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ABSTRACT: The authors analyze the environmental fields associated with tropical cyclone (TC)
activity in the Coupled Model Intercomparison Project Phase 6 (CMIP6) models, as well as the
TC-like storms in those models. First, the model biases in the historical climatological means
of chosen environmental fields are evaluated against the fifth generation of the European Centre
for Medium-Range Weather Forecasting (ECMWF) atmospheric reanalysis (ERAS5). Second, we
show that the interannual variability of these fields is typically much smaller in models than in
reanalysis. Applying a mean bias correction to these fields before calculating tropical cyclone
genesis indices improves the variability of the modeled indices compared to those in reanalysis,
as well as the means, due to the nonlinear dependence of the indices on these fields. The authors
consider how these environmental fields change in the CMIP6 models, using three future scenarios
separately as well as combining scenarios and times according to specific greenhouse warming
levels. Multiple proxies for TC activity are considered and we show that the signs of the future
changes are dependent on the choice of genesis index. The relationship between climate sensitivity
and potential intensity change across the multi-model ensemble is examined. The statistics of the
TC-like structures in the historical simulations are also examined, using the number of tropical
cyclones (NTC) and accumulated cyclone energy (ACE) as diagnostics, including calculations of
the percentage changes in NTC and ACE at the end of the 21C as compared with the 20C. Large

decreases in both of these quantities are found in the highest emission scenario.
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1. Introduction

Future projections of tropical cyclone activity have been explored and discussed numerous times
in the literature over the last few decades (Knutson et al. 2010, 2020; Camargo and Wing 2016;
Camargo et al. 2023). An intrinsic problem is that tropical cyclones (TCs) require high horizontal
resolution to be well simulated in numerical models, especially in order to represent high-intensity
storms. At the same time, large numbers of years, ensembles, scenarios, and models are required
to represent the climate change signal and its uncertainties. These two objectives are difficult to
satisfy simultaneously.

One common approach has been to compare historical and future TCs’ characteristics (e.g., fre-
quency, intensity, and duration) in standard global climate models (e.g., Camargo 2013; Tory et al.
2013; Chand et al. 2017; Bell et al. 2019; Feng et al. 2024). Due to these models’ low resolutions,
among other reasons, such as systematic biases associated with convection parametrization, the
resulting TC climatologies are not very realistic, with simulated TCs weaker and larger than those
observed being a particularly obvious bias (Camargo and Wing 2016; Camargo 2013; Shaevitz
et al. 2014).

A second approach is to analyze model TCs in high-resolution climate models (25 - 50 km grid
spacings), as was done recently in the HighResMIP project (Haarsma et al. 2016; Roberts et al.
2020a,b). These studies show improved representation of TCs with increased resolution, consistent
with other studies (Zhao and Held 2012; Manganello et al. 2012; Wehner et al. 2014; Roberts et al.
2015; Vidale et al. 2021; Russotto et al. 2022; Moon et al. 2020, 2022), in particular TC intensity,
though there remain biases in multiple aspects of TC activity, such as track characteristics and
landfall locations. However, the computational cost of these high-resolution climate simulations
limits the number of ensemble members, number of future scenarios, and simulation duration.
While the representation of TCs in convection-permitting models such as those in Judt et al. (2021)
(2.5 - 8km) are much more realistic than in models with lower resolution, these simulations are
typically too short (a few years or months) to provide robust TC projections. Currently, these
high-resolution simulations are too computationally expensive to be performed using multiple
ensembles and for many years, however the situation is changing fast (Schir et al. 2020).

Another common approach is to downscale global climate models to basin-scale using high-

resolution regional models (Knutson et al. 2013, 2022; Patricola et al. 2014, 2017; Fu et al. 2019).
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Drawbacks to this approach include that it does not produce consistent global (i.e., multi-basin)
TC projections and that it has issues at basin boundaries (Landman et al. 2005; Zick and Matyas
2015; Baudouin et al. 2019). Global climate models with variable-resolution grids avoid boundary
issues (Zarzycki et al. 2014; Stansfield et al. 2020), but only TCs over the region of high resolution
are well resolved.

An alternative methodology is to generate synthetic storms, either using statistical (Vickery 2005;
Hall and Jewson 2007; Nakamura et al. 2015; Bloemendaal et al. 2020) or statistical-dynamical
(Emanuel et al. 2006; Lee et al. 2018; Jing and Lin 2020; Lin et al. 2023b; Xu et al. 2024) models.
One appealing feature of these models is the low computational cost and consequent large sample
number of TCs that can be easily simulated, though a drawback is the limited representation of
physical processes.

An approach that bypasses model TCs is to infer the projection of TC characteristics based on
environmental proxies (genesis indices, potential intensity, ventilation index, etc.) for TC activity
(e.g. Emanuel 1988; Emanuel and Nolan 2004; Emanuel 2010; Tang and Emanuel 2010, 2012).
However, the behavior of TC proxies in projections sometimes disagrees with TC projections from
high-resolution models (Camargo et al. 2014; Wehner et al. 2015). Furthermore, genesis indices
are based on statistical relationships, derived from reanalysis data and TC “best track” data sets
from the recent historical period, rather than physical theory. Good performance of a genesis
index in a particular basin, period, or time scale, using reanalysis fields does not guarantee good
performance in models or in future climates.

Finally, all approaches used to make TC projections are impacted, indirectly or directly, by model
biases. One well-known issue in Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5
and CMIP6) models is their failure to match the observed strengthening of the tropical Pacific
sea surface temperature (SST) zonal gradient over the historical period, possibly a consequence
of model bias (Seager et al. 2019). Given the important role of the El Nifio-Southern Oscillation
(ENSO) in modulating TC activity, and the similarity of sea surface temperature (SST) trend
patterns to El Nifio (in models) or La Nifa (in observations) this disagreement with observations
may be expected to have important consequences for TC projections (Sobel et al. 2023).

This manuscript addresses the following topics in a large number of CMIP6 models: (i) biases

in environmental fields associated with TC activity; (ii) the relationship between model TCs
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and environmental fields; changes in (iii) TC-related environmental fields and (iv) model TC
activity with anthropogenic climate change. Once we examine the climatological and interannual
variability biases across the CMIP6 models, we show their impact on genesis indices and propose
a bias correction to address this issue. Next, we analyze the main characteristics of the TCs in the
CMIP6 models and how they relate to model resolution and environmental fields. The response of
environmental fields and TCs to greenhouse gases forcing is then discussed, including the role of
aerosols in the different future scenarios.

Section 2 describes the environmental fields and proxies considered. The models, datasets and
methods used are given in Section 3. The historical simulations are analyzed in Section 4 and

future simulations in Section 5. The conclusions are presented in Section 6.

2. Environmental Field Proxies

We analyze the biases in the spatial climatological patterns and interannual variability of key
environmental variables associated with TCs, including potential intensity (PI), vertical wind shear
(VSH), column relative humidity (CRH), and absolute vorticity at 850hPa.

