (T_{half}), which is the time it takes for 50% of
320 the ^{13}C dose to be excreted were calculated. Latency phase (T_{lat}), which is the point of
321 intersection of the tangent at the inflection point of the $^{13}\text{CO}_2$ -excretion curve representing
322 an initial delay in the excretion curve, and the ascension time (T_{asc}), which is the time course
323 between the T_{lat} and T_{half} , representing a period of high $^{13}\text{CO}_2$ -excretion rates were also
324 calculated (Jackson et al., 2004; Schommartz et al., 1998).

325

326 **2.3. Statistical analysis**

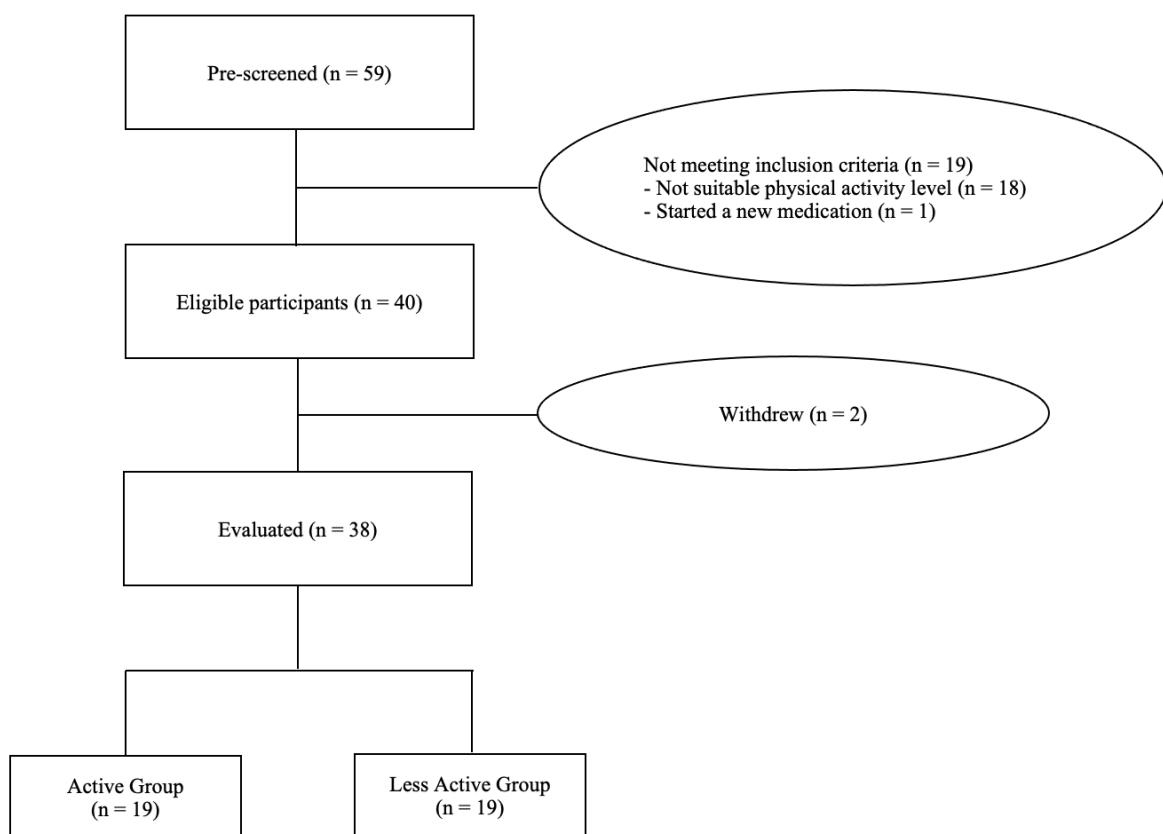
327

328 Thirty-eight healthy older adults (≥ 65 years) completed the study. This number was powered
329 according to a previous paper that tested the effects of randomised whey-protein loads on
330 energy intake and appetite in older people (Giezenaar et al., 2017). Based on a significant
331 difference in energy intake of 80 kcal between groups (control and 30 g protein preload) and
332 a standard deviation of 76 kcal including a power of 0.9 and a $\alpha = 0.05$ a total of 38 participants
333 were required consisting of 2 groups (active and less active) of 19.

334

335 Statistical analysis was performed using the SPSS (version 27; Chicago, Illinois, United States)
336 and Excel (version 14.0; Arlington, United States). All data were initially tested for normal
337 distribution by the Shapiro-Wilk test and expressed as means and standard deviations (SD).
338 Participants' characteristics were compared using an independent sample T-test. Energy
339 intake at the *ad libitum* meal was calculated using an Excel file based on the manufacturer's
340 declared nutritional composition and the rest of the test day's intake was calculated using the
341 Nutritics (Nutrition Analysis Software for Professionals; Dublin, Ireland) program. The change
342 from baseline in VAS scores for perceived appetite was calculated in Excel, and the total area
343 under the curve (AUC) from baseline (0 min) to 360 min and AUC from 180 min (post-preload
344 intake) to 360 min for each variable were determined using the trapezoidal rule. Main effects
345 of different preload milkshakes on subsequent energy intake, VAS scores including the
346 palatability of test meals, and gastric emptying in active and less active older adults were
347 assessed using a repeated measures mixed-ANOVA, with preload as the within-subject factor

348 and physical activity level as the between-subject factor. Additionally, the interaction effects
349 of preloads and activity groups on subsequent energy intake, appetite and gastric emptying
350 were determined using a paired-sample t-test. P-value < 0.05 was accepted as the cut-off for
351 significance in all analyses.


352

353 **3. Results**

354 **3.1. Participants' characteristics**

355

356 Of the 59 volunteers from Reading and the surrounding area in the UK who were pre-screened
357 and wore the accelerometer, 19 volunteers were excluded from the study. Of these, 18 were
358 excluded as their physical activity level was classified as moderately active, while one was
359 excluded as they started a new medication. Additionally, two volunteers withdrew from the
360 study, citing insufficient time to complete their participation. Consequently, a total of 38 older
361 adults, with 19 classified as active and 19 as less active, participated in the study between
362 January 2022 and August 2022 (**Fig. 2**).

363

364 **Fig. 2** A flow diagram of the participant recruitment

365 Participants' ages ranged from 65 to 85 years and **Table 2** displays the baseline characteristics
 366 of all the participants. There were no significant differences between the two groups in terms
 367 of mean age, height, body muscle mass, and waist circumference. The less active group had
 368 significantly higher mean values for weight, BMI, body fat mass, visceral fat, and hip
 369 circumference compared to the active group. No differences were found in the mean scores
 370 of the CNAQ, DEBQ, and the TFEQ between the groups. According to the CNAQ used to
 371 determine participants' appetite, 16 % of older adults in each group were found to require a
 372 frequent reassessment due to the risk of anorexia. There were no participants at the risk of
 373 anorexia (no scores of 8-16). Although the DEBQ and TFEQ were used to identify restrained
 374 eaters for exclusion, it is worth noting that dietary restraint tends to be higher among older
 375 adults (Flint et al., 2008). As a result, in this particular study, participants were not excluded
 376 based on their dietary restraint. Additionally, no participants in this study reported smoking,
 377 and thus, smoking was not considered a variable influencing appetite or energy intake in the
 378 analyses.

