

Tropical cyclones and associated environmental fields in CMIP6 models

Article

Accepted Version

Camargo, S. J., Tippett, M. K., Sobel, A. H., Lee, C.-Y., Fosu, B. and Hodges, K. I. ORCID: <https://orcid.org/0000-0003-0894-229X> (2025) Tropical cyclones and associated environmental fields in CMIP6 models. *Journal of Climate*, 38 (15). pp. 3877-3902. ISSN 1520-0442 doi: [10.1175/JCLI-D-24-0629.1](https://doi.org/10.1175/JCLI-D-24-0629.1) Available at <https://centaur.reading.ac.uk/120038/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1175/JCLI-D-24-0629.1>

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

Central Archive at the University of Reading

Reading's research outputs online

1 Tropical Cyclones and Associated Environmental Fields in CMIP6 models

2 Suzana J. Camargo^{a,b}, Michael K. Tippett^c, Adam H. Sobel^{a,c},
3 Chia-Ying Lee^a, Boniface Fosu^d, and Kevin I. Hodges^e

4 ^a *Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY*

5 ^b *Columbia Climate School, Columbia University, New York, NY*

6 ^c *Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY*

7 ^d *Department of Geosciences, Mississippi State University, Mississippi State, MS*

8 ^e *National Centre for Atmospheric Science and Department of Meteorology, University of
9 Reading, Reading, United Kingdom*

10 *Corresponding author:* Suzana J. Camargo, suzana@ldeo.columbia.edu

11 ABSTRACT: The authors analyze the environmental fields associated with tropical cyclone (TC)
12 activity in the Coupled Model Intercomparison Project Phase 6 (CMIP6) models, as well as the
13 TC-like storms in those models. First, the model biases in the historical climatological means
14 of chosen environmental fields are evaluated against the fifth generation of the European Centre
15 for Medium-Range Weather Forecasting (ECMWF) atmospheric reanalysis (ERA5). Second, we
16 show that the interannual variability of these fields is typically much smaller in models than in
17 reanalysis. Applying a mean bias correction to these fields before calculating tropical cyclone
18 genesis indices improves the variability of the modeled indices compared to those in reanalysis,
19 as well as the means, due to the nonlinear dependence of the indices on these fields. The authors
20 consider how these environmental fields change in the CMIP6 models, using three future scenarios
21 separately as well as combining scenarios and times according to specific greenhouse warming
22 levels. Multiple proxies for TC activity are considered and we show that the signs of the future
23 changes are dependent on the choice of genesis index. The relationship between climate sensitivity
24 and potential intensity change across the multi-model ensemble is examined. The statistics of the
25 TC-like structures in the historical simulations are also examined, using the number of tropical
26 cyclones (NTC) and accumulated cyclone energy (ACE) as diagnostics, including calculations of
27 the percentage changes in NTC and ACE at the end of the 21C as compared with the 20C. Large
28 decreases in both of these quantities are found in the highest emission scenario.

29 **1. Introduction**

30 Future projections of tropical cyclone activity have been explored and discussed numerous times
31 in the literature over the last few decades (Knutson et al. 2010, 2020; Camargo and Wing 2016;
32 Camargo et al. 2023). An intrinsic problem is that tropical cyclones (TCs) require high horizontal
33 resolution to be well simulated in numerical models, especially in order to represent high-intensity
34 storms. At the same time, large numbers of years, ensembles, scenarios, and models are required
35 to represent the climate change signal and its uncertainties. These two objectives are difficult to
36 satisfy simultaneously.

37 One common approach has been to compare historical and future TCs' characteristics (e.g., fre-
38 quency, intensity, and duration) in standard global climate models (e.g., Camargo 2013; Tory et al.
39 2013; Chand et al. 2017; Bell et al. 2019; Feng et al. 2024). Due to these models' low resolutions,
40 among other reasons, such as systematic biases associated with convection parametrization, the
41 resulting TC climatologies are not very realistic, with simulated TCs weaker and larger than those
42 observed being a particularly obvious bias (Camargo and Wing 2016; Camargo 2013; Shaevitz
43 et al. 2014).

44 A second approach is to analyze model TCs in high-resolution climate models (25 - 50 km grid
45 spacings), as was done recently in the HighResMIP project (Haarsma et al. 2016; Roberts et al.
46 2020a,b). These studies show improved representation of TCs with increased resolution, consistent
47 with other studies (Zhao and Held 2012; Manganelli et al. 2012; Wehner et al. 2014; Roberts et al.
48 2015; Vidale et al. 2021; Russotto et al. 2022; Moon et al. 2020, 2022), in particular TC intensity,
49 though there remain biases in multiple aspects of TC activity, such as track characteristics and
50 landfall locations. However, the computational cost of these high-resolution climate simulations
51 limits the number of ensemble members, number of future scenarios, and simulation duration.
52 While the representation of TCs in convection-permitting models such as those in Judt et al. (2021)
53 (2.5 - 8km) are much more realistic than in models with lower resolution, these simulations are
54 typically too short (a few years or months) to provide robust TC projections. Currently, these
55 high-resolution simulations are too computationally expensive to be performed using multiple
56 ensembles and for many years, however the situation is changing fast (Schär et al. 2020).

57 Another common approach is to downscale global climate models to basin-scale using high-
58 resolution regional models (Knutson et al. 2013, 2022; Patricola et al. 2014, 2017; Fu et al. 2019).

59 Drawbacks to this approach include that it does not produce consistent global (i.e., multi-basin)
60 TC projections and that it has issues at basin boundaries (Landman et al. 2005; Zick and Matyas
61 2015; Baudouin et al. 2019). Global climate models with variable-resolution grids avoid boundary
62 issues (Zarzycki et al. 2014; Stansfield et al. 2020), but only TCs over the region of high resolution
63 are well resolved.

64 An alternative methodology is to generate synthetic storms, either using statistical (Vickery 2005;
65 Hall and Jewson 2007; Nakamura et al. 2015; Bloemendaal et al. 2020) or statistical-dynamical
66 (Emanuel et al. 2006; Lee et al. 2018; Jing and Lin 2020; Lin et al. 2023b; Xu et al. 2024) models.
67 One appealing feature of these models is the low computational cost and consequent large sample
68 number of TCs that can be easily simulated, though a drawback is the limited representation of
69 physical processes.

70 An approach that bypasses model TCs is to infer the projection of TC characteristics based on
71 environmental proxies (genesis indices, potential intensity, ventilation index, etc.) for TC activity
72 (e.g. Emanuel 1988; Emanuel and Nolan 2004; Emanuel 2010; Tang and Emanuel 2010, 2012).
73 However, the behavior of TC proxies in projections sometimes disagrees with TC projections from
74 high-resolution models (Camargo et al. 2014; Wehner et al. 2015). Furthermore, genesis indices
75 are based on statistical relationships, derived from reanalysis data and TC “best track” data sets
76 from the recent historical period, rather than physical theory. Good performance of a genesis
77 index in a particular basin, period, or time scale, using reanalysis fields does not guarantee good
78 performance in models or in future climates.

79 Finally, all approaches used to make TC projections are impacted, indirectly or directly, by model
80 biases. One well-known issue in Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5
81 and CMIP6) models is their failure to match the observed strengthening of the tropical Pacific
82 sea surface temperature (SST) zonal gradient over the historical period, possibly a consequence
83 of model bias (Seager et al. 2019). Given the important role of the El Niño-Southern Oscillation
84 (ENSO) in modulating TC activity, and the similarity of sea surface temperature (SST) trend
85 patterns to El Niño (in models) or La Niña (in observations) this disagreement with observations
86 may be expected to have important consequences for TC projections (Sobel et al. 2023).

87 This manuscript addresses the following topics in a large number of CMIP6 models: (i) biases
88 in environmental fields associated with TC activity; (ii) the relationship between model TCs

and environmental fields; changes in (iii) TC-related environmental fields and (iv) model TC activity with anthropogenic climate change. Once we examine the climatological and interannual variability biases across the CMIP6 models, we show their impact on genesis indices and propose a bias correction to address this issue. Next, we analyze the main characteristics of the TCs in the CMIP6 models and how they relate to model resolution and environmental fields. The response of environmental fields and TCs to greenhouse gases forcing is then discussed, including the role of aerosols in the different future scenarios.

Section 2 describes the environmental fields and proxies considered. The models, datasets and methods used are given in Section 3. The historical simulations are analyzed in Section 4 and future simulations in Section 5. The conclusions are presented in Section 6.

2. Environmental Field Proxies

We analyze the biases in the spatial climatological patterns and interannual variability of key environmental variables associated with TCs, including potential intensity (PI), vertical wind shear (VSH), column relative humidity (CRH), and absolute vorticity at 850hPa.

Potential Intensity (PI) is the theoretical maximum intensity that a TC could reach under given environmental conditions (Emanuel 1988). PI computed from reanalysis data explains both observed TC intensity trends and interannual variability to some degree (Emanuel 2000; Wing et al. 2007, 2015). Since Emanuel (1987) first showed that PI is expected to increase with anthropogenic climate change, projections of PI have been extensively discussed in the literature, including in previous generations of CMIP models, such as CMIP3 (Vecchi and Soden 2007a,b), and CMIP5 (Camargo 2013). Here PI is calculated following the Bister and Emanuel (2002) algorithm.

Deep-layer vertical wind shear (VSH), the difference between horizontal winds at 200 and 850 hPa, influences TC genesis and intensification (e.g., Rios-Berrios et al. 2023, and references therein). Overall, strong VSH tends to weaken TCs, as the TC vortex becomes vertically tilted. However, this response is sensitive to other factors, such as winds at other levels and the presence of dry environmental air. Earlier VSH projections under anthropogenic climate change have been widely discussed in the literature (Vecchi and Soden 2007b; Camargo 2013), as have recent observed trends (Kossin 2017) and the impact of decadal variability on Atlantic VSH projections

117 (Ting et al. 2019). Here we will analyze only the VSH magnitude, defined as the magnitude of the
118 vector difference of winds at 200 hPa and 850 hPa.

119 The absolute vorticity at 850 hPa is calculated by adding the planetary vorticity to the relative
120 vorticity at 850 hPa. The column relative humidity (CRH) is the ratio between the column integrated
121 water vapor and the saturated water vapor, and the saturation deficit (SD) is their difference. The
122 saturated water vapor is calculated following Bretherton et al. (2004). We were not able to calculate
123 CRH, SD, and indices that used these variables for a few models that did not provide column water
124 vapor as one of model outputs in the CMIP6 database.

125 We consider three genesis index formulations. The first is the Emanuel's genesis potential
126 index(GPI Emanuel and Nolan 2004; Camargo et al. 2007), a function of absolute vorticity at 850
127 hPa, vertical wind shear, potential intensity, and relative humidity at 600 hPa. Emanuel (2010)
128 introduced a new version of GPI in which the humidity variable is a non-dimensional parameter χ ,
129 a measure of the entropy deficit of the middle troposphere. To differentiate from the original GPI,
130 we refer to this new version here as "GPI- χ ".

131 The tropical cyclone genesis index (TCGI) comes from a Poisson regression of TC numbers
132 with four environmental fields, as described in Tippett et al. (2011) and modified in Camargo
133 et al. (2014). Similarly to Lee et al. (2018) and Lee et al. (2020a), we consider two versions
134 of the TCGI. The first uses as humidity variable CRH (TCGI-CRH), and the second uses SD as
135 the humidity variable (TCGI-SD). As initially discussed in Camargo et al. (2014) for a single
136 climate model (HiRAM) and further explored in Lee et al. (2018, 2020a, 2022, 2023); Sobel
137 et al. (2021) for reanalysis and CMIP5 models downscaling, these two TCGI versions have almost
138 indistinguishable behavior in the historical climate, but differ in future projections. In addition
139 to CRH or SD, TCGI includes PI, VSH and a "clipped" vorticity (maximum absolute value of
140 $3.7 \times 10^{-5} \text{ 1/s}$), as described in Tippett et al. (2011). The TCGI coefficients here are based on the
141 European Centre for Medium-Range Weather Forecasts (ECMWF) 5th generation global reanalysis
142 (ERA5; Hersbach et al. (2020)) reanalysis fields are given in the Supplemental Material and are
143 an update of the version used in Lee et al. (2018, 2020a), which was based on the ECMWF ERA-
144 Interim reanalysis (Dee et al. 2011). Dirkes et al. (2023) compared the characteristics of TCGI
145 with Poisson fits based on different reanalyses, as well as GPI. They found that the differences

146 in the representation of large-scale environmental variables relevant for TC development do not
147 explain the differences and spread in TC climatologies across reanalyses.

148 Another proxy used is the ventilation index (VI) developed by Tang and Emanuel, which is a
149 function of VSH, PI and χ , obtained based solely on theoretical concepts and is associated with
150 both tropical cyclogenesis and TC intensification (Tang and Emanuel 2010, 2012).

151 Since most genesis indices include the environmental variables listed above, environmental biases
152 will be translated into biases in these genesis indices as well.

153 3. Data, Models and Methods

154 a. Data

155 The environmental fields are taken from ERA5 reanalysis (Hersbach et al. 2020), regridded to a
156 $2^\circ \times 2^\circ$ grid for comparison with the CMIP6 model data.

157 The observed tropical cyclone data are from the International Best Track Archive for Climate
158 Stewardship (IBTrACS), version 4 from USA centers, with data from the National Hurricane Center
159 or the Joint Typhoon Warning Center for all basins (Kruk et al. 2010; Knapp et al. 2010; Schreck
160 et al. 2014).

161 The monthly CMIP6 (Eyring et al. 2016) data output were used for the calculation of the
162 environmental fields and the CMIP6 6-hourly data for tracking the models' TCs. The models
163 included in our analysis are listed in Tables 1 and 2, with additional information on the ensembles
164 for environmental fields and TC tracking provided on Supplementary Tables S1–S4.

178 b. Models - Environmental Fields

179 We focus here on 45 CMIP6 global climate models (Eyring et al. 2016). The CMIP6 historical
180 simulations are forced by common datasets that are largely based on the best estimates of observa-
181 tions in the period 1850–2014. We consider three future scenarios, or socio-economic pathways for
182 the period 2015–2100: SSP2-4.5, SSP3-7.0, and SSP5-8.5 (O'Neill et al. 2016). These correspond
183 to middle of the road, regional rivalry and high emission scenarios, respectively.

184 The 45 models were chosen based on the availability of their environmental fields and scenarios
185 necessary for our analysis and are listed in Tables 1 and 2, together with the number of ensemble
186 members considered. Not all 45 models have all variables for all scenarios analyzed. Therefore, we

Number	Model	Resolution	Historical	SSP2-4.5	SSP3-7.0	SSP5-8.5	References
1	ACCESS-CM2★	$1.9^\circ \times 1.3^\circ$	3	3	3	5	Bi et al. (2020)
2	<u>ACCESS-ESM1-5■</u>	$1.9^\circ \times 1.2^\circ$	20	11	10	40	Ziehn et al. (2020)
3	AWI-CM-1-1-MR	$1.9^\circ \times 1.9^\circ$	5	1	5	1	Semmler et al. (2020)
4	BCC-CSM2-MR★	$1.1^\circ \times 1.1^\circ$	3	1	1	1	Wu et al. (2019)
5	CAMS-CSM1-0	$1.1^\circ \times 1.1^\circ$	3	2	2	2	Rong et al. (2018, 2021)
6	CanESM5△	$2.8^\circ \times 2.8^\circ$	65	50	50	50	Swart et al. (2019)
7	CanESM5-CanOE	$2.8^\circ \times 2.8^\circ$	3	3	3	3	Swart et al. (2019)
8	CAS-ESM2-0	$1.4^\circ \times 1.4^\circ$	4	2	1	2	Zhang et al. (2020)
9	<u>CESM2</u>	$1.3^\circ \times 0.9^\circ$	11	6	6	5	Danabasoglu et al. (2020)
10	CESM2-WACCM	$1.3^\circ \times 0.9^\circ$	3	5	3	5	Danabasoglu et al. (2020)
11	CIESM	$0.9^\circ \times 0.9^\circ$	3	1	—	1	Lin et al. (2020)
12	CMCC-CM2-SR5★	$1.25^\circ \times 0.9^\circ$	1	1	1	1	Lovato et al. (2022)
13	CMCC-ESM2★	$1.25^\circ \times 0.9^\circ$	1	1	1	1	Lovato et al. (2022)
14	<u>CNRM-CM6-1</u>	$1.4^\circ \times 1.4^\circ$	28	10	6	6	Volodire et al. (2019)
15	CNRM-CM6-1-HR★	$0.5^\circ \times 0.5^\circ$	1	1	1	1	Volodire et al. (2019)
16	CNRM-ESM2-1△	$1.4^\circ \times 0.4^\circ$	9	10	5	5	Séférian et al. (2019)
17	E3SM-1-1	$1.0^\circ \times 1.0^\circ$	1	—	—	1	Golaz et al. (2019)
18	<u>EC-Earth3★</u>	$0.5^\circ \times 0.5^\circ$	18	22	7	8	Döschner et al. (2022)
19	EC-Earth3-CC	$0.5^\circ \times 0.5^\circ$	1	1	—	1	Döschner et al. (2022)
20	EC-Earth3-Veg■	$0.5^\circ \times 0.5^\circ$	9	8	6	8	Döschner et al. (2022)
21	EC-Earth3-Veg-LR■	$0.7^\circ \times 0.7^\circ$	3	3	3	3	Döschner et al. (2022)
22	FGOALS-f3-L	$1.3^\circ \times 1.0^\circ$	3	1	1	1	He et al. (2019)
23	FGOALS-g3	$2.0^\circ \times 2.3^\circ$	6	4	5	4	Li et al. (2020)

165 TABLE 1. List of CMIP6 models (part 1) used in this manuscript, their nominal approximate grid resolutions in
 166 degrees (longitude \times latitude) their assigned number in this manuscript and the number of ensembles used in each
 167 case. The specific ensembles and model centers are given in the Supplementary material. Models underlined
 168 have been selected for downscaling. Models with a ★ have had TCs tracked for the historical and SSP5-8.5
 169 simulations, though not necessarily for all ensembles available for the environmental fields. Similarly, models
 170 marked with a ■ (△) are tracked only for the historical (SSP5-8.5) simulations. The models underlined have been
 171 selected for downscaling.

