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ABSTRACT:

The increasing complexity of maritime risks and threats requires accurate and
timely identification, both for environmental and human safety. Satellite
observations enable comprehensive surveillance of large maritime areas which is
essential for detecting and responding to environmental changes and potential
threats. The Horizon Europe project EURMARS, aims to develop and validate a
multi-purpose observation platform to enhance detection capabilities for various
risks and threats. This paper proposes a novel Earth Observation (EQ) data
processor, designed to handle various open-access satellite images from Sentinel-
1, and Sentinel-2 as well as video from the NEMO-HD microsatellite. By employing
Object-Based Image Analysis (OBIA) through machine learning and deep learning
techniques, the detection of vessels is achieved using synthetic aperture radar
(SAR), multispectral images, and RGB video. Data from positioning systems is
utilized to ensure comprehensive monitoring and to validate the results of the
method. The integration of satellite imagery with AlS data is a key element of the
vessel detection methodology, enhancing the accuracy and reliability of maritime
surveillance. By projecting AIS data onto satellite imagery and using a validation
algorithm to resolve discrepancies, we significantly improve vessel detection,
reducing uncertainty and ensuring effective maritime surveillance. Real-world
testing has demonstrated the method’s effectiveness in enhancing maritime
security and enabling early threat response.
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Introduction

Aim and Scope

Monitoring and managing the maritime environment are crucial and
challenging due to its vast size and continuously changing conditions?.
Traditional surveillance methods such as land-based or ship-based observation,
often fail to provide comprehensive and timely data over wide areas. In
contrast, remote sensing data such as satellite imagery offer a significant
advantage in addressing these challenges, due to their ability to cover large
areas and capture high- and medium-resolution data.

The detection of vessels via satellite images can be enhanced by transmitters
which provide information on the position, direction and other vessel
characteristics, that can contribute to their detection. One of the most common
tracking systems is the Automatic Identification System (AlS), which provides
continuous information on the vessels’ position. In addition to AlS, Long-Range
Identification and Tracking (LRIT) was established as an international system by
International Maritime Organization (IMO). Such tracking systems are present
on most vessels, but in the case of smaller vessels (< 300 tons) do not need to
carry AIS or LRIT2 In terms of satellite imagery, optical and SAR data are best
suited for detecting vessels®.

Regarding vessel detection using optical images, the main factors affecting
the results are the size of the objects detected and the weather conditions.
Vessels must span at least a required number of pixels in the image, depending
on spatial resolution, while adverse weather conditions can negatively affect
detection accuracy. Environmental factors such as waves, clouds and solar
reflection can complicate the detection of vessels in optical images®. Moreover,
white lines created by waves can look like vessels, confusing the algorithm. In
contrast, detection is much more effective in calm seas. Additional, large clouds
can cover significant parts of the image so detection may be impossible, while
smaller clouds may appear as targets and need to be filtered out when
classifying objects. In addition, solar reflection in waves can create high contrast
areas in the image, which may be mistaken for vessels.

On the other hand, SAR data is a reliable method for detecting vessels at sea,
as they provide good results regardless of weather conditions. Moreover, larger
vessels, being metallic structures, reflect more radar signals. However, SAR
images can have high levels of noise and sensitivity in the air, which can prevent
accurate detection of vessels®. To create a reliable automatic vessel detection
system, integrating data from multiple sources can yield more comprehensive
and accurate results. Merging optical or SAR data with position point data such
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as AIS data, can serve as a verification system, enhancing the method's
correctness and reliability.

This paper presents a methodology for processing EO data that combines
OBIA with machine learning and deep learning techniques for vessel detection
using SAR, multispectral images and RGB video. By integrating data from
positioning systems (AIS), the processor provides in-depth monitoring and
validation of results. The methods and technologies have been validated
through real-world experiments, demonstrating their effectiveness in
facilitating immediate threat response and enhancing maritime security.

Relative Literature Review

Since the first launch of optical and SAR satellites five decades ago, the number
of satellites capturing images of the Earth has increased significantly. These
satellites are classified by the spatial resolution of the images they receive to:
very high, high, medium and low resolution. Among the open access satellite
data, Sentinel satellites offer high-resolution images’, while Landsat provides
medium resolution data?. This categorization supports a variety of applications
in environmental monitoring, resource management, and scientific research,
leveraging recent advancements in satellite remote sensing technologies.

