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ABSTRACT: The authors analyze the environmental fields associated with tropical cyclone (TC)

activity in the Coupled Model Intercomparison Project Phase 6 (CMIP6) models, as well as the

TC-like storms in those models. First, the model biases in the historical climatological means

of chosen environmental fields are evaluated against the fifth generation of the European Centre

for Medium-Range Weather Forecasting (ECMWF) atmospheric reanalysis (ERA5). Second, we

show that the interannual variability of these fields is typically much smaller in models than in

reanalysis. Applying a mean bias correction to these fields before calculating tropical cyclone

genesis indices improves the variability of the modeled indices compared to those in reanalysis,

as well as the means, due to the nonlinear dependence of the indices on these fields. The authors

consider how these environmental fields change in the CMIP6 models, using three future scenarios

separately as well as combining scenarios and times according to specific greenhouse warming

levels. Multiple proxies for TC activity are considered and we show that the signs of the future

changes are dependent on the choice of genesis index. The relationship between climate sensitivity

and potential intensity change across the multi-model ensemble is examined. The statistics of the

TC-like structures in the historical simulations are also examined, using the number of tropical

cyclones (NTC) and accumulated cyclone energy (ACE) as diagnostics, including calculations of

the percentage changes in NTC and ACE at the end of the 21C as compared with the 20C. Large

decreases in both of these quantities are found in the highest emission scenario.
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1. Introduction29

Future projections of tropical cyclone activity have been explored and discussed numerous times30

in the literature over the last few decades (Knutson et al. 2010, 2020; Camargo and Wing 2016;31

Camargo et al. 2023). An intrinsic problem is that tropical cyclones (TCs) require high horizontal32

resolution to be well simulated in numerical models, especially in order to represent high-intensity33

storms. At the same time, large numbers of years, ensembles, scenarios, and models are required34

to represent the climate change signal and its uncertainties. These two objectives are difficult to35

satisfy simultaneously.36

One common approach has been to compare historical and future TCs’ characteristics (e.g., fre-37

quency, intensity, and duration) in standard global climate models (e.g., Camargo 2013; Tory et al.38

2013; Chand et al. 2017; Bell et al. 2019; Feng et al. 2024). Due to these models’ low resolutions,39

among other reasons, such as systematic biases associated with convection parametrization, the40

resulting TC climatologies are not very realistic, with simulated TCs weaker and larger than those41

observed being a particularly obvious bias (Camargo and Wing 2016; Camargo 2013; Shaevitz42

et al. 2014).43

A second approach is to analyze model TCs in high-resolution climate models (25 - 50 km grid44

spacings), as was done recently in the HighResMIP project (Haarsma et al. 2016; Roberts et al.45

2020a,b). These studies show improved representation of TCs with increased resolution, consistent46

with other studies (Zhao and Held 2012; Manganello et al. 2012; Wehner et al. 2014; Roberts et al.47

2015; Vidale et al. 2021; Russotto et al. 2022; Moon et al. 2020, 2022), in particular TC intensity,48

though there remain biases in multiple aspects of TC activity, such as track characteristics and49

landfall locations. However, the computational cost of these high-resolution climate simulations50

limits the number of ensemble members, number of future scenarios, and simulation duration.51

While the representation of TCs in convection-permitting models such as those in Judt et al. (2021)52

(2.5 - 8km) are much more realistic than in models with lower resolution, these simulations are53

typically too short (a few years or months) to provide robust TC projections. Currently, these54

high-resolution simulations are too computationally expensive to be performed using multiple55

ensembles and for many years, however the situation is changing fast (Schär et al. 2020).56

Another common approach is to downscale global climate models to basin-scale using high-57

resolution regional models (Knutson et al. 2013, 2022; Patricola et al. 2014, 2017; Fu et al. 2019).58

3



Drawbacks to this approach include that it does not produce consistent global (i.e., multi-basin)59

TC projections and that it has issues at basin boundaries (Landman et al. 2005; Zick and Matyas60

2015; Baudouin et al. 2019). Global climate models with variable-resolution grids avoid boundary61

issues (Zarzycki et al. 2014; Stansfield et al. 2020), but only TCs over the region of high resolution62

are well resolved.63

An alternative methodology is to generate synthetic storms, either using statistical (Vickery 2005;64

Hall and Jewson 2007; Nakamura et al. 2015; Bloemendaal et al. 2020) or statistical-dynamical65

(Emanuel et al. 2006; Lee et al. 2018; Jing and Lin 2020; Lin et al. 2023b; Xu et al. 2024) models.66

One appealing feature of these models is the low computational cost and consequent large sample67

number of TCs that can be easily simulated, though a drawback is the limited representation of68

physical processes.69

An approach that bypasses model TCs is to infer the projection of TC characteristics based on70

environmental proxies (genesis indices, potential intensity, ventilation index, etc.) for TC activity71

(e.g. Emanuel 1988; Emanuel and Nolan 2004; Emanuel 2010; Tang and Emanuel 2010, 2012).72

However, the behavior of TC proxies in projections sometimes disagrees with TC projections from73

high-resolution models (Camargo et al. 2014; Wehner et al. 2015). Furthermore, genesis indices74

are based on statistical relationships, derived from reanalysis data and TC “best track” data sets75

from the recent historical period, rather than physical theory. Good performance of a genesis76

index in a particular basin, period, or time scale, using reanalysis fields does not guarantee good77

performance in models or in future climates.78

Finally, all approaches used to make TC projections are impacted, indirectly or directly, by model79

biases. One well-known issue in Coupled Model Intercomparison Project Phase 5 and 6 (CMIP580

and CMIP6) models is their failure to match the observed strengthening of the tropical Pacific81

sea surface temperature (SST) zonal gradient over the historical period, possibly a consequence82

of model bias (Seager et al. 2019). Given the important role of the El Niño-Southern Oscillation83

(ENSO) in modulating TC activity, and the similarity of sea surface temperature (SST) trend84

patterns to El Niño (in models) or La Niña (in observations) this disagreement with observations85

may be expected to have important consequences for TC projections (Sobel et al. 2023).86

This manuscript addresses the following topics in a large number of CMIP6 models: (i) biases87

in environmental fields associated with TC activity; (ii) the relationship between model TCs88
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and environmental fields; changes in (iii) TC-related environmental fields and (iv) model TC89

activity with anthropogenic climate change. Once we examine the climatological and interannual90

variability biases across the CMIP6 models, we show their impact on genesis indices and propose91

a bias correction to address this issue. Next, we analyze the main characteristics of the TCs in the92

CMIP6 models and how they relate to model resolution and environmental fields. The response of93

environmental fields and TCs to greenhouse gases forcing is then discussed, including the role of94

aerosols in the different future scenarios.95

Section 2 describes the environmental fields and proxies considered. The models, datasets and96

methods used are given in Section 3. The historical simulations are analyzed in Section 4 and97

future simulations in Section 5. The conclusions are presented in Section 6.98

2. Environmental Field Proxies99

We analyze the biases in the spatial climatological patterns and interannual variability of key100

environmental variables associated with TCs, including potential intensity (PI), vertical wind shear101

(VSH), column relative humidity (CRH), and absolute vorticity at 850hPa.102

Potential Intensity (PI) is the theoretical maximum intensity that a TC could reach under given103

environmental conditions (Emanuel 1988). PI computed from reanalysis data explains both ob-104

served TC intensity trends and interannual variability to some degree (Emanuel 2000; Wing et al.105

2007, 2015). Since Emanuel (1987) first showed that PI is expected to increase with anthropogenic106

climate change, projections of PI have been extensively discussed in the literature, including in107

previous generations of CMIP models, such as CMIP3 (Vecchi and Soden 2007a,b), and CMIP5108

(Camargo 2013). Here PI is calculated following the Bister and Emanuel (2002) algorithm.109