187 included models with all environmental fields available for the historical and SSP5-8.5 simulations,
 188 and this leads to the 45 models chosen. The exceptions are the variables CRH and SD, which could
 189 not be calculated for the FGOALS-f3-L or FIO-ESM2-0 models, as the column water vapor from
 190 these models was not available. Only 40 models and 36 models have the necessary data available

Number	Model	Resolution	Historical	SSP2-4.5	SSP3-7.0	SSP5-8.5	References
24	FIO-ESM-2-0	$1.3^\circ \times 0.9^\circ$	3	3	—	3	Bao et al. (2020)
25	GFDL-CM4■	$1.3^\circ \times 1.0^\circ$	1	1	—	1	Held et al. (2019)
26	<u>GFDL-ESM4</u>	$1.3^\circ \times 1.0^\circ$	3	1	1	1	Dunne et al. (2020)
27	<u>GISS-E2-1-G★</u>	$2.5^\circ \times 2.0^\circ$	47	20	18	11	Kelley et al. (2020); Miller et al. (2021)
28	GISS-E2-1-H	$2.5^\circ \times 2.0^\circ$	25	—	—	5	Kelley et al. (2020); Miller et al. (2021)
29	<u>HadGEM3-GC31-LL■</u>	$1.9^\circ \times 1.25^\circ$	5	4	—	4	Kuhlbrodt et al. (2018); Andrews et al. (2019)
30	HadGEM3-GC31-MM★	$0.8^\circ \times 0.6^\circ$	2	—	—	4	Kuhlbrodt et al. (2018); Andrews et al. (2019)
31	INM-CM4-8	$2.0^\circ \times 1.5^\circ$	1	1	1	1	Volodin et al. (2010)
32	INM-CM5-0	$2.0^\circ \times 1.5^\circ$	10	1	5	1	Volodin et al. (2017)
33	<u>IPSL-CM6A-LR★</u>	$2.5^\circ \times 1.3^\circ$	30	8	11	6	Boucher et al. (2020)
34	KACE-1-0-G	$1.9^\circ \times 1.25^\circ$	3	3	3	3	Lee et al. (2020b)
35	KIOST-ESM2-0★	$2.0^\circ \times 2.0^\circ$	1	—	—	1	Pak et al. (2021)
36	<u>MIROC6★</u>	$1.4^\circ \times 1.4^\circ$	50	3	3	50	Tatebe et al. (2019)
37	MIROC-ES2L★	$2.8^\circ \times 2.8^\circ$	30	30	10	10	Hajima et al. (2020)
38	<u>MPI-ESM1-2-HR★</u>	$0.9^\circ \times 0.9^\circ$	10	2	10	1	Müller et al. (2018); Gutjahr et al. (2019)
39	MPI-ESM1-2-LR★	$1.9^\circ \times 1.9^\circ$	10	10	10	10	Mauritsen et al. (2019)
40	<u>MRI-ESM2-0★</u>	$1.1^\circ \times 1.1^\circ$	6	2	5	6	Yukimoto et al. (2019)
41	NESM3★	$1.9^\circ \times 1.9^\circ$	5	2	—	2	Cao et al. (2018)
42	NorESM2-LM★	$2.0^\circ \times 2.0^\circ$	3	3	3	1	Seland et al. (2020)
43	NorESM2-MM★	$1.0^\circ \times 1.0^\circ$	2	2	1	1	Seland et al. (2020)
44	TaiESM1★	$1.25^\circ \times 0.9^\circ$	2	1	1	1	Wang et al. (2021)
45	<u>UKESM1-0-LL★</u>	$1.9^\circ \times 1.3^\circ$	18	5	10	5	Sellar et al. (2019)

172 TABLE 2. List of CMIP6 models (part 2) used in this manuscript, their nominal approximate grid resolutions
 173 in degrees (longitude \times latitude), assigned number in this manuscript and the number of ensembles used in each
 174 case. The specific ensembles, and model centers are given in the Supplementary material. Models with a ★ have
 175 had TCs tracked for the historical and SSP5-8.5 simulations, though not necessarily for all ensembles available
 176 for the environmental fields. Similarly, models marked with a ■ (Δ) are tracked only for the historical (SSP5-8.5)
 177 simulations. The models underlined have been selected for downscaling.

191 for the SSP2-4.5 and SSP3-7.0 scenarios. The environmental fields for all models were regridded
 192 to a common grid of $2^\circ \times 2^\circ$ in longitude and latitude.

193 For each model and scenario, all ensemble members available are included in the model ensemble
 194 mean and spread. The specific ensembles used in the environmental analysis are given in the
 195 supplementary material, Tables S1 and S2. We have also analyzed the environmental fields from

196 the historical simulations of additional seven models (Table S3), and these will be used in a few
197 specific figures that include model TCs statistics, as discussed below.

198 *c. Models - Tropical Cyclones*

199 We also discuss the characteristics of models' TCs, which were tracked using TRACK (Hodges
200 1994; Hodges et al. 2017) for the historical and SSP5-8.5 simulations of a subset of models that
201 have the necessary 6-hourly output variables. The models with TCs tracked are marked in Tables
202 1 and 2. The TCs were tracked in the historical simulations for the period 1950–2014 and in
203 the SSP5-8.5 for the full period (2015–2100). To increase the sample size of model TCs in the
204 historical simulations, we calculated and included the number of TCs (NTC), accumulated cyclone
205 energy (ACE), and environmental fields from a few models that had the necessary fields to track
206 TCs in the historical but not the SSP5-8.5 simulations (see Table S3). The full list of models and
207 number of ensembles in which TCs were tracked are given in Table S4.

208 *d. Methods*

209 All maps below show the August to October (ASO) seasonal mean in the northern hemisphere
210 and January to March (JFM) seasonal mean in the southern hemisphere. These choices are not
211 optimal for all basins, as the peak season varies from basin to basin, but we judged them optimal
212 for the global collection of all basins. The choice is particularly poor in the case of the North Indian
213 Ocean, however, where TCs occur almost exclusively in the pre- and post- monsoon seasons.

214 In cases when the environmental variables are integrated spatially, the tropical region over oceans
215 between 0–40°N is considered for the northern hemisphere and similarly 40°S–0 in the southern
216 hemisphere.

217 When defining model biases the reference is the climatology of ERA5 reanalysis fields in the
218 period 1981 - 2010. For instance, the climatology of the ERA5 reanalysis is subtracted from the
219 ensemble mean climatology of each model and that difference is defined as the climatological bias.

220 One standard diagnostic to analyze model biases is the Taylor diagram (Taylor 2001), which
221 concisely describes how well model spatial patterns compare with observations and other models
222 using correlation, root-mean-square difference, and the ratio of their variances. We use Taylor dia-

grams to compare the climatological environmental fields of CMIP6 historical model simulations with each other and with ERA5 climatological fields.

Two standard diagnostics are used to characterize the TCs tracked in the climate models: the number of TCs (NTC), and the accumulated cyclone energy (ACE) (Bell et al. 2000). The latter is defined as the sum of the squares of the TCs' maximum sustained wind speeds every six hours, for snapshots in which they exceed 34kt. Both these quantities have been regularly used to characterize TC climatologies in observations and models (e.g., Camargo and Sobel 2005; Camargo et al. 2005; Camargo 2013; Shaevitz et al. 2014). We examine the relationships between the environmental fields and these two TC quantities (NTC and ACE) as was done in Camargo et al. (2020) for models and Dirkes et al. (2023) for reanalyses.

When exploring the differences in the environmental fields between the 20C and 21C, we focus on the last 30 years of each century i.e., the difference between the multi-model means in 1971–2000 and 2071–2100. We consider the three future scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5 separately. The multi-model mean in the historical simulation subtracted from each future scenario is calculated using the same models in the historical and each of the future scenarios.

We also examine how the differences between the 20C and 21C depend on the models chosen. In that case, we follow Hausfather et al. (2022), who examined the properties of the CMIP6 models and separated them in two groups, the models that are “too hot” and the ones that are “likely”. The distinction between these two groups is based on the transient climate response (TCR) metric (Zelinka et al. 2020; Nijssse et al. 2020). A model with a TCR in the range of 1.4–2.2°C is considered likely, while one with a larger TCR is labeled “too hot”. TCR is defined as the amount of global warming in the year in which atmospheric CO₂ concentrations have doubled after having increased steadily by 1% each year relative to the 1850–1899 baseline, based on global mean surface temperature for each model.

An alternative way to look at how the environmental fields change in the future is based on global warming level (GWL), which combines multiple future scenarios and takes into account that models have different climate sensitivities. This approach is widely used in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (Arias et al. 2021). The calculations here follow the procedure developed by Seneviratne and Hauser (2020) for each model and future scenario:

253 1. The global annual ensemble mean temperature is calculated (latitude weighted).

254 2. The historical and future scenario temperature data are concatenated.

255 3. The mean of the temperature in the period 1850–1900 is subtracted from the concatenated

256 data.

257 4. The 20-year centered running mean temperature is calculated.

258 5. Find the first year in which the running mean exceeds the desired GWL, or “central year”.

259 6. The period for each GWL is defined as starting 10 years prior to the “central year” and ending

260 9 years after that year.

261 This calculation is performed for three GWLs: 1.5°C, 3.0°C and 4.0°C. Once the years for each

262 GWL are defined, the multi-model mean change by GWL is obtained by subtracting the 19C

263 climatology (1850–1900). Note that one model can contribute with more than one ensemble mean

264 field data for each GWL (Seneviratne and Hauser 2020).

265 Time-series of the global mean temperature are also constructed for each model ensemble mean,

266 for both historical and future scenarios, using the procedure described above. For each model,

267 a polynomial fit is then obtained for the temperature time-series, for the concatenated historical

268 and future scenario. The same procedure is used for the mean PI in each hemisphere (tropics) to

269 explore the relationship between global warming and PI.

270 4. Results - Historical Simulations

271 a. Model Biases - Climatology

272 In this section we analyze the biases in key environmental variables typically associated with

273 tropical cyclone activity. We first examine the spatial biases in the variables’ mean climatologies,

274 then in their interannual variability.

275 Figure 1 shows the differences between the CMIP6 models’ PI climatologies and that of ERA5

276 reanalysis for the period 1981–2010. Many models show a negative bias in PI in the deep tropics

277 and positive bias in more subtropical regions. There is a clear consistency in the model biases across

278 model families. This consistency is particularly striking for the CNRM models (CNRM-CM6-1,

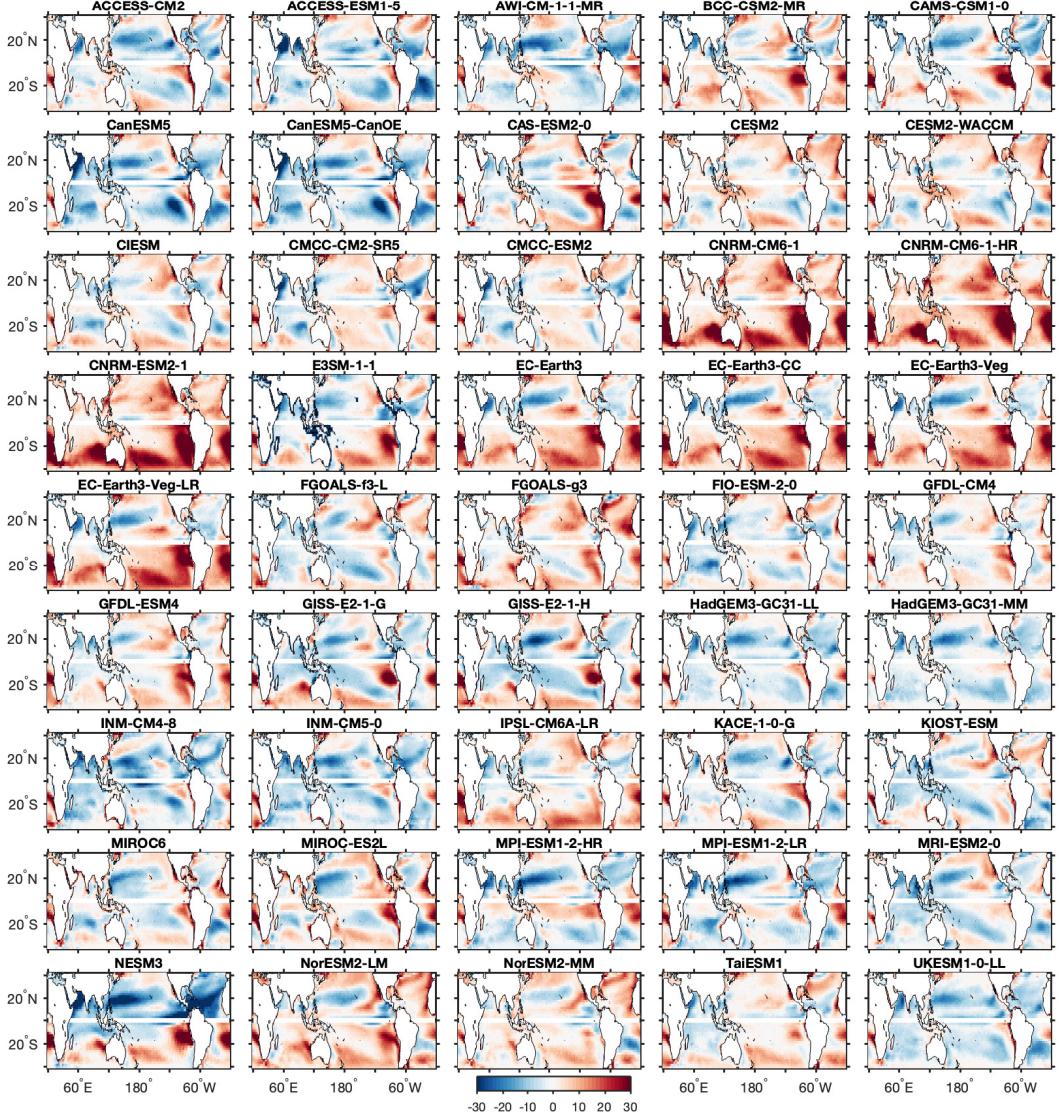
279 CNRM-CM6-1-HR, and CNRM-ESM2-1) which have predominantly larger values of PI than does

280 ERA5 in both hemispheres, particularly the southern. The EC-Earth3 models (EC-Earth3, EC-
281 Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-L4) also have similar patterns in their biases, with
282 a bimodal pattern in the North Pacific (positive close to the Equator, negative around 20°N), a
283 negative bias in most of the North Atlantic, and a strong positive bias in the southern hemisphere.
284 For pairs of models with different model resolutions, namely CNRM-CM6-1 and CNRM-CM6-1-
285 HR; HadGEM3-GC31-LL and HadGEM3-GC31-MM, MPI-ESM1-2-LR and MPI-ESM1-2-HR;
286 NorESM2-LM and NorESM2-MM, the patterns of the biases are extremely similar between the
287 two model resolutions, indicating that higher model resolution without other changes in the model
288 configuration does not necessarily lead to improvement.

292 The biases in the models' VSH climatologies as compared with ERA5 are shown in Fig. 2. Many
293 models have too high values of VSH in the northern hemisphere, centered around 20°N, and too
294 low values closer to the tropics, particularly over the Pacific Ocean. There is less consistency
295 in the biases in the southern hemisphere. Again, we notice very similar patterns in models from
296 the same family, e.g., CanESM5 and CanESM5-CanOE or INM-CM4-8 and INM-CM5-0. In
297 some models the magnitudes of the VSH biases are quite large, reaching values of the order of 20
298 m/s in some regions that are important for TC intensification (e.g., CAS-ESM2-0, MIROC-ES2L,
299 NESM3). While most models have low shear close to the Equatorial region, that is not the case for
300 the CESM2 and CESM2-WACCM models.

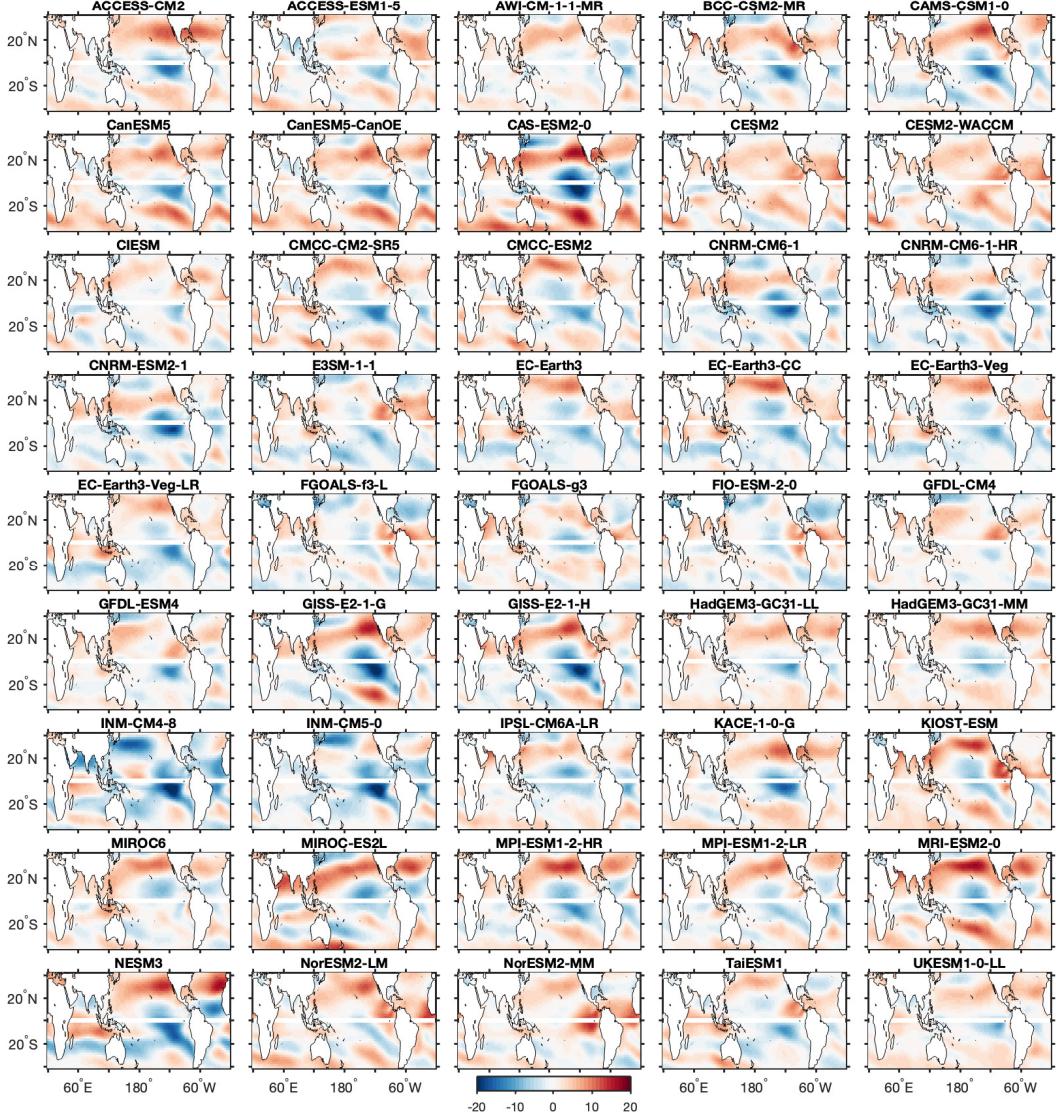
303 Biases in the CRH are shown in Fig. 3. CRH values are typically too low in most models. Some
304 models have high values of CRH in the southern hemisphere, in particular in the Southeast Pacific,
305 a region which typically has very little TC activity. High values of CRH are also present in many
306 models in the South Atlantic and in the South Indian Ocean close to Australia.

310 Fig. 4 shows the Taylor diagrams for PI (top left), VSH (top right), CRH (bottom left) and
311 absolute vorticity at 850 hPa (bottom right) in the northern tropics (Equator to 40°N) in ASO. For
312 all variables, the multi-model mean (MMM) has better skill than most individual models. The
313 correlation coefficient between each model and ERA5 is shown in the blue azimuthal angle. The
314 smallest range in correlations occurs for the vorticity, with values close to 0.95 for all models,
315 while in the case of PI, they range from 0.9 to 0.55. The centered root-mean-square error, shown
316 in the green circles as the distance from ERA5, also has the smallest spread for the vorticity, and
317 the largest for PI, probably due to the fact that the PI calculation includes multiple environmental



289 FIG. 1. Difference between the PI climatology (m/s) between CMIP6 models (ensemble mean) and ERA5
 290 reanalysis for the period 1981–2010 for the August–October (ASO) season in the northern hemisphere and the
 291 January–March (JFM) season in the southern hemisphere.