Recent research has focused on vessel detection in Sentinel-13Y and
Sentinel-2'22 images, often combined with other data types. For example, in a
study?, Sentinel-1 data with AIS datasets were integrated and a database and a
web-based tool has been developed to detect dark vessels- not transmitting AlS
signals, potentially involved in illegal activities and to visualize the vessel
detections from both sources. Additionally, in another research a Polarimetric
Combination-based Ship Detection (PCSD) method addresses challenges like
speckle noise in SAR data, achieving an overall detection rate of over 85% and
over 42% for small vessels®. Similarly, an algorithm using object detection
methods on optical satellite images has been proposed for identifying small
vessels, particularly those under 20 meters in length that typically lack AIS, with
the capability of detecting vessels as small as 8 meters?®. In addition to the
Sentinel satellites, the Slovenian microsatellite NEMO-HD complements the
Sentinel data with higher resolution multispectral and HD video data. With its
advanced guidance, navigation and control system it can track non-linear tracks
on-ground (monitoring coastlines) or point in a selected target on ground for up
to several minutes [1-3]. Despite its high speed in orbit, NEMO-HD can maintain
the orientation towards a selected area on Earth to record HD video. Video from
space with motion tracking of vessels brings another dimension to the maritime
traffic monitoring. These advancements in satellite remote sensing technology
and data integration have significantly improved the accuracy and effectiveness
of maritime monitoring and vessel detection.
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Methods

Dataset

The EURMARS project exploits open access data and in particular, images from
the Sentinel-1, Sentinel-2, Landsat-8/9 satellites and video from the NEMO-HD
microsatellite for vessel detection. In the current work, only data from Sentinel-
1, 2 and NEMO-HD satellites were used. Sentinel-1?*, launched in 2014, has a
12-day turnaround time and collects SAR images with a spatial resolution of 5x5
meters, ensuring high quality images regardless of weather conditions and time
of day. On the other hand, Sentinel-2% provides high spatial resolution multi-
spectral optical observations at 10x10 meters globally, has a 10-day retrieval
period and features 13 spectral bands, making it suitable for various
applications such as detecting changes in land cover, coastal monitoring,
emergency management, border and maritime monitoring. NEMO- HD collects
high resolution video in the visual part of spectrum and has the spatial
resolution of 2.8x2.8 meters. The video footprint on ground is 3x5 km and can
be taken globally. When the area of interest is within the reach of the NEMO-
HD ground station located in Slovenia, the video can be downstreamed in real-
time. For the other AOI’s the video is saved onboard and transmitted to the
ground during the next contact with the ground station in the same day.

For the training, testing and validation of the optical vessel detection model,
four different datasets were used. The first one is the TGRS-HRRSD Dataset®®
(Figure 1) which contains 21,761 images acquired from Google Earth and Baidu
Map, the second one is the Ship Detection from Aerial Images? containing 621
images of 1 class for the ship detection, the third dataset namely ship-
detection? and the last one Ships in Google Earth dataset?® which contain 794
Google Earth images and split into 2 groups — training and testing. All datasets
are open access and contain optical images of vessels.

3560, ")

3558, g

Figure 1: Sampe images from TGRS-HRRSD Dataset

Regarding the SAR image dataset used for training and testing of the algorithm,
a labelled dataset with 102 Chinese Gaofen-3 images®® (Figure 2) and 108
Sentinel-1 images used. The images cropped in smaller parts (256x256 pixels)
creating 39.729 image chips.

L )

Figure 2: Sample images from Chinese Gaofen-3 images and 108 Sentinel-1 Datasets
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Methodology

The vessel detection algorithm operates through several critical steps. First, it
searches for new image products by continuously searching the Copernicus and
USGS Earth Explorer product catalogue within a predefined region of interest
for Sentinel-1, Sentinel-2 and Landsat 8,9 images. This search is performed on
an hourly basis. An API facilitates the image acquisition process by allowing
browsing of available products based on several parameters such as sensor
type, product layer, region of interest, cloud cover and acquisition date.

