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Abstract

Older adults are encouraged to increase their protein intake and engage in more physical
activity to preserve muscle mass. However, since protein is considered the most satiating
macronutrient, this advice might lead to a decrease in overall energy consumption. Physical
activity is also recommended to older adults to enhance appetite, as it has been shown to
help regulate appetite in younger adults, yet there is limited evidence to support this in older
populations. The objective of this study was to investigate the impact of physical activity and
protein on food intake, perceived appetite, and gastric emptying in older adults. Nineteen
active and 19 less active older adults completed a single-blind, randomised, crossover trial
involving two test days at home. Participants received a standard breakfast, followed by an
isovolumetric (250 ml) and isocaloric (~300 kcal) high- or low-protein preload milkshake (57%
versus 17% energy as protein) matched for sensory properties. Three hours after the preload,
participants were offered an ad libitum meal. Food intake was weighed, perceived appetite
was measured by 100 mm visual analogue scales, and gastric emptying via the *3C-octanoic
acid breath test. Higher protein intake did not affect subsequent energy intake or appetite
ratings in both active and less active groups. Gastric emptying half time was longer following
the high-protein milkshake compared to the low-protein milkshake. The active group had a
lower perceived appetite, but faster gastric emptying time compared to the less active group.
In conclusion, while higher protein intake slows gastric emptying, it did not reduce appetite
or subsequent food intake in older adults, regardless of physical activity level. Additionally,
being physically active suppresses perceived appetite and accelerates gastric emptying

without affecting food intake.

Keywords: Protein, Physical Activity, Appetite, Energy intake, Older Adults
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1. Introduction

Ageing brings about various changes at the cellular, organ, and whole-body levels, which are
known to contribute to a decrease in appetite and a reduction in the intake of energy and
nutrients (Dericioglu et al., 2024). These changes are linked to a decline in muscle mass, an
increased risk of developing malnutrition, poorer healthcare outcomes, and most
importantly, higher mortality rates (Brownie, 2006; Morley & Silver, 1988; Pilgrim et al., 2015;
Wilson et al., 2005). Preserving muscle mass and function is vital for maintaining functional
independence and optimal health among older adults (Wolfe, 2012). Protein has been
consistently identified by numerous studies as a crucial nutrient for supporting muscle health
in this age group (Baum et al.,, 2016). Notably, older adults have a diminished anabolic
stimulus response to lower doses of amino acids compared to younger adults. (Katsanos et
al., 2006). As a result, they require a higher intake of amino acids to effectively stimulate
muscle protein synthesis (Moore et al., 2015; Wolfe, 2012). Therefore, it is recommended
that older adults increase their protein intake to address this issue and maintain muscle mass

and function (Jirgen Bauer et al., 2013; Deutz et al., 2014).

There is a widespread belief that protein is the most satiating macronutrient (Paddon-Jones
et al., 2008), suggesting that increasing protein intake in older adults could potentially lead to
a further reduction in appetite, a common issue with ageing (Dericioglu et al., 2024).
Therefore, when considering an increase in protein intake for older adults, it is also important
to consider their total energy intake (Baum et al.,, 2016). While a recent meta-analysis
suggested that protein supplementation may be a viable solution to increase protein intake
in healthy older adults without adversely affecting total energy intake due to appetite
suppression (Ben-Harchache et al., 2021), it did not examine responses in individuals with
different levels of physical activity, leaving a gap in understanding whether physical activity
modulates these effects. Thus, further research is needed to identify the optimal balance

between protein and energy intake in older adults with varying physical activity levels.

Along with recommendations to increase protein intake to maintain muscle mass with ageing,
physical activity and exercise remain essential for preserving muscle mass and function (Deer

& Volpi, 2015). Extensive evidence supports the notion that physical activity stimulates
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muscle protein synthesis (Deutz et al., 2014) and is recognised as another modifiable factor
associated with better health outcomes, including improvements in muscle strength and
function, reduced frailty, and lower mortality in older adults (Arem et al., 2015; Chou et al.,
2012; Marzetti et al., 2017). Furthermore, physical activity may not only be effective in
preserving muscle mass in older adults but also potentially regulate appetite by influencing
the satiety signaling system, affecting food choices and macronutrient preferences, and
altering the hedonic response to foods (Blundell et al., 2003). Consequently, various
professional organisations, including the NHS and Age UK, recommend increasing physical
activity to maintain or increase appetite in older adults (Age UK, 2017; NHS, 2018). However,
the regulation of energy intake and appetite involves a complex interplay of multiple systems
(Gregersen et al., 2011). While a systematic review has shown that habitual physical activity
improves appetite control in younger individuals (Beaulieu et al., 2016), its effects in older
adults are less clear (Crabtree et al., 2023). In fact, due to a lack of conclusive evidence, it
remains uncertain whether physical activity effectively influences appetite control and food
intake in older adults. Some have suggested that current guidelines recommending increased
physical activity to enhance the appetite in older population lack sufficient supporting

evidence (Clegg & Godfrey, 2018).

While it is generally accepted that younger individuals with higher physical activity levels
exhibit better meal-induced satiety, as they can more effectively adjust energy intake after
consuming preloads varying in energy content (Blundell, 2011; Donnelly et al., 2009), findings
are not always consistent. For example, some studies have found no significant differences in
hunger and satiety ratings following preloads of varying energy content, whether assessed in
randomised controlled trials (Long et al., 2002) or after an exercise intervention program
(Martins et al., 2013). Similarly, another study reported no differences in energy intake
between high and low physical activity groups after consuming high-fat or high-carbohydrate
preloads (Beaulieu et al., 2017). Despite these mixed findings, research exploring the effects
of physical activity on appetite and food intake in older adults remains limited (Apolzan et al.,
2009; de Jong et al., 2000; Shahar et al., 2009; Van Walleghen et al., 2007). Furthermore, no
studies have specifically investigated how older adults with differing habitual physical activity

levels respond to preloads high and low in protein, leaving an important gap in the literature.



128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Therefore, the aims of this study are:

(i) to investigate food intake, appetite, and gastric emptying between active and less
active older adults (> 65 years),

(ii) to compare the effect of meals with high- or low-protein level, which are equal in
energy and volume, on food intake, appetite, and gastric emptying in both active
or less active older adults (= 65 years).

