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A B S T R A C T

The condition monitoring of nonlinear, nonstationary and multimode processes is a difficult problem.
Traditional multimode process monitoring methods generally assume that data from all potential
modes are available, yet new modes may appear continuously in practice. This paper investigates an
intelligent adaptive monitoring method for multimode nonstationary processes, which can deal with
the appearance of new modes with ease. A full-condition comprehensive framework is proposed to
decompose feature subspaces. First, long-term equilibrium features are extracted by adaptive cointe-
gration analysis (ACA) to identify the mode, without using any prior mode information intelligently
for online applications. Then, recursive attention probabilistic slow feature analysis integrated with
elastic weight consolidation (RAttPSFA-EWC) is investigated to deal with the remaining dynamic
information and extract dynamic and static slow features to maintain continual learning for multi-
modes. Once a new mode is detected automatically, the previously learned knowledge is consolidated
while extracting new features, which is beneficial to enhancing the performance of similar modes. The
proposed ACA-RAttPSFA-EWC acts as online adaptive method by parameter updates with incoming
normal data. Furthermore, several advanced methods are compared to demonstrate the strengths of
ACA-RAttPSFA-EWC, and the proposed method is validated to be effective using a numerical case
and a practical system.

1. Introduction
In order to enhance the safety and reliability of industrial

processes, process monitoring has been becoming essential
and increasingly well researched [1, 2, 3, 4]. Owing to the
switching operating points or raw materials, some industrial
processes typically operate under multiple modes [5, 6, 7].

Multimode process monitoring methods can be classi-
fied as either multiple model methods [8, 9] or single model
methods [10, 11, 12]. In a multiple model method, data are
divided into several clusters and local monitoring models
are built within each cluster. For instance, a common and
specific feature extraction method was explored to monitor
the multimode processes with common features [8]. In [13],
common dictionary and mode-specific dictionaries were
investigated for multiple modes and the mode was identified
via the reconstruction error. Besides, a hierarchical Dirichlet
process integrated with Hidden semi-Markov model was
presented to settle the missing mode information issue [9].
Multiple model methods require complete data from all
potential modes. In industrial applications, data are naturally
nonstationary in each mode and/or novel modes may ap-
pear continuously, which implies that the monitoring model
needs to be retrained, which is impractical.
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Single model methods establish a single monitoring
model for multiple modes, where the multimodal data are
transformed into a unimodal distribution or the model pa-
rameters are updated recursively to adapt to the varying
variations. Recursive slow feature analysis (RSFA) was pre-
sented to isolate temporal dynamics from steady conditions
[12], which was beneficial to identifying modes. Subse-
quently, a recursive exponential slow feature analysis was
developed to distinguish the normal slow changes and incip-
ient faults [14]. Besides, an exponential analytic stationary
subspace analysis was proposed for nonstationary process,
which also could distinguish the real faults from normal
changes while being robust to the disturbances [15]. Re-
cursive cointegration analysis (RCA) was investigated for
single-mode nonstationary processes [11] and the mode was
identified automatically. However, in the case of nonsta-
tionary processes, traditional recursive methods may fail as
these could not quickly track the dramatic variations between
consecutive modes when they are applied to multiple modes.

Consider that data from multiple modes are collected
sequentially, continual learning has been applied to multi-
mode process monitoring [16, 17]. The concept of continual
learning is to consolidate the previously learned knowledge
[18, 19] while assimilating new features from new modes.
The model can be learned continually with limited data and
computational resources. According to the manner of pre-
serving significant information, continual learning methods
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are sorted into regularization-based [20], replay [21] and pa-
rameter isolation methods [22]. Recently an adaptive method
was proposed using adaptive cointegration analysis (ACA),
recursive principal component analysis (RPCA) and elas-
tic weight consolidation (ACA-RPCA-EWC) [16], which
could identify the mode automatically and track the rapid
variations accurately in multimode nonstationary processes.
However, it does not deal with measurement noise directly.
To account for the uncertainty, probabilistic slow feature
analysis with EWC (PSFA-EWC) was investigated for multi-
mode nonstationary processes [17], where the measurement
noise was considered and missing data were modeled with
ease [23]. However, in the aforementioned regularization-
based methods [10, 17], data from multiple modes are re-
quired to be similar in some sense with the mode information
given as a priori.