Once an image is detected, the algorithm automatically downloads it and
undertakes a series of pre-processing steps to optimize it for the detection
algorithm. These preprocessing steps (Figure 3) are essential to ensure data
quality in machine learning applications and include subset of images, noise
reduction, masking to highlight the area of interest, and applying spectral or
geometric transformations to prepare the image for accurate vessel detection.

_l

3.Land Sea - 7. Apply— Orbit
Mask - Fil

1. Read Images 9. Write Images 1. Read Images
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Figure 3: Workflow of the image dataset pre-processing (a) SAR, (b) optical imagery
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The model, in order to operate the vessel detection, utilizes the YOLO (You Only
Look Once) v7 algorithm for object detection, which has been pre-trained and
tested for this purpose. Unlike traditional object detection methods which
perform detection on various regions of an image, YOLO takes a different
approach. It divides the input image into a grid and for each cell predicts
bounding boxes and class probabilities directly within this grid. It resizes the
input image to resolution of 448 x 448, and runs a single convolutional neural
network on the image, that is consisted by 24 convolutional layers followed by
2 fully connected layers3?. Although the YOLO model was trained on very high-
resolution images, the algorithm was tested on high- and medium-resolution
images. However, adjustments were made to ensure high training accuracy
without negatively impacting the results. These adjustments include
procedures such as scale invariance and data augmentation. Specifically, for
scale invariance, the YOLO model was trained using images where the detected
object's bounding box occupied 10% or less of the image area. If the bounding
box covered more than 10% of the image, the image was discarded from the
training dataset. A lot of repetitions were implemented in order the optimal
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to 8 and the model seems to converge on 300 epochs.
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Figure 4: Algorithm Flowchart for vessel detection

Five metrics (objectness, precision, recall, F1 score and mean average
precision) were used to evaluate the model during the training and validation
processes in order to assess the effectiveness of the model in terms of how well
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the bounding box covers the detected object, the probability of a detected
object appearing in a particular region of the image, the accuracy of the correct
objects detected, the percentage of correct instances predicted, and the overall
performance of the model.

The model identifies vessels by generating rectangular orthogonal parallels
around them and annotating each one with a confidence level. The vessel
identification process differs slightly between optical and SAR images. Figure 4
illustrates the flowchart of the algorithm, detailing the sequence of actions
performed to extract vessel detection polygons from satellite images. The
diagram includes each stage of the process, from image acquisition and
preprocessing to the extraction of georeferenced polygons.

The algorithm for the vessel detection was entirely developed in Python 3.6
in the code user interface of Visual Studio and the libraries used for the
processing are: Or, Tarfile, dotenv, Numpy, Rasterio, SnapPy, Geopandas, PIL,
SQLAIchemy and OpenCV.

Fusion with AIS Data

AlS data can make an important contribution to vessel detection from satellite
imagery as it provides real-time information on the position, speed and
direction of vessels, which can be used to confirm and improve satellite
detection. The methodology for the acquisition and exploitation of AlS data
consists of the following steps. First of all, the data were acquired from ground-
based antennas placed in the EURMARS study areas. After applying the object
detection algorithm to a satellite image, bounding boxes are created around the
detected vessels. The next step involves integrating the AIS data with the
satellite images. During this step, the selected AlS data and the polygons from
the detected vessels are projected on the image.

| AIS data

Optical image Bounding boxes
— (b.boxes) over

| SAR image detected objects

AIS and b boxes
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v
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detection b boxes
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Figure 5: Flowchart of AlS-Validated Vessel Identification System
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Then the detected vessel positions were verified by cross-referencing them
with AIS data (Figure 5). This verification process determines which polygons
from the detection algorithm contain AlS points (Figure 6a), thereby confirming
the accuracy of the detected vessel positions. However, AIS data may
sometimes display a positional offset relative to the detected vessel in the
satellite image (Figure 6b). To address this, the algorithm considers both the
position and trajectory of AlS points, applying a minimum distance threshold to
ascertain whether the nearby AIS points and the detected bounding box
correspond to the same vessel.