Based on these aims, we hypothesise that (i) active older adults will have a higher food

intake, and consequently, a higher protein intake, increased appetite, and faster gastric

emptying compared to less active older adults, and (ii) high-protein meals will lead to
longer gastric emptying times but will only lead to reduced food intake and appetite in

older adults where physical activity is low.

2. Material and Methods

2.1. Study design and participant criteria

The study was a two-way, crossover, randomised, single-blind controlled trial consisting of
two test days. The research protocol was approved by the University of Reading Research
Ethics Committee (study number UREC 21/40; Clinical Trials Database Registration ID
NCT05507801), and the study was conducted at participants’ homes due to the COVID-19

restrictions.

Thirty-eight older adults (> 65 years) (19 active and 19 less active) participated in the study.
Inclusion criteria were as follows: being healthy and living independently (free from diabetes
or any disease likely to influence physical activity or appetite), the ability to walk
independently; the capacity to understand and undertake the study procedures; a Body mass
index (BMI) < 30 kg/m?; not using any medication that could impact on appetite, food intake,
or body weight in the past three months; no changes in diet and exercise, and no unexpected
or voluntary weight loss in the past three months; not smoking more than ten cigarettes a
day; no allergies to any of the test foods; and meeting the cut-off points criteria based on the
accelerometer data from a previous study. Low activity was defined as < 108.3 min/per day

of moderate and vigorous activity for women, and < 97.0 min/per day for men. High activity
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was defined as > 162.0 min/per day for women > 133.3 min/per day for men (Dericioglu,

Methven, et al., 2023).

e Pre-screening

Prior to starting the study, participants were provided with an information sheet and asked
to complete a two-stage pre-screening process. Firstly, they completed a health and lifestyle
guestionnaire online to determine their health status. Participants who met the inclusion
criteria were then contacted with further information about the study, and informed consent

was obtained online.

Afterwards, participants were delivered a study box containing a tape measure, a bioelectrical
impedance scale (OMRON VIVA Smart Scale and Body Composition Monitor - HBF-2222T-EBK;
UK), an accelerometer (AX3, 3-Axis Logging Accelerometer; Newcastle, UK), and a series of
self-administered questionnaires (in paper format). The box included clear written
instructions, and participants also received a video demonstration on how to use the
equipment and complete the questionnaires. Further assistance was also provided via email,
phone, or video chat as needed. After four days, one of the researchers collected the study

boxes from the participants’ homes.

On one morning during the screening period, participants were asked to measure their height,
waist, and hip circumference in cm using the provided tape measure. For waist circumference,
participants were instructed to measure at the narrowest part of the torso, typically just
above the navel, and for hip circumference, at the widest part of the hips, following standard
anthropometric procedures. For height, participants were instructed to stand straight against
a wall with heels together and head level, measuring from the floor to the top of their head.
Additionally, there were instructed to weigh themselves using the bioelectrical impedance
scale for measurements of body weight in kg, percentage of body fat and muscle mass, and
visceral fat, while fasted (before having breakfast and consuming water) and after using the
toilet. They also completed questionnaires including the Council on Nutrition Appetite
Questionnaire (CNAQ) to assess appetite (with scores of 8-16 indicating at risk for anorexia

and the need for nutrition counselling, 17-28 indicating the need for frequent reassessment
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to due to the risk of anorexia, and scores >28 indicating not currently at risk) (Wilson et al.,
2005). Additionally, the Dutch Eating Questionnaire (DEBQ) (Van Strien et al., 1986) and the
Three Factor Eating Questionnaire (TFEQ) (Stunkard & Messick, 1985) were used to identify
restrained eating (with scores > 2.5 and >10, respectively indicating restrained eating
behaviours), along with the General Practice Physical Activity Questionnaire (GPPAQ)
(Department of Health, 2009).

Lastly, they were instructed to wear the accelerometer in an elastic waterproof waistband on
their non-dominant wrist 24 hours a day for four consecutive days. Participants could wear it
on either weekdays and weekends, as the study population consisted of retired older adults
significant differences in activity levels between days were not expected. While a 7-day wear
period is common in studies assessing physical activity, we opted for 4 days to reduce
participant burden, particularly given the older adult population, while ensuring sufficient
data for accurate group classification. The accelerometers were set up using the OMGUI
software to record raw, triaxial acceleration at a rate of 100 Hz and a dynamic range of + 8 g;
they measured the minutes per day spent in activities of four different intensities: sedentary
(<1.5 METS), light (21.5 METS, <4 METS), moderate (24 METS, <7 METS), and vigorous (=7
METS) using a 60-second epoch length (Jackson, 2023). Data were extracted using the same
software, and participants’ moderate and vigorous intensity activity time (minutes/per day)
was summed up. If at this stage participants did not meet the inclusion criteria for physical
activity level based on the accelerometer cut-off points aligned with data from our previous
study (Dericioglu, Methven, et al., 2023), they were excluded from continuing. Those
classified as moderately active were excluded from participating in the study, while those
participants categorised with a low or high activity level were included. Participants meeting
the inclusion criteria were assigned to either the active or less active group. Each eligible
participant was then called again and reminded of the procedures to follow before and on

the test day, and test days were scheduled.

o Test days

Each participant undertook two test days in a randomised order (Fig. 1). Prior to recruitment,

an online research randomiser was used to allocate eligible participants into predetermined
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preload groups (Randomizer, 2023). The allocation was done sequentially based the

participants’ entry into the study.
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Fig. 1 Timeline of the test days

The day before the test days, one of the researchers delivered a test-day box to each
participants' home. This box contained a breakfast, a test meal (preload milkshake), an ad
libitum buffet meal, two bottles of water (one to consume until the ad libitum meal and one
with the ad libitum meal), breath sample tubes (Exetainer, Labco, Ceredigion, UK) (with a nose
clip and a straw), food diary sheets, a paper version of appetite rating and palatability scales
(100 mm VAS), information on food storage conditions, a clear written instruction sheet, and
a timetable tick list. Prior to delivery, participants received a video instruction detailing all
stages of the study, including how to store food, collect breath samples, and complete the
appetite and palatability scales. Additionally, when the test box was delivered, participants
were asked to demonstrate how to collect their breath samples outside their house (following

COVID-19 social distancing rules) to ensure they were doing it correctly.