Since almost all the aforementioned multimode process
monitoring methods assume that data from all potential
modes are available beforehand except for ACA-RPCA-
EWC, it is highly desired to develop a mode-free method
for multimode nonstationary processes. For replay-based
continual learning, a few representative data are stored or
pseudo-data are generated for each mode, which would be
replayed when a new mode arrives. In [24], multimode non-
linear sparse dynamic inner principal component analysis
was proposed to monitor diverse modes, where represen-
tative data from each mode were selected based on cosine
similarity and would be integrated with the new data for
retraining. Similar to [10, 17], the mode information should
be available in advance.

In practical applications, such as the large-scale thermal
power generation plants, it is intractable to obtain the ac-
curate mode information. The process data are obviously
nonstationary or stationary owing to the time-varying load
and the coal type. Besides, the data distribution and the
relationship between variables may also change because
the components of the raw materials vary slowly with the
environment. Meanwhile, since the plants generally operate
under a high-pressure and high-speed rotating condition, the
process data are easily affected by noise. Aforementioned
methods cannot tackle this issue, where the relationship
between variables changes, the mode information is unavail-
able and the noise should be considered simultaneously.

Against this background, this work introduces an adap-
tive method for multimode nonlinear nonstationary pro-
cesses, which provides a comprehensive monitoring frame-
work and could account for uncertainty due to probabilistic
interpretation. The expert knowledge is only used to decom-
pose the variables into several blocks and select the mode-
sensitive variables for offline training. When a new mode
is detected by ACA automatically, only an extremely small
amount of data are collected for offline training and the pre-
viously learned knowledge is preserved to provide continual
learning ability. Subsequently, the model parameters would
be updated adaptively based on the forthcoming data, which
is capable of tracking the dynamic variations accurately and

can provide excellent monitoring performance for nonsta-
tionary processes. Moreover, different from most state-of-
the-art monitoring methods [17, 8], the proposed method
is free from storing historical data and incoming sequential
data from different modes. Meanwhile, it can distinguish the
real faults, nonstationarity and normal mode switching for
online applications without much prior mode information.

The contributions of this paper are summarized below:

a) An adaptive monitoring framework is investigated for
multimode nonstationary processes, where the mode is
identified automatically without human intervention. To
obtain optimal performance, variables are divided into
three parts and feature subspaces are decomposed sys-
tematically to achieve a full-condition monitoring model.
The long-term equilibrium features are extracted via
ACA, which are used to identify the mode automatically.

b) Recursive attention PSFA with EWC (RAttPSFA-EWC)
is investigated to track the slow variations adaptively, and
the learned knowledge of previous modes is consolidated
when a new mode is detected. RAttPSFA-EWC is intro-
duced to deal with the remaining dynamic information
that are unaccounted for by ACA, in which an attention
mechanism is adopted to focus on the significant infor-
mation and model nonlinearity. The measurement noise
is considered using PSFA.

c) The proposed method is investigated based on the oper-
ating mechanism, expert knowledge and abundant data,
which can provide satisfactory monitoring performance
as well as excellent interpretability. The effectiveness of
the proposed method is validated via a numerical case
and a practical industrial case.

The rest of this paper is organized below. Section 2
explains the problem statement by reviewing the procedure
of ACA, and introducing attention PSFA (AttPSFA) for a
single nonlinear dynamic mode. Section 3 outlines the ob-
jective of AttPSFA-EWC and introduces the technical details
of the proposed RAttPSFA-EWC for multimode processes.
Then, the monitoring procedure is summarized and several
advanced approaches are discussed. The effectiveness of
ACA-RAttPSFA-EWC is demonstrated using a numerical
case and a practical pulverizing system in Section 4. The
conclusion is provided in Section 5.