Deep-layer vertical wind shear (VSH), the difference between horizontal winds at 200 and 850110

hPa, influences TC genesis and intensification (e.g., Rios-Berrios et al. 2023, and references111

therein). Overall, strong VSH tends to weaken TCs, as the TC vortex becomes vertically tilted.112

However, this response is sensitive to other factors, such as winds at other levels and the presence113

of dry environmental air. Earlier VSH projections under anthropogenic climate change have114

been widely discussed in the literature (Vecchi and Soden 2007b; Camargo 2013), as have recent115

observed trends (Kossin 2017) and the impact of decadal variability on Atlantic VSH projections116
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(Ting et al. 2019). Here we will analyze only the VSH magnitude, defined as the magnitude of the117

vector difference of winds at 200 hPa and 850 hPa.118

The absolute vorticity at 850 hPa is calculated by adding the planetary vorticity to the relative119

vorticity at 850 hPa. The column relative humidity (CRH) is the ratio between the column integrated120

water vapor and the saturated water vapor, and the saturation deficit (SD) is their difference. The121

saturated water vapor is calculated following Bretherton et al. (2004). We were not able to calculate122

CRH, SD, and indices that used these variables for a few models that did not provide column water123

vapor as one of model ouputs in the CMIP6 database.124

We consider three genesis index formulations. The first is the Emanuel’s genesis potential125

index(GPI Emanuel and Nolan 2004; Camargo et al. 2007), a function of absolute vorticity at 850126

hPa, vertical wind shear, potential intensity, and relative humidity at 600 hPa. Emanuel (2010)127

introduced a new version of GPI in which the humidity variable is a non-dimensional parameter 𝜒,128

a measure of the entropy deficit of the middle troposphere. To differentiate from the original GPI,129

we refer to this new version here as “GPI-Xi”.130

The tropical cyclone genesis index (TCGI) comes from a Poisson regression of TC numbers131

with four environmental fields, as described in Tippett et al. (2011) and modified in Camargo132

et al. (2014). Similarly to Lee et al. (2018) and Lee et al. (2020a), we consider two versions133

of the TCGI. The first uses as humidity variable CRH (TCGI-CRH), and the second uses SD as134

the humidity variable (TCGI-SD). As initially discussed in Camargo et al. (2014) for a single135

climate model (HiRAM) and further explored in Lee et al. (2018, 2020a, 2022, 2023); Sobel136

et al. (2021) for reanalysis and CMIP5 models downscaling, these two TCGI versions have almost137

indistinguishable behavior in the historical climate, but differ in future projections. In addition138

to CRH or SD, TCGI includes PI, VSH and a “clipped” vorticity (maximum absolute value of139

3.7×10−5 1/s), as described in Tippett et al. (2011). The TCGI coefficients here are based on the140

European Centre for Medium-Range Weather Forecasts (ECMWF) 5th generation global reanalysis141

(ERA5; Hersbach et al. (2020)) reanalysis fields are given in the Supplemental Material and are142

an update of the version used in Lee et al. (2018, 2020a), which was based on the ECMWF ERA-143

Interim reanalysis (Dee et al. 2011). Dirkes et al. (2023) compared the characteristics of TCGI144

with Poisson fits based on different reanalyses, as well as GPI. They found that the differences145
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in the representation of large-scale environmental variables relevant for TC development do not146

explain the differences and spread in TC climatologies across reanalyses.147

Another proxy used is the ventilation index (VI) developed by Tang and Emanuel, which is a148

function of VSH, PI and 𝜒, obtained based solely on theoretical concepts and is associated with149

both tropical cyclogenesis and TC intensification (Tang and Emanuel 2010, 2012).150

Since most genesis indices include the environmental variables listed above, environmental biases151

will be translated into biases in these genesis indices as well.152

3. Data, Models and Methods153

a. Data154

The environmental fields are taken from ERA5 reanalysis (Hersbach et al. 2020), regridded to a155

2◦×2◦ grid for comparison with the CMIP6 model data.156

The observed tropical cyclone data are from the International Best Track Archive for Climate157

Stewardship (IBTrACS), version 4 from USA centers, with data from the National Hurricane Center158

or the Joint Typhoon Warning Center for all basins (Kruk et al. 2010; Knapp et al. 2010; Schreck159

et al. 2014).160

The monthly CMIP6 (Eyring et al. 2016) data output were used for the calculation of the161

environmental fields and the CMIP6 6-hourly data for tracking the models’ TCs. The models162

included in our analysis are listed in Tables 1 and 2, with additional information on the ensembles163

for environmental fields and TC tracking provided on Supplementary Tables S1–S4.164

b. Models - Environmental Fields178

We focus here on 45 CMIP6 global climate models (Eyring et al. 2016). The CMIP6 historical179

simulations are forced by common datasets that are largerly based on the best estimates of observa-180

tions in the period 1850–2014. We consider three future scenarios, or socio-economic pathways for181

the period 2015–2100: SSP2-4.5, SSP3-7.0, and SSP5-8.5 (O’Neill et al. 2016). These correspond182

to middle of the road, regional rivalry and high emission scenarios, respectively.183

The 45 models were chosen based on the availability of their environmental fields and scenarios184

necessary for our analysis and are listed in Tables 1 and2, together with the number of ensemble185

members considered. Not all 45 models have all variables for all scenarios analyzed. Therefore, we186
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Number Model Resolution Historical SSP2-4.5 SSP3-7.0 SSP5-8.5 References

1 ACCESS-CM2⋆ 1.9◦ × 1.3◦ 3 3 3 5 Bi et al. (2020)

2 ACCESS-ESM1-5■ 1.9◦ × 1.2◦ 20 11 10 40 Ziehn et al. (2020)

3 AWI-CM-1-1-MR 1.9◦ × 1.9◦ 5 1 5 1 Semmler et al. (2020)

4 BCC-CSM2-MR⋆ 1.1◦ × 1.1◦ 3 1 1 1 Wu et al. (2019)

5 CAMS-CSM1-0 1.1◦ × 1.1◦ 3 2 2 2 Rong et al. (2018, 2021)

6 CanESM5△ 2.8◦ × 2.8◦ 65 50 50 50 Swart et al. (2019)

7 CanESM5-CanOE 2.8◦ × 2.8◦ 3 3 3 3 Swart et al. (2019)

8 CAS-ESM2-0 1.4◦ × 1.4◦ 4 2 1 2 Zhang et al. (2020)

9 CESM2 1.3◦ × 0.9◦ 11 6 6 5 Danabasoglu et al. (2020)

10 CESM2-WACCM 1.3◦ × 0.9◦ 3 5 3 5 Danabasoglu et al. (2020)

11 CIESM 0.9◦ × 0.9◦ 3 1 — 1 Lin et al. (2020)

12 CMCC-CM2-SR5⋆ 1.25◦ × 0.9◦ 1 1 1 1 Lovato et al. (2022)

13 CMCC-ESM2⋆ 1.25◦ × 0.9◦ 1 1 1 1 Lovato et al. (2022)

14 CNRM-CM6-1 1.4◦ × 1.4◦ 28 10 6 6 Voldoire et al. (2019)

15 CNRM-CM6-1-HR⋆ 0.5◦ × 0.5◦ 1 1 1 1 Voldoire et al. (2019)

16 CNRM-ESM2-1△ 1.4◦ × 0.4◦ 9 10 5 5 Séférian et al. (2019)

17 E3SM-1-1 1.0◦ × 1.0◦ 1 — — 1 Golaz et al. (2019)

18 EC-Earth3⋆ 0.5◦ × 0.5◦ 18 22 7 8 Döscher et al. (2022)

19 EC-Earth3-CC 0.5◦ × 0.5◦ 1 1 — 1 Döscher et al. (2022)

20 EC-Earth3-Veg■ 0.5◦ × 0.5◦ 9 8 6 8 Döscher et al. (2022)

21 EC-Earth3-Veg-LR■ 0.7◦ × 0.7◦ 3 3 3 3 Döscher et al. (2022)

22 FGOALS-f3-L 1.3◦ × 1.0◦ 3 1 1 1 He et al. (2019)

23 FGOALS-g3 2.0◦ × 2.3◦ 6 4 5 4 Li et al. (2020)

Table 1. List of CMIP6 models (part 1) used in this manuscript, their nominal approximate grid resolutions in

degrees (longitude × latitude) their assigned number in this manuscript and the number of ensembles used in each

case. The specific ensembles and model centers are given in the Supplementary material. Models underlined

have been selected for downscaling. Models with a ⋆ have had TCs tracked for the historical and SSP5-8.5

simulations, though not necessarily for all ensembles available for the environmental fields. Similarly, models

marked with a ■ (△) are tracked only for the historical (SSP5-8.5) simulations.The models underlined have been

selected for downscaling.