Potential Intensity (PI) is the theoretical maximum intensity that a TC could reach under given
environmental conditions (Emanuel 1988). PI computed from reanalysis data explains both ob-
served TC intensity trends and interannual variability to some degree (Emanuel 2000; Wing et al.
2007, 2015). Since Emanuel (1987) first showed that PI is expected to increase with anthropogenic
climate change, projections of PI have been extensively discussed in the literature, including in
previous generations of CMIP models, such as CMIP3 (Vecchi and Soden 2007a,b), and CMIP5
(Camargo 2013). Here PI is calculated following the Bister and Emanuel (2002) algorithm.

Deep-layer vertical wind shear (VSH), the difference between horizontal winds at 200 and 850
hPa, influences TC genesis and intensification (e.g., Rios-Berrios et al. 2023, and references
therein). Overall, strong VSH tends to weaken TCs, as the TC vortex becomes vertically tilted.
However, this response is sensitive to other factors, such as winds at other levels and the presence
of dry environmental air. Earlier VSH projections under anthropogenic climate change have
been widely discussed in the literature (Vecchi and Soden 2007b; Camargo 2013), as have recent

observed trends (Kossin 2017) and the impact of decadal variability on Atlantic VSH projections
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(Ting et al. 2019). Here we will analyze only the VSH magnitude, defined as the magnitude of the
vector difference of winds at 200 hPa and 850 hPa.

The absolute vorticity at 850 hPa is calculated by adding the planetary vorticity to the relative
vorticity at 850 hPa. The column relative humidity (CRH) is the ratio between the column integrated
water vapor and the saturated water vapor, and the saturation deficit (SD) is their difference. The
saturated water vapor is calculated following Bretherton et al. (2004). We were not able to calculate
CRH, SD, and indices that used these variables for a few models that did not provide column water
vapor as one of model ouputs in the CMIP6 database.

We consider three genesis index formulations. The first is the Emanuel’s genesis potential
index(GPI Emanuel and Nolan 2004; Camargo et al. 2007), a function of absolute vorticity at 850
hPa, vertical wind shear, potential intensity, and relative humidity at 600 hPa. Emanuel (2010)
introduced a new version of GPI in which the humidity variable is a non-dimensional parameter y,
a measure of the entropy deficit of the middle troposphere. To differentiate from the original GPI,
we refer to this new version here as “GPI-Xi”.

The tropical cyclone genesis index (TCGI) comes from a Poisson regression of TC numbers
with four environmental fields, as described in Tippett et al. (2011) and modified in Camargo
et al. (2014). Similarly to Lee et al. (2018) and Lee et al. (2020a), we consider two versions
of the TCGI. The first uses as humidity variable CRH (TCGI-CRH), and the second uses SD as
the humidity variable (TCGI-SD). As initially discussed in Camargo et al. (2014) for a single
climate model (HiRAM) and further explored in Lee et al. (2018, 2020a, 2022, 2023); Sobel
et al. (2021) for reanalysis and CMIP5 models downscaling, these two TCGI versions have almost
indistinguishable behavior in the historical climate, but differ in future projections. In addition
to CRH or SD, TCGI includes PI, VSH and a “clipped” vorticity (maximum absolute value of
3.7x 107 1/s), as described in Tippett et al. (2011). The TCGI coefficients here are based on the
European Centre for Medium-Range Weather Forecasts (ECMWF) 5th generation global reanalysis
(ERAS; Hersbach et al. (2020)) reanalysis fields are given in the Supplemental Material and are
an update of the version used in Lee et al. (2018, 2020a), which was based on the ECMWF ERA-
Interim reanalysis (Dee et al. 2011). Dirkes et al. (2023) compared the characteristics of TCGI

with Poisson fits based on different reanalyses, as well as GPI. They found that the differences
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in the representation of large-scale environmental variables relevant for TC development do not
explain the differences and spread in TC climatologies across reanalyses.

Another proxy used is the ventilation index (VI) developed by Tang and Emanuel, which is a
function of VSH, PI and y, obtained based solely on theoretical concepts and is associated with
both tropical cyclogenesis and TC intensification (Tang and Emanuel 2010, 2012).

Since most genesis indices include the environmental variables listed above, environmental biases

will be translated into biases in these genesis indices as well.

3. Data, Models and Methods

a. Data

The environmental fields are taken from ERAS reanalysis (Hersbach et al. 2020), regridded to a
2°x2° grid for comparison with the CMIP6 model data.

The observed tropical cyclone data are from the International Best Track Archive for Climate
Stewardship (IBTrACS), version 4 from USA centers, with data from the National Hurricane Center
or the Joint Typhoon Warning Center for all basins (Kruk et al. 2010; Knapp et al. 2010; Schreck
et al. 2014).

The monthly CMIP6 (Eyring et al. 2016) data output were used for the calculation of the
environmental fields and the CMIP6 6-hourly data for tracking the models’ TCs. The models
included in our analysis are listed in Tables 1 and 2, with additional information on the ensembles

for environmental fields and TC tracking provided on Supplementary Tables S1-S4.

b. Models - Environmental Fields

We focus here on 45 CMIP6 global climate models (Eyring et al. 2016). The CMIP6 historical
simulations are forced by common datasets that are largerly based on the best estimates of observa-
tions in the period 1850-2014. We consider three future scenarios, or socio-economic pathways for
the period 2015-2100: SSP2-4.5, SSP3-7.0, and SSP5-8.5 (O’Neill et al. 2016). These correspond
to middle of the road, regional rivalry and high emission scenarios, respectively.

The 45 models were chosen based on the availability of their environmental fields and scenarios
necessary for our analysis and are listed in Tables 1 and2, together with the number of ensemble

members considered. Not all 45 models have all variables for all scenarios analyzed. Therefore, we



Number Model Resolution Historical | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | References
1 ACCESS-CM2* 1.9°x1.3° 3 3 3 5 Bi et al. (2020)
2 ACCESS-ESM1-5" 1.9°x1.2° 20 11 10 40 Ziehn et al. (2020)
3 AWI-CM-1-1-MR 1.9°x1.9° 5 1 5 1 Semmler et al. (2020)
4 BCC-CSM2-MR* 1.1°x1.1° 3 1 1 1 Wau et al. (2019)
5 CAMS-CSM1-0 1.1°x1.1° 3 2 2 2 Rong et al. (2018, 2021)
6 CanESM54 2.8°x2.8° 65 50 50 50 Swart et al. (2019)
7 CanESMS5-CanOE 2.8°x2.8° 3 3 3 3 Swart et al. (2019)
8 CAS-ESM2-0 1.4°x1.4° 4 2 1 2 Zhang et al. (2020)
9 CESM2 1.3°x0.9° 11 6 6 5 Danabasoglu et al. (2020)
10 CESM2-WACCM 1.3°x0.9° 3 5 3 5 Danabasoglu et al. (2020)
11 CIESM 0.9° x0.9° 3 1 — 1 Lin et al. (2020)
12 CMCC-CM2-SR5* 1.25°x0.9° 1 1 1 1 Lovato et al. (2022)
13 CMCC-ESM2* 1.25°%0.9° 1 1 1 1 Lovato et al. (2022)
14 CNRM-CM6-1 1.4°x1.4° 28 10 6 6 Voldoire et al. (2019)
15 CNRM-CM6-1-HR* 0.5° % 0.5° 1 1 1 1 Voldoire et al. (2019)
16 CNRM-ESM2-14 1.4°x0.4° 9 10 5 5 Séférian et al. (2019)
17 E3SM-1-1 1.0°x1.0° 1 — — 1 Golaz et al. (2019)
18 EC-Earth3* 0.5°%x0.5° 18 22 7 8 Déoscher et al. (2022)
19 EC-Earth3-CC 0.5° x0.5° 1 1 — 1 Déoscher et al. (2022)
20 EC-Earth3-Veg® 0.5°%x0.5° 9 8 6 8 Déoscher et al. (2022)
21 EC-Earth3-Veg-LR"™ 0.7° x0.7° 3 3 3 3 Déoscher et al. (2022)
22 FGOALS-f3-L 1.3°x1.0° 3 1 1 1 He et al. (2019)
23 FGOALS-g3 2.0°x2.3° 6 4 5 4 Li et al. (2020)