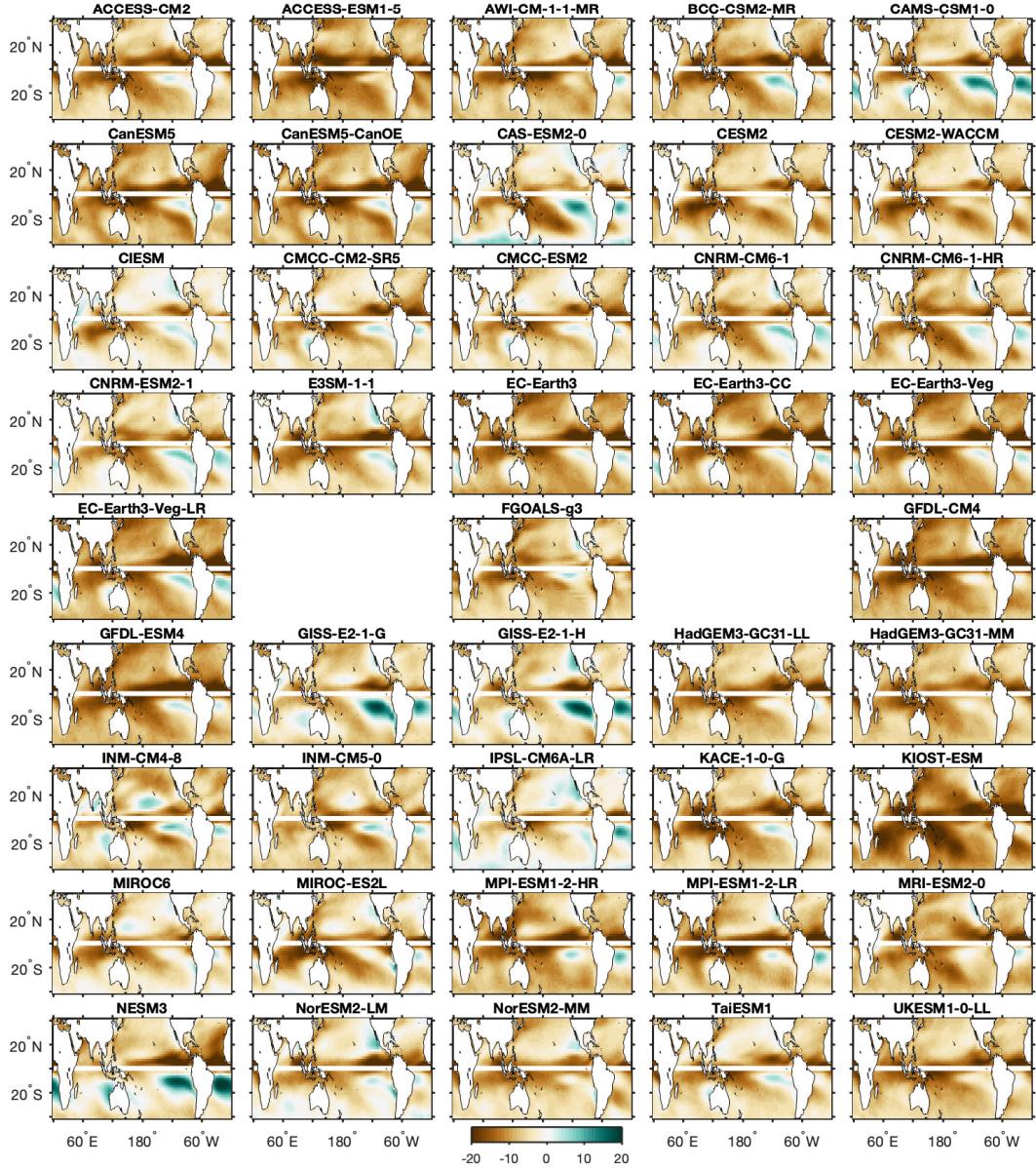
318 variables. The standard deviation of the simulated pattern is given in the black circles. PI and
 319 VSH have a large spread across models, and vorticity has the smallest. Some model outliers have
 320 been identified by their numbers for PI and VSH. Models that are outliers in one variable are not



301 FIG. 2. Difference between the VSH climatology (m/s) between CMIP6 models (ensemble mean) and ERA5
 302 reanalysis for the period 1981–2010, for ASO (JFM) in the northern (southern) hemisphere.

321 necessarily outliers in other variables, such that it would be inappropriate to identify the “best” or
 322 “worst” models overall using an individual Taylor diagram.

325 Interestingly, models tend to have higher correlation values and smaller root-mean square errors
 326 in the southern hemisphere tropics in JFM (not shown) when compared to the northern hemisphere
 327 tropics in ASO.



307 FIG. 3. Difference between the column relative humidity (CRH) climatology (in %) between CMIP6 models
 308 (ensemble mean) and ERA5 reanalysis for the period 1981–2010, for ASO (JFM) in the northern (southern)
 309 hemisphere. Models with missing variables to calculate CRH, SD and TCGI: FGOALS-f3-L and FIO-ESM-2-0.

328 *b. Model Biases - Variability*

329 Besides mean values, we examine how the models simulate the interannual variability of the
 330 environmental variables. We do this by examining the standard deviation (STD) of the seasonal

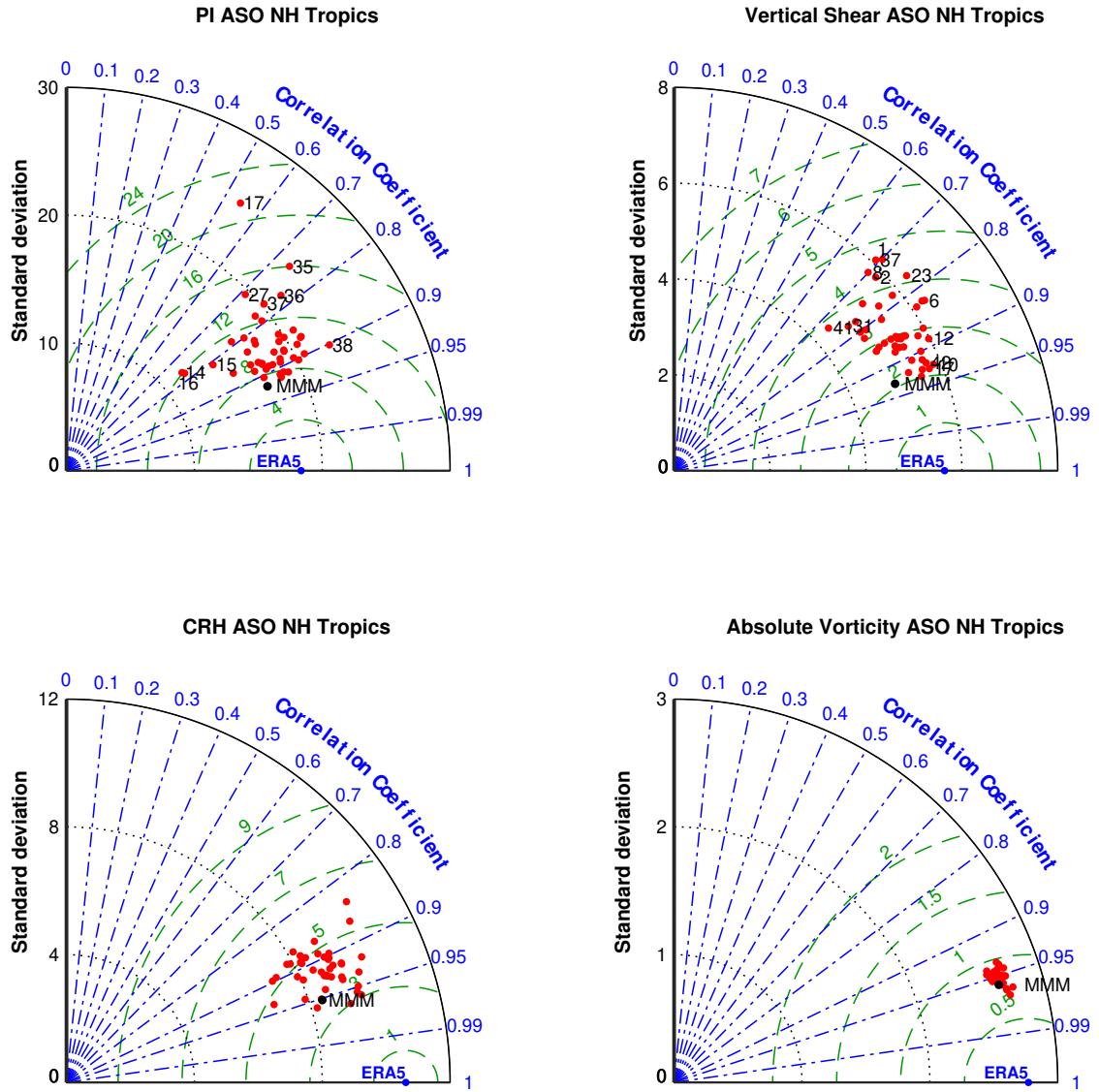


FIG. 4. Taylor diagram for the climatologies of PI (m/s), VSH (m/s), CRH (%) and absolute vorticity at 850 hPa (1/s) in the northern hemisphere tropics during ASO.

331 mean variables in each hemisphere for each model and compare that with the same quantity in the
332 ERA5 reanalysis.

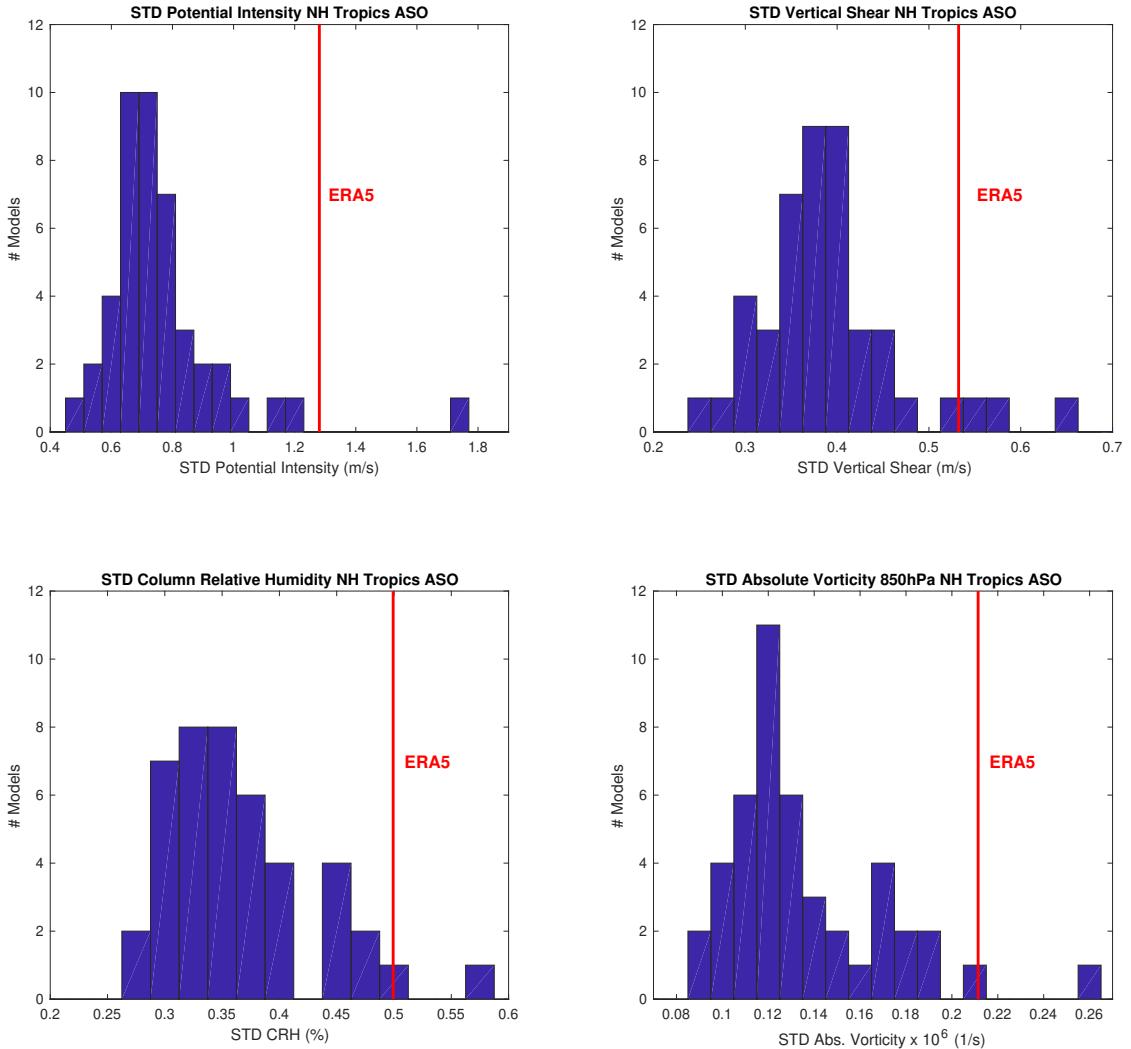
333 In Fig. 5 we show histograms of the standard deviation of the spatial mean of PI, VSH, CRH, and
334 absolute vorticity in the northern hemisphere tropics during ASO for all models. For comparison,
335 the ERA5 standard deviation for each variable is shown by the vertical red line. For all four
336 variables the interannual variability in most models is much lower than is the case of ERA5. Only

337 a few models have higher STD values than ERA5. In the case of PI, only EC-Earth3, for VSH:
338 CAS-ESM2-0,EC-Earth3, GISS-E2-1-G, KIOST-ESM, for CRH: EC-Earth3 and GISS-E2-1-G
339 and for vorticity: only CAS-ESM2-0, i.e. EC-Earth3 has high STD values for the 3 of the variables
340 and GISS-E2-1-G and CAS-ESM2-0 for two of them. We also identify the models with lowest
341 STD values in each case. The only models that have low STD values for three variables (VSH,
342 CRH and vorticity) were INM-CM4-8 and INM-CM5-0, while CNRM-CM6-1-HR has low STD
343 values for both CRH and vorticity. Similar behavior is noted in the southern hemisphere for the
344 JFM season.

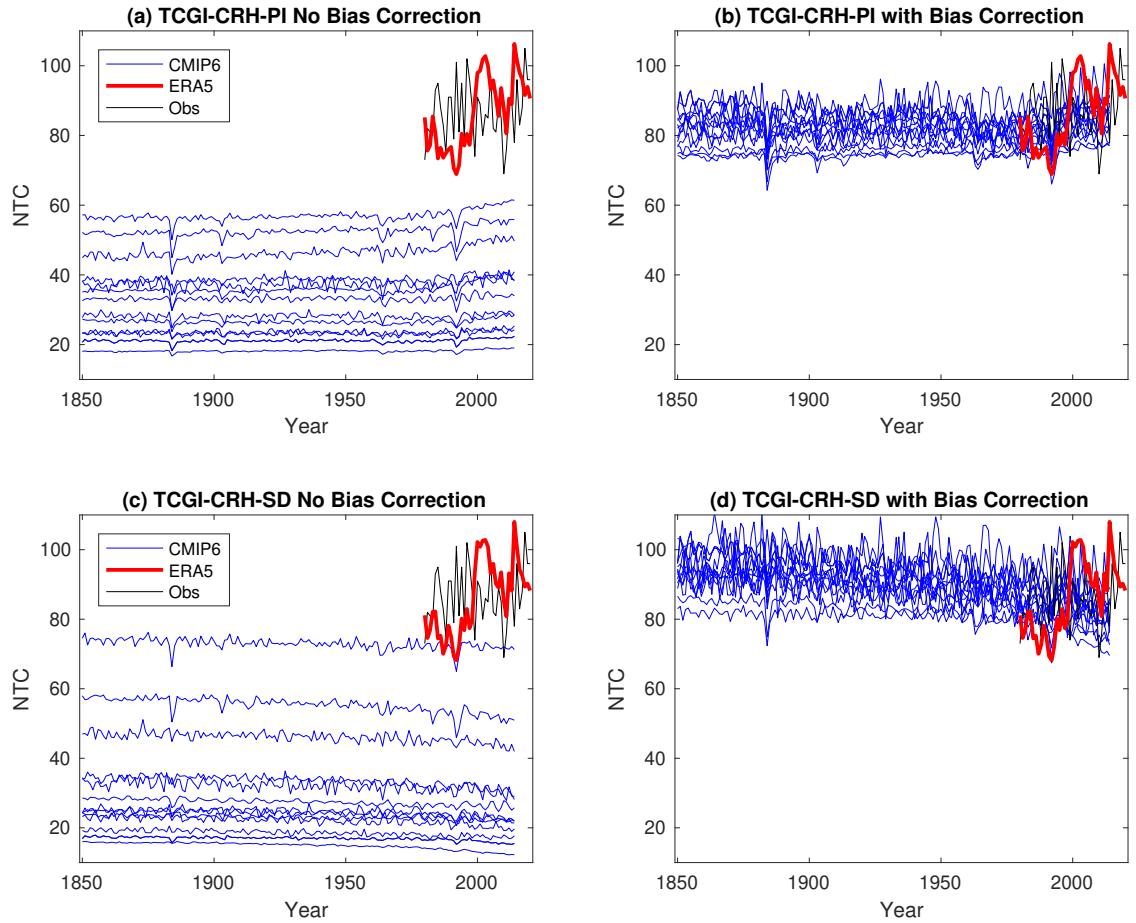
348 *c. TCGI Bias Correction*

349 One the consequences of the biases in the individual variables is that they lead to biases in proxies
350 for TC activity that are functions of these variables. As an example, we show the impact of biases
351 in the individual variables shown above on TCGI.

352 We calculate the spatially integrated annual mean TCGI in the historical simulations for a subset
353 of 13 CMIP6 models and compare each with both the same quantity computed from ERA5 and the
354 observed number of TCs (see Fig. 6 (a) and (c)). While there is a large spread in the magnitude
355 of this bias across the 13 CMIP6 models, all of them have low values of integrated TCGI. This is
356 true for both versions of the TCGI, TCGI-CRH-PI (Fig. 6 (a)) and TCGI-SD-PI (Fig. 6 (c)).



345 FIG. 5. Histograms of the standard deviation of interannual variability PI (m/s), VSH (m/s), CRH (%) and
 346 absolute vorticity at 850 hPa (1/s) climatology in the northern hemisphere tropics during ASO for CMIP6 models
 347 and ERA5 in the period 1950-2014. All ensembles available were considered for the models.



357 FIG. 6. Integrated TCGI time-series (in TC counts) for a subset of CMIP6 models (ensemble mean of each
 358 model) using CRH and SD, without bias correction ((a) and (c)) and with bias correction ((b) and (d)). Also
 359 shown are the values of the corresponding integrated TCGI for ERA5 and the observed number of TCs. The 13
 360 selected CMIP6 models are underlined in Tables 1 and 2.

361 The low values in model TCGI has consequences for simulated TCGI variability and change.
362 Since TCGI depends exponentially on environmental fields, additive biases in environmental
363 fields result in multiplicative biases in TCGI. To see this fact, suppose for simplicity that TCGI
364 depends on a single (unitless) environmental field X and that $\text{TCGI}_{\text{obs}} = \exp(X_{\text{obs}})$. Then for
365 a biased model environmental field $X_{\text{model}} = X_{\text{obs}} + \text{bias}$, the corresponding (biased) $\text{TCGI}_{\text{model}}$
366 is $\exp(\text{bias})\exp(X_{\text{obs}}) = \exp(\text{bias})\text{TCGI}_{\text{obs}}$. Suppose the environmental field is changed by ΔX
367 so that $X'_{\text{model}} = X_{\text{obs}} + \text{bias} + \Delta X$ where ΔX might represent either year-to-year variability or
368 climate change. Since $X'_{\text{model}} - X_{\text{model}} = \Delta X$, the change in the environmental field is recovered by
369 simply subtracting, which cancels the additive bias. On the other hand, $\text{TCGI}'_{\text{model}} - \text{TCGI}_{\text{model}} \approx$
370 $\Delta X \exp(\text{bias})\text{TCGI}_{\text{obs}}$, for small ΔX , while $\text{TCGI}'_{\text{obs}} - \text{TCGI}_{\text{obs}} \approx \Delta X \text{TCGI}_{\text{obs}}$. These relations
371 show that (i) a change in X results in a percent change in TCGI, (ii) those percent changes will also
372 be biased low if $\text{TCGI}_{\text{model}}$ is biased low, and (iii) bias correcting X_{model} and X'_{model} will give the
373 correct change in TCGI due to ΔX .