379 **Table 2.** Participants' characteristics

	Overall (n = 38)	Active Group (n = 19)	Less Active Group (n = 19)	Significance (p-value) [#]
Age (years)	71 ± 4	71 ± 5	70 ± 3	0.421
Male/female, n	16 / 22	8 / 11	8 / 11	
Height (cm)	168.1 ± 11.0	165.6 ± 11.45	170.5 ± 10.21	0.171
Weight (kg)	69.0 ± 14.1	64.0 ± 12.96	73.9 ± 13.73	0.029
BMI (kg/m ²)	24.2 ± 2.8	23.2 ± 2.95	25.2 ± 2.39	0.028
Body Fat Mass (kg)	20.7 ± 6.3 (30%)	18.4 ± 6.6 (29%)	22.9 ± 5.9 (31%)	0.035
Visceral Fat	7.8 ± 2.7	7.0 ± 2.57	8.7 ± 2.51	0.037
Body Muscle Mass (kg)	19.7 ± 5.56 (26%)	20.0 ± 5.20 (26%)	19.4 ± 5.92 (26%)	0.178
Waist Circumference (cm)	89.1 ± 11.8	86.1 ± 12.12	92.1 ± 10.84	0.113
Hip Circumference (cm)	99.6 ± 7.3	96.5 ± 5.89	102.6 ± 7.30	0.007
CNAQ	30.7 ± 2.1	30.7 ± 1.93	30.6 ± 2.17	0.814
Score (17-28) (%)	16	16	16	
DEBQ	2.5 ± 0.6	2.5 ± 0.71	2.6 ± 0.53	0.414
Restraint (Score >2.5) (%)	53	42	63	
TFEQ	9.1 ± 4.0	9.4 ± 4.10	8.7 ± 3.91	0.630
Restraint (Score >10) (%)	40	37	42	

PA levels measured by accelerometer (min/per day)	135 ± 40	204 ± 55	66 ± 25	< 0.001
--	----------	----------	---------	---------

³⁸⁰ #Data were analysed between the two activity groups by independent sample t test. *BMI* Body mass index; *CNAQ*
³⁸¹ Council on Nutrition Appetite Questionnaire; *DEBQ* Dutch Eating Behaviour Questionnaire; *TFEQ* Three-Factor
³⁸² Eating Questionnaire *PA* Physical Activity. Values are means ± SD.

³⁸³

³⁸⁴ **3.2. Palatability of preload milkshakes**

³⁸⁵

³⁸⁶ After the first sip, neither the type of preload consumed nor physical activity level had a
³⁸⁷ significant effect on ratings of liking for appearance, aroma, flavour, pleasantness, or texture
³⁸⁸ ($p > 0.05$). However, after consuming the entire milkshake, participants rated the low-protein
³⁸⁹ milkshake as more appealing in terms of appearance ($F (1,36) = 6.9$, $p = 0.01$, $n_p^2 = 0.16$),
³⁹⁰ aroma ($F (1,36) = 5.2$, $p = 0.03$, $n_p^2 = 0.13$), flavour ($F (1,36) = 8.9$, $p = 0.005$, $n_p^2 = 0.20$), and
³⁹¹ the texture ($F (1,36) = 8.7$, $p = 0.006$, $n_p^2 = 0.19$), and found it more pleasant ($F (1,36) = 7.4$, p
³⁹² = 0.01, $n_p^2 = 0.17$) compared to the high-protein milkshake. There was no significant effect of
³⁹³ being in the active or less active groups on ratings of appearance, aroma, pleasantness, and
³⁹⁴ texture rating after consuming the entire milkshake ($p > 0.05$). However, the scores for flavour
³⁹⁵ liking were significantly higher in the active group compared to the less active group after
³⁹⁶ consuming the entire preload milkshake ($F (1,36) = 6.4$, $p = 0.016$, $n_p^2 = 0.15$) (**Table 3**).
³⁹⁷

³⁹⁸

³⁹⁹ Lastly, there was a significant interaction between preload milkshake type and physical
⁴⁰⁰ activity level for the appearance and aroma of the milkshakes after the entire milkshakes
⁴⁰¹ were consumed ($F (1,36) = 7.4$, $p = 0.01$, $n_p^2 = 0.17$; $F (1,36) = 5.1$, $p = 0.03$, $n_p^2 = 0.12$,
⁴⁰² respectively). Comparisons revealed that participants in the active group liked the aroma and
⁴⁰³ appearance of the low-protein milkshake more than the high- protein milkshake ($t (18) = -3.0$,
⁴⁰⁴ $p = 0.008$; $t (18) = -3.5$, $p = 0.03$, respectively) (**Table 3**).
⁴⁰⁵

⁴⁰⁶

⁴⁰⁷

⁴⁰⁸

⁴⁰⁹

410 **Table 3.** Palatability of the preload milkshakes

	Active Group		Less Active Group		Sig	Sig	Sig
	(n = 19)		(n = 19)		(p-value) (Between preloads) [#]	(p-value) (Between groups) [#]	(p-value) (Preload Group) [#]
	Low Protein	High Protein	Low Protein	High Protein			
After the first sip							
Appearance	75.5 ± 14.5	69.0 ± 22.9	64.1 ± 26.6	65.2 ± 19.4	0.314	0.244	0.158
Aroma	63.3 ± 20.2	53.2 ± 25.1	61.7 ± 23.8	60.1 ± 22.1	0.108	0.688	0.241
Flavour	53.4 ± 22.9	49.3 ± 28.1	41.5 ± 28.4	36.4 ± 28.1	0.222	0.125	0.893
Pleasantness	53.9 ± 23.0	51.6 ± 27.2	41.2 ± 27.1	40.5 ± 25.8	0.678	0.121	0.827
Texture	64.7 ± 24.7	57.5 ± 27.1	56.0 ± 26.4	54.3 ± 26.4	0.175	0.469	0.444
After the entire preload							
Appearance	76.3 ± 13.4	62.0 ± 24.7	64.0 ± 27.4	64.2 ± 23.3	0.013	0.467	0.010
Aroma	65.4 ± 18.0	48.1 ± 27.2	52.8 ± 28.1	52.7 ± 28.0	0.029	0.595	0.031
Flavour	56.4 ± 23.6	38.4 ± 28.6	33.0 ± 31.8	24.5 ± 20.9	0.005	0.016	0.294
Pleasantness	53.2 ± 25.7	35.9 ± 28.8	35.2 ± 34.4	27.1 ± 20.8	0.010	0.093	0.329
Texture	62.3 ± 26.5	48.1 ± 27.3	54.9 ± 32.6	51.5 ± 24.4	0.006	0.816	0.082

411 [#]Data were analysed by repeated measures mixed-ANOVA test. Values are means ± SD.

412

413 **3.3. Subsequent energy, macronutrient, and fibre intake**

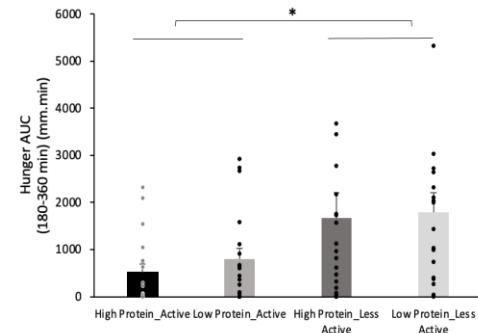
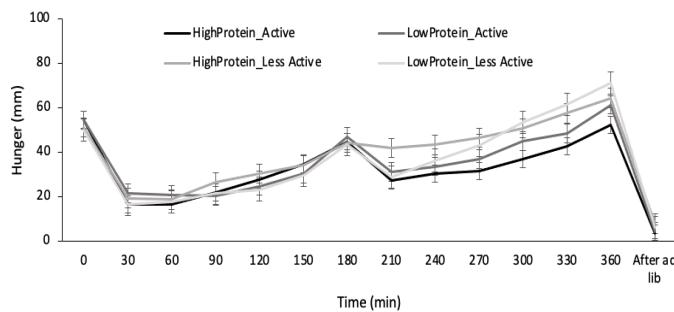
414

415 There was no main effect of preload type on subsequent energy intake at the *ad-libitum* meal.
 416 However, there was a main effect of preload type on carbohydrate and protein intake at the
 417 *ad-libitum* meal ($F (1,36) = 4.67$, $p = 0.038$, $n_p^2 = 0.12$; $F (1,36) = 5.15$, $p = 0.029$, $n_p^2 = 0.13$,
 418 respectively), with higher carbohydrate and protein intake following consumption of low-
 419 protein milkshake compared to the high-protein milkshake. Fat and fibre intake at the *ad*
 420 *libitum* meal after consumption of low-protein preload were close to being significantly higher
 421 ($p = 0.057$; $p = 0.061$, respectively). However, the consumption of different preload
 422 milkshakes did not have a significant effect on energy, macronutrient, or fibre intake for the
 423 rest of the day. Additionally, there was no significant main effect of being active or less active
 424 on energy, macronutrient, or fibre intake at the *ad libitum* meal or for the rest of the day
 425 (**Table 4**).