165 TasLE 1. List of CMIP6 models (part 1) used in this manuscript, their nominal approximate grid resolutions in
s degrees (longitude X latitude) their assigned number in this manuscript and the number of ensembles used in each
17 case. The specific ensembles and model centers are given in the Supplementary material. Models underlined
s have been selected for downscaling. Models with a % have had TCs tracked for the historical and SSP5-8.5
10 simulations, though not necessarily for all ensembles available for the environmental fields. Similarly, models
1o marked with a m (A) are tracked only for the historical (SSP5-8.5) simulations.The models underlined have been

i selected for downscaling.

w7 1ncluded models with all environmental fields available for the historical and SSP5-8.5 simulations,
s and this leads to the 45 models chosen. The exceptions are the variables CRH and SD, which could
w not be calculated for the FGOALS-f3-L or FIO-ESM2-0 models, as the column water vapor from

wo these models was not available. Only 40 models and 36 models have the necessary data available
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Number Model Resolution Historical | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | References
24 FIO-ESM-2-0 1.3°x0.9° 3 3 — 3 Bao et al. (2020)
25 GFDL-CM4*® 1.3°x1.0° 1 1 — 1 Held et al. (2019)
26 GFDL-ESM4 1.3°x1.0° 3 1 1 1 Dunne et al. (2020)
27 GISS-E2-1-G* 2.5°%x2.0° 47 20 18 11 Kelley et al. (2020); Miller et al. (2021)
28 GISS-E2-1-H 2.5°%x2.0° 25 — — 5 Kelley et al. (2020); Miller et al. (2021)
29 HadGEM3-GC31-LL" 1.9°x1.25° 5 4 — 4 Kuhlbrodt et al. (2018); Andrews et al. (2019)
30 HadGEM3-GC31-MM* 0.8° x0.6° 2 — — 4 Kuhlbrodt et al. (2018); Andrews et al. (2019)
31 INM-CM4-8 2.0°x1.5° 1 1 1 1 Volodin et al. (2010)
32 INM-CMS5-0 2.0°x1.5° 10 1 5 1 Volodin et al. (2017)
33 IPSL-CM6A-LR* 2.5°x1.3° 30 8 11 6 Boucher et al. (2020)
34 KACE-1-0-G 1.9°x1.25° 3 3 3 3 Lee et al. (2020b)
35 KIOST-ESM2-0* 2.0°x2.0° 1 — — 1 Pak et al. (2021)
36 MIROC6* 1.4°x1.4° 50 3 3 50 Tatebe et al. (2019)
37 MIROC-ES2L* 2.8°x2.8° 30 30 10 10 Hajima et al. (2020)
38 MPI-ESM1-2-HR* 0.9° x0.9° 10 2 10 1 Miiller et al. (2018); Gutjahr et al. (2019)
39 MPI-ESM1-2-LR* 1.9°x1.9° 10 10 10 10 Mauritsen et al. (2019)
40 MRI-ESM2-0% 1.1°x1.1° 6 2 5 6 Yukimoto et al. (2019)
41 NESM3* 1.9°x1.9° 5 2 — 2 Cao et al. (2018)
42 NorESM2-LM* 2.0° x2.0° 3 3 3 1 Seland et al. (2020)
43 NorESM2-MM* 1.0°x1.0° 2 2 1 1 Seland et al. (2020)
44 TaiESM1* 1.25°%0.9° 2 1 1 1 Wang et al. (2021)
45 UKESM1-0-LL* 1.9°x1.3° 18 5 10 5 Sellar et al. (2019)

TaBLE 2. List of CMIP6 models (part 2) used in this manuscript, their nominal approximate grid resolutions

in degrees (longitude X latitude), assigned number in this manuscript and the number of ensembles used in each

case. The specific ensembles, and model centers are given in the Supplementary material. Models with a % have

had TCs tracked for the historical and SSP5-8.5 simulations, though not necessarily for all ensembles available

for the environmental fields. Similarly, models marked with a m (A) are tracked only for the historical (SSP5-8.5)

simulations. The models underlined have been selected for downscaling.

for the SSP2-4.5 and SSP3-7.0 scenarios. The environmental fields for all models were regridded

to a common grid of 2° X 2° in longitude and latitude.

For each model and scenario, all ensemble members available are included in the model ensemble

mean and spread. The specific ensembles used in the environmental analysis are given in the

supplementary material, Tables S1 and S2. We have also analyzed the environmental fields from
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the historical simulations of additional seven models (Table S3), and these will be used in a few

specific figures that include model TCs statistics, as discussed below.

c. Models - Tropical Cyclones

We also discuss the characteristics of models’ TCs, which were tracked using TRACK (Hodges
1994; Hodges et al. 2017) for the historical and SSP5-8.5 simulations of a subset of models that
have the necessary 6-hourly output variables. The models with TCs tracked are marked in Tables
1 and 2. The TCs were tracked in the historical simulations for the period 1950-2014 and in
the SSP5-8.5 for the full period (2015-2100). To increase the sample size of model TCs in the
historical simulations, we calculated and included the number of TCs (NTC), accumulated cyclone
energy (ACE), and environmental fields from a few models that had the necessary fields to track
TCs in the historical but not the SSP5-8.5 simulations (see Table S3). The full list of models and

number of ensembles in which TCs were tracked are given in Table S4.

d. Methods

All maps below show the August to October (ASO) seasonal mean in the northern hemisphere
and January to March (JFM) seasonal mean in the southern hemisphere. These choices are not
optimal for all basins, as the peak season varies from basin to basin, but we judged them optimal
for the global collection of all basins. The choice is particularly poor in the case of the North Indian
Ocean, however, where TCs occur almost exclusively in the pre- and post- monsoon seasons.

In cases when the environmental variables are integrated spatially, the tropical region over oceans
between 0—40°N is considered for the northern hemisphere and similarly 40°S—0 in the southern
hemisphere.

When defining model biases the reference is the climatology of ERAS reanalysis fields in the
period 1981 - 2010. For instance, the climatology of the ERAS reanalysis is subtracted from the
ensemble mean climatology of each model and that difference is defined as the climatological bias.