165

166

167

168

169

170

171

.

included models with all environmental fields available for the historical and SSP5-8.5 simulations,187

and this leads to the 45 models chosen. The exceptions are the variables CRH and SD, which could188

not be calculated for the FGOALS-f3-L or FIO-ESM2-0 models, as the column water vapor from189

these models was not available. Only 40 models and 36 models have the necessary data available190
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Number Model Resolution Historical SSP2-4.5 SSP3-7.0 SSP5-8.5 References

24 FIO-ESM-2-0 1.3◦ × 0.9◦ 3 3 — 3 Bao et al. (2020)

25 GFDL-CM4■ 1.3◦ × 1.0◦ 1 1 — 1 Held et al. (2019)

26 GFDL-ESM4 1.3◦ × 1.0◦ 3 1 1 1 Dunne et al. (2020)

27 GISS-E2-1-G⋆ 2.5◦ × 2.0◦ 47 20 18 11 Kelley et al. (2020); Miller et al. (2021)

28 GISS-E2-1-H 2.5◦ × 2.0◦ 25 — — 5 Kelley et al. (2020); Miller et al. (2021)

29 HadGEM3-GC31-LL■ 1.9◦ × 1.25◦ 5 4 — 4 Kuhlbrodt et al. (2018); Andrews et al. (2019)

30 HadGEM3-GC31-MM⋆ 0.8◦ × 0.6◦ 2 — — 4 Kuhlbrodt et al. (2018); Andrews et al. (2019)

31 INM-CM4-8 2.0◦ × 1.5◦ 1 1 1 1 Volodin et al. (2010)

32 INM-CM5-0 2.0◦ × 1.5◦ 10 1 5 1 Volodin et al. (2017)

33 IPSL-CM6A-LR⋆ 2.5◦ × 1.3◦ 30 8 11 6 Boucher et al. (2020)

34 KACE-1-0-G 1.9◦ × 1.25◦ 3 3 3 3 Lee et al. (2020b)

35 KIOST-ESM2-0⋆ 2.0◦ × 2.0◦ 1 — — 1 Pak et al. (2021)

36 MIROC6⋆ 1.4◦ × 1.4◦ 50 3 3 50 Tatebe et al. (2019)

37 MIROC-ES2L⋆ 2.8◦ × 2.8◦ 30 30 10 10 Hajima et al. (2020)

38 MPI-ESM1-2-HR⋆ 0.9◦ × 0.9◦ 10 2 10 1 Müller et al. (2018); Gutjahr et al. (2019)

39 MPI-ESM1-2-LR⋆ 1.9◦ × 1.9◦ 10 10 10 10 Mauritsen et al. (2019)

40 MRI-ESM2-0⋆ 1.1◦ × 1.1◦ 6 2 5 6 Yukimoto et al. (2019)

41 NESM3⋆ 1.9◦ × 1.9◦ 5 2 — 2 Cao et al. (2018)

42 NorESM2-LM⋆ 2.0◦ × 2.0◦ 3 3 3 1 Seland et al. (2020)

43 NorESM2-MM⋆ 1.0◦ × 1.0◦ 2 2 1 1 Seland et al. (2020)

44 TaiESM1⋆ 1.25◦ × 0.9◦ 2 1 1 1 Wang et al. (2021)

45 UKESM1-0-LL⋆ 1.9◦ × 1.3◦ 18 5 10 5 Sellar et al. (2019)

Table 2. List of CMIP6 models (part 2) used in this manuscript, their nominal approximate grid resolutions

in degrees (longitude × latitude), assigned number in this manuscript and the number of ensembles used in each

case. The specific ensembles, and model centers are given in the Supplementary material. Models with a ⋆ have

had TCs tracked for the historical and SSP5-8.5 simulations, though not necessarily for all ensembles available

for the environmental fields. Similarly, models marked with a ■ (△) are tracked only for the historical (SSP5-8.5)

simulations. The models underlined have been selected for downscaling.

172

173

174

175

176

177

.

for the SSP2-4.5 and SSP3-7.0 scenarios. The environmental fields for all models were regridded191

to a common grid of 2◦×2◦ in longitude and latitude.192

For each model and scenario, all ensemble members available are included in the model ensemble193

mean and spread. The specific ensembles used in the environmental analysis are given in the194

supplementary material, Tables S1 and S2. We have also analyzed the environmental fields from195
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the historical simulations of additional seven models (Table S3), and these will be used in a few196

specific figures that include model TCs statistics, as discussed below.197

c. Models - Tropical Cyclones198

We also discuss the characteristics of models’ TCs, which were tracked using TRACK (Hodges199

1994; Hodges et al. 2017) for the historical and SSP5-8.5 simulations of a subset of models that200

have the necessary 6-hourly output variables. The models with TCs tracked are marked in Tables201

1 and 2. The TCs were tracked in the historical simulations for the period 1950–2014 and in202

the SSP5-8.5 for the full period (2015–2100). To increase the sample size of model TCs in the203

historical simulations, we calculated and included the number of TCs (NTC), accumulated cyclone204

energy (ACE), and environmental fields from a few models that had the necessary fields to track205

TCs in the historical but not the SSP5-8.5 simulations (see Table S3). The full list of models and206

number of ensembles in which TCs were tracked are given in Table S4.207

d. Methods208

All maps below show the August to October (ASO) seasonal mean in the northern hemisphere209

and January to March (JFM) seasonal mean in the southern hemisphere. These choices are not210

optimal for all basins, as the peak season varies from basin to basin, but we judged them optimal211

for the global collection of all basins. The choice is particularly poor in the case of the North Indian212

Ocean, however, where TCs occur almost exclusively in the pre- and post- monsoon seasons.213

In cases when the environmental variables are integrated spatially, the tropical region over oceans214

between 0–40◦N is considered for the northern hemisphere and similarly 40◦S–0 in the southern215

hemisphere.216

When defining model biases the reference is the climatology of ERA5 reanalysis fields in the217

period 1981 - 2010. For instance, the climatology of the ERA5 reanalysis is subtracted from the218

ensemble mean climatology of each model and that difference is defined as the climatological bias.219

One standard diagnostic to analyze model biases is the Taylor diagram (Taylor 2001), which220

concisely describes how well model spatial patterns compare with observations and other models221

using correlation, root-mean-square difference, and the ratio of their variances. We use Taylor dia-222
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grams to compare the climatological environmental fields of CMIP6 historical model simulations223

with each other and with ERA5 climatological fields.224

Two standard diagnostics are used to characterize the TCs tracked in the climate models: the225

number of TCs (NTC), and the accumulated cyclone energy (ACE) (Bell et al. 2000). The latter is226

defined as the sum of the squares of the TCs’ maximum sustained wind speeds every six hours, for227

snapshots in which they exceed 34kt. Both these quantities have been regularly used to characterize228