426

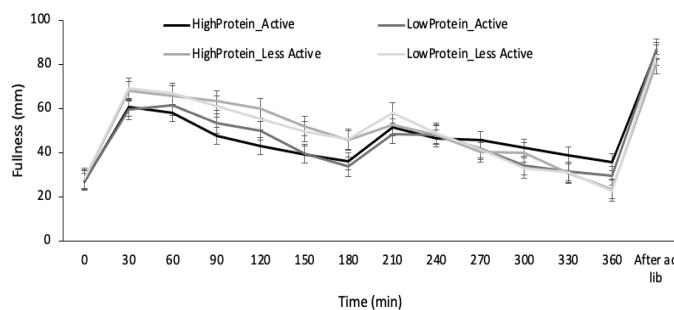
427 There was a significant preload by physical activity level interaction for fibre intake for the
428 rest of the day ($F (1,36) = 12.94, p < 0.001, n_p^2 = 0.26$) and for total intake (the sum of the
429 breakfast, the *ad libitum* meal and the rest of the day) ($F (1,36) = 12.31, p = 0.001, n_p^2 = 0.26$).
430 Participants in the less active group consumed significantly more fibre after consumption of
431 the low-protein compared to the high-protein milkshake for both the rest of the day ($t (18) =$
432 $-3.03, p = 0.007$) and the total intake ($t (18) = -3.35, p = 0.004$). There was, however, no
433 significant difference between the fibre intake after consumption of different preloads in the
434 active group for the rest of the day ($t (18) = 1.94, p = 0.068$) and for the total intake ($t (18) =$
435 $1.36, p = 0.19$). Additionally, there was a significant preload by physical activity level
436 interaction for carbohydrate intake for the rest of the day ($F (1,36) = 5.63, p = 0.023, n_p^2 =$
437 0.14); however, no significant differences were found in carbohydrate intake following the
438 consumption of high- or low-protein milkshake in either the active group ($t (18) = 1.79, p =$
439 0.09) or the less active group ($t (18) = -1.65, p = 0.117$). The same significant preload by
440 physical activity level interaction for carbohydrate intake were also seen for total intake (the
441 sum of the breakfast, the *ad libitum* meal and the rest of the day) ($F (1,36) = 4.552, p = 0.04,$
442 $n_p^2 = 0.11$). While participants in the less active group had more carbohydrate after the
443 consumption of the low-protein compared to high-protein milkshake ($t (18) = -2.21, p = 0.04$),
444 participants in the high active group did not have different carbohydrate consumption after
445 consumption of different preloads ($t (18) = 0.61, p = 0.553$) (**Table 4**).

446 **Table 4.** Subsequent energy, macronutrient and fibre intake at the *ad-libitum* meal, the rest of the day and the sum of the breakfast, *ad libitum*
 447 meal and the rest of the day after consuming different preload milkshakes in active and less active groups.
 448

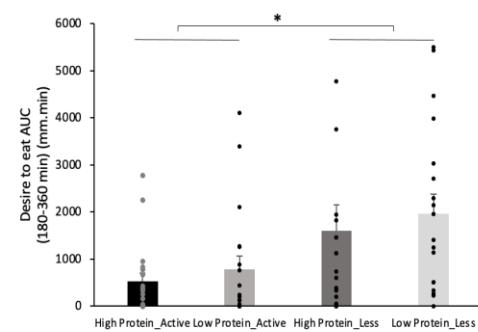
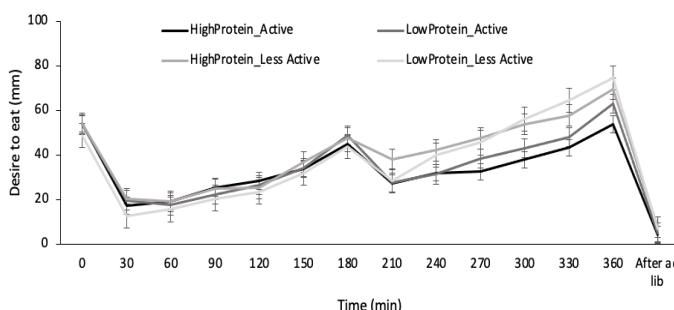


preload milkshake	Active Group (n = 19)		Less Active Group (n = 19)		Sig (p-value) (Between preloads) [#]	Sig (p-value) (Between groups) [#]	Sig (p-value) (Preload*group) [#]
	Low Protein	High Protein	Low Protein	High Protein			
Breakfast							
Energy (kcal)	422 ± 91		444 ± 101			0.424	
Fat (g)	14.1 ± 3.0		14.8 ± 3.4			0.422	
Carbohydrate (g)	52.7 ± 11.4		55.5 ± 12.7			0.424	
Protein (g)	21.1 ± 4.6		22.2 ± 5.1			0.424	
Fibre (g)	4.9 ± 1.1		5.1 ± 1.2			0.427	
Ad libitum meal							
Energy (kcal)	1064 ± 391	1041 ± 350	1049 ± 391	961 ± 338	0.102	0.673	0.339
Fat (g)	46.8 ± 17.3 (39%)	44.6 ± 15.9 (39%)	44.8 ± 14.2 (39%)	41.5 ± 15.0 (40%)	0.057	0.614	0.689
Carbohydrate (g)	124.1 ± 44.0 (47%)	118.8 ± 40.1 (47%)	118.9 ± 41.1 (47%)	108.7 ± 38.8 (45%)	0.038	0.555	0.509
Protein (g)	37.8 ± 13.6 (14%)	35.8 ± 12.7 (14%)	37.1 ± 12.1 (14%)	33.7 ± 12.5 (15%)	0.029	0.730	0.576
Fibre (g)	7.4 ± 2.7	7.1 ± 2.7	7.0 ± 3.2	6.4 ± 2.8	0.061	0.576	0.394
Rest of the day							
Energy (kcal)	539 ± 190	624 ± 304	614 ± 325	557 ± 339	0.769	0.138	0.962
Fat (g)	24.8 ± 14.2	30.3 ± 20.0	26.1 ± 19.6	25.8 ± 21.8	0.388	0.770	0.330
Carbohydrate (g)	52.7 ± 25.3	63.0 ± 29.3	65.5 ± 35.2	51.7 ± 27.5	0.732	0.929	0.023
Protein (g)	20.3 ± 13.0	23.2 ± 15.7	21.2 ± 12.3	21.7 ± 17.1	0.462	0.936	0.598
Fibre (g)	6.3 ± 4.5	7.6 ± 4.9	8.0 ± 3.7	5.0 ± 3.7	0.165	0.694	< 0.001
All meals							
Energy (kcal)	2024 ± 435	2086 ± 433	2107 ± 451	1962 ± 424	0.531	0.870	0.122
Fat (g)	85.7 ± 22.1	89.0 ± 25.3	85.7 ± 22.5	82.1 ± 24.1	0.961	0.631	0.295
Carbohydrate (g)	229.5 ± 43.4	234.5 ± 42.9	239.9 ± 54.3	215.9 ± 45.2	0.168	0.763	0.040
Protein (g)	79.2 ± 19.0	80.1 ± 20.5	80.4 ± 16.2	77.6 ± 22.2	0.730	0.916	0.529
Fibre (g)	18.6 ± 4.1	19.6 ± 4.5	20.1 ± 3.9	16.5 ± 4.7	0.065	0.553	0.001

449 [#]Data were analysed by repeated measures mixed-ANOVA test. Values are means ± SD.
 450