One standard diagnostic to analyze model biases is the Taylor diagram (Taylor 2001), which
concisely describes how well model spatial patterns compare with observations and other models

using correlation, root-mean-square difference, and the ratio of their variances. We use Taylor dia-

10
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grams to compare the climatological environmental fields of CMIP6 historical model simulations
with each other and with ERAS climatological fields.

Two standard diagnostics are used to characterize the TCs tracked in the climate models: the
number of TCs (NTC), and the accumulated cyclone energy (ACE) (Bell et al. 2000). The latter is
defined as the sum of the squares of the TCs’ maximum sustained wind speeds every six hours, for
snapshots in which they exceed 34kt. Both these quantities have been regularly used to characterize
TC climatologies in observations and models (e.g., Camargo and Sobel 2005; Camargo et al. 2005;
Camargo 2013; Shaevitz et al. 2014). We examine the relationships between the environmental
fields and these two TC quantities (NTC and ACE) as was done in Camargo et al. (2020) for models
and Dirkes et al. (2023) for reanalyses.

When exploring the differences in the environmental fields between the 20C and 21C, we focus
on the last 30 years of each century i.e., the difference between the multi-model means in 1971-
2000 and 2071-2100. We consider the three future scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5
separately. The multi-model mean in the historical simulation subtracted from each future scenario
is calculated using the same models in the historical and each of the future scenarios.

We also examine how the differences between the 20C and 21C depend on the models chosen. In
that case, we follow Hausfather et al. (2022), who examined the properties of the CMIP6 models
and separated them in two groups, the models that are “too hot” and the ones that are “likely”.
The distinction between these two groups is based on the transient climate response (TCR) metric
(Zelinka et al. 2020; Nijsse et al. 2020). A model with a TCR in the range of 1.4-2.2°C is
considered likely, while one with a larger TCR is labeled “too hot”. TCR is defined as the amount
of global warming in the year in which atmospheric CO, concentrations have doubled after having
increased steadily by 1% each year relative to the 1850-1899 baseline, based on global mean
surface temperature for each model.

An alternative way to look at how the environmental fields change in the future is based on global
warming level (GWL), which combines multiple future scenarios and takes into account that
models have different climate sensitivities. This approach is widely used in the Intergovernmental
Panel on Climate Change (IPCC) Sixth Assessment Report (Arias et al. 2021). The calculations
here follow the procedure developed by Seneviratne and Hauser (2020) for each model and future

scenario:

11
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1. The global annual ensemble mean temperature is calculated (latitude weighted).
2. The historical and future scenario temperature data are concatenated.

3. The mean of the temperature in the period 1850-1900 is subtracted from the concatenated

data.
4. The 20-year centered running mean temperature is calculated.
5. Find the first year in which the running mean exceeds the desired GWL, or “central year”.

6. The period for each GWL is defined as starting 10 years prior to the “central year” and ending

9 years after that year.

This calculation is performed for three GWLs: 1.5°C, 3.0°C and 4.0°C. Once the years for each
GWL are defined, the multi-model mean change by GWL is obtained by subtracting the 19C
climatology (1850-1900). Note that one model can contribute with more than one ensemble mean
field data for each GWL (Seneviratne and Hauser 2020).

Time-series of the global mean temperature are also constructed for each model ensemble mean,
for both historical and future scenarios, using the procedure described above. For each model,
a polynomial fit is then obtained for the temperature time-series, for the concatenated historical
and future scenario. The same procedure is used for the mean PI in each hemisphere (tropics) to

explore the relationship between global warming and PI.

4. Results - Historical Simulations

a. Model Biases - Climatology

In this section we analyze the biases in key environmental variables typically associated with
tropical cyclone activity. We first examine the spatial biases in the variables’ mean climatologies,
then in their interannual variability.

Figure 1 shows the differences between the CMIP6 models’ PI climatologies and that of ERAS
reanalysis for the period 1981-2010. Many models show a negative bias in PI in the deep tropics
and positive bias in more subtropical regions. There is a clear consistency in the model biases across
model families. This consistency is particularly striking for the CNRM models (CNRM-CM6-1,
CNRM-CM6-1-HR, and CNRM-ESM2-1) which have predominantly larger values of PI than does
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ERAS in both hemispheres, particularly the southern. The EC-Earth3 models (EC-Earth3, EC-
Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-L4) also have similar patterns in their biases, with
a bimodal pattern in the North Pacific (positive close to the Equator, negative around 20°N), a
negative bias in most of the North Atlantic, and a strong positive bias in the southern hemisphere.
For pairs of models with different model resolutions, namely CNRM-CM6-1 and CNRM-CM6-1-
HR; HadGEM3-GC31-LL and HadGEM3-GC31-MM, MPI-ESM1-2-LR and MPI-ESM1-2-HR;
NorESM2-LM and NorESM2-MM, the patterns of the biases are extremely similar between the
two model resolutions, indicating that higher model resolution without other changes in the model
configuration does not necessarily lead to improvement.

The biases in the models’ VSH climatologies as compared with ERAS are shown in Fig. 2. Many
models have too high values of VSH in the northern hemisphere, centered around 20°N, and too
low values closer to the tropics, particularly over the Pacific Ocean. There is less consistency
in the biases in the southern hemisphere. Again, we notice very similar patterns in models from
the same family, e.g., CanESMS5 and CanESMS5-CanOE or INM-CM4-8 and INM-CM5-0. In
some models the magnitudes of the VSH biases are quite large, reaching values of the order of 20
m/s in some regions that are important for TC intensification (e.g., CAS-ESM2-0, MIROC-ES2L,
NESM3). While most models have low shear close to the Equatorial region, that is not the case for
the CESM2 and CESM2-WACCM models.

Biases in the CRH are shown in Fig. 3. CRH values are typically too low in most models. Some
models have high values of CRH in the southern hemisphere, in particular in the Southeast Pacific,
a region which typically has very little TC activity. High values of CRH are also present in many
models in the South Atlantic and in the South Indian Ocean close to Australia.

Fig. 4 shows the Taylor diagrams for PI (top left), VSH (top right), CRH (bottom left) and
absolute vorticity at 850 hPa (bottom right) in the northern tropics (Equator to 40°N) in ASO. For
all variables, the multi-model mean (MMM) has better skill than most individual models. The
correlation coefficient between each model and ERAS is shown in the blue azimuthal angle. The
smallest range in correlations occurs for the vorticity, with values close to 0.95 for all models,
while in the case of PI, they range from 0.9 to 0.55. The centered root-mean-square error, shown
in the green circles as the distance from ERAS, also has the smallest spread for the vorticity, and

the largest for PI, probably due to the fact that the PI calculation includes multiple environmental

13



289

290

291

318

319

320

'"“ﬂh ‘

EC Earth3-Veg

‘&‘W\ %
i

GFDL CM4

) GFDL ESM4

G“a\ % -

INM- CM4—8

KIOST-ESM
i

5

W@ s

MRI-ESM2-0

-30 20 -10 0 10 20 30

Fic. 1. Difference between the PI climatology (m/s) between CMIP6 models (ensemble mean) and ERAS
reanalysis for the period 1981-2010 for the August—October (ASO) season in the northern hemisphere and the

January—March (JFM) season in the southern hemisphere.

variables. The standard deviation of the simulated pattern is given in the black circles. PI and
VSH have a large spread across models, and vorticity has the smallest. Some model outliers have

been identified by their numbers for PI and VSH. Models that are outliers in one variable are not
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necessarily outliers in other variables, such that it would be inappropriate to identify the “best” or
“worst” models overall using an individual Taylor diagram.
Interestingly, models tend to have higher correlation values and smaller root-mean square errors

in the southern hemisphere tropics in JEM (not shown) when compared to the northern hemisphere

tropics in ASO.
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2  Besides mean values, we examine how the models simulate the interannual variability of the

w environmental variables. We do this by examining the standard deviation (STD) of the seasonal
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mean variables in each hemisphere for each model and compare that with the same quantity in the
ERAS reanalysis.