TC climatologies in observations and models (e.g., Camargo and Sobel 2005; Camargo et al. 2005;229

Camargo 2013; Shaevitz et al. 2014). We examine the relationships between the environmental230

fields and these two TC quantities (NTC and ACE) as was done in Camargo et al. (2020) for models231

and Dirkes et al. (2023) for reanalyses.232

When exploring the differences in the environmental fields between the 20C and 21C, we focus233

on the last 30 years of each century i.e., the difference between the multi-model means in 1971–234

2000 and 2071–2100. We consider the three future scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5235

separately. The multi-model mean in the historical simulation subtracted from each future scenario236

is calculated using the same models in the historical and each of the future scenarios.237

We also examine how the differences between the 20C and 21C depend on the models chosen. In238

that case, we follow Hausfather et al. (2022), who examined the properties of the CMIP6 models239

and separated them in two groups, the models that are “too hot” and the ones that are “likely”.240

The distinction between these two groups is based on the transient climate response (TCR) metric241

(Zelinka et al. 2020; Nijsse et al. 2020). A model with a TCR in the range of 1.4–2.2◦C is242

considered likely, while one with a larger TCR is labeled “too hot”. TCR is defined as the amount243

of global warming in the year in which atmospheric CO2 concentrations have doubled after having244

increased steadily by 1% each year relative to the 1850–1899 baseline, based on global mean245

surface temperature for each model.246

An alternative way to look at how the environmental fields change in the future is based on global247

warming level (GWL), which combines multiple future scenarios and takes into account that248

models have different climate sensitivities. This approach is widely used in the Intergovernmental249

Panel on Climate Change (IPCC) Sixth Assessment Report (Arias et al. 2021). The calculations250

here follow the procedure developed by Seneviratne and Hauser (2020) for each model and future251

scenario:252
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1. The global annual ensemble mean temperature is calculated (latitude weighted).253

2. The historical and future scenario temperature data are concatenated.254

3. The mean of the temperature in the period 1850–1900 is subtracted from the concatenated255

data.256

4. The 20-year centered running mean temperature is calculated.257

5. Find the first year in which the running mean exceeds the desired GWL, or “central year”.258

6. The period for each GWL is defined as starting 10 years prior to the “central year” and ending259

9 years after that year.260

This calculation is performed for three GWLs: 1.5◦C, 3.0◦C and 4.0◦C. Once the years for each261

GWL are defined, the multi-model mean change by GWL is obtained by subtracting the 19C262

climatology (1850–1900). Note that one model can contribute with more than one ensemble mean263

field data for each GWL (Seneviratne and Hauser 2020).264

Time-series of the global mean temperature are also constructed for each model ensemble mean,265

for both historical and future scenarios, using the procedure described above. For each model,266

a polynomial fit is then obtained for the temperature time-series, for the concatenated historical267

and future scenario. The same procedure is used for the mean PI in each hemisphere (tropics) to268

explore the relationship between global warming and PI.269

4. Results - Historical Simulations270

a. Model Biases - Climatology271

In this section we analyze the biases in key environmental variables typically associated with272

tropical cyclone activity. We first examine the spatial biases in the variables’ mean climatologies,273

then in their interannual variability.274

Figure 1 shows the differences between the CMIP6 models’ PI climatologies and that of ERA5275

reanalysis for the period 1981–2010. Many models show a negative bias in PI in the deep tropics276

and positive bias in more subtropical regions. There is a clear consistency in the model biases across277

model families. This consistency is particularly striking for the CNRM models (CNRM-CM6-1,278

CNRM-CM6-1-HR, and CNRM-ESM2-1) which have predominantly larger values of PI than does279
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ERA5 in both hemispheres, particularly the southern. The EC-Earth3 models (EC-Earth3, EC-280

Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-L4) also have similar patterns in their biases, with281

a bimodal pattern in the North Pacific (positive close to the Equator, negative around 20◦N), a282

negative bias in most of the North Atlantic, and a strong positive bias in the southern hemisphere.283

For pairs of models with different model resolutions, namely CNRM-CM6-1 and CNRM-CM6-1-284

HR; HadGEM3-GC31-LL and HadGEM3-GC31-MM, MPI-ESM1-2-LR and MPI-ESM1-2-HR;285

NorESM2-LM and NorESM2-MM, the patterns of the biases are extremely similar between the286

two model resolutions, indicating that higher model resolution without other changes in the model287

configuration does not necessarily lead to improvement.288

The biases in the models’ VSH climatologies as compared with ERA5 are shown in Fig. 2. Many292

models have too high values of VSH in the northern hemisphere, centered around 20◦N, and too293

low values closer to the tropics, particularly over the Pacific Ocean. There is less consistency294

in the biases in the southern hemisphere. Again, we notice very similar patterns in models from295

the same family, e.g., CanESM5 and CanESM5-CanOE or INM-CM4-8 and INM-CM5-0. In296

some models the magnitudes of the VSH biases are quite large, reaching values of the order of 20297

m/s in some regions that are important for TC intensification (e.g., CAS-ESM2-0, MIROC-ES2L,298

NESM3). While most models have low shear close to the Equatorial region, that is not the case for299

the CESM2 and CESM2-WACCM models.300

Biases in the CRH are shown in Fig. 3. CRH values are typically too low in most models. Some303

models have high values of CRH in the southern hemisphere, in particular in the Southeast Pacific,304

a region which typically has very little TC activity. High values of CRH are also present in many305

models in the South Atlantic and in the South Indian Ocean close to Australia.306

Fig. 4 shows the Taylor diagrams for PI (top left), VSH (top right), CRH (bottom left) and310

absolute vorticity at 850 hPa (bottom right) in the northern tropics (Equator to 40◦N) in ASO. For311

all variables, the multi-model mean (MMM) has better skill than most individual models. The312

correlation coefficient between each model and ERA5 is shown in the blue azimuthal angle. The313

smallest range in correlations occurs for the vorticity, with values close to 0.95 for all models,314

while in the case of PI, they range from 0.9 to 0.55. The centered root-mean-square error, shown315

in the green circles as the distance from ERA5, also has the smallest spread for the vorticity, and316

the largest for PI, probably due to the fact that the PI calculation includes multiple environmental317
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Fig. 1. Difference between the PI climatology (m/s) between CMIP6 models (ensemble mean) and ERA5

reanalysis for the period 1981–2010 for the August–October (ASO) season in the northern hemisphere and the

January–March (JFM) season in the southern hemisphere.

289

290

291

variables. The standard deviation of the simulated pattern is given in the black circles. PI and318

VSH have a large spread across models, and vorticity has the smallest. Some model outliers have319

been identified by their numbers for PI and VSH. Models that are outliers in one variable are not320
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Fig. 2. Difference between the VSH climatology (m/s) between CMIP6 models (ensemble mean) and ERA5

reanalysis for the period 1981–2010, for ASO (JFM) in the northern (southern) hemisphere.

301

302

necessarily outliers in other variables, such that it would be inappropriate to identify the “best” or321

“worst” models overall using an individual Taylor diagram.322

Interestingly, models tend to have higher correlation values and smaller root-mean square errors325

in the southern hemisphere tropics in JFM (not shown) when compared to the northern hemisphere326

tropics in ASO.327
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Fig. 3. Difference between the column relative humidity (CRH) climatology (in %) between CMIP6 models

(ensemble mean) and ERA5 reanalysis for the period 1981–2010, for ASO (JFM) in the northern (southern)

hemisphere. Models with missing variables to calculate CRH, SD and TCGI: FGOALS-f3-L and FIO-ESM-2-0.

307

308

309

b. Model Biases - Variability328

Besides mean values, we examine how the models simulate the interannual variability of the329

environmental variables. We do this by examining the standard deviation (STD) of the seasonal330
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Fig. 4. Taylor diagram for the climatologies of PI (m/s), VSH (m/s), CRH (%) and absolute vorticity at 850

hPa (1/s)in the northern hemisphere tropics during ASO.