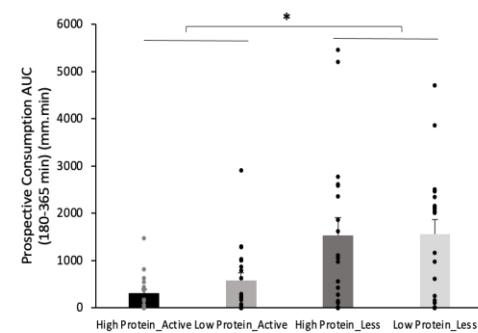
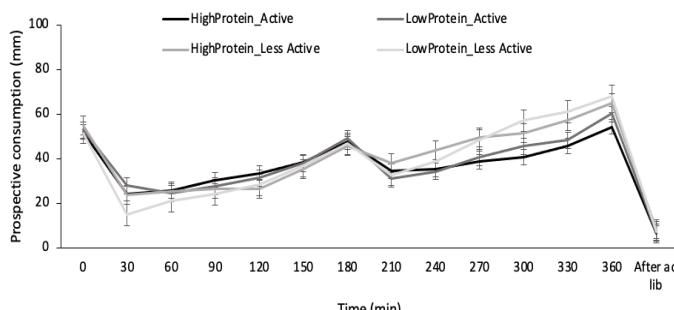
451 **3.4. The effect of different preloads on perceived appetite based on VAS scores**


452

453 The baseline subjective appetite rating scores were not significantly different between the
454 active and less active groups. Considering the total AUC appetite values (0-360 min), there
455 were no significant effects of preload type nor activity level on hunger, fullness, desire to eat,
456 and prospective consumption ($p > 0.05$). However, when considering specifically the AUC
457 values post-preload (180-360 min), hunger, desire to eat food, and prospective consumption
458 values were lower in the active group compared to the less active group ($F (1,36) = 8.2$, $p =$
459 0.007 , $n_p^2 = 0.19$; $F (1,36) = 6.2$, $p = 0.017$, $n_p^2 = 0.15$; $F (1,36) = 12.3$, $p = 0.001$, $n_p^2 = 0.25$,
460 respectively), while fullness was lower in the less active group compared to the active group
461 ($F (1,36) = 4.6$, $p = 0.038$, $n_p^2 = 0.12$) (**Fig. 3**). Additionally, there were no significant preload
462 by activity group interaction for either the total AUC or AUC (180-360 min) of the subjective
463 appetite rating scores ($p > 0.05$).



464

465



466

467

468

469

470

471

472

473

474

Fig. 3 The VAS score of hunger, fullness, desire to eat and prospective consumption during the test day in high and low active group, as well as the AUC values of the hunger after consuming high and low protein milkshakes (180-360 min) for the two groups. Values are means, with standard error represented by vertical bars. * p < 0.05

475 **3.5. Gastric emptying**

476

477 The high-protein milkshake significantly delayed gastric emptying compared to low-protein
 478 preload, as measured by all four parameters (**Table 5**): Gastric emptying T_{half} ($F (1,35) = 30.0$,
 479 $p < 0.001$, $n_p^2 = 0.46$), T_{lag} ($F (1,35) = 27.6$, $p < 0.001$, $n_p^2 = 0.44$), T_{lat} ($F (1,35) = 7.0$, $p = 0.012$,
 480 $n_p^2 = 0.17$), and T_{asc} ($F (1,35) = 33.7$, $p < 0.001$, $n_p^2 = 0.49$). Similarly, being less active delayed
 481 gastric emptying compared to being active: Gastric emptying T_{half} ($F (1,35) = 8.0$, $p = 0.008$, n_p^2
 482 $= 0.19$), T_{lag} ($F (1,35) = 9.8$, $p = 0.004$, $n_p^2 = 0.22$), T_{lat} ($F (1,35) = 7.0$, $p = 0.012$, $n_p^2 = 0.17$), and
 483 T_{asc} ($F (1,35) = 6.3$, $p = 0.017$, $n_p^2 = 0.15$). There was a significant interaction between preload
 484 type and physical activity level for gastric emptying T_{half} ($F (1,35) = 4.8$, $p = 0.035$, $n_p^2 = 0.12$)
 485 and T_{asc} ($F (1,35) = 4.6$, $p = 0.039$, $n_p^2 = 0.12$), indicating that high-protein preload was more
 486 effective at delaying gastric emptying in the less active group. Comparisons revealed that
 487 participants in both the active and less active groups had significantly longer gastric emptying
 488 T_{half} after consumption of high-protein milkshake compared to the low-protein milkshake (t
 489 (17) = 5.60 , $p < 0.001$; t (18) = 4.11 , $p < 0.001$, respectively). Similarly, participants in both
 490 groups had significantly longer gastric emptying T_{asc} after high-protein preload compared to
 491 the low-protein preload (t (17) = 5.70 , $p < 0.001$; t (18) = 4.31 , $p < 0.001$, respectively) (**Table**
 492 **5**).

493

494 **Table 5.** Gastric emptying times following the high and low protein preload milkshakes.

Time (min)	Active Group ($n = 18$) [*]		Less Active Group ($n = 19$)		Sig (p -value)	Sig (p -value)	Sig (p -value)
					(Between preloads) [#]	(Between groups) [#]	(Preload* Group) [#]
	Low Protein	High Protein	Low Protein	High Protein			
T_{half}	36 ± 10	57 ± 23	50 ± 20	99 ± 63	< 0.001	0.008	0.035
T_{lag}	10 ± 8	16 ± 11	19 ± 13	33 ± 21	< 0.001	0.004	0.087
T_{lat}	25 ± 5	22 ± 5	30 ± 9	28 ± 9	0.012	0.012	0.830
T_{asc}	81 ± 10	107 ± 24	92 ± 18	149 ± 68	< 0.001	0.017	0.039

495 [#]Data were analysed by repeated measures mixed-ANOVA test.

496 T_{half} Half time; T_{lag} Lag phase; T_{lat} Latency time; T_{asc} Ascension time. Values are means \pm SD.

497 ^{*}Missing data.

498 **4. Discussion**

499

500 This is the first paper to directly compare the acute effects of protein intake on subsequent
501 food intake, perceived appetite, and gastric emptying in older adults with varying levels of
502 physical activity. The results indicated that the consumption of a high-protein preload (~47 g
503 protein) did not significantly affect food intake or appetite compared to a low protein preload
504 (~ 13 g protein), regardless of physical activity level, while it was accompanied by a 45 %
505 increase in gastric emptying time. There was a significant interaction between preload type
506 and physical activity level for gastric emptying (T_{half} and T_{asc}), with the high-protein preload
507 having a more pronounced effect, delaying gastric emptying in the less active group. Despite
508 this, the effect of the high-protein preload on gastric emptying was still observed in both
509 active and less active groups, indicating that protein intake consistently influenced gastric
510 emptying across activity levels. Furthermore, while there were no significant differences in
511 appetite ratings between preload types, the less active group had a significantly greater
512 perceived appetite than the active group, despite experiencing a longer gastric emptying
513 time.

514

515 Adequate protein intake is widely recommended for older adults as part of strategies to
516 prevent age-related decline in muscle mass and function, alongside exercise (Jürgen Bauer et
517 al., 2013; Deutz et al., 2014). However, since protein is considered the most satiating
518 macronutrient (Paddon-Jones et al., 2008), increasing protein intake in older adult may also
519 influence their total daily energy consumption by enhancing satiety. This is particularly
520 important, as increased satiety could limit energy intake, especially in populations where
521 maintaining adequate caloric intake is crucial (Boirie et al., 2014). Our findings provide
522 exciting insights, suggesting that older adults can increase their protein intake without
523 negatively affecting their energy intake. Specifically, the high-protein (~47 g) preload did not
524 affect appetite ratings or energy intake at the *ad libitum* meal or throughout the rest of the
525 day compared to the low-protein (~13 g) preload consumption. Additionally, the current
526 results showed that older adults were able to meet their daily protein requirements (J. Bauer
527 et al., 2013).