On the evening prior to the test days, participants were asked to avoid the consumption of
caffeine, alcohol, and nicotine, to avoid unusual, strenuous exercise, and to fast for 12h
(overnight) (they were only allowed to consume water). Participants were also asked to
record their food intake for the day before the first test day and to repeat it prior to the
second test day to ensure consistency. The food diary record sheet for the day before the
first test day was emailed or posted to the participants, and a digital kitchen scale was also

delivered to those who did not have one at home.
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On the test day, participants were called before the pre-agreed start time to ensure that they
were ready to begin and were then reminded of the procedures via calls or texts at regular
intervals throughout the day. They were also asked to follow the timetable sheet listing the

required activities and to check off each activity as it was completed.

Firstly, participants were asked to consume a standardised breakfast meal consisting of
muesli, ground almonds, and milk within 15 minutes, representing 20% of their estimated
daily calorie intake (50% carbohydrate, 20% protein, 30% fat). This was calculated from the
data obtained during the pre-screening stage (height, weight, age, physical activity level —
assessed by the GPPAQ (Roza & Shizgal, 1984)). They then rested for three hours without any
more food, but they had access to water. On the first test day, water was allowed ad libitum,
and on the second test day, they were given the same amount of water to consume. During
these three hours, participants were permitted to read, watch TV, or do sedentary work but

were not allowed to be physically active or leave their houses during the test period.

Three hours later, participants were asked to consume their preload, which consisted of a
strawberry milkshake that was either high in protein or low in protein. The preload milkshakes
were equicaloric and isovolumetric on both test days (Table 1). Additionally, the colour of the
milkshakes was not noticeably different; based on the colour analysis, both the low protein
and high protein milkshakes were a pink hue (mean a* values of 14.3 and 14.7, p = 0.13 and
low mean b* values of 2.6 and 2.8, p = 0.28) and light in colour (mean L* 70.2 and 72.2, p =
0.05).
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Table 1. Energy and macronutrient composition of the test meal

Low Protein Milkshake High Protein Milkshake
Energy (kcal) 331 337
Volume (ml) 250 250
Protein (g) 12.7 46.6
Carbohydrate (g) 47.2 22.2
Fat (g) 6.4 6.0
Protein (% of energy) 17.1 56.6
Carbohydrate (% of energy) 63.6 26.9
Fat (% of energy) 19.3 16.5
Ingredients
Strawberry Yoghurt (g) 150 130
Whey Protein Isolate (g) 5 50
Whole milk (g) 50 70
Strawberry Nesquik (g) 25 -
Double Cream (g) 20 -
Sweetener (g) - 4
Strawberry Flavouring - Approx. 15 drops
Food Colouring (g) - 0.2

Three hours after consuming the preload, participants were given up to 20 minutes to
consume an ad libitum buffet meal until they were comfortably full. Before the first test day,
participants were asked to choose two sandwiches from a menu of eight equicaloric options
(egg mayonnaise, cheese and tomato, tuna mayonnaise, chicken salad, cheese and pickle,
hummus and salad, ham and cheese, or roast beef and tomato) (Clegg & Thondre, 2014). They
were provided with two of each sandwich (4 sandwiches in total-8 slices of bread) along with
snacks (grapes (~250 g), flapjack (~100 g), and mini cheddars (~70 g)) for the ad libitum buffet
meal (~2700 kcal; 48% carbohydrate, 12% protein, 40% fat) (Supplementary Table 1). All
meals were freshly prepared the day before the test day, and participants were asked to
consume their meal alone with no distractions. After the meal, one of the researchers
collected the leftovers from participants’ homes and weighed them. Finally, participants were
asked to keep a weighed food diary of everything they ate or drank for the rest of the day.
The test day was repeated for two different preloads, with at least 3 days and no more than

4 weeks between test days.
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2.2. Outcome measures

Participants were delivered a pre-weighed ad libitum meal, and food consumption at this
meal was measured by weighing the leftover food. They were also asked to record their food

and drink intake for the rest of the day using weighed food diary sheets.

Four subjective feelings of appetite (hunger, fullness, desire to eat, and prospective
consumption) were assessed using 100 mm VAS fixed with the terms 'not at all' and
'extremely’. Before breakfast and every 30 minutes throughout the test day, participants
were asked to mark on this scale how hungry they felt, how full they felt, how strong their
desire to eat was, and how much food they thought they could eat. Additionally, participants
were asked to rate the preload milkshakes for appearance, aroma, flavour, pleasantness, and
texture liking on a VAS after the first sip and after consuming the entire preload to test

whether the preloads were perceived as similar.

Before breakfast and every hour until the test meal and every 15 minutes for 3 hours after
the test meal, participants collected exhaled breath samples for measurement of gastric
emptying by blowing into a small glass tube through a straw (with a nose clip worn to prevent
possible nasal exhalation). One hundred mg of 1-'3C octanoic acid (CK lIsotopes,
Leicestershire, UK) was added to the preload milkshakes, which is a safe, reliable and valid
method for measuring gastric emptying (Davies, 2020; Ghoos et al., 1993). Octanoic acid,
rapidly absorbed in the duodenum and transported to the liver via the portal venous system,
appears in the breath as completely oxidized 3C labelled Carbon dioxide (CO2) (Schwabe et

al., 1964).

An isotope ratio mass spectrometer (ABCA, Sercon LTD, Cheshire, UK) was used to determine
the ratio of 13CO; /*2CO; recovered in the breath sample, relative to a single point calibration
(Werner & Brandt 2001) cylinder gas (5% CO; 95% He, -37.17+0.04 Delta Vienna Pee-Dee
Belemnite (§VPDB) which was commercially calibrated against NBS-19 (n=15, Iso-analytical,
Crewe, UK). Abundance in 6VPDB units was converted to atom fraction and used to calculate
gastric emptying. The following assumptions were used for CO; production: CO; production

assumed to be 300 mmol/m? body surface area per hour (Shreeve et al., 1970). Participants'

11
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body surface area was calculated from height and weight according to Haycock et al. (Haycock
et al., 1978). Data were displayed as percentage of 13C dose recovered per hour and fitted
into a gastric emptying model (Ghoos et al., 1993). Lag phase (Tisg), which is time taken to
maximal rate of 13CO; excretion, and the half time (Thair), which is the time it takes for 50% of
the 13C dose to be excreted were calculated. Latency phase (Tiat), which is the point of
intersection of the tangent at the inflection point of the 3CO;-excretion curve representing
an initial delay in the excretion curve, and the ascension time (Tasc), which is the time course
between the Tt and Thair, representing a period of high '3COz-excretion rates were also

calculated (Jackson et al., 2004; Schommartz et al., 1998).