374 We bias correct the four environmental fields that appear in the two versions of TCGI. The bias
375 correction consists of subtracting the 1981–2010 model climatology to form an anomaly δ , and
376 then adding the 1981–2010 ERA5 climatology to this δ . The CMIP6 monthly climatology is
377 calculated from the ensemble mean for each model.

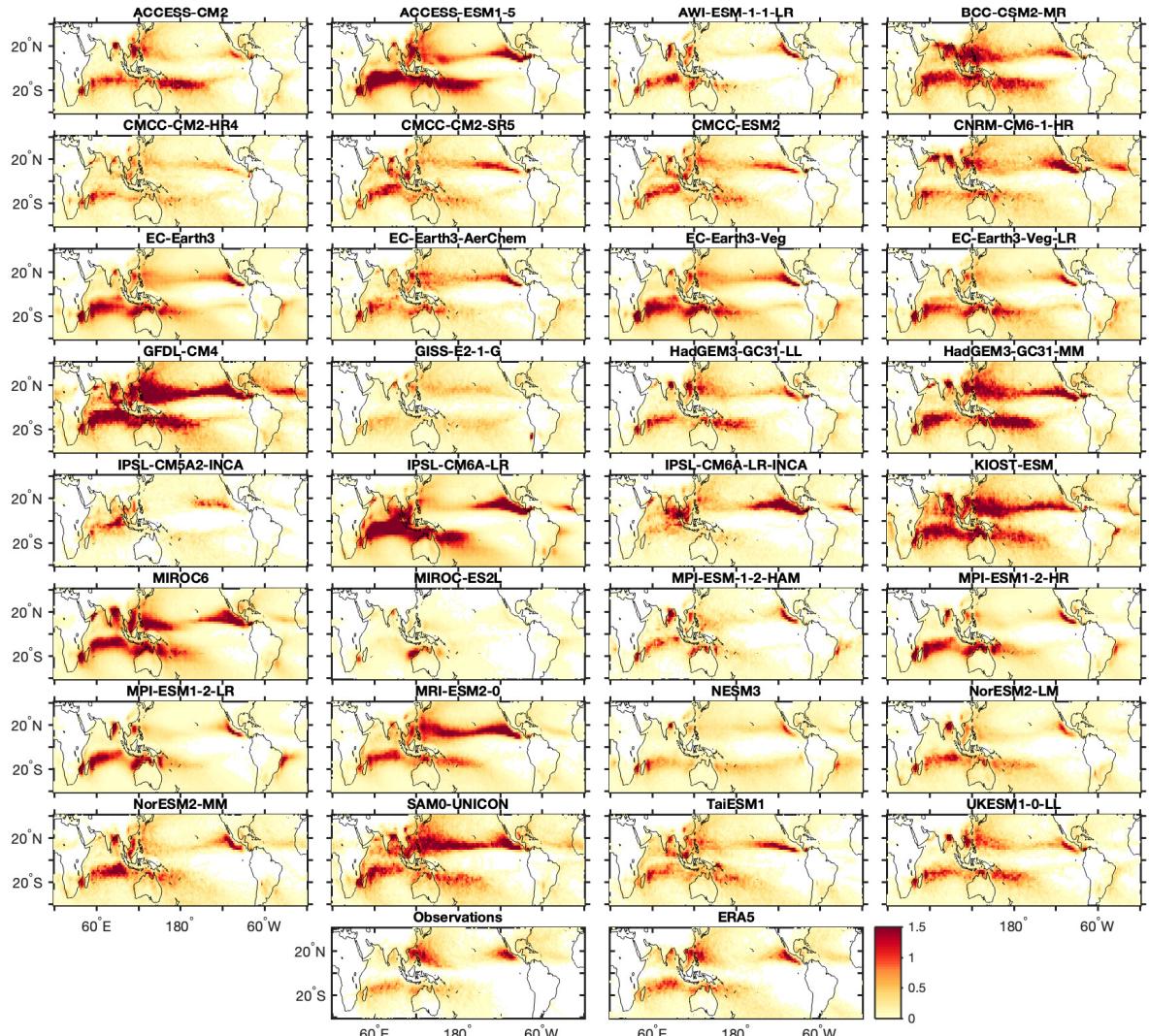
378 The bias-corrected fields are then used to calculate the bias-corrected TCGIs. The integrated
379 bias-corrected TCGI time-series are shown in Figs. 6 (b) and (d). The mean integrated values
380 of the bias-corrected TCGI are much closer to the ERA5 and observed TC values, even though
381 there is still a spread across models in the possible range of values. Note as well the year to year
382 variability, which is clearly too small for all models, improves with the bias correction, even though
383 only the mean values of each field are used in the bias correction.

384 To determine if one of the four variables in the TCGI versions was primarily responsible for the
385 TCGI bias, we recalculate the TCGI, using one bias-corrected variable at a time and the remaining
386 variables without bias correction. For all 13 CMIP6 models examined, the CRH (or SD) variable
387 is primarily responsible for the TCGI biases. Bias correcting CRH (or SD) alone is sufficient to
388 obtain values of the integrated TCGI close to the ones from ERA5, which does not happen with
389 the other 3 variables. Therefore, the humidity variables (CRH and SD) are responsible for the very
390 low biases of TCGI in the CMIP6 models.

391 We use the bias-corrected version of the TCGI in the rest of this manuscript for all models and
392 scenarios, using bias-corrected values for the four components of TCGI. However, we do not apply
393 the bias correction to the other genesis indices or other environmental fields or proxies. In most
394 climate model papers which did a similar analysis no bias-correction is applied (e.g., Camargo
395 2013; Camargo et al. 2014; Wehner et al. 2015; Cavicchia et al. 2023). One exception is the recent
396 manuscript of Wehner and Kossin (2024), which bias-corrected the PI based on ERA5.

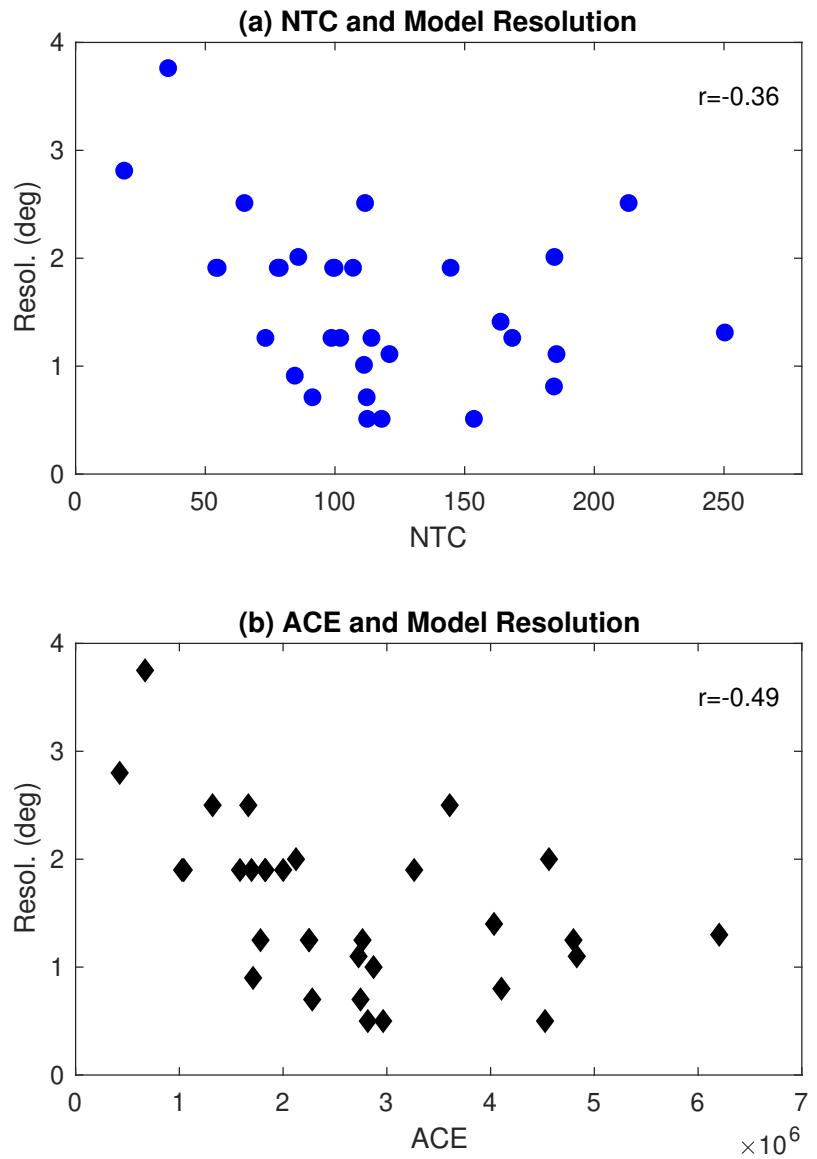
397 *d. TC activity*

398 Given the typical low resolution of the CMIP6 models (100 km), it is expected that the climato-
399 logical features of their TC-like storms will have large biases — typically too few, weak and large
400 storms — similarly to CMIP5 models (Camargo 2013; Camargo and Wing 2016). The biases in
401 TC frequency can be noticed in the historical track density climatology (1981–2010) shown in
402 Fig. 7. While the spatial distributions of the CMIP6 models’ track densities somewhat resemble
403 those found in observations and ERA5, there are clear spatial biases in the models. In the North
404 Pacific, most models do not have a clear separation between the eastern and western basins, but
405 rather they are overactive in the Central North Pacific such that they show a continuous band of
406 activity. Most models also do not reproduce the higher TC activity in the northern hemisphere
407 compared with the southern hemisphere. The low TC activity in the North Atlantic is a common
408 bias in climate models (Shaevitz et al. 2014; Roberts et al. 2020a) and there is some improvement
409 in the higher resolution versions of the same models (Roberts et al. 2020a).



410 FIG. 7. Track density ensemble mean climatology for 1981–2010 for 32 CMIP6 models, observations and
411 ERA5, shown in units of number of TCs per year.

412 Typically, as resolution increases, model performance in simulating TC characteristics improves
413 (Shaevitz et al. 2014; Roberts et al. 2020a), though that is not necessarily always the case (Camargo
414 et al. 2020; Moon et al. 2020). In Fig. 8 the relationship between the models' mean NTC and
415 ACE and resolution is shown. While both the TC numbers and their intensities tend to increase as
416 grid spacing becomes smaller, this is not always the case, with models with the same resolution
417 having different values of NTC and ACE, reflecting the importance of other model characteristics,
418 such as physical parametrizations (Vidale et al. 2021; Russotto et al. 2022). There is a stronger
419 correlation between ACE and model resolution than between NTC and resolution, showing the
420 impact of resolution in simulating TC intensity (Murakami et al. 2015; Davis 2018).

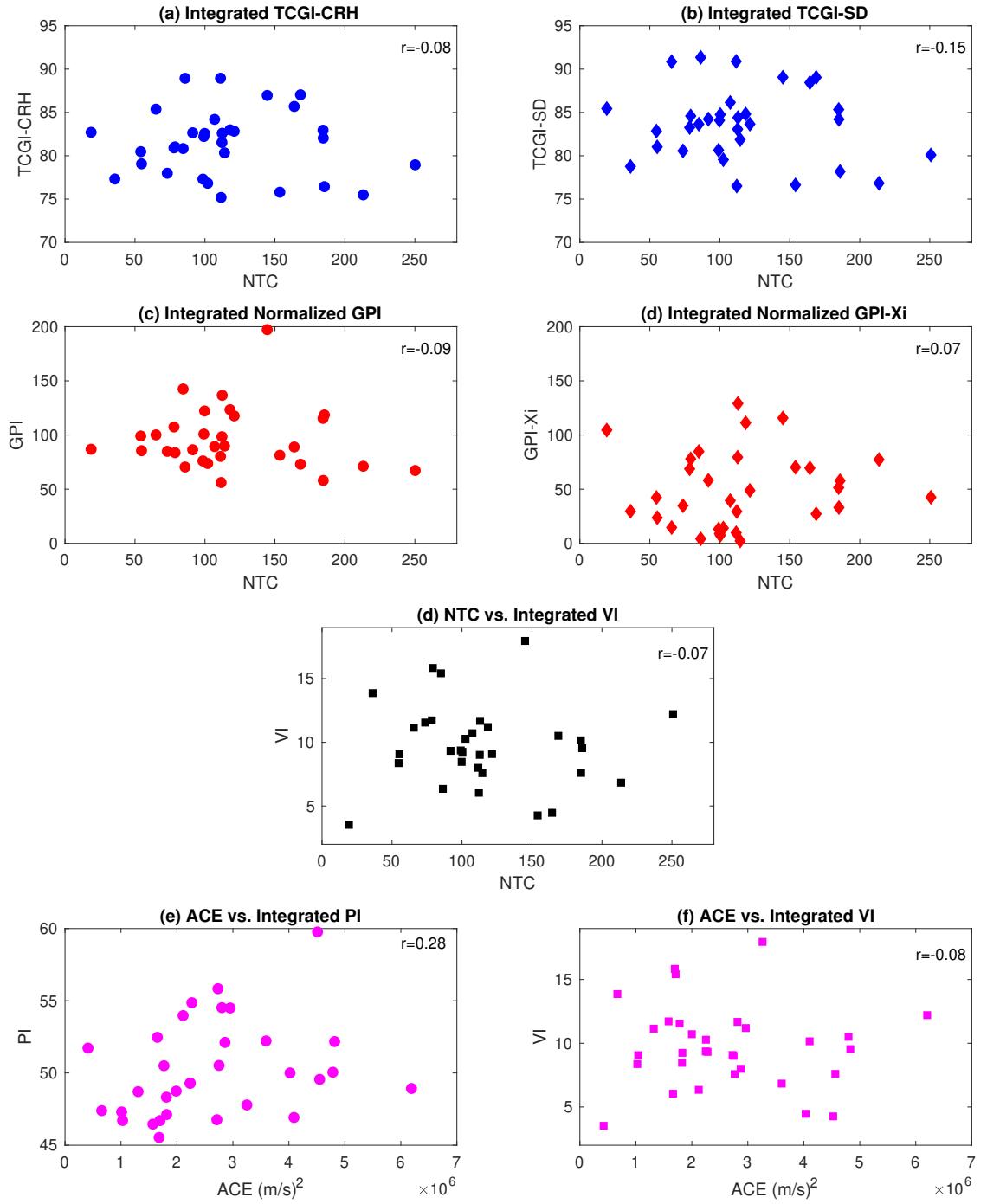


421 FIG. 8. Scatter plots of the historical climatological mean number of TCs (NTC) per year and climatological
 422 mean ACE (m/s)² per year as a function of model resolution, as listed in Tables 1 and 2, using the largest grid
 423 spacing. Values of the Spearman correlations are given in the top left of each panel.

424 *e. Environmental fields and TC activity*

425 There is little evidence that climatological environmental conditions can explain differences in
426 climatological TC characteristics across models and reanalyses (Camargo et al. 2020; Dirkes et al.
427 2023). Here we examine whether there is a relation between climatological model fields and the
428 mean TC climatology in the CMIP6 models, as this has not yet been done. Furthermore, both
429 versions of TCGI are bias-corrected, which was not the case in our CMIP5 analysis, and we want
430 to determine if this leads to different results. In contrast to Camargo et al. (2020) here we consider
431 multiple genesis indices (two versions of TCGI, GPI, GPI-Xi) and the ventilation index in our
432 analysis.

433 The relationship between NTC and four genesis indices and the ventilation index is shown in
434 Fig. 9 (a)–(d). Similarly to Camargo et al. (2020) and Dirkes et al. (2023) there is no relationship
435 between NTC and the indices. Importantly, this result hold for all the genesis indices considered.
436 While for both TCGI versions, the models' climatological fields have been bias corrected, that was
437 not done for the other indices (GPI, GPI-Xi, VI), and our results are not sensitive to that. GPI and
438 GPI-Xi were normalized, in order to be compatible with TCGI, but that normalization does not
439 affect the correlations.



440 FIG. 9. Scatter plots of the historical climatological mean number of TCs (NTC) and integrated (a) TCGI-CRH,
441 (b) TCGI-SD, normalized integrated (c) GPI, (d) GPI-Xi, and integrated (e) VI. Scatter plots of the historical
442 climatological mean ACE and integrated (f) PI, and (g) VI. The values of the Spear correlations in each case are
443 given in the top left of each panel.

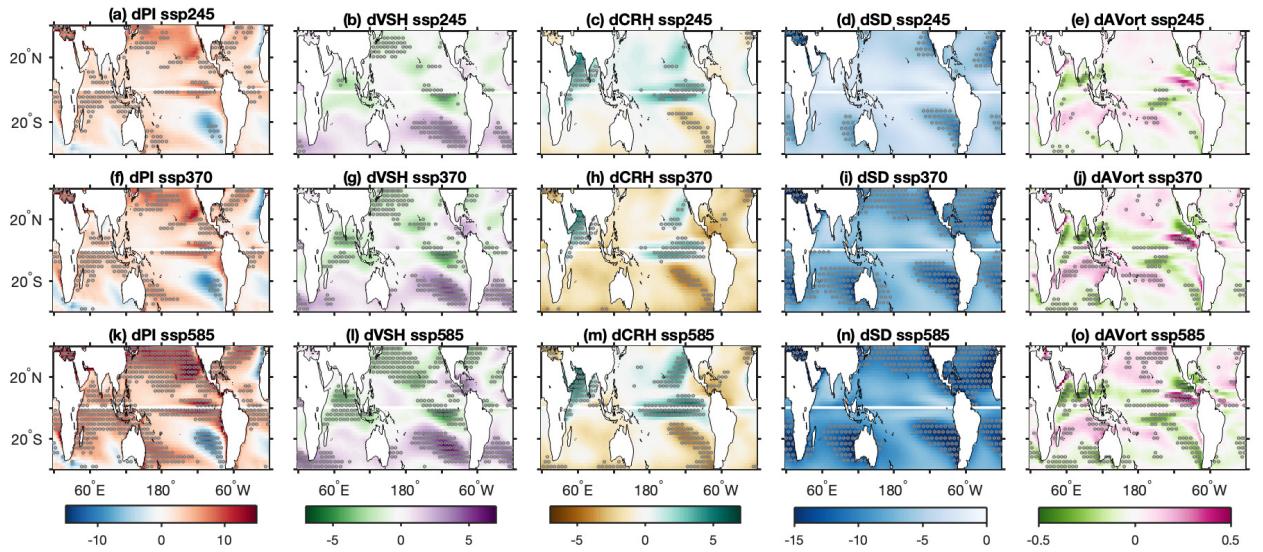
444 The relationship between ACE and PI, as well as between ACE and the ventilation index, are
445 shown in Figs. 9(e) and (f). The strongest relationship is between PI and ACE, discussed in Ting
446 et al. (2015, 2019); Sobel et al. (2016), but this relationship does not explain the differences in
447 models' TC intensities.

448 Differences in climatological environmental fields across CMIP6 models do not explain the
449 differences in the models' TC climatology. Other model characteristics, such as physical pa-
450 rameterizations and dynamical core, determine TC climatology in models (e.g. Reed et al. 2015;
451 Russotto et al. 2022)

452 **5. Results - Future Projections**

453 *a. Spatial patterns - differences 21C & 20C*

454 We next examine how the environmental fields change between the end of the 21st (2071-2100)
455 projections and the end of the 20th century (1971-2000) historical simulations. Figure 10 shows
456 the differences in the multi-model means for the three future scenarios and five environmental
457 fields. The top panels show the difference between the SSP2-4.5 scenario and historical, while the
458 mid panels and bottom panels represent the SSP3-7.0 and SSP5-8.5 differences, respectively.