2. Preliminaries
2.1. Problem statement

Assume that nonstationary data from multiple modes are
received sequentially. To describe a single mode 𝐾 (𝐾 =
1, 2,…), let 𝑿𝐾 ∈ ℜ𝑁𝐾×𝑚 be collected for offline training,
where 𝑁𝐾 is the number of samples and 𝑚 is the number of
variables. This work investigates an online adaptive moni-
toring method for multimode nonstationary processes based
on cointegration analysis (CA) and AttPSFA, as outlined in
Sections 2.2 and 2.4, respectively.
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According to correlation analysis, prior knowledge and
the augmented Dickey-Fuller (ADF) test [16], data 𝑿𝐾 are
decomposed into 𝑿𝐾 ⟶

{

𝑿0,𝐾 𝑿1,𝐾 𝑿2,𝐾
}

. First, data
𝑿0,𝐾 represent the stationary variables in each mode that
are sensitive to mode switching, which are selected by the
ADF test and prior knowledge. Then, data 𝑿1,𝐾 denote
the nonstationary ones that share similar trends, which are
selected based on the process mechanism. The remaining
nonstationary data𝑿2,𝐾 have no prominent role in any mode
[16]. Note that the data decomposition may vary for multiple
modes. Specifically, the dimension of data 𝑿0,𝐾 is same for
different modes, while the dimensions of 𝑿1,𝐾 and 𝑿2,𝐾
may be different.

For offline training procedure, CA extracts the long-term
equilibrium features from 𝑿1,𝐾 , as described in Section 2.2.
The rest information after CA together with 𝑿2,𝐾 would
be processed by AttPSFA-EWC in Section 3.1. For online
applications, when the system operates normally, the model
parameters are updated adaptively by ACA in Section 2.3
and RAttPSFA-EWC in Section 3.2. Note that data 𝑿0,𝐾 are
only used to calculate the monitoring statistics.

2.2. Cointegration analysis for mode 𝐾
CA aims to deal with nonstationary time series data,

which are stationary after being differentiated several times
[11]. The linear combinations of aforementioned nonstation-
ary variables (called cointegration variables) are stationary
after the CA algorithm. Intuitively speaking, cointegration
variables furnish the long-term equilibrium relationship,
which would be broken when a real fault happens.

We refer to 𝑿1,𝐾 as primary nonstationary signal. CA
aims to extract long-term equilibrium features from nonsta-
tionary data 𝑿1,𝐾 offline. Consider the primary nonstation-
ary signal 𝑿1,𝐾 ∈ ℜ𝑁𝐾×𝑚1 at mode 𝐾 , consisting of
𝑁𝐾 consecutive vector observations

{

𝒙𝑡
}𝑁𝐾
𝑡=1 with 𝒙𝑡 ∈ ℜ𝑚1

[25, 26]. To estimate the CA parameters, construct the vector
error-correction (VEC) model below:

𝛥𝒙𝑡 =
𝑝1−1
∑

𝑗=1
𝜴𝑗𝛥𝒙𝑡−𝑗 + 𝜞𝒙𝑡−1 + 𝝐𝑡 (1)

in which 𝛥𝒙𝑡 = 𝒙𝑡 − 𝒙𝑡−1 and 𝑝1 is the order of VEC
model. 𝝐𝑡 is the Gaussian white noise with 𝝐𝑡 ∼  (0,𝜩).
𝜞 = 𝚼𝑾 𝑇

𝑓,𝐾 ∈ ℜ𝑚1×𝑚1 , 𝚼 ∈ ℜ𝑚1×𝑟 and the cointegration
matrix 𝑾 𝑓,𝐾 ∈ ℜ𝑚1×𝑟 are of full rank 𝑟, and 𝑟 is estimated
by the trace test [26]. CA seeks to make the equilibrium
errors, namely each column of 𝑿1,𝐾𝑾 𝑓,𝐾 , as stationary as
possible.

To estimate 𝑾 𝑓,𝐾 , initially define the temporal differ-
ence vector 𝛥𝒙𝑝1+1 = 𝒙𝑝1+1 − 𝒙𝑝1 and the augmented

vector 𝛥𝒙𝑝11 =
[

𝛥𝒙𝑇1 𝛥𝒙𝑇2 ⋯ 𝛥𝒙𝑇𝑝1
]𝑇

∈ ℜ𝑝1𝑚1 . Then, con-

struct the matrices 𝛥𝑿𝑝1 =
[

𝛥𝒙𝑝1+1 𝛥𝒙𝑝1+2 ⋯ 𝛥𝒙𝑁𝐾

]𝑇
∈

ℜ(𝑁𝐾−𝑝1)×𝑚1 and 𝛥𝑿𝑝1 =
[

𝛥𝒙𝑝11 𝛥𝒙𝑝12 ⋯ 𝛥𝒙𝑝1𝑁𝐾−𝑝1

]𝑇
∈

ℜ(𝑁𝐾−𝑝1)×𝑝1𝑚1 . Two sets of the prediction errors 𝑬̃0 and 𝑬̃1

are defined according to

𝑬̃0 = 𝛥𝑿𝑝1 − 𝛥𝑿𝑝1𝜣 (2)