2.3.  Statistical analysis

Thirty-eight healthy older adults (> 65 years) completed the study. This number was powered
according to a previous paper that tested the effects of randomised whey-protein loads on
energy intake and appetite in older people (Giezenaar et al., 2017). Based on a significant
difference in energy intake of 80 kcal between groups (control and 30 g protein preload) and
a standard deviation of 76 kcal including a power of 0.9 and a a = 0.05 a total of 38 participants

were required consisting of 2 groups (active and less active) of 19.

Statistical analysis was performed using the SPSS (version 27; Chicago, lllinois, United States)
and Excel (version 14.0; Arlington, United States). All data were initially tested for normal
distribution by the Shapiro-Wilk test and expressed as means and standard deviations (SD).
Participants' characteristics were compared using an independent sample T-test. Energy
intake at the ad libitum meal was calculated using an Excel file based on the manufacturer’s
declared nutritional composition and the rest of the test day’s intake was calculated using the
Nutritics (Nutrition Analysis Software for Professionals; Dublin, Ireland) program. The change
from baseline in VAS scores for perceived appetite was calculated in Excel, and the total area
under the curve (AUC) from baseline (0 min) to 360 min and AUC from 180 min (post-preload
intake) to 360 min for each variable were determined using the trapezoidal rule. Main effects
of different preload milkshakes on subsequent energy intake, VAS scores including the
palatability of test meals, and gastric emptying in active and less active older adults were

assessed using a repeated measures mixed-ANOVA, with preload as the within-subject factor

12
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and physical activity level as the between-subject factor. Additionally, the interaction effects
of preloads and activity groups on subsequent energy intake, appetite and gastric emptying
were determined using a paired-sample t-test. P-value < 0.05 was accepted as the cut-off for

significance in all analyses.

3. Results

3.1. Participants’ characteristics

Of the 59 volunteers from Reading and the surrounding area in the UK who were pre-screened
and wore the accelerometer, 19 volunteers were excluded from the study. Of these, 18 were
excluded as their physical activity level was classified as moderately active, while one was
excluded as they started a new medication. Additionally, two volunteers withdrew from the
study, citing insufficient time to complete their participation. Consequently, a total of 38 older
adults, with 19 classified as active and 19 as less active, participated in the study between

January 2022 and August 2022 (Fig. 2).

Pre-screened (n = 59)

Not meeting inclusion criteria (n = 19)
- Not suitable physical activity level (n = 18)
- Started a new medication (n = 1)

Eligible participants (n = 40)

Withdrew (n = 2)

Evaluated (n = 38)

Active Group Less Active Group
(n=19) (n=19)

Fig. 2 A flow diagram of the participant recruitment

13
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Participants’ ages ranged from 65 to 85 years and Table 2 displays the baseline characteristics
of all the participants. There were no significant differences between the two groups in terms
of mean age, height, body muscle mass, and waist circumference. The less active group had
significantly higher mean values for weight, BMI, body fat mass, visceral fat, and hip
circumference compared to the active group. No differences were found in the mean scores
of the CNAQ, DEBQ, and the TFEQ between the groups. According to the CNAQ used to
determine participants’ appetite, 16 % of older adults in each group were found to require a
frequent reassessment due to the risk of anorexia. There were no participants at the risk of
anorexia (no scores of 8-16). Although the DEBQ and TFEQ were used to identify restrained
eaters for exclusion, it is worth noting that dietary restraint tends to be higher among older
adults (Flint et al., 2008). As a result, in this particular study, participants were not excluded
based on their dietary restraint. Additionally, no participants in this study reported smoking,
and thus, smoking was not considered a variable influencing appetite or energy intake in the
analyses.

Table 2. Participants’ characteristics

Overall Active Group Less Active Group  Significance
(n=38) (n=19) (n=19) (p-value)”
Age (years) 71+4 71+5 70+ 3 0.421
Male/female, n 16/ 22 8/11 8/11
Height (cm) 168.1+11.0 165.6 +11.45 170.5+10.21 0.171
Weight (kg) 69.0 + 14.1 64.0 £ 12.96 73.9+13.73 0.029
BMI (kg/m?) 242 +2.8 23.2+2.95 25.2+2.39 0.028
Body Fat Mass (kg) 20.7 £ 6.3 (30%) 18.4 £ 6.6 (29%) 22.9+5.9 (31%) 0.035
Visceral Fat 7.8+2.7 7.0+2.57 8.7+251 0.037
Body Muscle Mass (kg) 19.7 £ 5.56 (26%) 20.0 £5.20 (26%) 19.4 £ 5.92 (26%) 0.178
Waist Circumference (cm) 89.1+11.8 86.1+12.12 92.1+10.84 0.113
Hip Circumference (cm) 99.6+7.3 96.5 +5.89 102.6 £7.30 0.007
CNAQ 30.7+2.1 30.7+1.93 30.6+2.17 0.814
Score (17-28) (%) 16 16 16
DEBQ 25+0.6 25+0.71 2.6+0.53 0.414
Restraint (Score >2.5) (%) 53 42 63
TFEQ 9.1+4.0 9.4+4.10 8.7+391 0.630
Restraint (Score >10) (%) 40 37 42
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PA levels measured by 135+ 40 204 £ 55 66 + 25 <0.001

accelerometer (min/per day)

“Data were analysed between the two activity groups by independent sample t test. BM/ Body mass index; CNAQ
Council on Nutrition Appetite Questionnaire; DEBQ Dutch Eating Behaviour Questionnaire; TFEQ Three-Factor

Eating Questionnaire PA Physical Activity. Values are means + SD.