528

529 The literature on appetite and energy intake responses to protein in older adults remains
530 limited and inconsistent. In our previous study, we found no significant differences in either
531 appetite ratings or subsequent energy intake following whey protein preload consumption
532 (~48 g) (Dericioglu, Oldham, et al., 2023), which aligns with the findings of Giezenaar et al.,
533 who also reported no significant effect on appetite and *ad libitum* meal intake following 70 g
534 of whey protein consumption (alone or with added carbohydrate) (2018). Our current study
535 further supports these findings, showing no significant changes in appetite ratings or energy
536 intake. In contrast, other studies have reported a reduction in appetite in older adults
537 following whey protein intake (Butterworth et al., 2019; Soenen et al., 2014). Soenen et al.
538 has also reported a reduction in subsequent energy intake following intraduodenal infusion
539 of high doses of whey protein (45 g) (2014), although their study found intraduodenal protein
540 at low doses (8 g and 23 g) actually increased total energy intake. Additionally, a meta-analysis
541 focused on older individuals, including some of the aforementioned studies, supports the
542 general view that a protein preload suppresses appetite in older adults (Ben-Harchache et al.,
543 2021). However, this meta-analysis also showed that in the acute studies included, while
544 energy intake decreased following protein intake compared to a control, total/daily energy
545 intake increased when the energy content of the preload was considered (Ben-Harchache et
546 al., 2021). It is worth noting that the studies included in this meta-analysis encompassed
547 various protein sources (essential amino acid gel, bar, gel), not limited to whey protein, and
548 differed in administration methods from our study, where protein was introduced
549 intraduodenally, directly into the duodenum. These differences in protein sources and
550 administration methods may explain the discrepancies between our findings and those of the
551 meta-analysis, highlighting the need for further research using consistent protocols.
552

553 Within the literature, a few studies have investigated the effects of protein on appetite, food
554 intake, and gastric emptying in older adults, aligning with the objectives of our study.
555 Although slower gastric emptying is typically linked to decreased appetite and reduced energy
556 intake in younger adults (Halawi et al., 2017), studies in older adults have presented
557 conflicting results. In our study, the consumption of approximately 47 g of whey protein
558 resulted in significantly slower gastric emptying compared to the 13 g whey protein preload.
559 Despite this, we observed no significant changes in appetite or *ad libitum* food intake. These
560 findings are consistent with studies showing slower gastric emptying in older adults following

561 protein consumption. For instance, a study that examined the effects of whey protein
562 consumption at different doses (0g/~2kcal, 30g/120kcal, 70g/280 kcal) in both older (69-80
563 y) and younger (18-34 y) men found that protein intake led to slower gastric emptying in both
564 age groups (Giezenaar et al., 2015). However, protein fortification also suppressed energy
565 intake in both age groups in their study, albeit a blunted response in the older groups, which
566 contrasts with our non-significant effect on intake. More similar to our findings, when the
567 same study protocol was applied to older adults only (69-80 y, male and female), protein was
568 found to slow gastric emptying without impacting *ad libitum* energy intake. In fact, when
569 accounting for the caloric content of the preloads, protein consumption resulted in increased
570 total energy intake (Giezenaar et al., 2017). However, it is important to consider that these
571 studies used non-equicaloric preloads, and the authors acknowledged limitations, including
572 underpowered samples size for analysing appetite and gastric emptying measures. In another
573 study conducted by the same research group, the effects of whey protein were examined in
574 two forms: 70 g whey protein alone and a mixed macronutrient preload (14 g whey protein +
575 28 g carbohydrate + 12.4 g fat) (Giezenaar et al., 2018). Their findings were also aligned with
576 ours, showing that while protein consumption slowed gastric emptying, it did not suppress
577 appetite or *ad libitum* energy intake compared to the control group. Interestingly, after
578 accounting for the caloric content of the preloads, the mixed macronutrient preload with 70
579 g protein resulted in an increase in total energy intake (Giezenaar et al., 2018). In contrast to
580 this study, our study used preloads with the same energy content and volume, minimising
581 potential confounding effects from differences in preload consumption. Taken together,
582 these findings suggest that the effect of slower gastric emptying on appetite and food intake
583 in older adults may be less pronounced than in younger adults. In both our study and existing
584 literature, the finding that appetite did not change or increase despite slower gastric
585 emptying after protein consumption in older adults may be attributed to the decreased
586 perception of gastric distension commonly observed in healthy older individuals (Rayner et
587 al., 2000).

588

589 Besides increasing protein intake, increasing physical activity is also considered one of the
590 most effective strategies for preserving muscle mass and increasing appetite in older adults
591 (Blundell et al., 2003; Deer & Volpi, 2015). A study involving participants aged 20 to 60 years,
592 which measured physical activity levels with a questionnaire, showed that individuals with

593 high physical activity (defined as engaging in hard or moderate exercise several times a week
594 or at least 4 hours weekly) had decreased satiety and increased hunger compared to those
595 with low physical activity (light exercise or no exercise, less than 4 hours weekly) (Gregersen
596 et al., 2011). Similarly, among the limited studies including older adults that assessed physical
597 activity based on self-reported time spent in moderate and vigorous activities, it was found
598 that active older adults (engaging in ≥ 150 minutes/week of moderate and/or vigorous
599 physical activity for at least 2 years) consumed more energy than the inactive ones (Van
600 Walleghen et al., 2007). Furthermore, a recent study examining the effect of physical activity
601 and protein intake in older adults across five different countries reported that more active
602 older adults had higher energy consumption compared to the inactive individuals (Lourida et
603 al., 2021). However, variations in the definition of physical activity across studies limited
604 comparability, and reliance on self-reported measures of physical activity and dietary intake
605 may have introduced social desirability bias. Despite insufficient evidence specifically in older
606 adults, substantial research supports the notion that physically active individuals tend to
607 experience decreased appetite but can better compensate for high-energy preloads by
608 reducing subsequent energy intake compared to inactive controls (Beaulieu et al., 2016;
609 Blundell, 2011; Donnelly et al., 2009). In our study, we used accelerometers to determine
610 physical activity levels, which is an objective measure of physical activity. Our findings aligned
611 with previous observations, demonstrating that the high active group had lower appetite
612 scores compared to the low active group. Despite this lower appetite scores in the high active
613 group, there was no significant difference in energy intake at the *ad libitum* meal or for the
614 rest of the day between the groups. Although we did not find a significant positive effect of
615 physical activity on food intake and appetite in older adults, these results suggest that high
616 levels of physical activity do not appear to suppress food intake. In addition to physical
617 activity, body composition, particularly fat-free mass, is known to influence energy intake
618 (Hopkins et al., 2023). There were differences in anthropometric measurements between the
619 active and less active groups. As perhaps expected, the less active group were significantly
620 higher in weight, BMI, body fat mass, visceral fat, and hip circumference. However, the two
621 groups did not differ significantly in proportion of body muscle mass. Although we did not
622 explore this factor further within this study, as it did not differ between activity groups and
623 was not the primary focus of the study, future research could investigate this factor in older
624 adults more directly.

625 It is well documented that satiety and energy intake are directly linked to gastric emptying
626 (Clegg & Shafat, 2010), and the present study is the first to investigate the relationship
627 between physical activity and gastric emptying in older adults. A previous study involving
628 healthy men aged 18-55 years, where physical activity levels were assessed using
629 accelerometers, demonstrated that active men had a faster gastric emptying times compared
630 to inactive men (Horner et al., 2015). Consistent with these findings, our study revealed that
631 physically active older adults had faster gastric emptying compared to those with lower levels
632 of physical activity. This link between physical activity and faster gastric emptying may be
633 explained by its impact on the sympathetic nervous system, as physical activity can reduce
634 resting blood pressure and decrease sympathetic nerve activity, thereby accelerating
635 gastrointestinal motility (Matsuzaki et al., 2016). Additionally, physical activity may influence
636 hormonal regulation, as it has been associated with increased ghrelin levels (Davis et al.,
637 2020), and elevated ghrelin can promote faster gastric emptying (Levin et al., 2006).
638 Furthermore, when evaluating the effect of protein intake on gastric emptying in both active
639 and less active individuals, we observed that high protein intake prolonged gastric emptying
640 time compared to low protein intake in both groups. Although the active group had faster
641 gastric emptying than the less active group, the less active group reported a higher level of
642 perceived appetite. Surprisingly, these differences in appetite and gastric emptying did not
643 result in significant differences in food intake between the two groups.