𝑬̃1 = 𝑿𝑝1 − 𝛥𝑿𝑝
1𝜱. (3)

Then, the regression parameters 𝜣 and 𝜱 are estimated
using ordinary least squares, such that 𝑬̃𝑇

0 𝑬̃0 and 𝑬̃𝑇
1 𝑬̃1 are

minimized for (2) and (3) respectively.
According to the Johansen test [26], 𝑾 𝑓,𝐾 is estimated

by solving the eigenvalue decomposition (EVD) problem

|

|

|

𝜆̃𝑺11 − 𝑺10𝑺−1
00𝑺01

|

|

|

= 0 (4)

where 𝑺 𝑖,𝑗 =
1

𝑁−𝑝1
𝑬̃𝑇

𝑖 𝑬̃𝑗 , 𝑖, 𝑗 = 0, 1, 𝜆̃ is the corresponding
eigenvalue of EVD problem. Subsequently, (4) is reformu-
lated equivalently as

𝑨(𝐾)𝒘 = 𝜆𝑩(𝐾)𝒘 (5)

where 𝑨(𝐾) =
[

𝟎 𝑺01
𝑺10 𝟎

]

and 𝑩(𝐾) =
[

𝑺00 𝟎
𝟎 𝑺11

]

. The

generalized eigenvectors corresponding to 𝑟 largest eigenval-
ues are included in 𝑾 𝐾 =

[

𝒘1,⋯ ,𝒘𝑟
]

∈ ℜ2𝑚1×𝑟. For the
𝐾th mode𝐾 , the dynamic cointegration matrix𝑾 𝑒,𝐾 and
𝑾 𝑓,𝐾 are generated as the top and bottom halves of 𝑾 𝐾 ,

namely, 𝑾 𝐾 =
[

𝑾 𝑒,𝐾
𝑾 𝑓,𝐾

]

.

2.3. Adaptive cointegration analysis
ACA [16] was introduced for online applications where

the parameters can be adjusted to track the slow variation
of the cointegration relationship. Here only the critical steps
are outlined, and the further details can be found in [16].

For online applications, the mode index 𝐾 is dropped to
simplify notation. At time step (𝑡+ 1), a new sample 𝒙0𝑡+1 is
collected and scaled as 𝒙𝑡+1. Similarly, 𝒙𝑡+1 is decomposed
into 𝒙𝑡+1 ⟶

{

𝒙0,𝑡+1 𝒙1,𝑡+1 𝒙2,𝑡+1
}

. The cointegration
variables 𝒙1,𝑡+1 are extracted and the matrix 𝑿1,𝑡+1 =
[

𝑿𝑇
1,𝑡 𝒙𝑇1,𝑡+1

]𝑇
is constructed for ACA. As described

in Appendix A in [16], the prediction errors 𝑬̃0,𝑡+1 and
𝑬̃1,𝑡+1 are updated recursively, 𝑨𝑡+1 and 𝑩𝑡+1 are calculated
adaptively based on 𝑨𝑡 and 𝑩𝑡. Subsequently, the objective
of ACA is transformed into solving the generalized EVD
problem below:

𝑨𝑡+1𝑾 𝑡+1 = 𝑩𝑡+1𝑾 𝑡+1𝜦̄𝑡+1 (6)

which is settled by a standard EVD. The elements in the
diagonal matrix 𝜦̄𝑡+1 are listed in descending order. 𝑾 𝑡+1

is the corresponding eigenmatrix and 𝑾 𝑡+1 =
[

𝑾 𝑒,𝑡+1
𝑾 𝑓,𝑡+1

]

.