3.2. Palatability of preload milkshakes

After the first sip, neither the type of preload consumed nor physical activity level had a
significant effect on ratings of liking for appearance, aroma, flavour, pleasantness, or texture
(p > 0.05). However, after consuming the entire milkshake, participants rated the low-protein
milkshake as more appealing in terms of appearance (F (1,36) = 6.9, p = 0.01, np? = 0.16),
aroma (F (1,36) = 5.2, p = 0.03, ny?2 = 0.13), flavour (F (1,36) = 8.9, p = 0.005, ny? = 0.20), and
the texture (F (1,36) = 8.7, p = 0.006, n,?> = 0.19), and found it more pleasant (F (1,36) = 7.4, p
=0.01, ny? = 0.17) compared to the high-protein milkshake. There was no significant effect of
being in the active or less active groups on ratings of appearance, aroma, pleasantness, and
texture rating after consuming the entire milkshake (p > 0.05). However, the scores for flavour
liking were significantly higher in the active group compared to the less active group after

consuming the entire preload milkshake (F (1,36) = 6.4, p = 0.016, n,> = 0.15) (Table 3).

Lastly, there was a significant interaction between preload milkshake type and physical
activity level for the appearance and aroma of the milkshakes after the entire milkshakes
were consumed (F (1,36) = 7.4, p = 0.01, ny?2 = 0.17; F (1,36) = 5.1, p = 0.03, np? = 0.12,
respectively). Comparisons revealed that participants in the active group liked the aroma and
appearance of the low-protein milkshake more than the high- protein milkshake (t (18) =-3.0,

p =0.008; t (18) = -3.5, p = 0.03, respectively) (Table 3).
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Table 3. Palatability of the preload milkshakes

Sig Sig Sig
Active Group Less Active Group (p-value)  (p-value) (p-value)
(n=19) (n=19) (Between (Between (Preload

preloads)*  groups)®  Group)?

Low High Low High

Protein Protein Protein Protein
After the first sip
Appearance 75.5+145 69.0+22.9 64.1+26.6 65.2+194 0.314 0.244 0.158
Aroma 63.3+20.2 53.2+25.1 61.7 +23.8 60.1+22.1 0.108 0.688 0.241
Flavour 53.4+229 49.3+28.1 41.5+28.4 36.4+28.1 0.222 0.125 0.893
Pleasantness 53.9+23.0 51.6+27.2 41.2+27.1 40.5+25.8 0.678 0.121 0.827
Texture 64.7 £24.7 57.5%27.1 56.0+26.4 54.3+26.4 0.175 0.469 0.444
After the entire
preload
Appearance 76.3+13.4 62.0+24.7 64.0+27.4 64.2+£23.3 0.013 0.467 0.010
Aroma 65.4+£18.0 48.1+27.2 52.8+28.1 52.7+£28.0 0.029 0.595 0.031
Flavour 56.4 +23.6 38.4+£28.6 33.0+31.8 24.5+20.9 0.005 0.016 0.294
Pleasantness 53.2+25.7 35.9+28.8 35.2+344 27.1+20.8 0.010 0.093 0.329
Texture 62.3+26.5 48.1+27.3 549+32.6 51.5+244 0.006 0.816 0.082

"Data were analysed by repeated measures mixed-ANOVA test. Values are means * SD.

3.3. Subsequent energy, macronutrient, and fibre intake

There was no main effect of preload type on subsequent energy intake at the ad-libitum meal.
However, there was a main effect of preload type on carbohydrate and protein intake at the
ad-libitum meal (F (1,36) = 4.67, p = 0.038, n,2 = 0.12; F (1,36) = 5.15, p = 0.029, ny? = 0.13,
respectively), with higher carbohydrate and protein intake following consumption of low-
protein milkshake compared to the high-protein milkshake. Fat and fibre intake at the ad
libitum meal after consumption of low-protein preload were close to being significantly higher
(p = 0.057; p = 0.061, respectively). However, the consumption of different preload
milkshakes did not have a significant effect on energy, macronutrient, or fibre intake for the
rest of the day. Additionally, there was no significant main effect of being active or less active
on energy, macronutrient, or fibre intake at the ad libitum meal or for the rest of the day

(Table 4).
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There was a significant preload by physical activity level interaction for fibre intake for the
rest of the day (F (1,36) = 12.94, p < 0.001, np? = 0.26) and for total intake (the sum of the
breakfast, the ad libitum meal and the rest of the day) (F (1,36) = 12.31, p = 0.001, ny2 = 0.26).
Participants in the less active group consumed significantly more fibre after consumption of
the low-protein compared to the high-protein milkshake for both the rest of the day (t (18) =
-3.03, p = 0.007) and the total intake (t (18) = -3.35, p = 0.004). There was, however, no
significant difference between the fibre intake after consumption of different preloads in the
active group for the rest of the day (t (18) = 1.94, p = 0.068) and for the total intake (t (18) =
1.36, p = 0.19). Additionally, there was a significant preload by physical activity level
interaction for carbohydrate intake for the rest of the day (F (1,36) = 5.63, p = 0.023, np? =
0.14); however, no significant differences were found in carbohydrate intake following the
consumption of high- or low-protein milkshake in either the active group (t (18) = 1.79, p =
0.09) or the less active group (t (18) = -1.65, p = 0.117). The same significant preload by
physical activity level interaction for carbohydrate intake were also seen for total intake (the
sum of the breakfast, the ad libitum meal and the rest of the day) (F (1,36) = 4.552, p = 0.04,
np> = 0.11). While participants in the less active group had more carbohydrate after the
consumption of the low-protein compared to high-protein milkshake (t (18) =-2.21, p = 0.04),
participants in the high active group did not have different carbohydrate consumption after

consumption of different preloads (t (18) = 0.61, p = 0.553) (Table 4).
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446  Table 4. Subsequent energy, macronutrient and fibre intake at the ad-libitum meal, the rest of the day and the sum of the breakfast, ad libitum

447  meal and the rest of the day after consuming different preload milkshakes in active and less active groups.