In Fig. 5 we show histograms of the standard deviation of the spatial mean of PI, VSH, CRH, and
absolute vorticity in the northern hemisphere tropics during ASO for all models. For comparison,
the ERAS standard deviation for each variable is shown by the vertical red line. For all four

variables the interannual variability in most models is much lower than is the case of ERAS. Only
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a few models have higher STD values than ERAS. In the case of PI, only EC-Earth3, for VSH:
CAS-ESM2-0,EC-Earth3, GISS-E2-1-G, KIOST-ESM, for CRH: EC-Earth3 and GISS-E2-1-G
and for vorticity: only CAS-ESM2-0, i.e. EC-Earth3 has high STD values for the 3 of the variables
and GISS-E2-1-G and CAS-ESM2-0 for two of them. We also identify the models with lowest
STD values in each case. The only models that have low STD values for three variables (VSH,
CRH and vorticity) were INM-CM4-8 and INM-CMS5-0, while CNRM-CM6-1-HR has low STD
values for both CRH and vorticity. Similar behavior is noted in the southern hemisphere for the

JFM season.

c. TCGI Bias Correction

One the consequences of the biases in the individual variables is that they lead to biases in proxies
for TC activity that are functions of these variables. As an example, we show the impact of biases
in the individual variables shown above on TCGI.

We calculate the spatially integrated annual mean TCGI in the historical simulations for a subset
of 13 CMIP6 models and compare each with both the same quantity computed from ERAS and the
observed number of TCs (see Fig. 6 (a) and (c)). While there is a large spread in the magnitude
of this bias across the 13 CMIP6 models, all of them have low values of integrated TCGI. This is
true for both versions of the TCGI, TCGI-CRH-PI (Fig. 6 (a)) and TCGI-SD-PI (Fig. 6 (c)).
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The low values in model TCGI has consequences for simulated TCGI variability and change.
Since TCGI depends exponentially on environmental fields, additive biases in environmental
fields result in multiplicative biases in TCGI. To see this fact, suppose for simplicity that TCGI
depends on a single (unitless) environmental field X and that TCGly,s = exp (Xohs). Then for
a biased model environmental field Xpodqe1 = Xops + bias, the corresponding (biased) TCGlyoqel
is exp (bias) exp (Xops) = exp (bias) TCGlyps. Suppose the environmental field is changed by AX
so that X’

! odel = Xobs +bias+AX where AX might represent either year-to-year variability or

climate change. Since Xr’no del ~ Xmodel = AX, the change in the environmental field is recovered by
simply subtracting, which cancels the additive bias. On the other hand, TCGI’ —TCGl0del =

model

AX exp (bias) TCGlops, for small AX, while TCGI],  — TCGlyps ¥ AX TCGlyps. These relations
show that (i) a change in X results in a percent change in TCGI, (ii) those percent changes will also

be biased low if TCGl,oqe is biased low, and (iii) bias correcting Xogel and X’

I odel Wil give the

correct change in TCGI due to AX.

We bias correct the four environmental fields that appear in the two versions of TCGI. The bias
correction consists of subtracting the 1981-2010 model climatology to form an anomaly ¢, and
then adding the 1981-2010 ERAS climatology to this 6. The CMIP6 monthly climatology is
calculated from the ensemble mean for each model.

The bias-corrected fields are then used to calculate the bias-corrected TCGIs. The integrated
bias-corrected TCGI time-series are shown in Figs. 6 (b) and (d). The mean integrated values
of the bias-corrected TCGI are much closer to the ERAS5 and observed TC values, even though
there is still a spread across models in the possible range of values. Note as well the year to year
variability, which is clearly too small for all models, improves with the bias correction, even though
only the mean values of each field are used in the bias correction.

To determine if one of the four variables in the TCGI versions was primarily responsible for the
TCGI bias, we recalculate the TCGI, using one bias-corrected variable at a time and the remaining
variables without bias correction. For all 13 CMIP6 models examined, the CRH (or SD) variable
is primarily responsible for the TCGI biases. Bias correcting CRH (or SD) alone is sufficient to
obtain values of the integrated TCGI close to the ones from ERAS, which does not happen with
the other 3 variables. Therefore, the humidity variables (CRH and SD) are responsible for the very
low biases of TCGI in the CMIP6 models.
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We use the bias-corrected version of the TCGI in the rest of this manuscript for all models and
scenarios, using bias-corrected values for the four components of TCGI. However, we do not apply
the bias correction to the other genesis indices or other environmental fields or proxies. In most
climate model papers which did a similar analysis no bias-correction is applied (e.g., Camargo
2013; Camargo et al. 2014; Wehner et al. 2015; Cavicchia et al. 2023). One exception is the recent
manuscript of Wehner and Kossin (2024), which bias-corrected the PI based on ERAS.

d. TC activity

Given the typical low resolution of the CMIP6 models (100 km), it is expected that the climato-
logical features of their TC-like storms will have large biases — typically too few, weak and large
storms — similarly to CMIP5 models (Camargo 2013; Camargo and Wing 2016). The biases in
TC frequency can be noticed in the historical track density climatology (1981-2010) shown in
Fig. 7. While the spatial distributions of the CMIP6 models’ track densities somewhat resemble
those found in observations and ERAS, there are clear spatial biases in the models. In the North
Pacific, most models do not have a clear separation between the eastern and western basins, but
rather they are overactive in the Central North Pacific such that they show a continuous band of
activity. Most models also do not reproduce the higher TC activity in the northern hemisphere
compared with the southern hemisphere. The low TC activity in the North Atlantic is a common
bias in climate models (Shaevitz et al. 2014; Roberts et al. 2020a) and there is some improvement

in the higher resolution versions of the same models (Roberts et al. 2020a).
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Typically, as resolution increases, model performance in simulating TC characteristics improves
(Shaevitz et al. 2014; Roberts et al. 2020a), though that is not necessarily always the case (Camargo
et al. 2020; Moon et al. 2020). In Fig. 8 the relationship between the models’ mean NTC and
ACE and resolution is shown. While both the TC numbers and their intensities tend to increase as
grid spacing becomes smaller, this is not always the case, with models with the same resolution
having different values of NTC and ACE, reflecting the importance of other model characteristics,
such as physical parametrizations (Vidale et al. 2021; Russotto et al. 2022). There is a stronger
correlation between ACE and model resolution than between NTC and resolution, showing the

impact of resolution in simulating TC intensity (Murakami et al. 2015; Davis 2018).
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e. Environmental fields and TC activity

There is little evidence that climatological environmental conditions can explain differences in
climatological TC characteristics across models and reanalyses (Camargo et al. 2020; Dirkes et al.
2023). Here we examine whether there is a relation between climatological model fields and the
mean TC climatology in the CMIP6 models, as this has not yet been done. Furthermore, both
versions of TCGI are bias-corrected, which was not the case in our CMIP5 analysis, and we want
to determine if this leads to different results. In contrast to Camargo et al. (2020) here we consider
multiple genesis indices (two versions of TCGI, GPI, GPI-Xi) and the ventilation index in our
analysis.