Additionally, the method addresses gaps in AIS signal transmission. If a
vessel's position falls within such a gap (Figure 6c), the algorithm identifies the
last known AIS point before the signal loss and the first point when the signal
resumes, connecting these points with a vector (Figure 6d, 6e). The algorithm
ensures that the detected vessel is located along this vector and within a
defined distance parallel to it. If these conditions are met, the algorithm
concludes that the AIS data and the detected polygon correspond to the same
vessel, thereby ensuring consistent and accurate vessel identification despite
potential data gaps. When the algorithm detects a vessel near the vector and
needs to decide whether the detected vessel corresponds to the nearest vector,
it color-codes the rectangle: orange for medium possibility and red for low
possibility (Figure 6f).

() ®
Figure 6: (a) Validated AIS points with detected vessels, (b) Offset of AIS data (c) Gap
between AIS points, (d)- (e) Vector connection between successive points with
temporal gap, (f) Detected vessels belonging to the vector
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Results

Performance and Score

The model was trained, tested, and validated using multiple image datasets,
with data distribution as follows: 80% for training, 10% for testing, and 10% for
validation. The evaluation of results for both optical and SAR images was
conducted using the metrics mentioned before. Figure 7 and Figure 8 illustrate
the algorithm’s performance over 300 epochs. Detailed results of the training
and testing evaluations are provided below.

val Objectness MAP@0.5 MAP@0.5:085
00275

00250
00225
00200 Ok

00175

Figure 7: Training evaluation metrics of optical images
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Figure 8: Training evaluation metrics of SAR images
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Figure 9a displays the prediction accuracy for vessels in the optical images
during the testing phase with a true positive rate of 75% for the "ship" class,
while 25% of the predictions were classified as "background." Additionally in
Figure 9b the confusion matrix shows the testing prediction accuracy for vessels
in the SAR images. The model attained a true positive rate of 95% for the "ship"
class, while 5% of the predictions were classified as "background."

0
08
s 075 1.00 i 2 0.95 1.00
.
08

025

Predicted

Pradicted

background FN
background FN

(a) (b)
Figure 9: Confusion matrix for model testing for vessel detection in (a) optical images,
(b) SAR images

background FP
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Demonstration of the Pilot Use Case

During the EURMARS project, demonstration experiments were carried out to
evaluate and validate the project's methodologies and systems. The project
integrates a wide range of sensors, with the primary objective of enhancing the
detection of sea objects through data fusion. Since several sensors from
different locations can detect the same object, it was crucial to test these
methods in real-time conditions, beyond simple simulations. This study
specifically focused on merging satellite imagery and AIS data to improve
detection accuracy at sea.

The first demonstration was held in Varna, Bulgaria on April 2024. During two
days, the Sentinel-2 satellite passed over the area of interest on the first day,
followed by the NEMO-HD satellite on the next day. Concerning the Sentinel-2
image, the cloud coverage was more than 90% but the area of interest was with
light clouds (Figure 10a). NEMO-HD satellite collected a video with a duration
of 1 minute over the area. During the video, the clouds were moving, causing
some areas to appear cloud-free for a few seconds.

The algorithm implementation on the satellite image yielded one true
positive and two false positives results (Figure 10b). Due to the dense cloud
coverage, objects like small clouds are detected as vessels. Figure 10c shows the
detection results occurred after the algorithm’s implementation. Afterwards,
the detected results are evaluated and the true positive detections are sent to
the visualization platform, along with their metadata such as detection time,
coordinates of the vessel and object’s detected dimensions.

(b) (c)

Figure 10: (a) Sentinel-2 image (b), (c) Detections on Sentinel-2

Moreover, on the NEMO-HD video, the algorithm made a vessel detection in a
duration of 8 seconds with a confidence >0.025 (Figure 11).

Figure 11: Detections on NEMO-HD video frames

To validate the detection results, vessel positions were recorded using two
methods (Figure 12a). First, an AlS antenna was installed in the Varna region to
capture and transmit vessel position signals as they passed through the area of
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interest (Figure 12b). Additionally, some GNSS tracker devices were given to the
members of the vessels in order to record their position and as a consequence
the position of the vessel (Figure 12c).