459 FIG. 10. Difference (“d”) between the multi-model mean climatology in the end of the 21C (2071-2100) and
460 the end of 20C (1971-2000) for the 3 future scenarios (SSP2-4.5, SSP3-7.0, SSP5-8.5) for the variables used in
461 TCGI: PI (panels (a),(f), and (k) in m/s), VSH (panels (b), (g) and (l) in m/s), CRH (panels (c), (h) and (m), in %),
462 SD (panels ((d), (i), and (n) in kg/m^2), and absolute vorticity at 850 hPa (AVort, panels (e), (j), and (o) in 10^{-4}
463 1/s). Stippled regions are statistically significant at the 99% level using a the Kolmogorov-Smirnov significance
464 test.

465 The potential intensity (Fig. 10 (a), (f) and (k)) increases in most of the tropics, except some
466 regions in the eastern North Atlantic, South Pacific and South Atlantic. As expected, the PI
467 magnitude change is larger the higher the emission scenario, with the largest increases (subtropical
468 North Pacific) and decreases (South Pacific) occurring in the SSP5-8.5 scenario. The number
469 of grid points in which the changes are statistically significant also increases with the emission
470 scenario. In the North Atlantic, North Pacific and South Pacific, the PI increases in large regions in
471 the subtropics, which have been associated with the poleward shift in lifetime maximum intensity
472 (Kossin et al. 2014, 2016; Lin et al. 2023a). Furthermore the patterns in the PI change for the
473 CMIP6 models are very similar to those of CMIP5 (Camargo 2013) and CMIP3 models (Vecchi
474 and Soden 2007a,b).

475 In the northern hemisphere, there are statistically significant decreases in VSH in many regions
476 (Fig. 10 (b), (g), (l)), in particular in the North Pacific and North Atlantic and in SSP5-8.5. The
477 exception is the Gulf of Mexico and Caribbean region, where the VSH increases. In the southern
478 hemisphere, the magnitude of the VSH increases, but mostly in regions not prone to the occurrence
479 of TCs, such as the South Atlantic, southeast Pacific, and the near South Africa, though hybrid
480 and sub-tropical storms do occur in these regions. Close to the equator in both hemispheres, the
481 magnitude of the VSH decreases, in particular in the tropical equatorial eastern Pacific and in the
482 Indian Ocean. The pattern of the VSH changes in CMIP6 are very similar to those from CMIP5
483 Camargo (2013); Ting et al. (2019) and CMIP3 (Vecchi and Soden 2007a,b)

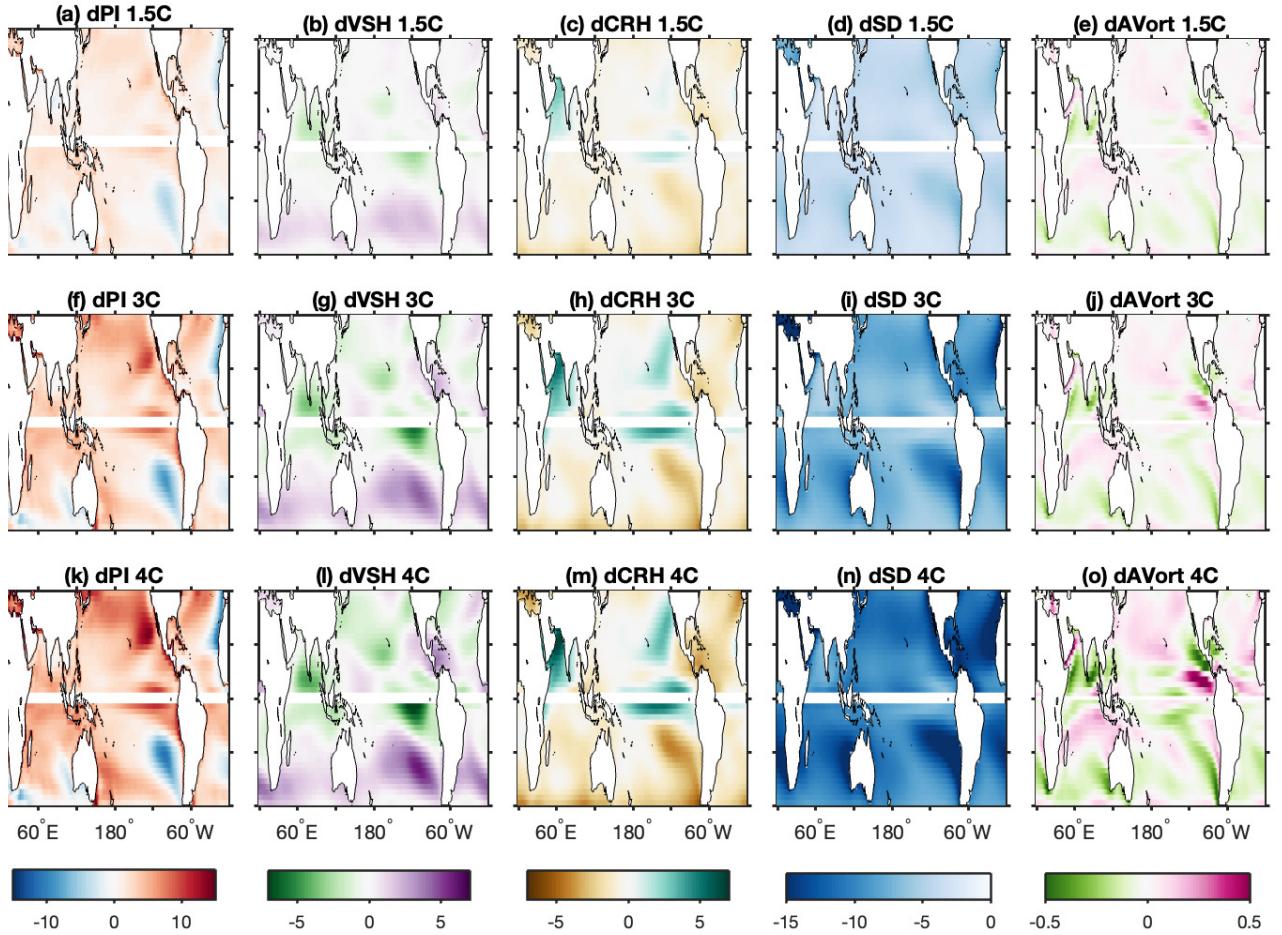
484 In the tropical Pacific, the CRH increases in both hemispheres (Fig. 10 (c), (h), (m)), as well as in
485 the eastern North Pacific poleward of 20°N. There are also significant increases in the CRH in the
486 North Indian Ocean. Regions with a decrease in the CRH are the Gulf of Mexico and Caribbean,
487 as well as the southeast Pacific, especially for the SSP5-8.5 scenario.

488 In contrast, the SD decreases globally (Fig. 10 (d), (i), (n)), as was the case for the CMIP5 models
489 (Lee et al. 2020a). Statistically significant decreases in the SD occur in most of the North Atlantic,
490 the subtropical North Pacific and the eastern parts of the southern hemisphere oceans.

491 The relative vorticity has a bimodal pattern in changes in the eastern tropical Pacific, with an
492 increase close to the tropics and an increase north of that, as well as in the Caribbean. The vorticity
493 also increases in regions of active TC activity in a zonal band near Australia, as well as in the
494 subtropical North Pacific. Regions in which the vorticity decreases coincide with increases in

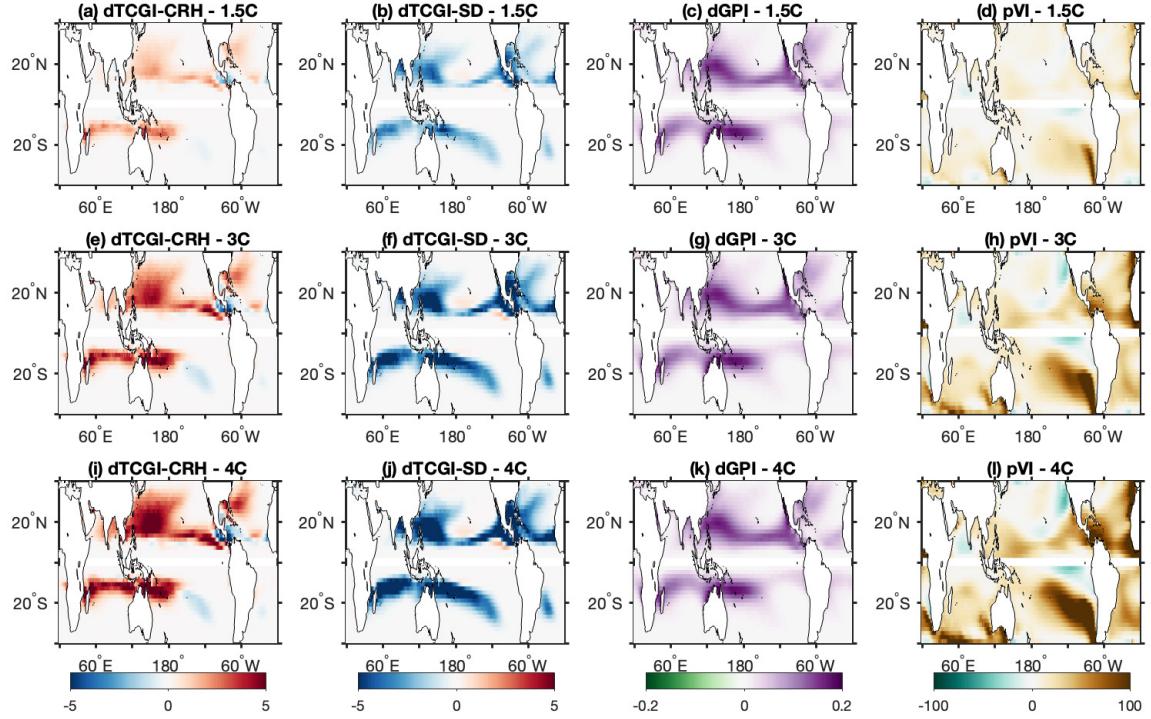
495 VSH, such as the southeast Pacific, south of Australia and South Africa and in the North Indian
496 Ocean, but these are not regions in which genesis tends to occur, as it is only necessary for the
497 vorticity to be above certain threshold for genesis to be possible Tippett et al. (2011).

498 We analyzed the change of the same five environmental fields using the increase per global
499 warming level following Seneviratne and Hauser (2020). The resulting changes are shown in
500 Fig. 11 for 1.5°C, 3°C and 4°C differences from the 19C climatology shown in each row. The
501 number of models used in each composite depends on the warming rate of each model. The patterns
502 are exactly the same as those obtained at the end of the 21C for the three emission scenarios. The
503 changes for 1.5°C are weaker than those in SSP2-4.5 at the end of the 21C, those for 3°C are similar
504 to the latter, and the 4° warming changes are similar to those in SSP5-8.5 at the end of the 21C. The
505 close similarity between Figs. 10 and 11 is remarkable and emphasizes the robustness of changes
506 in these environmental fields. This does not mean the changes need be correct as representations of
507 the response to radiative forcings, however, since some of these responses are likely attributable to
508 the patterns of change in the tropical Pacific, which have been questioned due to their inconsistency
509 with recent historical trends (Sobel et al. 2023).



510 FIG. 11. Difference (“d”) between the multi-model mean per global warming level and the 19C climatology
 511 (1850–1900) for 1.5°C, 3°C and 4°C for the variables used in TCGI: PI (panels (a),(f), and (k) in m/s), VSH
 512 (panels (b), (g) and (l) in m/s), CRH (panels (c), (h) and (m), in %), SD (panels ((d), (i), and (n) in kg/m²), and
 513 absolute vorticity at 850 hPa (AVort, panels (e), (j), and (o) in 10⁻⁴ 1/s).

514 Next we analyze changes in the genesis indices by global warming level in Fig. 12.TCGI-CRH
515 and TCGI-SD are shown in Fig. 12 left column and second column from the left). As discussed
516 in Camargo et al. (2014) and Lee et al. (2020b) for the HiRAM and CMIP5 models, TCGI-CRH
517 increases with global warming, while TCGI-SD decreases, and the same behavior is found here
518 for the CMIP6 models. Similar to other environmental fields, the changes in TCGI increase with
519 the amount of warming. The only region in which TCGI-CRH decreases is in the Gulf of Mexico
520 and both coasts of Central America, where the VSH increases with warming. GPI (Fig. 12, second
521 to right column) values increase with global warming for CMIP6 models, as was the case for the
522 CMIP5 (Camargo 2013) and CMIP3 models (Vecchi et al. 2013), indicating a more conducive
523 environment for genesis. GPI-Xi (Emanuel 2010) also increases in the CMIP5 (Emanuel 2013)
524 and CMIP6 simulations (Emanuel 2021). Note that changes in genesis indices are restricted to
525 narrow bands associated with each basin's main development region.



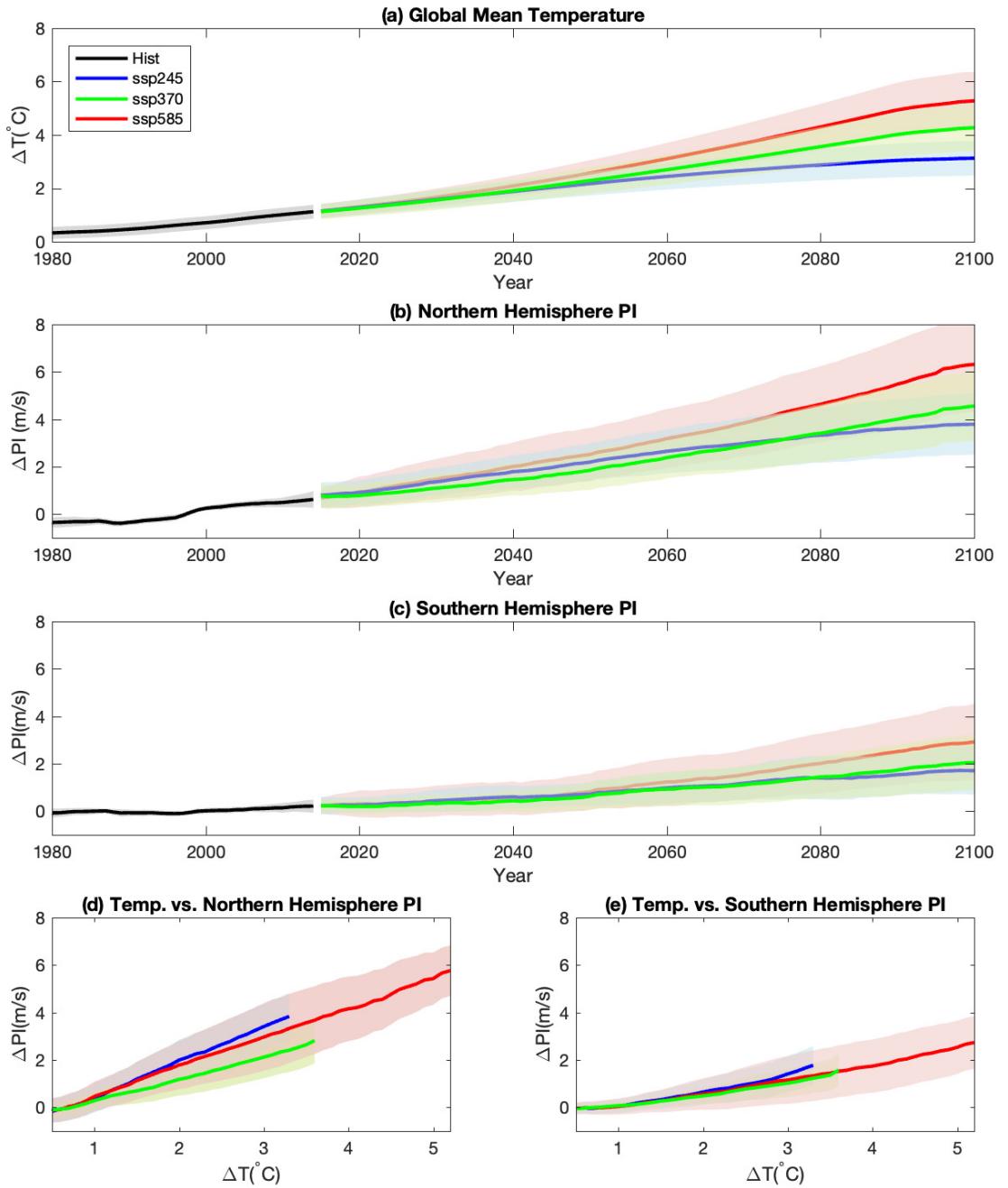
526 FIG. 12. Difference “d” between the multi-model mean per global warming level and the 19C climatology
 527 (1850–1900) for 1.5°C, 3°C and 4°C for TCGI-CRH (panels (a), (e), and (i), NTC per area per year $\times 10^{-3}$), (b)
 528 TCGI-SD (panels (b), (f), and (h), NTC per area per year $\times 10^{-3}$), and GPI (panels (i), (j), and (k), unitless). (d)
 529 Percentage change per global warming level for the Ventilation Index (pVI).

530 The final variable that we examine in Fig. 12 (right panels) is the VI (Tang and Emanuel 2010,
531 2012). The pattern of the percentages changes in the VI by degree warming for the CMIP6 models
532 are very similar to those found previously in Tang and Camargo (2014) for eight CMIP5 models
533 in the RCP5.85 scenario. In most locations the VI increases, with decreases occurring in very
534 few locations, in particular near the equatorial region, near Hawaii, subtropical regions of the
535 eastern North Pacific and the Arabian Sea. Higher values of the VI are characterized by more
536 hostile conditions for TC genesis and intensification. Therefore according to this measure, globally
537 the environment is becoming more hostile for TCs, but the largest changes occur in regions that
538 typically do not have TC formation, as the southeast Pacific, Northeast Atlantic, south of Australia
539 and South Africa. Regions with an increase in the VI are the Gulf of Mexico and Caribbean, where
540 the VSH, a component of VI, increases. These changes extend through the whole Atlantic basin,
541 toward the African coast, until the equatorial region. Note that the changes of the genesis indices
542 in the North Atlantic tend to be very small for GPI and TCGI-CRH.

543 While in the literature a single genesis index or the ventilation index is regularly used to make
544 TC projections, Fig. 12 indicates that the choice of the index is the main determinant of the future
545 projections of TC activity. Since there is no consensus regarding which index is best, we conclude
546 that choosing a single index to make TC future projections severely underestimates the uncertainty
547 of future TC projections.

548 *b. Potential Intensity Projections and Aerosol Forcing*

549 The global annual mean temperature increase (ΔT) from the 1981–2010 climatology for the
550 historical and the three future scenarios is shown in Fig. 13(a). The thick lines are the MMM of
551 the polynomial fit of the ensemble mean of each model, with the colors indicating the standard
552 deviation across models. A similar calculation was performed showing the increase in the PI (ΔPI)
553 in the northern hemisphere in ASO (Fig. 13(b)) and in the southern hemisphere in JFM (Fig. 13(c)).
554 The PI increase is much larger in the northern hemisphere than the southern hemisphere, for all
555 scenarios. For instance, by the end of the 21C the mean tropical PI increase in the northern
556 hemisphere is slightly above 4 m/s for the SSP5-8.5 scenario, while it is around 1.5 m/s in the
557 southern hemisphere. This difference was also present in the CMIP5 models (Sobel et al. 2016).



558 FIG. 13. (a) Global annual mean temperature increase (ΔT in $^{\circ}\text{C}$) as compared with the 1981-2010 climatology.
 559 (b) Northern hemisphere tropics PI increase (ΔPI in m/s) in ASO. (c) Southern hemisphere tropics potential
 560 increase (ΔPI in m/s) in JFM. Lines are the multi-model mean of the polynomial fit of the ensemble mean of
 561 each model, colors indicate the standard deviation across models in each scenario. Relationship between ΔT and
 562 ΔPI in the (d) northern and (e) southern hemisphere tropics in ASO and JFM respectively. Only ΔT values with
 563 at least 15 models are shown.