323

324

mean variables in each hemisphere for each model and compare that with the same quantity in the331

ERA5 reanalysis.332

In Fig. 5 we show histograms of the standard deviation of the spatial mean of PI, VSH, CRH, and333

absolute vorticity in the northern hemisphere tropics during ASO for all models. For comparison,334

the ERA5 standard deviation for each variable is shown by the vertical red line. For all four335

variables the interannual variability in most models is much lower than is the case of ERA5. Only336
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a few models have higher STD values than ERA5. In the case of PI, only EC-Earth3, for VSH:337

CAS-ESM2-0,EC-Earth3, GISS-E2-1-G, KIOST-ESM, for CRH: EC-Earth3 and GISS-E2-1-G338

and for vorticity: only CAS-ESM2-0, i.e. EC-Earth3 has high STD values for the 3 of the variables339

and GISS-E2-1-G and CAS-ESM2-0 for two of them. We also identify the models with lowest340

STD values in each case. The only models that have low STD values for three variables (VSH,341

CRH and vorticity) were INM-CM4-8 and INM-CM5-0, while CNRM-CM6-1-HR has low STD342

values for both CRH and vorticity. Similar behavior is noted in the southern hemisphere for the343

JFM season.344

c. TCGI Bias Correction348

One the consequences of the biases in the individual variables is that they lead to biases in proxies349

for TC activity that are functions of these variables. As an example, we show the impact of biases350

in the individual variables shown above on TCGI.351

We calculate the spatially integrated annual mean TCGI in the historical simulations for a subset352

of 13 CMIP6 models and compare each with both the same quantity computed from ERA5 and the353

observed number of TCs (see Fig. 6 (a) and (c)). While there is a large spread in the magnitude354

of this bias across the 13 CMIP6 models, all of them have low values of integrated TCGI. This is355

true for both versions of the TCGI, TCGI-CRH-PI (Fig. 6 (a)) and TCGI-SD-PI (Fig. 6 (c)).356
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Fig. 6. Integrated TCGI time-series (in TC counts) for a subset of CMIP6 models (ensemble mean of each

model) using CRH and SD, without bias correction ((a) and (c))) and with bias correction ((b) and (d)). Also

shown are the values of the corresponding integrated TCGI for ERA5 and the observed number of TCs. The 13

selected CMIP6 models are underlined in Tables 1 and 2.
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The low values in model TCGI has consequences for simulated TCGI variability and change.361

Since TCGI depends exponentially on environmental fields, additive biases in environmental362

fields result in multiplicative biases in TCGI. To see this fact, suppose for simplicity that TCGI363

depends on a single (unitless) environmental field 𝑋 and that TCGIobs = exp (𝑋obs). Then for364

a biased model environmental field 𝑋model = 𝑋obs + bias, the corresponding (biased) TCGImodel365

is exp (bias) exp (𝑋obs) = exp (bias)TCGIobs. Suppose the environmental field is changed by Δ𝑋366

so that 𝑋′
model = 𝑋obs + bias +Δ𝑋 where Δ𝑋 might represent either year-to-year variability or367

climate change. Since 𝑋′
model − 𝑋model = Δ𝑋 , the change in the environmental field is recovered by368

simply subtracting, which cancels the additive bias. On the other hand, TCGI′model −TCGImodel ≈369

Δ𝑋 exp (bias)TCGIobs, for small Δ𝑋 , while TCGI′obs −TCGIobs ≈ Δ𝑋 TCGIobs. These relations370

show that (i) a change in 𝑋 results in a percent change in TCGI, (ii) those percent changes will also371

be biased low if TCGImodel is biased low, and (iii) bias correcting 𝑋model and 𝑋′
model will give the372

correct change in TCGI due to Δ𝑋 .373

We bias correct the four environmental fields that appear in the two versions of TCGI. The bias374

correction consists of subtracting the 1981–2010 model climatology to form an anomaly 𝛿, and375

then adding the 1981–2010 ERA5 climatology to this 𝛿. The CMIP6 monthly climatology is376

calculated from the ensemble mean for each model.377

The bias-corrected fields are then used to calculate the bias-corrected TCGIs. The integrated378

bias-corrected TCGI time-series are shown in Figs. 6 (b) and (d). The mean integrated values379

of the bias-corrected TCGI are much closer to the ERA5 and observed TC values, even though380

there is still a spread across models in the possible range of values. Note as well the year to year381

variability, which is clearly too small for all models, improves with the bias correction, even though382

only the mean values of each field are used in the bias correction.383

To determine if one of the four variables in the TCGI versions was primarily responsible for the384

TCGI bias, we recalculate the TCGI, using one bias-corrected variable at a time and the remaining385

variables without bias correction. For all 13 CMIP6 models examined, the CRH (or SD) variable386

is primarily responsible for the TCGI biases. Bias correcting CRH (or SD) alone is sufficient to387

obtain values of the integrated TCGI close to the ones from ERA5, which does not happen with388

the other 3 variables. Therefore, the humidity variables (CRH and SD) are responsible for the very389

low biases of TCGI in the CMIP6 models.390
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We use the bias-corrected version of the TCGI in the rest of this manuscript for all models and391

scenarios, using bias-corrected values for the four components of TCGI. However, we do not apply392

the bias correction to the other genesis indices or other environmental fields or proxies. In most393

climate model papers which did a similar analysis no bias-correction is applied (e.g., Camargo394

2013; Camargo et al. 2014; Wehner et al. 2015; Cavicchia et al. 2023). One exception is the recent395

manuscript of Wehner and Kossin (2024), which bias-corrected the PI based on ERA5.396

d. TC activity397

Given the typical low resolution of the CMIP6 models (100 km), it is expected that the climato-398

logical features of their TC-like storms will have large biases — typically too few, weak and large399

storms — similarly to CMIP5 models (Camargo 2013; Camargo and Wing 2016). The biases in400

TC frequency can be noticed in the historical track density climatology (1981–2010) shown in401

Fig. 7. While the spatial distributions of the CMIP6 models’ track densities somewhat resemble402

those found in observations and ERA5, there are clear spatial biases in the models. In the North403

Pacific, most models do not have a clear separation between the eastern and western basins, but404

rather they are overactive in the Central North Pacific such that they show a continuous band of405

activity. Most models also do not reproduce the higher TC activity in the northern hemisphere406

compared with the southern hemisphere. The low TC activity in the North Atlantic is a common407

bias in climate models (Shaevitz et al. 2014; Roberts et al. 2020a) and there is some improvement408

in the higher resolution versions of the same models (Roberts et al. 2020a).409
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Fig. 7. Track density ensemble mean climatology for 1981–2010 for 32 CMIP6 models, observations and

ERA5, shown in units of number of TCs per year.