(@) (b) (©

Figure 12: (a) Two vessels appeared on the image (b) Vessel 1 position with AIS (c)
Vessel 2 position with GNSS tracker

A noted issue with the detected bounding boxes is that the algorithm
occasionally misidentifies the wake of a moving vessel as part of the vessel itself,
resulting in an overestimation of the vessel's size. Additionally, when two
vessels are in close proximity, the algorithm may merge both vessels into a
single bounding box. To address these challenges, the integration of AIS data
can improve accuracy by providing additional information to distinguish
between overlapping or closely spaced vessels, improving detection results.

Discussion

In this paper, an end-to-end methodology for vessel detection that integrates
optical and SAR satellite imagery with AIS data was presented. This
methodology automates the entire process from image retrieval to vessel
detection, ensuring a continuous workflow without requiring user intervention.
Initially, the vessel detection algorithm automates the search and acquisition of
relevant satellite images, followed by pre-processing to improve the quality of
the images. It then detects vessels within these images, providing a final output
of detected vessels. The model demonstrates high accuracy in the validation
phase, with a true positive rate of 75% for optical images and 95% for SAR
images. Noticeably, the model works better for SAR images. The reason may be
traced to the testing samples, which are more diversified for optical images.
Compared in relevant works3*33 where YOLO models were used for vessel
detection, our model performs adequately, given the weather conditions that
may affect the detection of vessels at sea.

The integration of satellite images with AlIS data is a key element of our
approach, facilitating the verification of vessel positions and allowing the
identification of vessels that are either not transmitting AIS signhals or
experiencing temporary interruptions in transmission. The ability of the
detection validation algorithm to manage and resolve mismatches between AIS
data and satellite detections significantly enhances the accuracy and
consistency of vessel identification. This capability not only improves detection
accuracy but also reduces ambiguity in vessel position, thus saving time and
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minimizing uncertainty. In addition, the color-coding system effectively
visualizes the confidence level of each detection, providing a clear assessment
of how likely a detected vessel is aligned with the AIS data. This integration
optimizes data use for maritime surveillance.

The implementation on real-world experiments in the EURMARS project
exemplifies a robust approach to evaluating data fusion techniques for
maritime object detection. The integration of various sensors, including satellite
imagery and AlS data, underscores the importance of cross-referencing multiple
data sources to improve detection accuracy. The demonstration in Varna,
highlighted the challenges and successes of the project. Validation with AIS data
and GNSS trackers ensured accurate verification, though issues with detecting
vessel wakes and merging close-range vessels into a single bounding box
indicate areas for improvement. These findings reinforce the value of real-time,
multi-sensor data fusion in maritime surveillance and highlight the need for
further refinement in the EURMARS project's vessel detection algorithm.

Conclusion and Future Work

In this paper, we introduced our work developed under the Horizon Europe
project EURMARS, in which maritime object detection, more specifically, vessel
detection was presented. A framework, in which YOLOv7 was exploited for
object detection, integrates image acquisition, pre-processing, vessel detection,
and result outputs for the purpose based on both optical multi-spectral images
and SAR images. Four maritime datasets were used to fine-train the YOLOv7
models for optical images from a number of remote sensing satellites, whilst
two datasets were employed for SAR images from two satellites. Validation and
testing results have shown that the developed algorithms can achieve excellent
vessel detection accuracy of 75% and 95% for optical images and SAR images,
respectively. In the demonstration testing, Sentinel-2 (multi-spectral) images
and NEMO-HD (RGB) video were captured in experiments associated with
Automatic ldentification System (AIS). In these tests, common errors of the
system have been identified and corrected by modifying the developed
algorithm. With more demonstrations throughout the EURMARS project, we
will further explore robustness of the developed algorithm and enhance its
resilience to deal with different scenarios in maritime environments. For vessel
detection models, valuable training data may be generated from Sentinel-1,
Sentinel-2 and Landsat, the targeted satellites, to increase the detection
accuracy. We may also consider to modify the model architectures to fit better
for maritime object detection, in light of scenarios with more tests in real-
conditions.
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