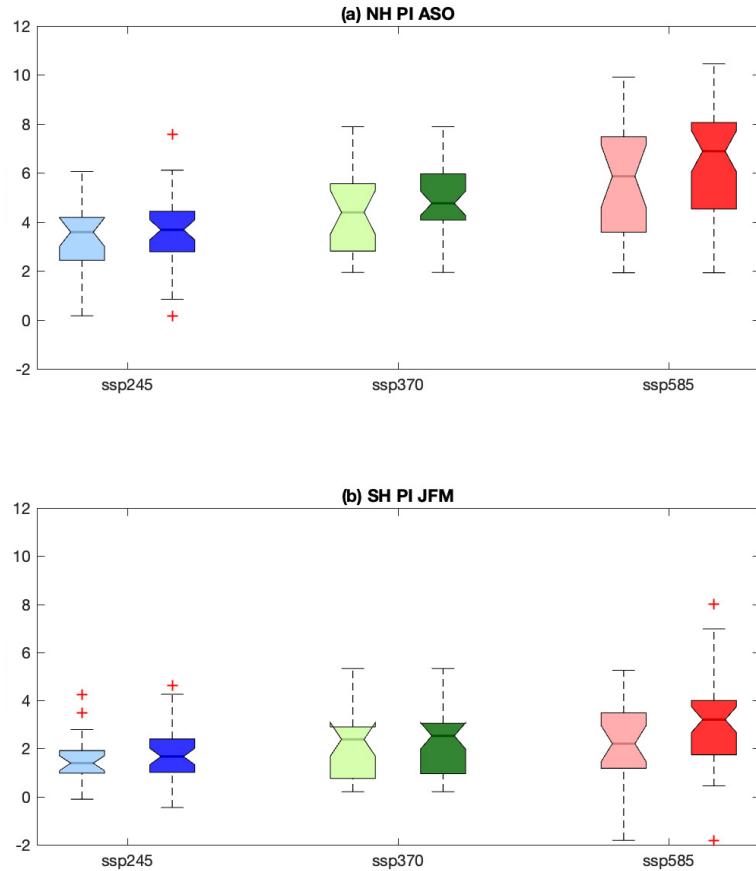
564 Another interesting feature, is that while the MMM global mean temperature for the SSP3-7.0
565 scenario is always above that in the SSP2-4.5 scenario, this is not the case for PI. This is clearer
566 in the northern hemisphere, where the values of PI in SSP3-7.0 are below those in SSP2-4.5 until
567 after 2070, while in the southern hemisphere this does not occur until close to 2080.

568 Another way to visualize the difference between temperature and PI is to plot the relationship
569 between ΔT and ΔPI for both hemispheres (Fig.13(d),(e)). Only cases in which ΔT values include
570 at least 15 models are plotted. ΔPI increases faster with ΔT in both hemispheres for the SSP2-4.5
571 scenario than for SSP3-7.0 scenario, in spite of the SSP3-7.0 having higher CO₂ concentrations
572 than SSP2-4.5. This difference is due to the fact that the SSP3-7.0 has a higher aerosol forcing
573 than the SSP2-4.5 scenario. As described in Rao et al. (2017), SSP3-7.0 has a weak pollution
574 control scenario, while SSP2-4.5 scenario has a medium pollution control scenario and SSP5-8.5
575 has a strong pollution control scenario. Therefore SSP3-7.0 has a stronger aerosol forcing than
576 both other future scenarios considered here. Lund et al. (2019) estimated that the total radiative
577 forcing of aerosols relative to 1750 was around -0.5 W/m² for the SSP3-7.0 scenario, compared
578 with -0.2 W/m² for the SSP2-4.5 scenario.

579 As shown in Sobel et al. (2019) and in Ting et al. (2015) using single forcing CMIP5 model
580 simulations, aerosol cooling reduces PI more strongly than greenhouse gas warming increases PI by
581 approximately a factor of two. Given that the aerosol forcing in SSP3-7.0 is relatively stronger than
582 that in SSP2-4.5, we infer that the aerosol cooling in the SSP3-7.0 simulations is compensating for
583 the warming due to the greenhouse gases to yield a PI increase slower than in the case of SSP2-4.5.
584 In the case of the global mean surface temperature, however, aerosol and greenhouse gas forcings
585 are equivalent, and all that matters is the net radiative forcing rather than its partitioning into
586 shortwave and longwave components. As shown in Sobel et al. (2019) the greater effect of aerosol
587 forcing is due to the fact that the shortwave forcing has a greater direct, temperature-independent
588 component at the surface than longwave forcing for the same SST change, the latter of which was
589 also shown using a single column model by Emanuel et al. (2013). It is interesting that this effect
590 is clearly noticeable in simple time-series of ΔPI when comparing these two future scenarios.

591 *c. Potential Intensity Projections and Model Sensitivity*

592 It is well known that the amount of warming for the same amount of greenhouse forcing varies
593 across models, including the CMIP6 models. In particular, Hausfather et al. (2022) argued
594 that when performing MMM averages, one should exclude models that overestimate the future
595 warming. Based on evidence from paleoclimate, observations and modeling, they concluded that
596 the equilibrium climate sensitivity (ECS) is very likely to be in the range 2.6 – 3.9°C and that models
597 with high climate sensitivity (ECS of at least 5°C) are considered “too hot”. Here we examine how
598 PI projections vary depending on whether we consider the MMM of all CMIP6 models, or only
599 the models that are have the “right” model sensitivity, i.e., if we exclude the models that are “too
600 hot”. Following Hausfather et al. (2022)’s classification of the CMIP6 models, we calculated the
601 mean increase in tropical PI in each hemisphere for ASO (northern hemisphere) and JFM (southern
602 hemisphere) at the end of the 21C (2091 – 2100) compared with the 1981 – 2010 climatology
603 (Fig. 14). In the northern hemisphere, the ΔPI is statistically significantly different at the end of
604 the 21C for the SSP3-7.0 and SSP5-8.5 scenarios, between the two multi-model averages, with the
605 median of the multi-model of the “right models” slightly smaller than that of all models, and the
606 difference increasing with the warming scenario, i.e., lowest for SSP2-4.5, highest for SSP5-8.5.
607 The same occurs in the southern hemisphere, but as the ΔPI is smaller in that hemisphere, the
608 differences between the multi-model mean are smaller and are not statistically significant. Note
609 that even in the case with the largest difference between the two multi-model means, i.e., northern
610 hemisphere for SSP5-8.5, these differences are still small. The effect of considering the “too hot”
611 models is not large for the seasonal mean PI.



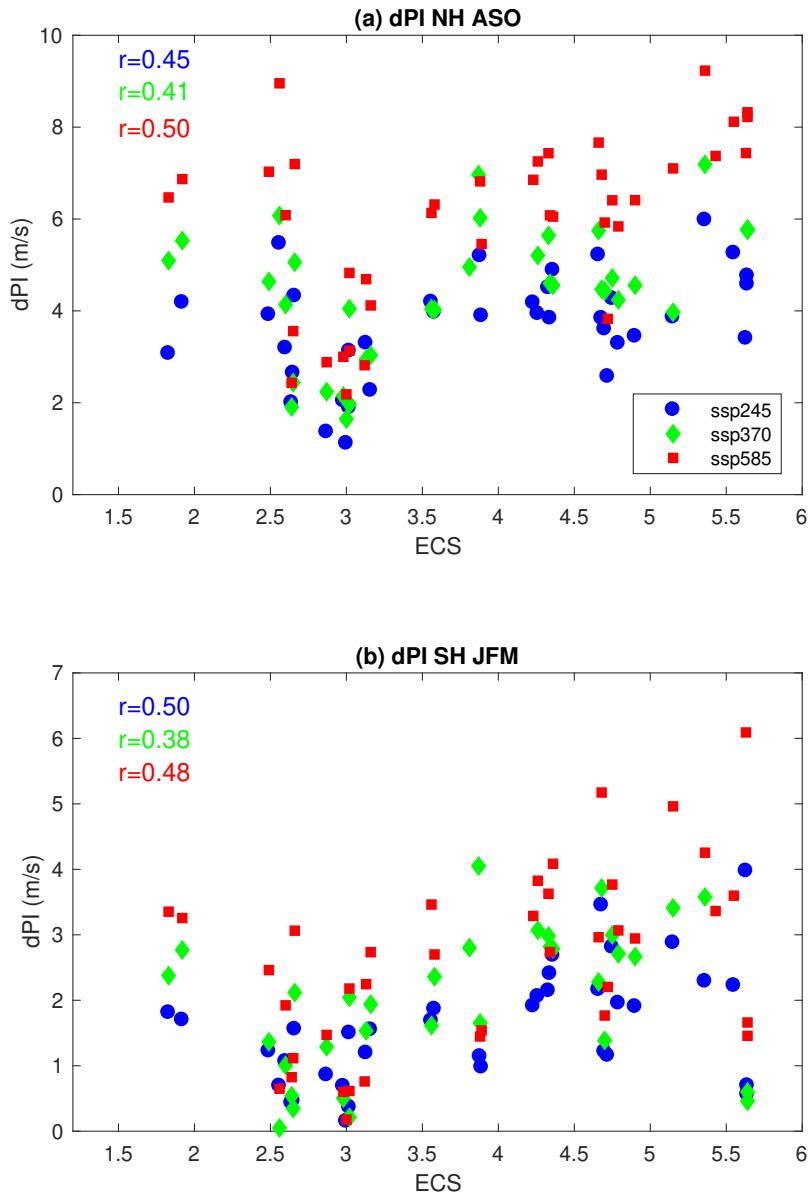
612 FIG. 14. PI increase (in m/s) at the end of the 21C (2091 – 2100) compared with the 1981 – 2010 climatology
 613 for all models (dark colored boxplots on the right) and models with the “right” climate sensitivity (lighter colored
 614 boxplots on the left) in the northern hemisphere for ASO (top panel) and southern hemisphere for JFM (bottom
 615 panel), for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). Not all models considered here
 616 have ECS values available.

617 Figure 15 shows the scatter plots of the increase in PI (dPI) at the end of the 21C (2091 – 2100)
618 from the end of the 20C (1981 – 2010) and the models’ ECS in the northern (a) and southern (b)
619 hemisphere, using the ECS values from Hausfather et al. (2022). Only models with ECS listed
620 in Hausfather et al. (2022) were included. The correlation between dPI and ECS varies between
621 0.38 and 0.50 depending on the future scenario and hemisphere considered, and it is statistically
622 significant in all cases. While there is a clear relationship between these two quantities for all
623 cases, in both hemisphere the lowest correlation occurs for SSP3-7.0, the scenario with the highest
624 aerosols concentration, which should not be surprising, as ECS only considers changes in CO₂.
625 However, it is important to note that there is large spread in dPI values for models with the same
626 ECS and scenario. In the northern hemisphere the highest dPI values per ECS value are typically
627 from SSP5-8.5 and the lowest from SSP2-4.5, with SSP3-7.0 in between them. This separation
628 does not work as well in the southern hemisphere, with the dPI values from the 3 future scenarios
629 more mixed.

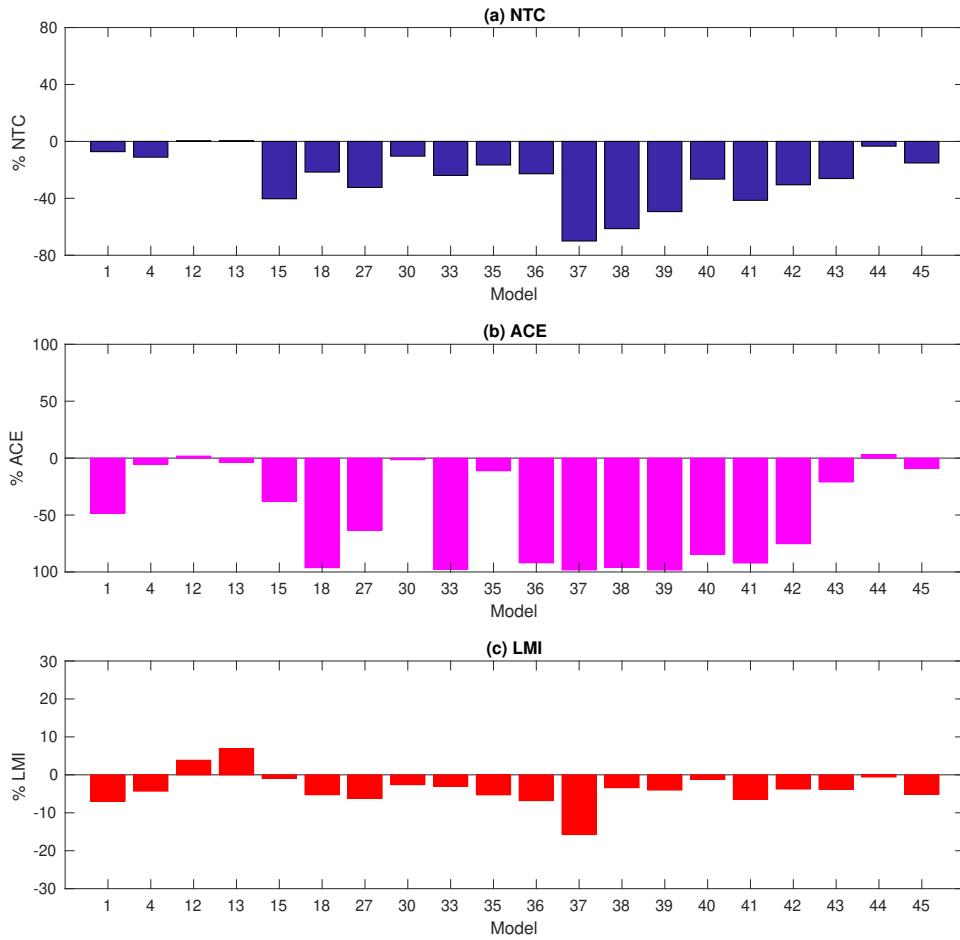
635 *d. NTC and ACE projections*

636 We now examine how the characteristics of the models’ TCs changed between the end of the
637 20C and the 21C. There are only 20 models which have the TCs tracked for both historical and
638 SSP5-8.5, marked with a star in Tables 1 and 2.

639 The percentage change in the median global NTC per year between the two 30-year periods
640 for each model is shown in Fig. 16(a). In most models there is a reduction in the global annual
641 frequency of TCs, similar to past studies e.g., Camargo (2013); Roberts et al. (2020b). Again
642 this is in contrast with the increase in most genesis indices shown in Fig. 12, except TCGI-SD, as
643 discussed in Camargo et al. (2014); Lee et al. (2020a, 2023).



630 FIG. 15. Scatter plots of increase in PI in m/s at the end of 21C (2091-2100) from the end of the 20C climatology
 631 (1981-2010) versus ECS values from Hausfather et al. (2022) for the (a) northern hemisphere in ASO and (b)
 632 southern hemisphere in JFM, for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). The
 633 correlation values for each scenario and hemisphere are given in each panel. Not all models considered here
 634 have ECS values available.



644 FIG. 16. Percentage change between the models ensemble mean in 2071-2100 compared with 1971-2000 for
 645 (a) Median global NTC, (b) Median global ACE, (c) 75 percentile of Lifetime Maximum Intensity (LMI).

646 The percentage change in the median ACE per year between future and historical scenarios is
647 shown in Fig. 16(b). Similar to NTC, there is a large decrease in ACE across most models. Given
648 that ACE is an integrated measure of frequency (NTC), duration and intensity, we further examined
649 the change in the storms lifetime maximum intensity (LMI). The percentage change in the 75th
650 percentile values of storms LMI is shown in Fig. 16(c). The LMI percentage changes are minimal
651 between the two scenarios. Therefore, the changes in ACE are dominated by changes in the TC
652 frequency, given that the changes in TC duration are not noticeable (not shown).

653 6. Conclusions

644 In this manuscript, we examined the characteristics of environmental fields associated with TCs
645 in CMIP6 historical and future simulations, as well as the TC-like storms tracked in these models.
646 We found that TC-associated environmental fields in the CMIP6 models have large biases in their
647 historical climatological patterns, magnitude, and interannual variability compared with ERA5.
648 These biases are present in thermodynamic and dynamic variables. There are clear systematic
649 biases across models from the same modeling centers, as the patterns of the biases are extremely
650 similar. The largest differences among environmental variables climatology across reanalyses are
651 in the humidity fields. Similarly, there is a large spread across models in the climatological values
652 of environmental fields associated with humidity, such as PI and CRH. Furthermore, the variance
653 of all environmental variables examined is much smaller than in reanalysis.

644 The biases in the individual environmental variables lead to biases in TC proxies such as genesis
645 indices. By bias-correcting the individual components of these indices, before computing them,
646 one can obtain values much closer values to the ERA5 ones. Because of the nonlinearity of the
647 indices' dependences on the individual variables, correcting mean biases in the individual variables
648 improves the biases not just in the mean indices, but in their variability as well. Column humidity
649 is the variable primarily responsible for the bias in the indices, and thus the one whose correction
650 has the greatest impact.

651 Similarly to CMIP5 and reanalyses products, there is no clear relationship between the mean
652 TC activity (NTC and ACE) and the climatological values of the environmental fields and proxies
653 across CMIP6 models. Furthermore, models with the same horizontal resolution have a large range

674 of NTC and ACE values, even if increased the model resolution leads in general to higher NTC
675 and ACE values in CMIP6 models.

676 The patterns of the environmental fields in the CMIP6 model projections are very similar to those
677 in CMIP5. These patterns are robust and similar across projection scenarios and GWL. Models
678 with greater climate sensitivity have larger increases in PI, but the differences are only significant
679 for high emissions scenarios and at the end of 21C. Furthermore, the compensation between aerosol
680 and GHG forcings in the PI increase is important, such that the scenarios with high aerosol loading
681 exhibit slower increases in PI.

682 Projections based on genesis indices are strongly dependent on the formulation of the genesis
683 index used, and projections based on a single genesis index should be taken with extreme caution,
684 as there is no way to determine which genesis index formulation is the “correct” one. In particular,
685 while some formulations of the genesis indices project an increase in TC activity, others project a
686 decrease, in agreement with what is obtained from the diagnostics of TC activity in CMIP6 models
687 (NTC and ACE). Recently, Chavas et al. (2024) developed a new genesis index more heavily based
688 in theory than previous indices. While there is no complete theory for genesis our recommendation
689 is to improve genesis indices using robust theoretical principles. Furthermore, the addition of seeds
690 survival rate into genesis indices, as done in Hsieh et al. (2020) could potentially lead to more
691 robust projections from genesis indices, though there are still conflicting perspectives about this
692 issue (e.g. Emanuel (2022)).

693 The climatology of TC-like storms in the CMIP6 has significantly improved compared with
694 CMIP5, probably associated with the increase in horizontal resolution across the multi-model
695 ensemble. Other model changes from CMIP5 to CMIP6, such as convective parametrization, are
696 model dependent and could affect TC activity in ways that are not coherent across models. In spite
697 of the increased model resolution, TC activity still shows substantial biases, as the model resolution
698 is still not high enough to resolve TCs. However, models with similar resolution can have a large
699 range of skill in reproducing TC climatology. Similar to previous generations, there is a decline in
700 NTC in the future for most models at the end of the 21C under a high emission scenario.

701 Systematic biases in the CMIP6 models, such as the trend in the spatial pattern of tropical Pacific
702 SST, need to be addressed in order to obtain a better estimate of the uncertainty range of TC
703 projections, independently of the methodology used.

704 *Acknowledgments.* S.J.C, M.K.T, A.H.S, C.-Y.L. and B.F. acknowledge support from Aon/Impact
705 Forecasting for this work. S.J.C. and C.-Y.L also acknowledge support of NSF (AGS 20-43142).
706 We acknowledge the World Climate Research Programme, which, through its Working Group on
707 Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for
708 producing and making available their model output, the Earth System Grid Federation (ESGF) for
709 archiving the data and providing access, and the multiple funding agencies who support CMIP6
710 and ESGF.