2.4. AttPSFA for a single dynamic mode
PSFA was proposed [27] and applied to monitoring lin-

ear nonstationary processes [23]. The slowest features were
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extracted and the monitoring statistics were constructed
to distinguish both nominal operating points and dynamic
behaviors. Besides, it could deal with measurement noise
and missing data conveniently [23].

In this section, a nonlinear extension of PSFA (called
AttPSFA) is investigated for nonlinear nonstationary pro-
cesses, where attention mechanism is adopted to focus on
the global and local important features. The original data are
mapped to a high-dimensional feature space and then PSFA
is adopted to extract the significant slowest features. For a
single dynamic mode 𝐾 , the residue of primary signal
through CA is then combined with 𝑿2,𝐾 , for the offline
training of AttPSFA.

AttPSFA seeks to extract the slowest varying nonlinear
latent features from the time-varying signal 𝑿̃2,𝐾 , con-
structed by

𝑿̃2,𝐾 =
[

𝑿1,𝐾𝑾 ⊥
𝑓,𝐾 𝑿2,𝐾

]

(7)

where 𝑾 ⊥
𝑓,𝐾 = 𝑰 −𝑾 𝑓,𝐾

(

𝑾 𝑇
𝑓,𝐾𝑾 𝑓,𝐾

)−1
𝑾 𝑇

𝑓,𝐾 , and 𝑰
is the identity matrix with appropriate dimension. We refer
to 𝑿̃2,𝐾 as the secondary nonstationary signal.

To capture the significant global and local information,
as well as to model the nonlinearity in secondary non-
stationary signal 𝑿̃2,𝐾 , the data are mapped onto a high-
dimensional feature space based on the attention mechanism.
Consider an attention function between 𝒙̃2 and 𝜙(𝒙̃2):

𝜙𝑗(𝒙̃2) =
𝒙̃𝑇2 𝒄𝑗
𝑑

(8)

where 𝜙(𝒙̃2) = {𝜙𝑗(𝒙̃2)} ∈ ℜ𝑀 , and 𝑀 is predefined by
the user. 𝑪 = {𝒄𝑗}, 𝑗 = 1, ...𝑀 are a set of 𝑀 keys. 𝑑 > 0
is a scaling hyperparameter.

Attention mapping is defined as

𝙰𝚝𝚝𝚎𝚗𝚝𝚒𝚘𝚗(𝒙̃2,𝑪 ,𝑽 †) =
𝑀
∑

𝑗=1
𝚜𝚘𝚏𝚝𝚖𝚊𝚡(𝒙̃2,𝑪)𝑗𝑣

†
𝑗

in which 𝑣†𝑗 is the element in 𝑽 † and 𝑽 † is pseudo-inverse
of 𝑽 , and 𝑽 would be explained in (10). Besides,

𝚜𝚘𝚏𝚝𝚖𝚊𝚡(𝒙̃2,𝑪)𝑗 =
exp(𝜙𝑗(𝒙̃2))

∑𝑀
𝑗=1 exp(𝜙𝑗(𝒙̃2))

(9)

For convenience, the compatibility function of 𝚜𝚘𝚏𝚝𝚖𝚊𝚡(⋅)
is denoted as 0𝒙

𝜙
2 and the mapped data matrix is 0𝑿

𝜙
2,𝐾 . The

mean and standard deviation of 0𝑿
𝜙
2,𝐾 are calculated and

denoted as 𝝁̃𝜙
𝐾 and 𝚺̃𝜙

𝐾 . Then, data 0𝑿
𝜙
2,𝐾 are normalized

(zero mean and unit variance) and the processed data are
labeled as 𝑿𝜙

2,𝐾 . The initial keys 𝑪𝐾 of the current mode
𝐾 are determined using an online 𝑘-means clustering
algorithm [28] based on 𝑪𝐾−1 and 𝑿̃2,𝐾 .

Consider representing the time-varying observations,
𝑿𝜙

2,𝐾 = {𝒙𝜙𝑖 } ∈ ℜ𝑁𝐾×𝑀 using a state-space model with

a first-order Markov chain architecture [29].