The relationship between NTC and four genesis indices and the ventilation index is shown in
Fig. 9 (a)—(d). Similarly to Camargo et al. (2020) and Dirkes et al. (2023) there is no relationship
between NTC and the indices. Importantly, this result hold for all the genesis indices considered.
While for both TCGI versions, the models’ climatological fields have been bias corrected, that was
not done for the other indices (GPI, GPI-Xi, VI), and our results are not sensitive to that. GPI and
GPI-Xi were normalized, in order to be compatible with TCGI, but that normalization does not

affect the correlations.
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climatological mean ACE and integrated (f) PI, and (g) VI. The values of the Spear correlations in each case are

given in the top left of each panel.
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The relationship between ACE and PI, as well as between ACE and the ventilation index, are
shown in Figs. 9(e) and (f). The strongest relationship is between PI and ACE, discussed in Ting
et al. (2015, 2019); Sobel et al. (2016), but this relationship does not explain the differences in
models’ TC intensities.

Differences in climatological environmental fields across CMIP6 models do not explain the
differences in the models’ TC climatology. Other model characteristics, such as physical pa-
rameterizations and dynamical core, determine TC climatology in models (e.g. Reed et al. 2015;

Russotto et al. 2022)

5. Results - Future Projections

a. Spatial patterns - differences 21C & 20C

We next examine how the environmental fields change between the end of the 21st (2071-2100)
projections and the end of the 20th century (1971-2000) historical simulations. Figure 10 shows
the differences in the multi-model means for the three future scenarios and five environmental
fields. The top panels show the difference between the SSP2-4.5 scenario and historical, while the

mid panels and bottom panels represent the SSP3-7.0 and SSP5-8.5 differences, respectively.
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Fic. 10. Difference (“‘d”) between the multi-model mean climatology in the end of the 21C (2071-2100) and
the end of 20C (1971-2000) for the 3 future scenarios (SSP2-4.5, SSP3-7.0, SSP5-8.5) for the variables used in
TCGI: PI (panels (a),(f), and (k) in m/s), VSH (panels (b), (g) and (1) in m/s), CRH (panels (c), (h) and (m), in %),
SD (panels ((d), (i), and (n) in kg/mz), and absolute vorticity at 850 hPa (AVort, panels (e), (j), and (0) in 1074
1/s). Stippled regions are statistically significant at the 99% level using a the Kolmogorov-Smirnov significance

test.
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The potential intensity (Fig. 10 (a), (f) and (k)) increases in most of the tropics, except some
regions in the eastern North Atlantic, South Pacific and South Atlantic. As expected, the PI
magnitude change is larger the higher the emission scenario, with the largest increases (subtropical
North Pacific) and decreases (South Pacific) occurring in the SSP5-8.5 scenario. The number
of grid points in which the changes are statistically significant also increases with the emission
scenario. In the North Atlantic, North Pacific and South Pacific, the PI increases in large regions in
the subtropics, which have been associated with the poleward shift in lifetime maximum intensity
(Kossin et al. 2014, 2016; Lin et al. 2023a). Furthermore the patterns in the PI change for the
CMIP6 models are very similar to those of CMIP5 (Camargo 2013) and CMIP3 models (Vecchi
and Soden 2007a,b).

In the northern hemisphere, there are statistically significant decreases in VSH in many regions
(Fig. 10 (b), (g), (1)), in particular in the North Pacific and North Atlantic and in SSP5-8.5. The
exception is the Gulf of Mexico and Caribbean region, where the VSH increases. In the southern
hemisphere, the magnitude of the VSH increases, but mostly in regions not prone to the occurrence
of TCs, such as the South Atlantic, southeast Pacific, and the near South Africa, though hybrid
and sub-tropical storms do occur in these regions. Close to the equator in both hemispheres, the
magnitude of the VSH decreases, in particular in the tropical equatorial eastern Pacific and in the
Indian Ocean. The pattern of the VSH changes in CMIP6 are very similar to those from CMIP5
Camargo (2013); Ting et al. (2019)) and CMIP3 (Vecchi and Soden 2007a,b)

In the tropical Pacific, the CRH increases in both hemispheres (Fig. 10 (¢), (h), (m)), as well as in
the eastern North Pacific poleward of 20°N. There are also significant increases in the CRH in the
North Indian Ocean. Regions with a decrease in the CRH are the Gulf of Mexico and Caribbean,
as well as the southeast Pacific, especially for the SSP5-8.5 scenario.

In contrast, the SD decreases globally (Fig. 10 (d), (i), (n)), as was the case for the CMIP5 models
(Lee et al. 2020a). Statistically significant decreases in the SD occur in most of the North Atlantic,
the subtropical North Pacific and the eastern parts of the southern hemisphere oceans.

The relative vorticity has a bimodal pattern in changes in the eastern tropical Pacific, with an
increase close to the tropics and an increase north of that, as well as in the Caribbean. The vorticity
also increases in regions of active TC activity in a zonal band near Australia, as well as in the

subtropical North Pacific. Regions in which the vorticity decreases coincide with increases in
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VSH, such as the southeast Pacific, south of Australia and South Africa and in the North Indian
Ocean, but these are not regions in which genesis tends to occur, as it is only necessary for the
vorticity to be above certain threshold for genesis to be possible Tippett et al. (2011).