644

645 The major strength of the current study is that it is the first investigation to examine the
646 impact of protein intake on subsequent energy intake, perceived appetite, and gastric
647 emptying in older adults with varying levels of physical activity. However, there are also a few
648 limitations that need to be addressed. Firstly, due to COVID-19 restrictions, the study was
649 conducted in participants' homes, which prevented us from providing a consistent sensory
650 environment during the *ad libitum* meal consumption. However, in order to minimize this
651 variable, participants were instructed to consume their meals in the same location, alone, and
652 without distractions such as television. Secondly, although regular contact was maintained
653 with participants via phone or text throughout the test day to ensure compliance with study
654 requirements, we relied on self-reported compliance due to the study's non-clinical setting.
655 However, it is worth highlighting that conducting appetite studies in clinical settings is often
656 criticised for not reflecting real-world conditions. On the contrary, this study provided a

657 valuable opportunity to investigate appetite in a more habitual setting aligned with
658 participants' normal eating environments. What might initially be perceived as a limitation
659 actually emerges as an important advantage that increases the value of the study. Another
660 potential limitation is the difference in palatability between the high- and low-protein
661 milkshakes, which could have influenced participants' subsequent energy intake. Although
662 initial sips showed no significant differences in liking, participants rated the high-protein
663 milkshake as less appealing in appearance, aroma, flavor, texture, and overall pleasantness
664 after consuming the entire preload. Differences in palatability could affect subsequent intake
665 however no participants had any difficulty with finishing the preload. Sensory differences
666 between the drinks could also lead to differences in sensory-specific satiety, and previous
667 studies have demonstrated that satiety induced by high-caloric foods has been shown to
668 transfer to other high-caloric foods (Qiu et al., 2023), however this should not have impacted
669 this study to any great extent as the *ad libitum* buffet provided foods that were dissimilar to
670 the preload milkshake. However, future studies should control for palatability to better
671 isolate the effects of protein on energy intake.

672

673 We also acknowledge while accelerometers were used to measure physical activity and assign
674 participants to groups, these devices have some limitations in accurately recording weight-
675 bearing or arm movement activities. However, the accelerometer data provided an objective
676 method for group classification, which is preferable to relying on self-reported
677 questionnaires. Furthermore, despite the study being conducted during COVID-19
678 restrictions, the active group had notably high accelerometer readings, indicating that they
679 remained relatively active throughout the study. This may reflect a self-selection bias, as
680 individuals who were already more active or health-conscious may have been more likely to
681 participate, which could limit the generalisability of our findings to the broader older adult
682 population. Lastly, it is important to acknowledge that this study did not include blood sample
683 analysis to examine appetite-related hormones. Appetite and food intake are regulated by a
684 complex interplay of mechanisms, including not only gastric emptying but also hormonal and
685 neural mechanisms. Therefore, future studies incorporating blood sample analysis are
686 needed to compare appetite hormones and neural mechanisms when evaluating the impact
687 of protein intake on appetite and food intake in older adults with varying activity levels.

688 Additionally, longer-term intervention studies are needed to determine the lasting effects of
689 protein intake and physical activity on appetite and energy intake in this population.

690

691 **5. Conclusion**

692

693 In summary, this study demonstrates that increased protein intake does not suppresses food
694 intake or appetite but does prolong gastric emptying in older adults, regardless of physical
695 activity level. Additionally, regardless of protein intake, higher levels of physical activity in
696 older adults were associated with accelerated gastric emptying and decreased appetite.
697 Future well-controlled studies, including appetite-related hormones are required to establish
698 a more conclusive understanding of the effect of physical activity and protein intake on
699 appetite and food intake in older adults.

700

701 Acknowledgements

702 We thank Edel Campbell for her assistance in participant recruitment, as well as to all
703 participants involved in the study.

704

705 Authors' contributions

706 Design of the study (DD, MC, LM), implementation (DD), analysis of breath samples (AS), data
707 analysis (DD, MC), writing the manuscript (DD), editing and approval of the final manuscript
708 (all authors).

709

710 Funding

711 This research was conducted with the financial assistance of the Ministry of National
712 Education of Turkey. The funder had no role in the study design, data collection and analysis,
713 decision to publish, or manuscript preparation.

714

715 Ethical Statement

716 This study was performed in accordance with the Declaration of Helsinki, and it was approved
717 by University of Reading Research Ethics Committee (study number UREC 21/40; Clinical Trials
718 Database Registration ID NCT05507801). All participants provided written informed consent
719 before participation.

720 Data availability

721 The datasets analysed during the current study are available from the corresponding author
722 on reasonable request.

723 References

724

725 Apolzan, J. W., Flynn, M. G., McFarlin, B. K., & Campbell, W. W. (2009). Age and physical
726 activity status effects on appetite and mood state in older humans. *Applied Physiology,
727 Nutrition, and Metabolism*, 34(2), 203-211.

728

729 Arem, H., Moore, S. C., Patel, A., Hartge, P., De Gonzalez, A. B., Visvanathan, K., Campbell,
730 P. T., Freedman, M., Weiderpass, E., & Adami, H. O. (2015). Leisure time physical activity
731 and mortality: a detailed pooled analysis of the dose-response relationship. *JAMA internal
732 medicine*, 175(6), 959-967.

733

734 Bauer, J., Biolo, G., Cederholm, T., Cesari, M., Cruz-Jentoft, A. J., Morley, J. E., Phillips, S.,
735 Sieber, C., Stehle, P., & Teta, D. (2013). Evidence-based recommendations for optimal
736 dietary protein intake in older people: a position paper from the PROT-AGE Study Group.
737 *Journal of the American Medical Directors Association*, 14(8), 542-559.

738

739 Bauer, J., Biolo, G., Cederholm, T., Cesari, M., Cruz-Jentoft, A. J., Morley, J. E., Phillips, S.,
740 Sieber, C., Stehle, P., Teta, D., Visvanathan, R., Volpi, E., & Boirie, Y. (2013). Evidence
741 based recommendations for optimal dietary protein intake in older people: a position
742 paper from the PROT-AGE Study Group. *J Am Med Dir Assoc*, 14(8), 542-559.

743

744 Baum, J. I., Kim, I.-Y., & Wolfe, R. R. (2016). Protein consumption and the elderly: what is
745 the optimal level of intake? *Nutrients*, 8(6), 359.

746

747 Beaulieu, K., Hopkins, M., Blundell, J., & Finlayson, G. (2016). Does habitual physical
748 activity increase the sensitivity of the appetite control system? A systematic review. *Sports
749 Medicine*, 46(12), 1897-1919.

750

751 Beaulieu, K., Hopkins, M., Blundell, J., & Finlayson, G. (2017). Impact of physical activity
752 level and dietary fat content on passive overconsumption of energy in non-obese adults.
753 *International Journal of Behavioral Nutrition and Physical Activity*, 14(1), 1-10.

754

755 Ben-Harchache, S., Roche, H. M., Corish, C. A., & Horner, K. M. (2021). The impact of
756 protein supplementation on appetite and energy intake in healthy older adults: a
757 systematic review with meta-analysis. *Advances in Nutrition*, 12(2), 490-502.

758

759 Blundell, J. (2011). Physical activity and appetite control: can we close the energy gap?
760 *Nutrition Bulletin*, 36(3), 356-366.

761

762 Blundell, J. E., Stubbs, R. J., Hughes, D. A., Whybrow, S., & King, N. A. (2003). Cross talk
763 between physical activity and appetite control: does physical activity stimulate appetite?
764 *Proceedings of the nutrition society*, 62(3), 651-661.