⎧

⎪

⎨

⎪

⎩

𝒙𝜙𝑖 =𝑽 𝒚𝑖 + 𝒆𝑖, 𝒆𝑖 ∼ 
(

𝟎,𝚺𝑥
)

𝒚𝑖 =𝚲𝒚𝑖−1 + 𝜺𝑖, 𝜺𝑖 ∼  (𝟎,𝚺)
𝒚1 =𝒖, 𝒖 ∼ 

(

𝟎,𝚺1
)

(10)

where 𝒀 𝐾 = {𝒚𝑖} ∈ ℜ𝑁𝐾×𝑝2 contains the latent variables,
𝑝2 < 𝑀 . 𝚲 = 𝑑𝑖𝑎𝑔

(

𝜆1,… , 𝜆𝑝2
)

, with the constraint

𝚲2 + 𝚺 = 𝑰 . The emission matrix is 𝑽 ∈ ℜ𝑀×𝑝2 and
measurement noise variance is 𝚺𝑥 = 𝑑𝑖𝑎𝑔

(

𝜎21 ,⋯ , 𝜎2𝑀
)

.
Let 𝜃𝑥 =

{

𝑽 ,𝚺𝑥
}

, 𝜃𝑦 =
{

𝚺1,𝚲
}

, 𝜃 =
{

𝜃𝑥, 𝜃𝑦
}

. The
joint distribution and the complete log likelihood function
are [27]

𝑃
(

𝑿𝜙
2,𝐾 |𝒀 𝐾

)

= 𝑃
(

𝒚1
)

𝑁𝐾
∏

𝑖=2
𝑃
(

𝒚𝑖|𝒚𝑖−1
)

𝑁𝐾
∏

𝑖=1
𝑃
(

𝒙𝜙𝑖 |𝒚𝑖
)

(11)

log 𝑃
(

𝑿𝜙
2,𝐾 , 𝒀 𝐾 |𝜃

)

=
𝑁𝐾
∑

𝑖=1
log 𝑃

(

𝒙𝜙𝑖 |𝒚𝑖, 𝜃𝑥
)

+ log 𝑃
(

𝒚1|𝚺1
)

+
𝑁𝐾
∑

𝑖=2
log 𝑃

(

𝒚𝑖|𝒚𝑖−1,𝚲
)

(12)

respectively, which is optimized using the expectation max-
imization (EM) method [30].

3. Proposed ACA-RAttPSFA-EWC
This paper investigates an adaptive monitoring frame-

work for multimode nonstationary processes, where a nor-
mal mode is identified automatically without abundant prior
knowledge for online applications. When a new mode is
detected by ACA, a small amount of data are collected to
retrain the CA in Section 2.2 and AttPSFA-EWC models
in Section 3.1. For online monitoring, the long-equilibrium
features from primary nonstationary signals are extracted
firstly and the corresponding ACA model parameters are
updated recursively to track the slow variation of cointegra-
tion relationship in Section 2.3. The remaining nonstationary
information is processed by the proposed RAttPSFA-EWC,
the parameters of which are updated adaptively in Section
3.2. Then, the monitoring procedure is summarized in Sec-
tion 3.3. Eventually, the proposed ACA-RAttPSFA-EWC is
compared with several advanced approaches in Section 3.4.

3.1. AttPSFA–EWC for multiple modes
The objective of this work is to introduce an adaptive

monitoring method with continual learning ability for se-
quential nonstationary modes. One main contribution of this
paper is proposing AttPSFA-EWC for multimode nonlinear
dynamic process monitoring that addresses the secondary
nonstationary signals using EWC to combat catastrophic
forgetting and EM to obtain optimization solution for offline
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data. For online monitoring, the model parameters are up-
dated adaptively to track the slow variations.

For online monitoring of a mode 𝐾 , initially the model
parameters are pre-trained offline and then the model param-
eters are updated adaptively. When a new mode is detected
by ACA, a small amount of data 𝑿𝐾 are collected for offline
training. The significant knowledge learned from AttPSFA
is preserved when a new mode arrives. The objective of
AttPSFA-EWC is also automatically modified by adding an
extra quadratic term to AttPSFA, which represents regular-
ization according to the importance of model parameters,
as estimated by EWC [20]. Similar to [17], the objective
function of 𝐾 existing modes is formally described by

𝐽 (𝜃) = log 𝑃
(

𝑿𝜙
2,𝐾 , 𝒀 𝐾 |𝜃

)