711 *Data availability statement.* The publicly available CMIP6 multi-model ensemble dataset was
712 used in this paper. CMIP6 ensemble model outputs can be downloaded from the different
713 Earth System Grid Federation (ESGF) nodes. The NOAA's International Best Track Archive
714 for Climate Stewardship (IBTrACS) dataset version 4 was used for tropical cyclones observa-
715 tions (<http://doi.org/10.25921/82ty-9e16>; Knapp et al. (2010, 2018)). Reanalysis data from
716 ERA5 (Hersbach et al. 2020, 2023a,b) were provided by the Copernicus Climate Change Service
717 Climate Data Store (CDS) and are available at <https://cds.climate.copernicus.eu>.

718 References

719 Andrews, T., and Coauthors, 2019: Forcings, Feedbacks, and Climate Sensitivity in HadGEM3-
720 GC3.1 and UKESM1. *J. Adv. Model. Earth Sys.*, **11** (12), 4377–4394, <https://doi.org/10.1029/2019MS001866>.

722 Arias, P. A., and Coauthors, 2021: Technical Summary in *Climate Change 2021: The Physical*
723 *Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergov-
724 ernmental Panel on Climate Change.* Cambridge University Press, Cambridge, United Kingdom
725 and New York, NY, USA, 33 - 144 pp., <https://doi.org/10.1017/9781009157896.002>.

726 Bao, Y., Z. Song, and F. Qiao, 2020: FIO-ESM Version 2.0: Model Description and Evaluation.
727 *J. Geophys. Res.*, **125** (6), e2019JC016036, <https://doi.org/10.1029/2019JC016036>.

728 Baudouin, J.-P., L.-P. Caron, and M. Boudreault, 2019: Impact of reanalysis boundary conditions
729 on downscaled Atlantic hurricane activity. *Clim. Dyn.*, **52** (5), 3709–3727, <https://doi.org/10.1007/s00382-018-4352-7>.

731 Bell, G. D., and Coauthors, 2000: Climate Assessment for 1999. *Bull. Amer. Meteor. Soc.*, **81** (6),
732 S1–S50, [https://doi.org/10.1175/1520-0477\(2000\)81\[s1:CAF\]2.0.CO;2](https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2).

733 Bell, S. S., S. S. Chand, S. J. Camargo, K. J. Tory, C. Turville, and H. Ye, 2019: Western North
734 Pacific Tropical Cyclone Tracks in CMIP5 Models: Statistical Assessment Using a Model-
735 Independent Detection and Tracking Scheme. *J. Climate*, **32** (21), 7191–7208, <https://doi.org/10.1175/JCLI-D-18-0785.1>.

736

737 Bi, D., and Coauthors, 2020: Configuration and spin-up of ACCESS-CM2, the new generation
738 Australian Community Climate and Earth System Simulator Coupled Model. *J. South. Hemi-
739 sphere Earth Sys. Sci.*, **70** (1), 225–251, <https://doi.org/10.1071/ES19040>.

740 Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone poten-
741 tial intensity 1. Interannual to interdecadal variability. *J. Geophys. Res.*, **107** (D24), 26–15,
742 <https://doi.org/10.1029/2001JD000776>.

743 Bloemendaal, N., I. D. Haigh, H. de Moel, S. Muis, R. J. Haarsma, and J. C. J. H. Aerts, 2020:
744 Generation of a global synthetic tropical cyclone hazard dataset using STORM. *Sci. Data*, **7** (1),
745 40, <https://doi.org/10.1038/s41597-020-0381-2>.

746 Boucher, O., and Coauthors, 2020: Presentation and Evaluation of the IPSL-CM6A-LR Cli-
747 mate Model. *J. Adv. Model. Earth Sys.*, **12** (7), e2019MS002010, <https://doi.org/10.1029/2019MS002010>.

748

749 Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water Vapor Path
750 and Precipitation over the Tropical Oceans. *J. Climate*, **17** (7), 1517–1528, [https://doi.org/10.1175/1520-0442\(2004\)017<1517:RBWVPA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2).

751

752 Camargo, S. J., 2013: Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5
753 Models. *J. Climate*, **26** (24), 9880–9902, <https://doi.org/10.1175/JCLI-D-12-00549.1>.

754

755 Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone
756 activity in atmospheric general circulation models. *Tellus A*, **57** (4), 589–604, <https://doi.org/10.3402/tellusa.v57i4.14705>.

757 Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a Genesis Potential Index to Diagnose
758 ENSO Effects on Tropical Cyclone Genesis. *J. Climate*, **20** (19), 4819–4834, <https://doi.org/10.1175/JCLI4282.1>.

760 Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific Tropical Cyclone Intensity and
761 ENSO. *J. Climate*, **18** (15), 2996–3006, <https://doi.org/10.1175/JCLI3457.1>.

762 Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the
763 Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model.
764 *J. Climate*, **27** (24), 9171–9196, <https://doi.org/10.1175/JCLI-D-13-00505.1>.

765 Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models: Tropical cyclones in
766 climate models. *WIREs Clim. Change*, **7** (2), 211–237, <https://doi.org/10.1002/wcc.373>.

767 Camargo, S. J., and Coauthors, 2020: Characteristics of Model Tropical Cyclone Climatology
768 and the Large-Scale Environment. *J. Climate*, **33** (11), 4463–4487, <https://doi.org/10.1175/JCLI-D-19-0500.1>.

770 Camargo, S. J., and Coauthors, 2023: An update on the influence of natural climate variability and
771 anthropogenic climate change on tropical cyclones. *Trop. Cyclone Res. Rev.*, **12** (3), 216–239,
772 <https://doi.org/10.1016/j.tctr.2023.10.001>.

773 Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: description
774 and preliminary evaluation. *Geosci. Model. Dev.*, **11** (7), 2975–2993, <https://doi.org/10.5194/gmd-11-2975-2018>.

776 Cavicchia, L., E. Scoccimarro, G. Ascenso, A. Castelletti, M. Giuliani, and S. Gualdi, 2023:
777 Tropical Cyclone Genesis Potential Indices in a New High-Resolution Climate Models Ensemble:
778 Limitations and Way Forward. *Geophys. Res. Lett.*, **50** (11), e2023GL103 001, <https://doi.org/10.1029/2023GL103001>.

780 Chand, S. S., K. J. Tory, H. Ye, and K. J. E. Walsh, 2017: Projected increase in El Niño-driven
781 tropical cyclone frequency in the Pacific. *Nature Clim. Change*, **7** (2), 123–127, <https://doi.org/10.1038/nclimate3181>.

783 Chavas, D. R., S. J. Camargo, and M. K. Tippett, 2024: Tropical cyclone genesis potential using
784 a ventilated potential intensity. *J. Climate*, <https://doi.org/10.1175/JCLI-D-24-0186.1>, early
785 online.

786 Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2).
787 *J. Adv. Model. Earth Sys.*, **12** (2), e2019MS001916, <https://doi.org/10.1029/2019MS001916>.

788 Davis, C. A., 2018: Resolving Tropical Cyclone Intensity in Models. *Geophys. Res. Lett.*, **45** (4),
789 2082–2087, <https://doi.org/10.1002/2017GL076966>.

790 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance
791 of the data assimilation system. *Quart. J. Roy. Meteor. Soc.*, **137**, 553–597, <https://doi.org/10.1002/qj.828>.

793 Dirkes, C. A., A. A. Wing, S. J. Camargo, and D. Kim, 2023: Process-Oriented Diagnosis of
794 Tropical Cyclones in Reanalyses Using a Moist Static Energy Variance Budget. *J. Climate*,
795 **36** (16), 5293–5317, <https://doi.org/10.1175/JCLI-D-22-0384.1>.

796 Döscher, R., and Coauthors, 2022: The EC-Earth3 Earth system model for the Coupled Model Inter-
797 comparison Project 6. *Geoscientific Model Development*, **15** (7), 2973–3020, <https://doi.org/10.5194/gmd-15-2973-2022>, URL <https://gmd.copernicus.org/articles/15/2973/2022/>, publisher:
799 Copernicus GmbH.

800 Dunne, J. P., and Coauthors, 2020: The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1):
801 Overall Coupled Model Description and Simulation Characteristics. *J. Adv. Model. Earth Sys.*,
802 **12** (11), e2019MS002015, <https://doi.org/10.1029/2019MS002015>.

803 Emanuel, K., 1988: The maximum intensity of hurricanes. *J. Atmos. Sci.*, **45** (7), 1143–1155,
804 [https://doi.org/10.1175/1520-0469\(1988\)045<1143:TMIOH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2).

805 Emanuel, K., 2000: A Statistical Analysis of Tropical Cyclone Intensity. *Mon. Wea. Rev.*, **128**,
806 1139–1152.

807 Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis,
808 1908–1958. *J. Adv. Model. Earth Sys.*, **2**, 1, <https://doi.org/10.3894/JAMES.2010.2.1>.

809 Emanuel, K., 2021: Response of Global Tropical Cyclone Activity to Increasing CO₂: Re-
810 sults from Downscaling CMIP6 Models. *J. Climate*, **34** (1), 57–70, <https://doi.org/10.1175/JCLI-D-20-0367.1>.

812 Emanuel, K., 2022: Tropical Cyclone Seeds, Transition Probabilities, and Genesis. *J. Climate*, **35**,
813 3557–3566, <https://doi.org/10.1175/JCLI-D-21-0922.1>.

814 Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A Statistical Deterministic Approach
815 to Hurricane Risk Assessment. *Bull. Amer. Meteor. Soc.*, **87** (3), 299–314, <https://doi.org/10.1175/BAMS-87-3-299>.

817 Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of Tropical
818 Tropopause Layer Cooling on Atlantic Hurricane Activity. *J. Climate*, **26** (7), 2288–2301,
819 <https://doi.org/10.1175/JCLI-D-12-00242.1>.

820 Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. *Nature*, **326** (6112),
821 483–485, <https://doi.org/10.1038/326483a0>.

822 Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone ac-
823 tivity over the 21st century. *Proc. Natl. Acad. Sci. USA*, **110** (30), 12 219–12 224, <https://doi.org/10.1073/pnas.1301293110>.

825 Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. *Proc. of
826 26th Conference on Hurricanes and Tropical Meteorology*, American Meteorological Society,
827 Miami, FL, 240–241.

828 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Tay-
829 lor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) ex-
830 perimental design and organization. *Geosci. Model. Dev.*, **9** (5), 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>.

832 Feng, J., J. Cao, B. Wang, and K. Zhao, 2024: Understanding the Inter-Model Spread of PDO's
833 Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models.
834 *Atmosphere*, **15** (3), 276, <https://doi.org/10.3390/atmos15030276>.

835 Fu, D., P. Chang, C. M. Patricola, and R. Saravanan, 2019: High-Resolution Tropical Channel
836 Model Simulations of Tropical Cyclone Climatology and Intraseasonal-to-Interannual Variabil-
837 ity. *J. Climate*, **32** (22), 7871–7895, <https://doi.org/10.1175/JCLI-D-19-0130.1>.

838 Golaz, J.-C., and Coauthors, 2019: The DOE E3SM Coupled Model Version 1: Overview and
839 Evaluation at Standard Resolution. *J. Adv. Model. Earth Sys.*, **11** (7), 2089–2129, <https://doi.org/10.1029/2018MS001603>.

841 Gutjahr, O., D. Putrasahan, K. Lohmann, J. H. Jungclaus, J.-S. von Storch, N. Brüggemann,
842 H. Haak, and A. Stössel, 2019: Max Planck Institute Earth System Model (MPI-ESM1.2) for the
843 High-Resolution Model Intercomparison Project (HighResMIP). *Geosci. Model. Dev.*, **12** (7),
844 3241–3281, <https://doi.org/10.5194/gmd-12-3241-2019>.

845 Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (High-
846 ResMIP v1.0) for CMIP6. *Geosci. Model. Dev.*, **9** (11), 4185–4208, <https://doi.org/10.5194/gmd-9-4185-2016>.

848 Hajima, T., and Coauthors, 2020: Development of the MIROC-ES2L Earth system model and the
849 evaluation of biogeochemical processes and feedbacks. *Geosci. Model. Dev.*, **13** (5), 2197–2244,
850 <https://doi.org/10.5194/gmd-13-2197-2020>.

851 Hall, T. M., and S. Jewson, 2007: Statistical modelling of North Atlantic tropical cyclone tracks.
852 *Tellus A*, **59** (4), 486–498, <https://doi.org/10.1111/j.1600-0870.2007.00240.x>.

853 Hausfather, Z., K. Marvel, G. A. Schmidt, J. W. Nielsen-Gammon, and M. Zelinka, 2022: Climate
854 simulations: recognize the ‘hot model’ problem. *Nature*, **605** (7908), 26–29, <https://doi.org/10.1038/d41586-022-01192-2>.

856 He, B., and Coauthors, 2019: CAS FGOALS-f3-L Model Datasets for CMIP6 Historical At-
857 mospheric Model Intercomparison Project Simulation. *Adv. Atmos. Sci.*, **36** (8), 771–778,
858 <https://doi.org/10.1007/s00376-019-9027-8>.

859 Held, I. M., and Coauthors, 2019: Structure and Performance of GFDL’s CM4.0 Climate Model.
860 *J. Adv. Model. Earth Sys.*, **11** (11), 3691–3727, <https://doi.org/10.1029/2019MS001829>.

861 Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. *Q.J.R. Meteorol. Soc.*, **146** (730),
862 1999–2049, <https://doi.org/10.1002/qj.3803>.

863 Hersbach, H., and Coauthors, 2023a: ERA5 monthly averaged data on pressure levels from 1940 to
864 present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), <https://doi.org/10.24381/cds.6860a573>.

866 Hersbach, H., and Coauthors, 2023b: ERA5 monthly averaged data on single levels from 1940 to
867 present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), <https://doi.org/10.24381/cds.f17050d>.

869 Hodges, K., A. Cobb, and P. L. Vidale, 2017: How Well Are Tropical Cyclones Represented in
870 Reanalysis Datasets? *J. Climate*, **30** (14), 5243–5264, <https://doi.org/10.1175/JCLI-D-16-0557.1>.

872 Hodges, K. I., 1994: A general-method for tracking analysis and its application to meteorological
873 data. *Mon. Wea. Rev.*, **122** (11), 2573–2586, [https://doi.org/10.1175/1520-0493\(1994\)122<2573:AGMFTA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2).

875 Hsieh, T.-L., G. A. Vecchi, W. Yang, I. M. Held, and S. T. Garner, 2020: Large-scale control on the
876 frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of global
877 atmospheric models. *Clim. Dyn.*, **55**, 3177–3196, <https://doi.org/10.1007/s00382-020-05446-5>.

878 Jing, R., and N. Lin, 2020: An Environment-Dependent Probabilistic Tropical Cyclone Model. *J.*
879 *Adv. Model. Earth Sys.*, **12** (3), <https://doi.org/10.1029/2019MS001975>.

880 Judt, F., and Coauthors, 2021: Tropical Cyclones in Global Storm-Resolving Models. *J. Meteor.*
881 *Soc. Japan*, **99** (3), 579–602, <https://doi.org/10.2151/jmsj.2021-029>.

882 Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and Climatology. *J. Adv. Model.*
883 *Earth Sys.*, **12** (8), e2019MS002025, <https://doi.org/10.1029/2019MS002025>.

884 Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck III, 2018: International
885 Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NOAA National
886 Centers for Environmental Information, <https://doi.org/10.25921/82TY-9E16>.

887 Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The
888 International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone
889 Data. *Bull. Amer. Meteor. Soc.*, **91** (3), 363–376, <https://doi.org/10.1175/2009BAMS2755.1>.

890 Knutson, T., and Coauthors, 2020: Tropical Cyclones and Climate Change Assessment: Part II:
891 Projected Response to Anthropogenic Warming. *Bull. Amer. Meteor. Soc.*, **101** (3), E303–E322,
892 <https://doi.org/10.1175/BAMS-D-18-0194.1>.

893 Knutson, T. R., J. J. Sirutis, M. A. Bender, R. E. Tuleya, and B. A. Schenkel, 2022: Dynamical
894 downscaling projections of late twenty-first-century U.S. landfalling hurricane activity. *Climatic
895 Change*, **171** (3), 28, <https://doi.org/10.1007/s10584-022-03346-7>.

896 Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. *Nature Geosci.*, **3** (3),
897 157–163, <https://doi.org/10.1038/ngeo779>.

898 Knutson, T. R., and Coauthors, 2013: Dynamical Downscaling Projections of Twenty-First-Century
899 Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. *J. Climate*, **26** (17),
900 6591–6617, <https://doi.org/10.1175/JCLI-D-12-00539.1>.

901 Kossin, J. P., 2017: Hurricane intensification along United States coast suppressed during active
902 hurricane periods. *Nature*, **541** (7637), 390–393, <https://doi.org/10.1038/nature20783>.

903 Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and Projected Changes in Western
904 North Pacific Tropical Cyclone Exposure. *J. Climate*, **29** (16), 5725–5739, <https://doi.org/10.1175/JCLI-D-16-0076.1>.

905 Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location
906 of tropical cyclone maximum intensity. *Nature*, **509** (7500), 349–352, <https://doi.org/10.1038/nature13278>.

907 Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A Technique for Combining Global
908 Tropical Cyclone Best Track Data. *J. Atmos. Ocean. Tech.*, **27** (4), 680–692, <https://doi.org/10.1175/2009JTECHA1267.1>.

909 Kuhlbrodt, T., and Coauthors, 2018: The Low-Resolution Version of HadGEM3 GC3.1: Devel-
910 opment and Evaluation for Global Climate. *J. Adv. Model. Earth Sys.*, **10** (11), 2865–2888,
911 <https://doi.org/10.1029/2018MS001370>.

912 Landman, W. A., A. Seth, and S. J. Camargo, 2005: The Effect of Regional Climate Model Domain
913 Choice on the Simulation of Tropical Cyclone–Like Vortices in the Southwestern Indian Ocean.
914 *J. Climate*, **18** (8), 1263–1274, <https://doi.org/10.1175/JCLI3324.1>.

918 Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020a: Statistical–Dynamical Down-
919 scaling Projections of Tropical Cyclone Activity in a Warming Climate: Two Diverging Genesis
920 Scenarios. *J. Climate*, **33** (11), 4815–4834, <https://doi.org/10.1175/JCLI-D-19-0452.1>.

921 Lee, C.-Y., A. H. Sobel, S. J. Camargo, M. K. Tippett, and Q. Yang, 2022: New York State
922 Hurricane Hazard: History and Future Projections. *J. Appl. Meteor. Climatol.*, **61** (6), 613–629,
923 <https://doi.org/10.1175/JAMC-D-21-0173.1>.

924 Lee, C.-Y., A. H. Sobel, M. K. Tippett, S. J. Camargo, M. Wüest, M. Wehner, and H. Murakami,
925 2023: Climate Change Signal in Atlantic Tropical Cyclones Today and Near Future. *Earth's
926 Future*, **11** (11), e2023EF003 539, <https://doi.org/10.1029/2023EF003539>.

927 Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An Environmentally Forced
928 Tropical Cyclone Hazard Model. *J. Adv. Model. Earth Sys.*, **10** (1), 223–241, <https://doi.org/10.1002/2017MS001186>.

930 Lee, J., J. Kim, M.-A. Sun, B.-H. Kim, H. Moon, H. M. Sung, J. Kim, and Y.-H. Byun,
931 2020b: Evaluation of the Korea Meteorological Administration Advanced Community Earth-
932 System model (K-ACE). *Asia-Pacific J. Atmos. Sci.*, **56** (3), 381–395, <https://doi.org/10.1007/s13143-019-00144-7>.

934 Li, L., and Coauthors, 2020: The Flexible Global Ocean–Atmosphere–Land System Model Grid-
935 Point Version 3 (FGOALS-g3): Description and Evaluation. *J. Adv. Model. Earth Sys.*, **12** (9),
936 e2019MS002 012, <https://doi.org/10.1029/2019MS002012>.