410

411
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Typically, as resolution increases, model performance in simulating TC characteristics improves412

(Shaevitz et al. 2014; Roberts et al. 2020a), though that is not necessarily always the case (Camargo413

et al. 2020; Moon et al. 2020). In Fig. 8 the relationship between the models’ mean NTC and414

ACE and resolution is shown. While both the TC numbers and their intensities tend to increase as415

grid spacing becomes smaller, this is not always the case, with models with the same resolution416

having different values of NTC and ACE, reflecting the importance of other model characteristics,417

such as physical parametrizations (Vidale et al. 2021; Russotto et al. 2022). There is a stronger418

correlation between ACE and model resolution than between NTC and resolution, showing the419

impact of resolution in simulating TC intensity (Murakami et al. 2015; Davis 2018).420
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mean ACE (m/s)2 per year as a function of model resolution, as listed in Tables 1 and 2, using the largest grid

spacing. Values of the Spear correlations are given in the top left of each panel.
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e. Environmental fields and TC activity424

There is little evidence that climatological environmental conditions can explain differences in425

climatological TC characteristics across models and reanalyses (Camargo et al. 2020; Dirkes et al.426

2023). Here we examine whether there is a relation between climatological model fields and the427

mean TC climatology in the CMIP6 models, as this has not yet been done. Furthermore, both428

versions of TCGI are bias-corrected, which was not the case in our CMIP5 analysis, and we want429

to determine if this leads to different results. In contrast to Camargo et al. (2020) here we consider430

multiple genesis indices (two versions of TCGI, GPI, GPI-Xi) and the ventilation index in our431

analysis.432

The relationship between NTC and four genesis indices and the ventilation index is shown in433

Fig. 9 (a)–(d). Similarly to Camargo et al. (2020) and Dirkes et al. (2023) there is no relationship434

between NTC and the indices. Importantly, this result hold for all the genesis indices considered.435

While for both TCGI versions, the models’ climatological fields have been bias corrected, that was436

not done for the other indices (GPI, GPI-Xi, VI), and our results are not sensitive to that. GPI and437

GPI-Xi were normalized, in order to be compatible with TCGI, but that normalization does not438

affect the correlations.439
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The relationship between ACE and PI, as well as between ACE and the ventilation index, are444

shown in Figs. 9(e) and (f). The strongest relationship is between PI and ACE, discussed in Ting445

et al. (2015, 2019); Sobel et al. (2016), but this relationship does not explain the differences in446

models’ TC intensities.447

Differences in climatological environmental fields across CMIP6 models do not explain the448

differences in the models’ TC climatology. Other model characteristics, such as physical pa-449

rameterizations and dynamical core, determine TC climatology in models (e.g. Reed et al. 2015;450

Russotto et al. 2022)451

5. Results - Future Projections452

a. Spatial patterns - differences 21C & 20C453

We next examine how the environmental fields change between the end of the 21st (2071-2100)454

projections and the end of the 20th century (1971-2000) historical simulations. Figure 10 shows455

the differences in the multi-model means for the three future scenarios and five environmental456

fields. The top panels show the difference between the SSP2-4.5 scenario and historical, while the457

mid panels and bottom panels represent the SSP3-7.0 and SSP5-8.5 differences, respectively.458
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Fig. 10. Difference (“d”) between the multi-model mean climatology in the end of the 21C (2071-2100) and

the end of 20C (1971-2000) for the 3 future scenarios (SSP2-4.5, SSP3-7.0, SSP5-8.5) for the variables used in

TCGI: PI (panels (a),(f), and (k) in m/s), VSH (panels (b), (g) and (l) in m/s), CRH (panels (c), (h) and (m), in %),

SD (panels ((d), (i), and (n) in kg/m2), and absolute vorticity at 850 hPa (AVort, panels (e), (j), and (o) in 10−4

1/s). Stippled regions are statistically significant at the 99% level using a the Kolmogorov-Smirnov significance

test.
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The potential intensity (Fig. 10 (a), (f) and (k)) increases in most of the tropics, except some465

regions in the eastern North Atlantic, South Pacific and South Atlantic. As expected, the PI466

magnitude change is larger the higher the emission scenario, with the largest increases (subtropical467

North Pacific) and decreases (South Pacific) occurring in the SSP5-8.5 scenario. The number468

of grid points in which the changes are statistically significant also increases with the emission469

scenario. In the North Atlantic, North Pacific and South Pacific, the PI increases in large regions in470

the subtropics, which have been associated with the poleward shift in lifetime maximum intensity471

(Kossin et al. 2014, 2016; Lin et al. 2023a). Furthermore the patterns in the PI change for the472

CMIP6 models are very similar to those of CMIP5 (Camargo 2013) and CMIP3 models (Vecchi473

and Soden 2007a,b).474

In the northern hemisphere, there are statistically significant decreases in VSH in many regions475

(Fig. 10 (b), (g), (l)), in particular in the North Pacific and North Atlantic and in SSP5-8.5. The476

exception is the Gulf of Mexico and Caribbean region, where the VSH increases. In the southern477

hemisphere, the magnitude of the VSH increases, but mostly in regions not prone to the occurrence478

of TCs, such as the South Atlantic, southeast Pacific, and the near South Africa, though hybrid479

and sub-tropical storms do occur in these regions. Close to the equator in both hemispheres, the480

magnitude of the VSH decreases, in particular in the tropical equatorial eastern Pacific and in the481

Indian Ocean. The pattern of the VSH changes in CMIP6 are very similar to those from CMIP5482

Camargo (2013); Ting et al. (2019)) and CMIP3 (Vecchi and Soden 2007a,b)483

In the tropical Pacific, the CRH increases in both hemispheres (Fig. 10 (c), (h), (m)), as well as in484

the eastern North Pacific poleward of 20◦N. There are also significant increases in the CRH in the485

North Indian Ocean. Regions with a decrease in the CRH are the Gulf of Mexico and Caribbean,486

as well as the southeast Pacific, especially for the SSP5-8.5 scenario.487

In contrast, the SD decreases globally (Fig. 10 (d), (i), (n)), as was the case for the CMIP5 models488

(Lee et al. 2020a). Statistically significant decreases in the SD occur in most of the North Atlantic,489

the subtropical North Pacific and the eastern parts of the southern hemisphere oceans.490

The relative vorticity has a bimodal pattern in changes in the eastern tropical Pacific, with an491

increase close to the tropics and an increase north of that, as well as in the Caribbean. The vorticity492

also increases in regions of active TC activity in a zonal band near Australia, as well as in the493

subtropical North Pacific. Regions in which the vorticity decreases coincide with increases in494
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VSH, such as the southeast Pacific, south of Australia and South Africa and in the North Indian495

Ocean, but these are not regions in which genesis tends to occur, as it is only necessary for the496

vorticity to be above certain threshold for genesis to be possible Tippett et al. (2011).497

We analyzed the change of the same five environmental fields using the increase per global498

warming level following Seneviratne and Hauser (2020). The resulting changes are shown in499

Fig. 11 for 1.5◦C, 3◦C and 4◦C differences from the 19C climatology shown in each row. The500

number of models used in each composite depends on the warming rate of each model. The patterns501

are exactly the same as those obtained at the end of the 21C for the three emission scenarios. The502

changes for 1.5◦C are weaker than those in SSP2-4.5 at the end of the 21C, those for 3◦C are similar503

to the latter, and the 4◦ warming changes are similar to those in SSP5-8.5 at the end of the 21C. The504

close similarity between Figs. 10 and 11 is remarkable and emphasizes the robustness of changes505

in these environmental fields. This does not mean the changes need be correct as representations of506

the response to radiative forcings, however, since some of these responses are likely attributable to507

the patterns of change in the tropical Pacific, which have been questioned due to their inconsistency508

with recent historical trends (Sobel et al. 2023).509
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Fig. 11. Difference (“d”) between the multi-model mean per global warming level and the 19C climatology

(1850–1900) for 1.5◦C, 3◦C and 4◦C for the variables used in TCGI: PI (panels (a),(f), and (k) in m/s), VSH

(panels (b), (g) and (l) in m/s), CRH (panels (c), (h) and (m), in %), SD (panels ((d), (i), and (n) in kg/m2), and

absolute vorticity at 850 hPa (AVort, panels (e), (j), and (o) in 10−4 1/s).
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Next we analyze changes in the genesis indices by global warming level in Fig. 12.TCGI-CRH514

and TCGI-SD are shown in Fig. 12 left column and second column from the left). As discussed515

in Camargo et al. (2014) and Lee et al. (2020b) for the HiRAM and CMIP5 models, TCGI-CRH516

increases with global warming, while TCGI-SD decreases, and the same behavior is found here517

for the CMIP6 models. Similar to other environmental fields, the changes in TCGI increase with518

the amount of warming. The only region in which TCGI-CRH decreases is in the Gulf of Mexico519

and both coasts of Central America, where the VSH increases with warming. GPI (Fig. 12, second520

to right column) values increase with global warming for CMIP6 models, as was the case for the521