448

Sig (p-value) Sig (p-value) Sig (p-value)
Active Group (n =19) Less Active Group (n = 19) (Between preloads)? (Between groups)# (Preload*group)

Preload milkshake Low Protein High Protein Low Protein High Protein
Breakfast

422 +91 444 + 101 0.424
Energy (kcal) 14.1+3.0 148+3.4 0.422
Fat (g) 52.7+11.4 55.5+12.7 0.424
Carbohydrate (g) 21.1+4.6 222451 0.424
Protein (g) 49:1.1 5.1+1.2 0.427
Fibre (g)
Ad libitum meal
Energy (kcal) 1064 + 391 1041 + 350 1049 + 391 961 + 338 0.102 0.673 0.339
Fat (g) 46.8 +17.3 (39%) 44.6 +15.9 (39%) 44.8 + 14.2 (39%) 41.5 + 15.0 (40%) 0.057 0.614 0.689
Carbohydrate (g) 124.1 + 44.0 (47%) 118.8 +40.1 (47%) 118.9 + 41.1 (47%) 108.7 + 38.8 (45%) 0.038 0.555 0.509
Protein (g) 37.8+13.6 (14%) 35.8+12.7 (14%) 37.1+12.1 (14%) 33.7 £12.5 (15%) 0.029 0.730 0.576
Fibre (g) 74127 7.1+2.7 7.0+£3.2 6.4+2.8 0.061 0.576 0.394
Rest of the day
Energy (kcal) 539+ 190 624 +304 614 + 325 557 £ 339 0.769 0.138 0.962
Fat (g) 24.8 £14.2 30.3+20.0 26.1+19.6 25.8+21.8 0.388 0.770 0.330
Carbohydrate (g) 52.7+25.3 63.0+£29.3 65.5+35.2 51.7+27.5 0.732 0.929 0.023
Protein (g) 20.3+13.0 23.2+15.7 21.2£12.3 21.7+17.1 0.462 0.936 0.598
Fibre (g) 6.3+45 7.6+4.9 8.0+3.7 5.0+3.7 0.165 0.694 <0.001
All meals
Energy (kcal) 2024 £ 435 2086 + 433 2107 £451 1962 + 424 0.531 0.870 0.122
Fat (g) 85.7+22.1 89.0+25.3 85.7+22.5 82.1+24.1 0.961 0.631 0.295
Carbohydrate (g) 229.5+43.4 234.5+42.9 239.9+54.3 215.9+45.2 0.168 0.763 0.040
Protein (g) 79.2+19.0 80.1+20.5 80.4+16.2 77.6+22.2 0.730 0.916 0.529
Fibre (g) 18.6 4.1 19.6+4.5 20.1+3.9 16.5+4.7 0.065 0.553 0.001

449 #Data were analysed by repeated measures mixed-ANOVA test. Values are means + SD.

450
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3.4. The effect of different preloads on perceived appetite based on VAS scores

The baseline subjective appetite rating scores were not significantly different between the
active and less active groups. Considering the total AUC appetite values (0-360 min), there
were no significant effects of preload type nor activity level on hunger, fullness, desire to eat,
and prospective consumption (p > 0.05). However, when considering specifically the AUC
values post-preload (180-360 min), hunger, desire to eat food, and prospective consumption
values were lower in the active group compared to the less active group (F (1,36) = 8.2, p =
0.007, np? = 0.19; F (1,36) = 6.2, p = 0.017, ny? = 0.15; F (1,36) = 12.3, p = 0.001, ny? = 0.25,
respectively), while fullness was lower in the less active group compared to the active group
(F (1,36) = 4.6, p = 0.038, np? = 0.12) (Fig. 3). Additionally, there were no significant preload
by activity group interaction for either the total AUC or AUC (180-360 min) of the subjective

appetite rating scores (p > 0.05).
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Fig. 3 The VAS score of hunger, fullness, desire to eat and prospective consumption during the test day in high

and low active group, as well as the AUC values of the hunger after consuming high and low protein milkshakes

(180-360 min) for the two groups. Values are means, with standard error represented by vertical bars. * p <0.05
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3.5. Gastric emptying

The high-protein milkshake significantly delayed gastric emptying compared to low-protein
preload, as measured by all four parameters (Table 5): Gastric emptying Thair (F (1,35) = 30.0,
p <0.001, np? = 0.46), Tiag (F (1,35) = 27.6, p < 0.001, ny? = 0.44), Tiat (F (1,35) = 7.0, p = 0.012,
np?=0.17), and Tasc (F (1,35) = 33.7, p < 0.001, ny? = 0.49). Similarly, being less active delayed
gastric emptying compared to being active: Gastric emptying Thair (F (1,35) = 8.0, p = 0.008, ny?
=0.19), Tiag (F (1,35) = 9.8, p = 0.004, np? = 0.22), Tiat (F (1,35) = 7.0, p = 0.012, np? =0.17), and
Tasc (F(1,35) = 6.3, p=0.017, np? = 0.15). There was a significant interaction between preload
type and physical activity level for gastric emptying Thair (F (1,35) = 4.8, p = 0.035, np? = 0.12)
and Tasc (F (1,35) = 4.6, p = 0.039, np? = 0.12), indicating that high-protein preload was more
effective at delaying gastric emptying in the less active group. Comparisons revealed that
participants in both the active and less active groups had significantly longer gastric emptying
Thair after consumption of high-protein milkshake compared to the low-protein milkshake (t
(17) = 5.60, p < 0.001; t (18) = 4.11, p < 0.001, respectively). Similarly, participants in both
groups had significantly longer gastric emptying Tasc after high-protein preload compared to
the low-protein preload (t (17) = 5.70, p < 0.001; t (18) = 4.31, p < 0.001, respectively) (Table
5).

Table 5. Gastric emptying times following the high and low protein preload milkshakes.

Sig Sig Sig
Active Group (n = 18)" Less Active Group (n = 19) (p-value) (p-value) (p-value)
(Between (Between (Preload*
preloads)* groups)* Group)*
Time Low High Low High
(min) Protein Protein Protein Protein
Thalf 3610 57+23 50+20 99 £ 63 <0.001 0.008 0.035
Tiag 10+8 16 +11 19+13 33+21 <0.001 0.004 0.087
Tiat 25+%5 22 +5 309 28+9 0.012 0.012 0.830
Tasc 81+10 107 £ 24 92 +18 149 + 68 <0.001 0.017 0.039

#Data were analysed by repeated measures mixed-ANOVA test.
Thait Half time; Tiag Lag phase; Tiat Latency time; Tasc Ascension time. Values are means + SD.

*Missing data.
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4, Discussion

This is the first paper to directly compare the acute effects of protein intake on subsequent
food intake, perceived appetite, and gastric emptying in older adults with varying levels of
physical activity. The results indicated that the consumption of a high-protein preload (~47 g
protein) did not significantly affect food intake or appetite compared to a low protein preload
(~ 13 g protein), regardless of physical activity level, while it was accompanied by a 45 %
increase in gastric emptying time. There was a significant interaction between preload type
and physical activity level for gastric emptying (Thaif and Tasc), with the high-protein preload
having a more pronounced effect, delaying gastric emptying in the less active group. Despite
this, the effect of the high-protein preload on gastric emptying was still observed in both
active and less active groups, indicating that protein intake consistently influenced gastric
emptying across activity levels. Furthermore, while there were no significant differences in
appetite ratings between preload types, the less active group had a significantly greater
perceived appetite than the active group, despite experiencing a longer gastric emptying

time.