937 Lin, I.-I., S. J. Camargo, C.-C. Lien, C.-A. Shi, and J. P. Kossin, 2023a: Poleward mi-
938 gration as global warming's possible self-regulator to restrain future western North Pa-
939 cific Tropical Cyclone's intensification. *npj Clim. Atmos. Sci.*, **6** (1), 1–9, <https://doi.org/10.1038/s41612-023-00329-y>.

941 Lin, J., R. Rousseau-Rizzi, C.-Y. Lee, and A. Sobel, 2023b: An Open-Source, Physics-Based,
942 Tropical Cyclone Downscaling Model With Intensity-Dependent Steering. *J. Adv. Model. Earth
943 Sys.*, **15** (11), e2023MS003 686, <https://doi.org/10.1029/2023MS003686>.

944 Lin, Y., and Coauthors, 2020: Community Integrated Earth System Model (CIESM): Description
945 and Evaluation. *J. Adv. Model. Earth Sys.*, **12** (8), e2019MS002036, <https://doi.org/10.1029/2019MS002036>.

947 Lovato, T., and Coauthors, 2022: CMIP6 Simulations With the CMCC Earth System Model
948 (CMCC-ESM2). *J. Adv. Model. Earth Sys.*, **14** (3), e2021MS002814, <https://doi.org/10.1029/2021MS002814>.

950 Lund, M. T., G. Myhre, and B. H. Samset, 2019: Anthropogenic aerosol forcing under the
951 Shared Socioeconomic Pathways. *Atmos. Chem. Phys.*, **19** (22), 13 827–13 839, <https://doi.org/10.5194/acp-19-13827-2019>.

953 Manganello, J. V., and Coauthors, 2012: Tropical Cyclone Climatology in a 10-km Global Atmo-
954 spheric GCM: Toward Weather-Resolving Climate Modeling. *J. Climate*, **25** (11), 3867–3893,
955 <https://doi.org/10.1175/JCLI-D-11-00346.1>.

956 Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2
957 (MPI-ESM1.2) and Its Response to Increasing CO₂. *J. Adv. Model. Earth Sys.*, **11** (4), 998–1038,
958 <https://doi.org/10.1029/2018MS001400>.

959 Miller, R. L., and Coauthors, 2021: CMIP6 Historical Simulations (1850–2014) With GISS-E2.1.
960 *J. Adv. Model. Earth Sys.*, **13** (1), e2019MS002034, <https://doi.org/10.1029/2019MS002034>.

961 Moon, Y., and Coauthors, 2020: Azimuthally Averaged Wind and Thermodynamic Structures of
962 Tropical Cyclones in Global Climate Models and Their Sensitivity to Horizontal Resolution. *J.*
963 *Climate*, **33** (4), 1575–1595, <https://doi.org/10.1175/JCLI-D-19-0172.1>.

964 Moon, Y., and Coauthors, 2022: An Evaluation of Tropical Cyclone Rainfall Structures in
965 the HighResMIP Simulations against Satellite Observations. *J. Climate*, **35** (22), 3715–3738,
966 <https://doi.org/10.1175/JCLI-D-21-0564.1>.

967 Murakami, H., and Coauthors, 2015: Simulation and Prediction of Category 4 and 5 Hurricanes in
968 the High-Resolution GFDL HiFLOR Coupled Climate Model. *J. Climate*, **28** (23), 9058–9079,
969 <https://doi.org/10.1175/JCLI-D-15-0216.1>.

970 Müller, W. A., and Coauthors, 2018: A Higher-resolution Version of the Max Planck Institute Earth
971 System Model (MPI-ESM1.2-HR). *J. Adv. Model. Earth Sys.*, **10** (7), 1383–1413, <https://doi.org/10.1029/2017MS001217>.

973 Nakamura, J., U. Lall, Y. Kushnir, and B. Rajagopalan, 2015: HITS: Hurricane Intensity and
974 Track Simulator with North Atlantic Ocean Applications for Risk Assessment. *J. Appl. Meteor.*
975 *Climatol.*, **54** (7), 1620–1636, <https://doi.org/10.1175/JAMC-D-14-0141.1>.

976 Nijssse, F. J. M. M., P. M. Cox, and M. S. Williamson, 2020: Emergent constraints on transient
977 climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming
978 in CMIP5 and CMIP6 models. *Earth Syst. Dynam.*, **11** (3), 737–750, <https://doi.org/10.5194/esd-11-737-2020>.

980 O'Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP)
981 for CMIP6. *Geosci. Model Dev.*, **9** (9), 3461–3482, <https://doi.org/10.5194/gmd-9-3461-2016>.

982 Pak, G., and Coauthors, 2021: Korea Institute of Ocean Science and Technology Earth System
983 Model and Its Simulation Characteristics. *Ocean Sci. J.*, **56** (1), 18–45, <https://doi.org/10.1007/s12601-021-00001-7>.

985 Patricola, C. M., R. Saravanan, and P. Chang, 2014: The Impact of the El Niño–Southern Oscillation
986 and Atlantic Meridional Mode on Seasonal Atlantic Tropical Cyclone Activity. *J. Climate*,
987 **27** (14), 5311–5328, <https://doi.org/10.1175/JCLI-D-13-00687.1>.

988 Patricola, C. M., R. Saravanan, and P. Chang, 2017: A teleconnection between Atlantic sea surface
989 temperature and eastern and central North Pacific tropical cyclones. *Geophys. Res. Lett.*, **44** (2),
990 1167–1174, <https://doi.org/10.1002/2016GL071965>.

991 Rao, S., and Coauthors, 2017: Future air pollution in the Shared Socio-economic Pathways. *Global*
992 *Environ. Change*, **42**, 346–358, <https://doi.org/10.1016/j.gloenvcha.2016.05.012>.

993 Reed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen,
994 J. E. Truesdale, and C. Hannay, 2015: Impact of the dynamical core on the direct simulation
995 of tropical cyclones in a high-resolution global model. *Geophys. Res. Lett.*, **42** (9), 3603–3608,
996 <https://doi.org/10.1002/2015GL063974>.

997 Rios-Berrios, R., P. M. Finocchio, J. J. Alland, X. Chen, M. S. Fischer, S. N. Stevenson, and
998 D. Tao, 2023: A Review of the Interactions between Tropical Cyclones and Environmental
999 Vertical Wind Shear. *J. Atmos. Sci.*, **81** (4), 713–741, <https://doi.org/10.1175/JAS-D-23-0022.1>.

1000 Roberts, M. J., and Coauthors, 2015: Tropical Cyclones in the UPSCALE Ensemble of High-
1001 Resolution Global Climate Models. *J. Climate*, **28** (2), 574–596, <https://doi.org/10.1175/JCLI-D-14-00131.1>.

1003 Roberts, M. J., and Coauthors, 2020a: Impact of Model Resolution on Tropical Cyclone Simulation
1004 Using the HighResMIP–PRIMAVERA Multimodel Ensemble. *J. Climate*, **33** (7), 2557–2583,
1005 <https://doi.org/10.1175/JCLI-D-19-0639.1>.

1006 Roberts, M. J., and Coauthors, 2020b: Projected Future Changes in Tropical Cyclones Using
1007 the CMIP6 HighResMIP Multimodel Ensemble. *Geophys. Res. Lett.*, **47** (14), e202GL088 662,
1008 <https://doi.org/10.1029/2020GL088662>.

1009 Rong, X., J. Li, H. Chen, J. Su, L. Hua, Z. Zhang, and Y. Xin, 2021: The CMIP6 Historical
1010 Simulation Datasets Produced by the Climate System Model CAMS-CSM. *Adv. Atmos. Sci.*,
1011 **38** (2), 285–295, <https://doi.org/10.1007/s00376-020-0171-y>.

1012 Rong, X., and Coauthors, 2018: The CAMS Climate System Model and a Basic Evaluation
1013 of Its Climatology and Climate Variability Simulation. *J. Meteorol. Res.*, **32** (6), 839–861,
1014 <https://doi.org/10.1007/s13351-018-8058-x>.

1015 Russotto, R. D., and Coauthors, 2022: Evolution of Tropical Cyclone Properties Across the
1016 Development Cycle of the GISS-E3 Global Climate Model. *J. Adv. Model. Earth Sys.*, **14** (1),
1017 e2021MS002 601, <https://doi.org/10.1029/2021MS002601>.

1018 Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The Impact of Best Track Discrepancies on
1019 Global Tropical Cyclone Climatologies using IBTrACS. *Mon. Wea. Rev.*, **142** (10), 3881–3899,
1020 <https://doi.org/10.1175/MWR-D-14-00021.1>.

1021 Schär, C., and Coauthors, 2020: Kilometer-Scale Climate Models: Prospects and Challenges. *Bull.*
1022 *Amer. Meteor. Soc.*, <https://doi.org/10.1175/BAMS-D-18-0167.1>.

1023 Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening
1024 tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases.
1025 *Nat. Clim. Change*, **9** (7), 517–522, <https://doi.org/10.1038/s41558-019-0505-x>.

1026 Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2)
1027 and key climate response of CMIP6 DECK, historical, and scenario simulations. *Geosci. Model.*
1028 *Dev.*, **13** (12), 6165–6200, <https://doi.org/10.5194/gmd-13-6165-2020>.

1029 Sellar, A. A., and Coauthors, 2019: UKESM1: Description and Evaluation of the U.K.
1030 Earth System Model. *J. Adv. Model. Earth Sys.*, **11** (12), 4513–4558, <https://doi.org/10.1029/2019MS001739>.

1032 Semmler, T., and Coauthors, 2020: Simulations for CMIP6 With the AWI Climate Model
1033 AWI-CM-1-1. *J. Adv. Model. Earth Sys.*, **12** (9), e2019MS002 009, <https://doi.org/10.1029/2019MS002009>.

1035 Seneviratne, S. I., and M. Hauser, 2020: Regional Climate Sensitivity of Climate Extremes in
1036 CMIP6 Versus CMIP5 Multimodel Ensembles. *Earth's Future*, **8** (9), <https://doi.org/10.1029/2019EF001474>.

1038 Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution
1039 models in the present climate. *J. Adv. Model. Earth Sys.*, **6** (4), 1154–1172, <https://doi.org/10.1002/2014MS000372>.

1041 Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016:
1042 Human influence on tropical cyclone intensity. *Science*, **353** (6296), 242–246, <https://doi.org/10.1126/science.aaf6574>.

1044 Sobel, A. H., S. J. Camargo, and M. Previdi, 2019: Aerosol versus Greenhouse Gas Effects on
1045 Tropical Cyclone Potential Intensity and the Hydrologic Cycle. *J. Climate*, **32** (17), 5511–5527,
1046 <https://doi.org/10.1175/JCLI-D-18-0357.1>.

1047 Sobel, A. H., A. A. Wing, S. J. Camargo, C. M. Patricola, G. A. Vecchi, C.-Y. Lee, and M. K. Tippett,
1048 2021: Tropical Cyclone Frequency. *Earth's Future*, **9** (12), e2021EF002 275, <https://doi.org/10.1029/2021EF002275>.

1050 Sobel, A. H., and Coauthors, 2023: Near-term tropical cyclone risk and coupled Earth system
1051 model biases. *Proc. Natl. Acad. Sci. USA*, **120** (33), e2209631 120, <https://doi.org/10.1073/pnas.2209631120>.

1053 Stansfield, A. M., K. A. Reed, and C. M. Zarzycki, 2020: Changes in Precipitation From
1054 North Atlantic Tropical Cyclones Under RCP Scenarios in the Variable-Resolution Com-
1055 munity Atmosphere Model. *Geophys. Res. Lett.*, **47** (12), e2019GL086 930, <https://doi.org/10.1029/2019GL086930>.

1057 Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3).
1058 *Geosci. Model. Dev.*, **12** (11), 4823–4873, <https://doi.org/10.5194/gmd-12-4823-2019>.

1059 Séférian, R., and Coauthors, 2019: Evaluation of CNRM Earth System Model, CNRM-ESM2-1:
1060 Role of Earth System Processes in Present-Day and Future Climate. *J. Adv. Model. Earth Sys.*,
1061 **11** (12), 4182–4227, <https://doi.org/10.1029/2019MS001791>.

1062 Tang, B., and S. J. Camargo, 2014: Environmental control of tropical cyclones in CMIP5: A
1063 ventilation perspective. *J. Adv. Model. Earth Sys.*, **6** (1), 115–128, <https://doi.org/10.1002/2013MS000294>.

1065 Tang, B., and K. Emanuel, 2010: Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity.
1066 *J. Atmos. Sci.*, **67** (6), 1817–1830, <https://doi.org/10.1175/2010JAS3318.1>.

1067 Tang, B., and K. Emanuel, 2012: A Ventilation Index for Tropical Cyclones. *Bull. Amer. Meteor.
1068 Soc.*, **93** (12), 1901–1912, <https://doi.org/10.1175/BAMS-D-11-00165.1>.

1069 Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state,
1070 internal variability, and climate sensitivity in MIROC6. *Geosci. Model. Dev.*, **12** (7), 2727–
1071 2765, <https://doi.org/10.5194/gmd-12-2727-2019>.

1072 Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. *J.
1073 Geophys. Res.*, **106** (D7), 7183–7192, <https://doi.org/10.1029/2000JD900719>.

1074 Ting, M., S. J. Camargo, C. Li, and Y. Kushnir, 2015: Natural and Forced North Atlantic Hurricane
1075 Potential Intensity Change in CMIP5 Models. *J. Climate*, **28** (10), 3926–3942, <https://doi.org/10.1175/JCLI-D-14-00520.1>.

1077 Ting, M., J. P. Kossin, S. J. Camargo, and C. Li, 2019: Past and Future Hurricane Intensity Change
1078 along the U.S. East Coast. *Sci. Rep.*, **9** (1), 7795, <https://doi.org/10.1038/s41598-019-44252-w>.

1079 Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson Regression Index for Tropical
1080 Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis. *J. Climate*, **24** (9), 2335–2357,
1081 <https://doi.org/10.1175/2010JCLI3811.1>.

1082 Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013: Projected Changes in Late-
1083 Twenty-First-Century Tropical Cyclone Frequency in 13 Coupled Climate Models from Phase 5
1084 of the Coupled Model Intercomparison Project. *J. Climate*, **26** (24), 9946–9959, <https://doi.org/10.1175/JCLI-D-13-00010.1>.

1085

1086 Vecchi, G. A., S. Fueglistaler, I. M. Held, T. R. Knutson, and M. Zhao, 2013: Impacts of
1087 Atmospheric Temperature Trends on Tropical Cyclone Activity. *J. Climate*, **26** (11), 3877–
1088 3891, <https://doi.org/10.1175/JCLI-D-12-00503.1>.

1089

1090 Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on
1091 tropical cyclone potential intensity. *Nature*, **450** (7172), 1066–1070, <https://doi.org/10.1038/nature06423>.

1092

1093 Vecchi, G. A., and B. J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections
1094 of global warming. *Geophys. Res. Lett.*, **34** (8), L08 702, <https://doi.org/10.1029/2006GL028905>.

1095

1096 Vickery, P. J., 2005: Simple Empirical Models for Estimating the Increase in the Central Pressure
1097 of Tropical Cyclones after Landfall along the Coastline of the United States. *J. Appl. Meteorol.*,
1098 **44** (12), 1807–1826, <https://doi.org/10.1175/JAM2310.1>.

1099

1100 Vidale, P. L., and Coauthors, 2021: Impact of Stochastic Physics and Model Resolution on the Sim-
1101 ulation of Tropical Cyclones in Climate GCMs. *J. Climate*, **34** (11), 4315–4341, <https://doi.org/10.1175/JCLI-D-20-0507.1>.

1102

1103 Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the
1104 INMCM4.0 coupled model of the atmospheric and oceanic general circulations. *Izv. Atmos. Ocean. Phys.*, **46** (4), 414–431, <https://doi.org/10.1134/S000143381004002X>.

1105 Volodin, E. M., and Coauthors, 2017: Simulation of the present-day climate with the climate
1106 model INMCM5. *Clim Dyn*, **49** (11), 3715–3734, <https://doi.org/10.1007/s00382-017-3539-7>.

1107 Wang, Y.-C., and Coauthors, 2021: Performance of the Taiwan Earth System Model in Simulating
1108 Climate Variability Compared With Observations and CMIP6 Model Simulations. *J. Adv. Model.*
1109 *Earth Syst.*, **13** (7), e2020MS002353, <https://doi.org/10.1029/2020MS002353>.

1110 Wehner, M., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. Bacmeister, 2015: Resolution
1111 Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane
1112 Working Group Idealized Configurations. *J. Climate*, **28** (10), 3905–3925, <https://doi.org/10.1175/JCLI-D-14-00311.1>.

1114 Wehner, M. F., and J. P. Kossin, 2024: The growing inadequacy of an open-ended Saffir–Simpson
1115 hurricane wind scale in a warming world. *Proc. Natl. Acad. Sci. USA*, **121** (7), e2308901 121,
1116 <https://doi.org/10.1073/pnas.2308901121>.

1117 Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality
1118 in the Community Atmospheric Model, CAM5.1. *J. Adv. Model. Earth Syst.*, **6** (4), 980–997,
1119 <https://doi.org/10.1002/2013MS000276>.

1120 Wing, A. A., K. Emanuel, and S. Solomon, 2015: On the factors affecting trends and variability
1121 in tropical cyclone potential intensity. *Geophys. Res. Lett.*, **42** (20), 8669–8677, <https://doi.org/10.1002/2015GL066145>.

1123 Wing, A. A., A. H. Sobel, and S. J. Camargo, 2007: The Relationship Between the Potential and
1124 Actual Intensities of Tropical Cyclones. *Geophys. Res. Lett.*, **34** (8), L08 810, <https://doi.org/10.1029/2006GL028581>.

1126 Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): the
1127 main progress from CMIP5 to CMIP6. *Geosci. Model. Dev.*, **12** (4), 1573–1600, <https://doi.org/10.5194/gmd-12-1573-2019>.

1129 Xu, W., K. Balaguru, D. R. Judi, J. Rice, L. R. Leung, and S. Lipari, 2024: A North At-
1130 lantic synthetic tropical cyclone track, intensity, and rainfall dataset. *Sci. Data*, **11** (1), 130,
1131 <https://doi.org/10.1038/s41597-024-02952-7>.

1132 Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model
1133 Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. *J.*
1134 *Meteor. Soc. Japan*, **97** (5), 931–965, <https://doi.org/10.2151/jmsj.2019-051>.

1135 Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using Variable-Resolution Meshes
1136 to Model Tropical Cyclones in the Community Atmosphere Model. *Mon. Wea. Rev.*, **142** (3),
1137 1221–1239, <https://doi.org/10.1175/MWR-D-13-00179.1>.

1138 Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein,
1139 and K. E. Taylor, 2020: Causes of Higher Climate Sensitivity in CMIP6 Models. *Geophys. Res.*
1140 *Lett.*, **47** (1), <https://doi.org/10.1029/2019GL085782>.

1141 Zhang, H., and Coauthors, 2020: Description and Climate Simulation Performance of CAS-
1142 ESM Version 2. *J. Adv. Model. Earth Sys.*, **12** (12), e2020MS002210, <https://doi.org/10.1029/2020MS002210>.

1143 Zhao, M., and I. M. Held, 2012: TC-Permitting GCM Simulations of Hurricane Frequency
1144 Response to Sea Surface Temperature Anomalies Projected for the Late-Twenty-First Century.
1145 *J. Climate*, **25** (8), 2995–3009, <https://doi.org/10.1175/JCLI-D-11-00313.1>.

1146 Zick, S. E., and C. J. Matyas, 2015: Tropical cyclones in the North American Regional Reanalysis:
1147 An assessment of spatial biases in location, intensity, and structure. *J. Geophys. Res.*, **120** (5),
1148 1651–1669, <https://doi.org/10.1002/2014JD022417>.

1149 Ziehn, T., and Coauthors, 2020: The Australian Earth System Model: ACCESS-ESM1.5. *J. South.*
1150 *Hemisphere Earth Sys. Sci.*, **70** (1), 193–214, <https://doi.org/10.1071/ES19035>.