765

766 Boirie, Y., Morio, B., Caumon, E., & Cano, N. J. (2014). Nutrition and protein energy
767 homeostasis in elderly. *Mechanisms of ageing and development*, 136, 76-84.

768

769 Brownie, S. (2006). Why are elderly individuals at risk of nutritional deficiency?

770 *International journal of nursing practice*, 12(2), 110-118.

771

772 Butterworth, M., Lees, M., Harlow, P., Hind, K., Duckworth, L., & Ispoglou, T. (2019, Nov).

773 Acute effects of essential amino acid gel-based and whey protein supplements on appetite

774 and energy intake in older women. *Appl Physiol Nutr Metab*, 44(11), 1141-1149.

775 <https://doi.org/10.1139/apnm-2018-0650>

776

777 Chou, C.-H., Hwang, C.-L., & Wu, Y.-T. (2012). Effect of exercise on physical function, daily

778 living activities, and quality of life in the frail older adults: a meta-analysis. *Archives of*

779 *physical medicine and rehabilitation*, 93(2), 237-244.

780

781 Clegg, M., & Shafat, A. (2010). Energy and macronutrient composition of breakfast affect

782 gastric emptying of lunch and subsequent food intake, satiety and satiation. *Appetite*,

783 54(3), 517-523.

784

785 Clegg, M. E., & Godfrey, A. (2018). The relationship between physical activity, appetite and

786 energy intake in older adults: A systematic review. *Appetite*, 128, 145-151.

787

788 Clegg, M. E., & Thondre, P. S. (2014, Dec). Molecular weight of barley β -glucan does not

789 influence satiety or energy intake in healthy male subjects. *Appetite*, 83, 167-172.

790

791 Crabtree, D. R., Cox, N. J., Lim, S. E. R., & Holliday, A. (2023, Feb). Enhancing the

792 management of anorexia of ageing to counteract malnutrition: are physical activity

793 guidelines optimal? *Aging Clin Exp Res*, 35(2), 427-431.

794

795 Davies, P. S. (2020). Stable isotopes: their use and safety in human nutrition studies.

796 *European Journal of Clinical Nutrition*, 74(3), 362-365.

797

798 Davis, J., Camilleri, M., Eckert, D., Burton, D., Joyner, M., & Acosta, A. (2020). Physical

799 activity is associated with accelerated gastric emptying and increased ghrelin in obesity.

800 *Neurogastroenterology & Motility*, 32(11), e13879.

801

802 de Jong, N., Paw, M. J. C. A., de Graaf, C., & van Staveren, W. A. (2000). Effect of dietary

803 supplements and physical exercise on sensory perception, appetite, dietary intake and

804 body weight in frail elderly subjects. *British Journal of Nutrition*, 83(6), 605-613.

805

806 Deer, R. R., & Volpi, E. (2015). Protein intake and muscle function in older adults. *Current*

807 *opinion in clinical nutrition and metabolic care*, 18(3), 248.

808

809 Department of Health. (2009). The General Practice Physical Activity Questionnaire

810 (GPPAQ) A Screening Tool to Assess Adult Physical Activity Levels, within Primary Care.

811

812 Dericioglu, D., Methven, L., & Clegg, M. (2023). Does Physical Activity Level Relate to Food

813 Intake, Appetite, and Body Composition in Older Adults? *Multidisciplinary Digital*

814 *Publishing Institute Proceedings*, 91(1), 74.

815

816 Dericioglu, D., Methven, L., & Clegg, M. E. (2024). Understanding Age-Related Changes:

817 Exploring the Interplay of Protein Intake, Physical Activity, and Appetite in the Ageing
818 Population. *Proceedings of the nutrition society*, 1-33.

819

820 Dericioglu, D., Oldham, S., Methven, L., Shafat, A., & Clegg, M. E. (2023). Macronutrients
821 effects on satiety and food intake in older and younger adults: A randomised controlled
822 trial. *Appetite*, 106982.

823

824 Deutz, N. E., Bauer, J. M., Barazzoni, R., Biolo, G., Boirie, Y., Bosy-Westphal, A., Cederholm,
825 T., Cruz-Jentoft, A., Krznarić, Z., & Nair, K. S. (2014). Protein intake and exercise for optimal
826 muscle function with aging: recommendations from the ESPEN Expert Group. *Clinical
827 nutrition*, 33(6), 929-936.

828

829 Donnelly, J. E., Blair, S. N., Jakicic, J. M., Manore, M. M., Rankin, J. W., & Smith, B. K. (2009).
830 Appropriate physical activity intervention strategies for weight loss and prevention of
831 weight regain for adults. *Medicine & Science in Sports & Exercise*, 41(2), 459-471.

832

833 Flint, K. M. G., Van Walleghen, E. L., Kealey, E. H., VonKaenel, S., Bessesen, D. H., & Davy,
834 B. M. (2008). Differences in eating behaviors between nonobese, weight stable young and
835 older adults. *Eating behaviors*, 9(3), 370-375.

836

837 Ghoos, Y. F., Maes, B. D., Geypens, B. J., Mys, G., Hiele, M. I., Rutgeerts, P. J., & Vantrappen,
838 G. (1993). Measurement of gastric emptying rate of solids by means of a carbon-labeled
839 octanoic acid breath test. *Gastroenterology*, 104(6), 1640-1647.

840

841 Giezenaar, C., Trahair, L. G., Luscombe-Marsh, N. D., Hausken, T., Standfield, S., Jones, K.
842 L., Lange, K., Horowitz, M., Chapman, I., & Soenen, S. (2017). Effects of randomized whey
843 protein loads on energy intake, appetite, gastric emptying, and plasma gut-hormone
844 concentrations in older men and women. *The American journal of clinical nutrition*, 106(3),
845 865-877.

846

847 Giezenaar, C., Trahair, L. G., Rigda, R., Hutchison, A. T., Feinle-Bisset, C., Luscombe-Marsh,
848 N. D., Hausken, T., Jones, K. L., Horowitz, M., & Chapman, I. (2015). Lesser suppression of
849 energy intake by orally ingested whey protein in healthy older men compared with young
850 controls. *American Journal of Physiology-Regulatory, Integrative and Comparative
851 Physiology*, 309(8), R845-R854.

852

853 Giezenaar, C., van der Burgh, Y., Lange, K., Hatzinikolas, S., Hausken, T., Jones, K. L.,
854 Horowitz, M., Chapman, I., & Soenen, S. (2018). Effects of Substitution, and Adding
855 of Carbohydrate and Fat to Whey-Protein on Energy Intake, Appetite, Gastric Emptying,
856 Glucose, Insulin, Ghrelin, CCK and GLP-1 in Healthy Older Men-A Randomized Controlled
857 Trial. *Nutrients*, 10(2).

858

859 Gregersen, N., Møller, B., Raben, A., Kristensen, S., Holm, L., Flint, A., & Astrup, A. (2011).
860 Determinants of appetite ratings: the role of age, gender, BMI, physical activity, smoking
861 habits, and diet/weight concern. *Food & nutrition research*, 55(1), 7028.

862

863 Halawi, H., Camilleri, M., Acosta, A., Vazquez-Roque, M., Oduyebo, I., Burton, D., Busciglio,

864 I., & Zinsmeister, A. R. (2017). Relationship of gastric emptying or accommodation with
865 satiation, satiety, and postprandial symptoms in health. *American Journal of Physiology
866 Gastrointestinal and Liver Physiology*, 313(5), G442-G447.

867

868 Haycock, G. B., Schwartz, G. J., & Wisotsky, D. H. (1978). Geometric method for measuring
869 body surface area: a height-weight formula validated in infants, children, and adults. *The
870 Journal of pediatrics*, 93(1), 62-66.

871

872 Hopkins, M., Gibbons, C., & Blundell, J. (2023). Fat-free mass and resting metabolic
873 rate are determinants of energy intake: implications for a theory of appetite control. *Philos
874 Trans R Soc Lond B Biol Sci*, 378(1885), 20220213.