Adequate protein intake is widely recommended for older adults as part of strategies to
prevent age-related decline in muscle mass and function, alongside exercise (Jlirgen Bauer et
al., 2013; Deutz et al., 2014). However, since protein is considered the most satiating
macronutrient (Paddon-Jones et al., 2008), increasing protein intake in older adult may also
influence their total daily energy consumption by enhancing satiety. This is particularly
important, as increased satiety could limit energy intake, especially in populations where
maintaining adequate caloric intake is crucial (Boirie et al., 2014). Our findings provide
exciting insights, suggesting that older adults can increase their protein intake without
negatively affecting their energy intake. Specifically, the high-protein (~47 g) preload did not
affect appetite ratings or energy intake at the ad libitum meal or throughout the rest of the
day compared to the low-protein (~13 g) preload consumption. Additionally, the current
results showed that older adults were able to meet their daily protein requirements (J. Bauer

et al., 2013).
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The literature on appetite and energy intake responses to protein in older adults remains
limited and inconsistent. In our previous study, we found no significant differences in either
appetite ratings or subsequent energy intake following whey protein preload consumption
(~48 g) (Dericioglu, Oldham, et al., 2023), which aligns with the findings of Giezenaar et al.,
who also reported no significant effect on appetite and ad libitum meal intake following 70 g
of whey protein consumption (alone or with added carbohydrate) (2018). Our current study
further supports these findings, showing no significant changes in appetite ratings or energy
intake. In contrast, other studies have reported a reduction in appetite in older adults
following whey protein intake (Butterworth et al., 2019; Soenen et al., 2014). Soenen et al.
has also reported a reduction in subsequent energy intake following intraduodenal infusion
of high doses of whey protein (45 g) (2014), although their study found intraduodenal protein
at low doses (8 g and 23 g) actually increased total energy intake. Additionally, a meta-analysis
focused on older individuals, including some of the aforementioned studies, supports the
general view that a protein preload suppresses appetite in older adults (Ben-Harchache et al.,
2021). However, this meta-analysis also showed that in the acute studies included, while
energy intake decreased following protein intake compared to a control, total/daily energy
intake increased when the energy content of the preload was considered (Ben-Harchache et
al.,, 2021). It is worth noting that the studies included in this meta-analysis encompassed
various protein sources (essential amino acid gel, bar, gel), not limited to whey protein, and
differed in administration methods from our study, where protein was introduced
intraduodenally, directly into the duodenum. These differences in protein sources and
administration methods may explain the discrepancies between our findings and those of the

meta-analysis, highlighting the need for further research using consistent protocols.

Within the literature, a few studies have investigated the effects of protein on appetite, food
intake, and gastric emptying in older adults, aligning with the objectives of our study.
Although slower gastric emptying is typically linked to decreased appetite and reduced energy
intake in younger adults (Halawi et al., 2017), studies in older adults have presented
conflicting results. In our study, the consumption of approximately 47 g of whey protein
resulted in significantly slower gastric emptying compared to the 13 g whey protein preload.
Despite this, we observed no significant changes in appetite or ad libitum food intake. These

findings are consistent with studies showing slower gastric emptying in older adults following
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protein consumption. For instance, a study that examined the effects of whey protein
consumption at different doses (0g/~2kcal, 30g/120kcal, 70g/280 kcal) in both older (69-80
y) and younger (18-34 y) men found that protein intake led to slower gastric emptying in both
age groups (Giezenaar et al., 2015). However, protein fortification also suppressed energy
intake in both age groups in their study, albeit a blunted response in the older groups, which
contrasts with our non-significant effect on intake. More similar to our findings, when the
same study protocol was applied to older adults only (69-80 y, male and female), protein was
found to slow gastric emptying without impacting ad libitum energy intake. In fact, when
accounting for the caloric content of the preloads, protein consumption resulted in increased
total energy intake (Giezenaar et al., 2017). However, it is important to consider that these
studies used non-equicaloric preloads, and the authors acknowledged limitations, including
underpowered samples size for analysing appetite and gastric emptying measures. In another
study conducted by the same research group, the effects of whey protein were examined in
two forms: 70 g whey protein alone and a mixed macronutrient preload (14 g whey protein +
28 g carbohydrate + 12.4 g fat) (Giezenaar et al., 2018). Their findings were also aligned with
ours, showing that while protein consumption slowed gastric emptying, it did not suppress
appetite or ad libitum energy intake compared to the control group. Interestingly, after
accounting for the caloric content of the preloads, the mixed macronutrient preload with 70
g protein resulted in an increase in total energy intake (Giezenaar et al., 2018). In contrast to
this study, our study used preloads with the same energy content and volume, minimising
potential confounding effects from differences in preload consumption. Taken together,
these findings suggest that the effect of slower gastric emptying on appetite and food intake
in older adults may be less pronounced than in younger adults. In both our study and existing
literature, the finding that appetite did not change or increase despite slower gastric
emptying after protein consumption in older adults may be attributed to the decreased
perception of gastric distension commonly observed in healthy older individuals (Rayner et

al., 2000).