We analyzed the change of the same five environmental fields using the increase per global
warming level following Seneviratne and Hauser (2020). The resulting changes are shown in
Fig. 11 for 1.5°C, 3°C and 4°C differences from the 19C climatology shown in each row. The
number of models used in each composite depends on the warming rate of each model. The patterns
are exactly the same as those obtained at the end of the 21C for the three emission scenarios. The
changes for 1.5°C are weaker than those in SSP2-4.5 at the end of the 21C, those for 3°C are similar
to the latter, and the 4° warming changes are similar to those in SSP5-8.5 at the end of the 21C. The
close similarity between Figs. 10 and 11 is remarkable and emphasizes the robustness of changes
in these environmental fields. This does not mean the changes need be correct as representations of
the response to radiative forcings, however, since some of these responses are likely attributable to
the patterns of change in the tropical Pacific, which have been questioned due to their inconsistency

with recent historical trends (Sobel et al. 2023).
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Next we analyze changes in the genesis indices by global warming level in Fig. 12.TCGI-CRH
and TCGI-SD are shown in Fig. 12 left column and second column from the left). As discussed
in Camargo et al. (2014) and Lee et al. (2020b) for the HIRAM and CMIP5 models, TCGI-CRH
increases with global warming, while TCGI-SD decreases, and the same behavior is found here
for the CMIP6 models. Similar to other environmental fields, the changes in TCGI increase with
the amount of warming. The only region in which TCGI-CRH decreases is in the Gulf of Mexico
and both coasts of Central America, where the VSH increases with warming. GPI (Fig. 12, second
to right column) values increase with global warming for CMIP6 models, as was the case for the
CMIP5 (Camargo 2013) and CMIP3 models (Vecchi et al. 2013), indicating a more conducive
environment for genesis. GPI-Xi (Emanuel 2010) also increases in the CMIPS5 (Emanuel 2013)
and CMIP6 simulations (Emanuel 2021). Note that changes in genesis indices are restricted to

narrow bands associated with each basin’s main development region.
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Percentage change per global warming level for the Ventilation Index (pVI).
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The final variable that we examine in Fig. 12 (right panels) is the VI (Tang and Emanuel 2010,
2012). The pattern of the percentages changes in the VI by degree warming for the CMIP6 models
are very similar to those found previously in Tang and Camargo (2014) for eight CMIPS models
in the RCP5.85 scenario. In most locations the VI increases, with decreases occurring in very
few locations, in particular near the equatorial region, near Hawaii, subtropical regions of the
eastern North Pacific and the Arabian Sea. Higher values of the VI are characterized by more
hostile conditions for TC genesis and intensification. Therefore according to this measure, globally
the environment is becoming more hostile for TCs, but the largest changes occur in regions that
typically do not have TC formation, as the southeast Pacific, Northeast Atlantic, south of Australia
and South Africa. Regions with an increase in the VI are the Gulf of Mexico and Caribbean, where
the VSH, a component of VI, increases. These changes extend through the whole Atlantic basin,
toward the African coast, until the equatorial region. Note that the changes of the genesis indices
in the North Atlantic tend to be very small for GPI and TCGI-CRH.

While in the literature a single genesis index or the ventilation index is regularly used to make
TC projections, Fig. 12 indicates that the choice of the index is the main determinant of the future
projections of TC activity. Since there is no consensus regarding which index is best, we conclude
that choosing a single index to make TC future projections severely underestimates the uncertainty

of future TC projections.

b. Potential Intensity Projections and Aerosol Forcing

The global annual mean temperature increase (A7) from the 1981-2010 climatology for the
historical and the three future scenarios is shown in Fig. 13(a). The thick lines are the MMM of
the polynomial fit of the ensemble mean of each model, with the colors indicating the standard
deviation across models. A similar calculation was performed showing the increase in the P1 (API)
in the northern hemisphere in ASO (Fig. 13(b)) and in the southern hemisphere in JEM (Fig. 13(c).
The PI increase is much larger in the northern hemisphere than the southern hemisphere, for all
scenarios. For instance, by the end of the 21C the mean tropical PI increase in the northern
hemisphere is slightly above 4 m/s for the SSP5-8.5 scenario, while it is around 1.5 m/s in the
southern hemisphere. This difference was also present in the CMIP5 models (Sobel et al. 2016).
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API in the (d) northern and (e) southern hemisphere tropics in ASO and JEM respectively. Only AT values with

at least 15 models are shown. 36
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Another interesting feature, is that while the MMM global mean temperature for the SSP3-7.0
scenario is always above that in the SSP2-4.5 scenario, this is not the case for PI. This is clearer
in the northern hemisphere, where the values of PI in SSP3-7.0 are below those in SSP2-4.5 until
after 2070, while in the southern hemisphere this does not occur until close to 2080.

Another way to visualize the difference between temperature and PI is to plot the relationship
between AT and API for both hemispheres (Fig.13(d),(e)). Only cases in which AT values include
at least 15 models are plotted. API increases faster with AT in both hemispheres for the SSP2-4.5
scenario than for SSP3-7.0 scenario, in spite of the SSP3-7.0 having higher CO, concentrations
than SSP2-4.5. This difference is due to the fact that the SSP3-7.0 has a higher aerosol forcing
than the SSP2-4.5 scenario. As described in Rao et al. (2017), SSP3-7.0 has a weak pollution
control scenario, while SSP2-4.5 scenario has a medium pollution control scenario and SSP5-8.5
has a strong pollution control scenario. Therefore SSP3-7.0 has a stronger aerosol forcing than
both other future scenarios considered here. Lund et al. (2019) estimated that the total radiative
forcing of aerosols relative to 1750 was around -0.5 W/m? for the SSP3-7.0 scenario, compared
with -0.2 W/m? for the SSP2-4.5 scenario.

As shown in Sobel et al. (2019) and in Ting et al. (2015) using single forcing CMIP5 model
simulations, aerosol cooling reduces PI more strongly than greenhouse gas warming increases PI by
approximately a factor of two. Given that the aerosol forcing in SSP3-7.0 is relatively stronger than
that in SSP2-4.5, we infer that the aerosol cooling in the SSP3-7.0 simulations is compensating for
the warming due to the greenhouse gases to yield a PI increase slower than in the case of SSP2-4.5.
In the case of the global mean surface temperature, however, aerosol and greenhouse gas forcings
are equivalent, and all that matters is the net radiative forcing rather than its partitioning into
shortwave and longwave components. As shown in Sobel et al. (2019) the greater effect of aerosol
forcing is due to the fact that the shortwave forcing has a greater direct, temperature-independent
component at the surface than longwave forcing for the same SST change, the latter of which was
also shown using a single column model by Emanuel et al. (2013). It is interesting that this effect

is clearly noticeable in simple time-series of AP/ when comparing these two future scenarios.
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c. Potential Intensity Projections and Model Sensitivity

It is well known that the amount of warming for the same amount of greenhouse forcing varies
across models, including the CMIP6 models. In particular, Hausfather et al. (2022) argued
that when performing MMM averages, one should exclude models that overestimate the future
warming. Based on evidence from paleoclimate, observations and modeling, they concluded that
the equilibrium climate sensitivity (ECS) is very likely to be in the range 2.6 — 3.9°C and that models
with high climate sensitivity (ECS of at least 5°C) are considered “too hot”. Here we examine how
PI projections vary depending on whether we consider the MMM of all CMIP6 models, or only
the models that are have the “right” model sensitivity, i.e., if we exclude the models that are “too
hot”. Following Hausfather et al. (2022)’s classification of the CMIP6 models, we calculated the
mean increase in tropical PI in each hemisphere for ASO (northern hemisphere) and JFM (southern
hemisphere) at the end of the 21C (2091 — 2100) compared with the 1981 — 2010 climatology
(Fig. 14). In the northern hemisphere, the AP/ is statistically significantly different at the end of
the 21C for the SSP3-7.0 and SSP5-8.5 scenarios, between the two multi-model averages, with the
median of the multi-model of the “right models” slightly smaller than that of all models, and the
difference increasing with the warming scenario, i.e., lowest for SSP2-4.5, highest for SSP5-8.5.
The same occurs in the southern hemisphere, but as the API is smaller in that hemisphere, the
differences between the multi-model mean are smaller and are not statistically significant. Note
that even in the case with the largest difference between the two multi-model means, i.e., northern
hemisphere for SSP5-8.5, these differences are still small. The effect of considering the “too hot”