875

876 Horner, K. M., Schubert, M. M., Desbrow, B., Byrne, N. M., & King, N. A. (2015). Acute
877 exercise and gastric emptying: a meta-analysis and implications for appetite control.
878 *Sports Medicine*, 45(5), 659-678.

879

880 Jackson, D. (2023). *Omgui Software. Openmovement*. Retrieved June 2023 from
881 <https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI>

882

883 Jackson, S. J., Bluck, L. J., & Coward, W. A. (2004). Use of isotopically labelled octanoic acid
884 to assess the effect of meal size on gastric emptying. *Rapid communications in mass
885 spectrometry*, 18(10), 1003-1007.

886

887 Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., & Wolfe, R. R. (2006). A
888 high proportion of leucine is required for optimal stimulation of the rate of muscle protein
889 synthesis by essential amino acids in the elderly. *American Journal of Physiology-
890 Endocrinology and Metabolism*, 291(2), E381-E387.

891

892 Levin, F., Edholm, T., Schmidt, P. T., Grybäck, P., Jacobsson, H., Degerblad, M., Höybye, C.,
893 Holst, J. J., Rehfeld, J. F., Hellström, P. M., & Näslund, E. (2006). Ghrelin Stimulates Gastric
894 Emptying and Hunger in Normal-Weight Humans. *The Journal of Clinical Endocrinology &
895 Metabolism*, 91(9), 3296-3302.

896

897 Long, S. J., Hart, K., & Morgan, L. M. (2002). The ability of habitual exercise to influence
898 appetite and food intake in response to high-and low-energy preloads in man. *British
899 Journal of Nutrition*, 87(5), 517-523.

900

901 Lourida, I., Boer, J. M., Teh, R., Kerse, N., Mendonça, N., Rolleston, A., Sette, S.,
902 Tapanainen, H., Turrini, A., & Virtanen, S. M. (2021). Association of daily physical activity
903 and sedentary behaviour with protein intake patterns in older adults: A multi-study
904 analysis across five countries. *Nutrients*, 13(8), 2574.

905

906 Martins, C., Kulseng, B., Rehfeld, J. F., King, N. A., & Blundell, J. E. (2013). Effect of chronic
907 exercise on appetite control in overweight and obese individuals. *Medicine and
908 science in sports and exercise*, 45(5), 805-812.

909

910 Marzetti, E., Calvani, R., Tosato, M., Cesari, M., Di Bari, M., Cherubini, A., Broccatelli, M.,

911 Savera, G., D'Elia, M., & Pahor, M. (2017). Physical activity and exercise as
912 countermeasures to physical frailty and sarcopenia. *Aging clinical and experimental*
913 *research*, 29(1), 35-42.

914

915 Matsuzaki, J., Suzuki, H., Masaoka, T., Tanaka, K., Mori, H., & Kanai, T. (2016).
916 Influence of regular exercise on gastric emptying in healthy men: a pilot study. *J Clin*
917 *Biochem Nutr*, 59(2), 130-133.

918

919 Moore, D. R., Churchward-Venne, T. A., Witard, O., Breen, L., Burd, N. A., Tipton, K. D., &
920 Phillips, S. M. (2015). Protein ingestion to stimulate myofibrillar protein synthesis requires
921 greater relative protein intakes in healthy older versus younger men. *Journals of*
922 *Gerontology Series A: Biomedical Sciences and Medical Sciences*, 70(1), 57-62.

923

924 Morley, J. E., & Silver, A. J. (1988). Anorexia in the elderly. *Neurobiology of aging*, 9, 9-16.

925

926 NHS. (2018). *Keeping your weight up in later life*. Retrieved 1 June 2020 from
927 <https://www.nhs.uk/live-well/healthy-weight/keeping-your-weight-up-in-later-life/>

928

929 Paddon-Jones, D., Westman, E., Mattes, R. D., Wolfe, R. R., Astrup, A., & Westerterp
930 Plantenga, M. (2008). Protein, weight management, and satiety. *The American journal of*
931 *clinical nutrition*, 87(5), 1558S-1561S.

932

933 Pilgrim, A., Robinson, S., Sayer, A. A., & Roberts, H. (2015). An overview of appetite decline
934 in older people. *Nursing older people*, 27(5), 29.

935

936 Qiu, L., Wang, C., & Wan, X. (2023). Reduced liking and wanting for high-caloric foods: The
937 transfer effect of sensory-specific satiety through repeated imagination. *Food Quality and*
938 *Preference*, 111, 104987.

939

940 Randomizer. (2023). *Research Randomizer*. Randomizer Retrieved June 29 from
941 <https://www.randomizer.org>

942

943 Rayner, C., MacIntosh, C., Chapman, I., Morley, J., & Horowitz, M. (2000). Effects of age
944 on proximal gastric motor and sensory function. *Scandinavian journal of gastroenterology*,
945 35(10), 1041-1047.

946

947 Roza, A. M., & Shizgal, H. M. (1984). The Harris Benedict equation reevaluated: resting
948 energy requirements and the body cell mass. *The American journal of clinical nutrition*,
949 40(1), 168-182.

950

951 Schommartz, B., Ziegler, D., & Schadewaldt, P. (1998). Significance of diagnostic
952 parameters in [13C] octanoic acid gastric emptying breath tests. *Isotopes in environmental*
953 *and health studies*, 34(1-2), 135-143.

954

955 Schwabe, A. D., Bennett, L. R., & Bowman, L. P. (1964). Octanoic acid absorption and
956 oxidation in humans. *Journal of applied physiology*, 19(2), 335-337.

957 Shahar, D. R., Yu, B., Houston, D. K., Kritchevsky, S. B., Lee, J.-S., Rubin, S. M., Sellmeyer,

958 D. E., Tylavsky, F. A., & Harris, T. (2009). Dietary factors in relation to daily activity energy
959 expenditure and mortality among older adults. *JNHA-The Journal of Nutrition, Health and*
960 *Aging*, 13(5), 414-420.

961

962 Shreeve, W., Cerasi, E., & Luft, R. (1970). Metabolism of [2-14C] pyruvate in normal,
963 acromegalic and HGH-treated human subjects. *European Journal of Endocrinology*, 65(1),
964 155-169.

965

966 Soenen, S., Giezenaar, C., Hutchison, A. T., Horowitz, M., Chapman, I., & Luscombe-Marsh,
967 N. D. (2014). Effects of intraduodenal protein on appetite, energy intake, and
968 antropyloroduodenal motility in healthy older compared with young men in a randomized
969 trial. *The American journal of clinical nutrition*, 100(4), 1108-1115.

970

971 Stunkard, A. J., & Messick, S. (1985). The three-factor eating questionnaire to measure
972 dietary restraint, disinhibition and hunger. *Journal of psychosomatic research*, 29(1), 71
973 83.

974

975 Van Strien, T., Frijters, J. E., Bergers, G. P., & Defares, P. B. (1986). The Dutch Eating
976 Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external
977 eating behavior. *International journal of eating disorders*, 5(2), 295-315.

978

979 Van Walleghen, E., Orr, J., Gentile, C., Davy, K., & Davy, B. (2007). Habitual physical activity
980 differentially affects acute and short-term energy intake regulation in young and older
981 adults. *International Journal of Obesity*, 31(8), 1277-1285.

982

983 Wilson, M.-M. G., Thomas, D. R., Rubenstein, L. Z., Chibnall, J. T., Anderson, S., Baxi, A.,
984 Diebold, M. R., & Morley, J. E. (2005). Appetite assessment: simple appetite questionnaire
985 predicts weight loss in community-dwelling adults and nursing home residents. *The*
986 *American journal of clinical nutrition*, 82(5), 1074-1081.

987

988 Wolfe, R. R. (2012). The role of dietary protein in optimizing muscle mass, function and
989 health outcomes in older individuals. *British Journal of nutrition*, 108(S2), S88-S93.

990

991

Differences in appetite, food intake, and gastric emptying responses to protein intake by older adults varying in level of physical activity: A randomised controlled trial

Declaration of interests: We have nothing to declare