CMIP5 (Camargo 2013) and CMIP3 models (Vecchi et al. 2013), indicating a more conducive522

environment for genesis. GPI-Xi (Emanuel 2010) also increases in the CMIP5 (Emanuel 2013)523

and CMIP6 simulations (Emanuel 2021). Note that changes in genesis indices are restricted to524

narrow bands associated with each basin’s main development region.525
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Fig. 12. Difference “d” between the multi-model mean per global warming level and the 19C climatology

(1850–1900) for 1.5◦C, 3◦C and 4◦C for TCGI-CRH (panels (a), (e), and (i), NTC per area per year ×10−3), (b)

TCGI-SD (panels (b), (f), and (h), NTC per area per year ×10−3), and GPI (panels (i), (j), and (k), unitless). (d)

Percentage change per global warming level for the Ventilation Index (pVI).
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The final variable that we examine in Fig. 12 (right panels) is the VI (Tang and Emanuel 2010,530

2012). The pattern of the percentages changes in the VI by degree warming for the CMIP6 models531

are very similar to those found previously in Tang and Camargo (2014) for eight CMIP5 models532

in the RCP5.85 scenario. In most locations the VI increases, with decreases occurring in very533

few locations, in particular near the equatorial region, near Hawaii, subtropical regions of the534

eastern North Pacific and the Arabian Sea. Higher values of the VI are characterized by more535

hostile conditions for TC genesis and intensification. Therefore according to this measure, globally536

the environment is becoming more hostile for TCs, but the largest changes occur in regions that537

typically do not have TC formation, as the southeast Pacific, Northeast Atlantic, south of Australia538

and South Africa. Regions with an increase in the VI are the Gulf of Mexico and Caribbean, where539

the VSH, a component of VI, increases. These changes extend through the whole Atlantic basin,540

toward the African coast, until the equatorial region. Note that the changes of the genesis indices541

in the North Atlantic tend to be very small for GPI and TCGI-CRH.542

While in the literature a single genesis index or the ventilation index is regularly used to make543

TC projections, Fig. 12 indicates that the choice of the index is the main determinant of the future544

projections of TC activity. Since there is no consensus regarding which index is best, we conclude545

that choosing a single index to make TC future projections severely underestimates the uncertainty546

of future TC projections.547

b. Potential Intensity Projections and Aerosol Forcing548

The global annual mean temperature increase (Δ𝑇) from the 1981–2010 climatology for the549

historical and the three future scenarios is shown in Fig. 13(a). The thick lines are the MMM of550

the polynomial fit of the ensemble mean of each model, with the colors indicating the standard551

deviation across models. A similar calculation was performed showing the increase in the PI (Δ𝑃𝐼)552

in the northern hemisphere in ASO (Fig. 13(b)) and in the southern hemisphere in JFM (Fig. 13(c).553

The PI increase is much larger in the northern hemisphere than the southern hemisphere, for all554

scenarios. For instance, by the end of the 21C the mean tropical PI increase in the northern555

hemisphere is slightly above 4 m/s for the SSP5-8.5 scenario, while it is around 1.5 m/s in the556

southern hemisphere. This difference was also present in the CMIP5 models (Sobel et al. 2016).557
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Fig. 13. (a) Global annual mean temperature increase (Δ𝑇 in ◦𝐶) as compared with the 1981-2010 climatology.

(b) Northern hemisphere tropics PI increase (Δ𝑃𝐼 in m/s) in ASO. (c) Southern hemisphere tropics potential

increase (Δ𝑃𝐼 in m/s) in JFM. Lines are the multi-model mean of the polynomial fit of the ensemble mean of

each model, colors indicate the standard deviation across models in each scenario. Relationship between Δ𝑇 and

Δ𝑃𝐼 in the (d) northern and (e) southern hemisphere tropics in ASO and JFM respectively. Only Δ𝑇 values with

at least 15 models are shown.
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Another interesting feature, is that while the MMM global mean temperature for the SSP3-7.0564

scenario is always above that in the SSP2-4.5 scenario, this is not the case for PI. This is clearer565

in the northern hemisphere, where the values of PI in SSP3-7.0 are below those in SSP2-4.5 until566

after 2070, while in the southern hemisphere this does not occur until close to 2080.567

Another way to visualize the difference between temperature and PI is to plot the relationship568

between Δ𝑇 and Δ𝑃𝐼 for both hemispheres (Fig.13(d),(e)). Only cases in which Δ𝑇 values include569

at least 15 models are plotted. Δ𝑃𝐼 increases faster with Δ𝑇 in both hemispheres for the SSP2-4.5570

scenario than for SSP3-7.0 scenario, in spite of the SSP3-7.0 having higher CO2 concentrations571

than SSP2-4.5. This difference is due to the fact that the SSP3-7.0 has a higher aerosol forcing572

than the SSP2-4.5 scenario. As described in Rao et al. (2017), SSP3-7.0 has a weak pollution573

control scenario, while SSP2-4.5 scenario has a medium pollution control scenario and SSP5-8.5574

has a strong pollution control scenario. Therefore SSP3-7.0 has a stronger aerosol forcing than575

both other future scenarios considered here. Lund et al. (2019) estimated that the total radiative576

forcing of aerosols relative to 1750 was around -0.5 W/m2 for the SSP3-7.0 scenario, compared577

with -0.2 W/m2 for the SSP2-4.5 scenario.578

As shown in Sobel et al. (2019) and in Ting et al. (2015) using single forcing CMIP5 model579

simulations, aerosol cooling reduces PI more strongly than greenhouse gas warming increases PI by580

approximately a factor of two. Given that the aerosol forcing in SSP3-7.0 is relatively stronger than581

that in SSP2-4.5, we infer that the aerosol cooling in the SSP3-7.0 simulations is compensating for582

the warming due to the greenhouse gases to yield a PI increase slower than in the case of SSP2-4.5.583

In the case of the global mean surface temperature, however, aerosol and greenhouse gas forcings584

are equivalent, and all that matters is the net radiative forcing rather than its partitioning into585

shortwave and longwave components. As shown in Sobel et al. (2019) the greater effect of aerosol586

forcing is due to the fact that the shortwave forcing has a greater direct, temperature-independent587

component at the surface than longwave forcing for the same SST change, the latter of which was588

also shown using a single column model by Emanuel et al. (2013). It is interesting that this effect589

is clearly noticeable in simple time-series of Δ𝑃𝐼 when comparing these two future scenarios.590
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c. Potential Intensity Projections and Model Sensitivity591

It is well known that the amount of warming for the same amount of greenhouse forcing varies592

across models, including the CMIP6 models. In particular, Hausfather et al. (2022) argued593

that when performing MMM averages, one should exclude models that overestimate the future594

warming. Based on evidence from paleoclimate, observations and modeling, they concluded that595

the equilibrium climate sensitivity (ECS) is very likely to be in the range 2.6 – 3.9◦C and that models596

with high climate sensitivity (ECS of at least 5◦C) are considered “too hot”. Here we examine how597

PI projections vary depending on whether we consider the MMM of all CMIP6 models, or only598

the models that are have the “right” model sensitivity, i.e., if we exclude the models that are “too599

hot”. Following Hausfather et al. (2022)’s classification of the CMIP6 models, we calculated the600

mean increase in tropical PI in each hemisphere for ASO (northern hemisphere) and JFM (southern601

hemisphere) at the end of the 21C (2091 – 2100) compared with the 1981 – 2010 climatology602