Besides increasing protein intake, increasing physical activity is also considered one of the
most effective strategies for preserving muscle mass and increasing appetite in older adults
(Blundell et al., 2003; Deer & Volpi, 2015). A study involving participants aged 20 to 60 years,

which measured physical activity levels with a questionnaire, showed that individuals with
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high physical activity (defined as engaging in hard or moderate exercise several times a week
or at least 4 hours weekly) had decreased satiety and increased hunger compared to those
with low physical activity (light exercise or no exercise, less than 4 hours weekly) (Gregersen
et al., 2011). Similarly, among the limited studies including older adults that assessed physical
activity based on self-reported time spent in moderate and vigorous activities, it was found
that active older adults (engaging in 2150 minutes/week of moderate and/or vigorous
physical activity for at least 2 years) consumed more energy than the inactive ones (Van
Walleghen et al., 2007). Furthermore, a recent study examining the effect of physical activity
and protein intake in older adults across five different countries reported that more active
older adults had higher energy consumption compared to the inactive individuals (Lourida et
al., 2021). However, variations in the definition of physical activity across studies limited
comparability, and reliance on self-reported measures of physical activity and dietary intake
may have introduced social desirability bias. Despite insufficient evidence specifically in older
adults, substantial research supports the notion that physically active individuals tend to
experience decreased appetite but can better compensate for high-energy preloads by
reducing subsequent energy intake compared to inactive controls (Beaulieu et al., 2016;
Blundell, 2011; Donnelly et al., 2009). In our study, we used accelerometers to determine
physical activity levels, which is an objective measure of physical activity. Our findings aligned
with previous observations, demonstrating that the high active group had lower appetite
scores compared to the low active group. Despite this lower appetite scores in the high active
group, there was no significant difference in energy intake at the ad libitum meal or for the
rest of the day between the groups. Although we did not find a significant positive effect of
physical activity on food intake and appetite in older adults, these results suggest that high
levels of physical activity do not appear to suppress food intake. In addition to physical
activity, body composition, particularly fat-free mass, is known to influence energy intake
(Hopkins et al., 2023). There were differences in anthropometric measurements between the
active and less active groups. As perhaps expected, the less active group were significantly
higher in weight, BMI, body fat mass, visceral fat, and hip circumference. However, the two
groups did not differ significantly in proportion of body muscle mass. Although we did not
explore this factor further within this study, as it did not differ between activity groups and
was not the primary focus of the study, future research could investigate this factor in older

adults more directly.
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It is well documented that satiety and energy intake are directly linked to gastric emptying
(Clegg & Shafat, 2010), and the present study is the first to investigate the relationship
between physical activity and gastric emptying in older adults. A previous study involving
healthy men aged 18-55 years, where physical activity levels were assessed using
accelerometers, demonstrated that active men had a faster gastric emptying times compared
to inactive men (Horner et al., 2015). Consistent with these findings, our study revealed that
physically active older adults had faster gastric emptying compared to those with lower levels
of physical activity. This link between physical activity and faster gastric emptying may be
explained by its impact on the sympathetic nervous system, as physical activity can reduce
resting blood pressure and decrease sympathetic nerve activity, thereby accelerating
gastrointestinal motility (Matsuzaki et al., 2016). Additionally, physical activity may influence
hormonal regulation, as it has been associated with increased ghrelin levels (Davis et al.,
2020), and elevated ghrelin can promote faster gastric emptying (Levin et al.,, 2006).
Furthermore, when evaluating the effect of protein intake on gastric emptying in both active
and less active individuals, we observed that high protein intake prolonged gastric emptying
time compared to low protein intake in both groups. Although the active group had faster
gastric emptying than the less active group, the less active group reported a higher level of
perceived appetite. Surprisingly, these differences in appetite and gastric emptying did not

result in significant differences in food intake between the two groups.

The major strength of the current study is that it is the first investigation to examine the
impact of protein intake on subsequent energy intake, perceived appetite, and gastric
emptying in older adults with varying levels of physical activity. However, there are also a few
limitations that need to be addressed. Firstly, due to COVID-19 restrictions, the study was
conducted in participants' homes, which prevented us from providing a consistent sensory
environment during the ad libitum meal consumption. However, in order to minimize this
variable, participants were instructed to consume their meals in the same location, alone, and
without distractions such as television. Secondly, although regular contact was maintained
with participants via phone or text throughout the test day to ensure compliance with study
requirements, we relied on self-reported compliance due to the study's non-clinical setting.
However, it is worth highlighting that conducting appetite studies in clinical settings is often

criticised for not reflecting real-world conditions. On the contrary, this study provided a
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valuable opportunity to investigate appetite in a more habitual setting aligned with
participants' normal eating environments. What might initially be perceived as a limitation
actually emerges as an important advantage that increases the value of the study. Another
potential limitation is the difference in palatability between the high- and low-protein
milkshakes, which could have influenced participants' subsequent energy intake. Although
initial sips showed no significant differences in liking, participants rated the high-protein
milkshake as less appealing in appearance, aroma, flavor, texture, and overall pleasantness
after consuming the entire preload. Differences in palatability could affect subsequent intake
however no participants had any difficulty with finishing the preload. Sensory differences
between the drinks could also lead to differences in sensory-specific satiety, and previous
studies have demonstrated that satiety induced by high-caloric foods has been shown to
transfer to other high-caloric foods (Qiu et al., 2023), however this should not have impacted
this study to any great extent as the ad libitum buffet provided foods that were dissimilar to
the preload milkshake. However, future studies should control for palatability to better

isolate the effects of protein on energy intake.

We also acknowledge while accelerometers were used to measure physical activity and assign
participants to groups, these devices have some limitations in accurately recording weight-
bearing or arm movement activities. However, the accelerometer data provided an objective
method for group classification, which is preferable to relying on self-reported
guestionnaires. Furthermore, despite the study being conducted during COVID-19
restrictions, the active group had notably high accelerometer readings, indicating that they
remained relatively active throughout the study. This may reflect a self-selection bias, as
individuals who were already more active or health-conscious may have been more likely to
participate, which could limit the generalisability of our findings to the broader older adult
population. Lastly, it isimportant to acknowledge that this study did not include blood sample
analysis to examine appetite-related hormones. Appetite and food intake are regulated by a
complex interplay of mechanisms, including not only gastric emptying but also hormonal and
neural mechanisms. Therefore, future studies incorporating blood sample analysis are
needed to compare appetite hormones and neural mechanisms when evaluating the impact

of protein intake on appetite and food intake in older adults with varying activity levels.
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Additionally, longer-term intervention studies are needed to determine the lasting effects of

protein intake and physical activity on appetite and energy intake in this population.

5. Conclusion

In summary, this study demonstrates that increased protein intake does not suppresses food
intake or appetite but does prolong gastric emptying in older adults, regardless of physical
activity level. Additionally, regardless of protein intake, higher levels of physical activity in
older adults were associated with accelerated gastric emptying and decreased appetite.
Future well-controlled studies, including appetite-related hormones are required to establish
a more conclusive understanding of the effect of physical activity and protein intake on

appetite and food intake in older adults.
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