models is not large for the seasonal mean PI.
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Fic. 14. Pl increase (in m/s) at the end of the 21C (2091 — 2100) compared with the 1981 — 2010 climatology
for all models (dark colored boxplots on the right) and models with the “right” climate sensitivity (lighter colored
boxplots on the left) in the northern hemisphere for ASO (top panel) and southern hemisphere for JFM (bottom
panel), for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). Not all models considered here

have ECS values available.
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Figure 15 shows the scatter plots of the increase in PI (dPI) at the end of the 21C (2091 — 2100)
from the end of the 20C (1981 — 2010) and the models’ ECS in the northern (a) and southern (b)
hemisphere, using the ECS values from Hausfather et al. (2022). Only models with ECS listed
in Hausfather et al. (2022) were included. The correlation between dPI and ECS varies between
0.38 and 0.50 depending on the future scenario and hemisphere considered, and it is statistically
significant in all cases. While there is a clear relationship between these two quantities for all
cases, in both hemisphere the lowest correlation occurs for SSP3-7.0, the scenario with the highest
aerosols concentration, which should not be surprising, as ECS only considers changes in COs.
However, it is important to note that there is large spread in dPI values for models with the same
ECS and scenario. In the northern hemisphere the highest dPI values per ECS value are typically
from SSP5-8.5 and the lowest from SSP2-4.5, with SSP3-7.0 in between them. This separation
does not work as well in the southern hemisphere, with the dPI values from the 3 future scenarios

more mixed.

d. NTC and ACE projections

We now examine how the characteristics of the models’ TCs changed between the end of the
20C and the 21C. There are only 20 models which have the TCs tracked for both historical and
SSP5-8.5, marked with a star in Tables 1 and 2.

The percentage change in the median global NTC per year between the two 30-year periods
for each model is shown in Fig. 16(a). In most models there is a reduction in the global annual
frequency of TCs, similar to past studies e.g., Camargo (2013); Roberts et al. (2020b). Again
this is in contrast with the increase in most genesis indices shown in Fig. 12, except TCGI-SD, as

discussed in Camargo et al. (2014); Lee et al. (2020a, 2023).
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Fic. 15. Scatter plots of increase in P in m/s at the end of 21C (2091-2100) from the end of the 20C climatology
(1981-2010) versus ECS values from Hausfather et al. (2022) for the (a) northern hemisphere in ASO and (b)
southern hemisphere in JFM,for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). The
correlation values for each scenario and hemisphere are given in each panel. Not all models considered here

have ECS values available.
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The percentage change in the median ACE per year between future and historical scenarios is
shown in Fig. 16(b). Similar to NTC, there is a large decrease in ACE across most models. Given
that ACE is an integrated measure of frequency (NTC), duration and intensity, we further examined
the change in the storms lifetime maximum intensity (LMI). The percentage change in the 75th
percentile values of storms LMI is shown in Fig. 16(c). The LMI percentage changes are minimal
between the two scenarios. Therefore, the changes in ACE are dominated by changes in the TC

frequency, given that the changes in TC duration are not noticeable (not shown).

6. Conclusions

In this manuscript, we examined the characteristics of environmental fields associated with TCs
in CMIP6 historical and future simulations, as well as the TC-like storms tracked in these models.
We found that TC-associated environmental fields in the CMIP6 models have large biases in their
historical climatological patterns, magnitude, and interannual variability compared with ERAS.
These biases are present in thermodynamic and dynamic variables. There are clear systematic
biases across models from the same modeling centers, as the patterns of the biases are extremely
similar. The largest differences among environmental variables climatology across reanalyses are
in the humidity fields. Similarly, there is a large spread across models in the climatological values
of environmental fields associated with humidity, such as PI and CRH. Furthermore, the variance
of all environmental variables examined is much smaller than in reanalysis.

The biases in the individual environmental variables lead to biases in TC proxies such as genesis
indices. By bias-correcting the individual components of these indices, before computing them,
one can obtain values much closer values to the ERAS ones. Because of the nonlinearity of the
indices’ dependences on the individual variables, correcting mean biases in the individual variables
improves the biases not just in the mean indices, but in their variability as well. Column humidity
is the variable primarily responsible for the bias in the indices, and thus the one whose correction
has the greatest impact.

Similarly to CMIP5 and reanalyses products, there is no clear relationship between the mean
TC activity (NTC and ACE) and the climatological values of the environmental fields and proxies

across CMIP6 models. Furthermore, models with the same horizontal resolution have a large range
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of NTC and ACE values, even if increased the model resolution leads in general to higher NTC
and ACE values in CMIP6 models.

The patterns of the environmental fields in the CMIP6 model projections are very similar to those
in CMIP5. These patterns are robust and similar across projection scenarios and GWL. Models
with greater climate sensitivity have larger increases in PI, but the differences are only significant
for high emissions scenarios and at the end of 21C. Furthermore, the compensation between aerosol
and GHG forcings in the PI increase is important, such that the scenarios with high aerosol loading
exhibit slower increases in PI.

Projections based on genesis indices are strongly dependent on the formulation of the genesis
index used, and projections based on a single genesis index should be taken with extreme caution,
as there is no way to determine which genesis index formulation is the “correct” one. In particular,
while some formulations of the genesis indices project an increase in TC activity, others project a
decrease, in agreement with what is obtained from the diagnostics of TC activity in CMIP6 models
(NTC and ACE). Recently, Chavas et al. (2024) developed a new genesis index more heavily based
in theory than previous indices. While there is no complete theory for genesis our recommendation
is to improve genesis indices using robust theoretical principles. Furthermore, the addition of seeds
survival rate into genesis indices, as done in Hsieh et al. (2020) could potentially lead to more
robust projections from genesis indices, though there are still conflicting perspectives about this
issue (e.g. Emanuel (2022)).

The climatology of TC-like storms in the CMIP6 has significantly improved compared with
CMIPS5, probably associated with the increase in horizontal resolution across the multi-model
ensemble. Other model changes from CMIP5 to CMIP6, such as convective parametrization, are
model dependent and could affect TC activity in ways that are not coherent across models. In spite
of the increased model resolution, TC activity still shows substantial biases, as the model resolution
is still not high enough to resolve TCs. However, models with similar resolution can have a large
range of skill in reproducing TC climatology. Similar to previous generations, there is a decline in
NTC in the future for most models at the end of the 21C under a high emission scenario.

Systematic biases in the CMIP6 models, such as the trend in the spatial pattern of tropical Pacific
SST, need to be addressed in order to obtain a better estimate of the uncertainty range of TC

projections, independently of the methodology used.
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