(Fig. 14). In the northern hemisphere, the Δ𝑃𝐼 is statistically significantly different at the end of603

the 21C for the SSP3-7.0 and SSP5-8.5 scenarios, between the two multi-model averages, with the604

median of the multi-model of the “right models” slightly smaller than that of all models, and the605

difference increasing with the warming scenario, i.e., lowest for SSP2-4.5, highest for SSP5-8.5.606

The same occurs in the southern hemisphere, but as the Δ𝑃𝐼 is smaller in that hemisphere, the607

differences between the multi-model mean are smaller and are not statistically significant. Note608

that even in the case with the largest difference between the two multi-model means, i.e., northern609

hemisphere for SSP5-8.5, these differences are still small. The effect of considering the “too hot”610

models is not large for the seasonal mean PI.611
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Fig. 14. PI increase (in m/s) at the end of the 21C (2091 – 2100) compared with the 1981 – 2010 climatology

for all models (dark colored boxplots on the right) and models with the “right” climate sensitivity (lighter colored

boxplots on the left) in the northern hemisphere for ASO (top panel) and southern hemisphere for JFM (bottom

panel), for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). Not all models considered here

have ECS values available.
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Figure 15 shows the scatter plots of the increase in PI (dPI) at the end of the 21C (2091 – 2100)617

from the end of the 20C (1981 – 2010) and the models’ ECS in the northern (a) and southern (b)618

hemisphere, using the ECS values from Hausfather et al. (2022). Only models with ECS listed619

in Hausfather et al. (2022) were included. The correlation between dPI and ECS varies between620

0.38 and 0.50 depending on the future scenario and hemisphere considered, and it is statistically621

significant in all cases. While there is a clear relationship between these two quantities for all622

cases, in both hemisphere the lowest correlation occurs for SSP3-7.0, the scenario with the highest623

aerosols concentration, which should not be surprising, as ECS only considers changes in CO2.624

However, it is important to note that there is large spread in dPI values for models with the same625

ECS and scenario. In the northern hemisphere the highest dPI values per ECS value are typically626

from SSP5-8.5 and the lowest from SSP2-4.5, with SSP3-7.0 in between them. This separation627

does not work as well in the southern hemisphere, with the dPI values from the 3 future scenarios628

more mixed.629

d. NTC and ACE projections635

We now examine how the characteristics of the models’ TCs changed between the end of the636

20C and the 21C. There are only 20 models which have the TCs tracked for both historical and637

SSP5-8.5, marked with a star in Tables 1 and 2.638

The percentage change in the median global NTC per year between the two 30-year periods639

for each model is shown in Fig. 16(a). In most models there is a reduction in the global annual640

frequency of TCs, similar to past studies e.g., Camargo (2013); Roberts et al. (2020b). Again641

this is in contrast with the increase in most genesis indices shown in Fig. 12, except TCGI-SD, as642

discussed in Camargo et al. (2014); Lee et al. (2020a, 2023).643
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Fig. 15. Scatter plots of increase in PI in m/s at the end of 21C (2091-2100) from the end of the 20C climatology

(1981-2010) versus ECS values from Hausfather et al. (2022) for the (a) northern hemisphere in ASO and (b)

southern hemisphere in JFM,for 3 future scenarios SSP2-4.5 (blue), SSP3-7.0 (green), SSP5-8.5 (red). The

correlation values for each scenario and hemisphere are given in each panel. Not all models considered here

have ECS values available.
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Fig. 16. Percentage change between the models ensemble mean in 2071-2100 compared with 1971-2000 for

(a) Median global NTC, (b) Median global ACE, (c) 75 percentile of Lifetime Maximum Intensity (LMI).
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The percentage change in the median ACE per year between future and historical scenarios is646

shown in Fig. 16(b). Similar to NTC, there is a large decrease in ACE across most models. Given647

that ACE is an integrated measure of frequency (NTC), duration and intensity, we further examined648

the change in the storms lifetime maximum intensity (LMI). The percentage change in the 75th649

percentile values of storms LMI is shown in Fig. 16(c). The LMI percentage changes are minimal650

between the two scenarios. Therefore, the changes in ACE are dominated by changes in the TC651

frequency, given that the changes in TC duration are not noticeable (not shown).652

6. Conclusions653

In this manuscript, we examined the characteristics of environmental fields associated with TCs654

in CMIP6 historical and future simulations, as well as the TC-like storms tracked in these models.655

We found that TC-associated environmental fields in the CMIP6 models have large biases in their656

historical climatological patterns, magnitude, and interannual variability compared with ERA5.657

These biases are present in thermodynamic and dynamic variables. There are clear systematic658

biases across models from the same modeling centers, as the patterns of the biases are extremely659

similar. The largest differences among environmental variables climatology across reanalyses are660

in the humidity fields. Similarly, there is a large spread across models in the climatological values661

of environmental fields associated with humidity, such as PI and CRH. Furthermore, the variance662

of all environmental variables examined is much smaller than in reanalysis.663

The biases in the individual environmental variables lead to biases in TC proxies such as genesis664

indices. By bias-correcting the individual components of these indices, before computing them,665

one can obtain values much closer values to the ERA5 ones. Because of the nonlinearity of the666

indices’ dependences on the individual variables, correcting mean biases in the individual variables667

improves the biases not just in the mean indices, but in their variability as well. Column humidity668

is the variable primarily responsible for the bias in the indices, and thus the one whose correction669

has the greatest impact.670

Similarly to CMIP5 and reanalyses products, there is no clear relationship between the mean671

TC activity (NTC and ACE) and the climatological values of the environmental fields and proxies672

across CMIP6 models. Furthermore, models with the same horizontal resolution have a large range673
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of NTC and ACE values, even if increased the model resolution leads in general to higher NTC674

and ACE values in CMIP6 models.675

The patterns of the environmental fields in the CMIP6 model projections are very similar to those676

in CMIP5. These patterns are robust and similar across projection scenarios and GWL. Models677

with greater climate sensitivity have larger increases in PI, but the differences are only significant678

for high emissions scenarios and at the end of 21C. Furthermore, the compensation between aerosol679

and GHG forcings in the PI increase is important, such that the scenarios with high aerosol loading680

exhibit slower increases in PI.681

Projections based on genesis indices are strongly dependent on the formulation of the genesis682

index used, and projections based on a single genesis index should be taken with extreme caution,683

as there is no way to determine which genesis index formulation is the “correct” one. In particular,684

while some formulations of the genesis indices project an increase in TC activity, others project a685

decrease, in agreement with what is obtained from the diagnostics of TC activity in CMIP6 models686

(NTC and ACE). Recently, Chavas et al. (2024) developed a new genesis index more heavily based687

in theory than previous indices. While there is no complete theory for genesis our recommendation688

is to improve genesis indices using robust theoretical principles. Furthermore, the addition of seeds689

survival rate into genesis indices, as done in Hsieh et al. (2020) could potentially lead to more690

robust projections from genesis indices, though there are still conflicting perspectives about this691

issue (e.g. Emanuel (2022)).692

The climatology of TC-like storms in the CMIP6 has significantly improved compared with693

CMIP5, probably associated with the increase in horizontal resolution across the multi-model694

ensemble. Other model changes from CMIP5 to CMIP6, such as convective parametrization, are695

model dependent and could affect TC activity in ways that are not coherent across models. In spite696

of the increased model resolution, TC activity still shows substantial biases, as the model resolution697

is still not high enough to resolve TCs. However, models with similar resolution can have a large698

range of skill in reproducing TC climatology. Similar to previous generations, there is a decline in699

NTC in the future for most models at the end of the 21C under a high emission scenario.700

Systematic biases in the CMIP6 models, such as the trend in the spatial pattern of tropical Pacific701

SST, need to be addressed in order to obtain a better estimate of the uncertainty range of TC702

projections, independently of the methodology used.703
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