− 𝐽𝑟𝑒𝑔
(

𝑽 𝐾−1
,𝛀𝑉

𝐾−1
,𝚲𝐾−1

,𝛀Λ
𝐾−1

) (13)

subject to the AttPSFA model (10) and

𝐽𝑟𝑒𝑔
(

𝑽 𝐾−1
,𝛀𝑉

𝐾−1
,𝚲𝐾−1

,𝛀Λ
𝐾−1

)

= − 𝛾1,𝐾
‖

‖

‖

𝑽 − 𝑽 𝐾−1
‖

‖

‖

2

𝛀𝑉
𝐾−1

− 𝛾2,𝐾
𝑝2
∑

𝑖=1
Ω𝜆
𝐾−1,𝑖

(

𝜆𝑖 − 𝜆𝐾−1,𝑖

)2

(14)

where 𝑽 𝐾−1
and 𝚲𝐾−1

are the optimal parameters of
last mode 𝐾−1, 𝛀𝑉

𝐾−1
and 𝛀Λ

𝐾−1
are the corresponding

importances, Ω𝜆
𝐾−1,𝑖

is the 𝑖th element of the diagonal
matrix 𝛀Λ

𝐾−1
. 𝛾1,𝐾 and 𝛾2,𝐾 are the hyper-parameters and

pre-defined by the user. The objective (13) is optimized by
EM and the detailed procedure can be found in [17]. Using
the Kalman filter, the final posterior mean and covariance of
latent variables 𝒀 𝐾 are denoted as 𝝁𝐾 and 𝑼𝐾 respectively.
Correspondingly, the final solution of (13) is denoted as
{

𝑽 𝐾
,𝚺𝑥,𝐾

,𝚲𝐾
,𝑭 𝑉

𝐾
,𝑭Λ

𝐾

}

. 𝑭 𝑉
𝐾

and 𝑭Λ
𝐾

are
the Fisher information matrices with regard to 𝑽 𝐾

and
𝚲𝐾

after the offline training procedure, respectively.

3.2. Online RAttPSFA–EWC updating
For online applications, the parameters of AttPSFA-

EWC model are updated adaptively. For notational simplic-
ity, it is assumed that the data 𝒙𝑖 and corresponding slow
features 𝒚𝑖 start from 𝑖 = 1 at the beginning and end at 𝑖 = 𝑡
for each mode.

3.2.1. Objective function design
At time step 𝑡, data 𝑿𝑡 = {𝒙1,… ,𝒙𝑡} are collected and

divided into 𝑿𝑡 =
[

𝑿0,𝑡 𝑿1,𝑡 𝑿2,𝑡
]

. Features with common
trends are extracted by ACA in Section 2.3 and parameters
Θ𝐴𝐶𝐴
𝑡 = {𝑬̃0,𝑡, 𝑬̃1,𝑡,𝑨𝑡,𝑩𝑡,𝑾 𝑓,𝑡,𝑾 𝑒,𝑡} are obtained. More

detailed information can be found in [16].
The remaining nonstationary information is constructed

using 𝑿̃2,𝑡 =
[

𝑿1,𝑡𝑾 ⊥
𝑓,𝑡 𝑿2,𝑡

]

, where 𝑾 ⊥
𝑓,𝑡 = 𝑰 −

𝑾 𝑓,𝑡

(

𝑾 𝑇
𝑓,𝑡𝑾 𝑓,𝑡

)−1
𝑾 𝑇

𝑓,𝑡. The mapped data are calculated

by (9) and denoted as 𝑿𝜙
2,𝑡. For RAttPSFA-EWC, the expec-

tation of complete likelihood is designed as

𝑄̂𝑡 =
𝑡

∑

𝑖=1
𝔼
[

log𝑃
(

𝒙𝜙2,𝑖, 𝒚𝑖|𝜃
)]

(15)

Based on (10)–(13), 𝑄̂𝑡 is described as

𝑄̂𝑡(𝚲,𝑽 ,𝚺𝑥)

= − 𝑡
2
log |

|

𝚺𝑥
|

|

− 1
2
𝑡𝑟
(

𝑫𝑡𝑽 𝑇𝚺−1
𝑥 𝑽

)

− 1
2
𝑡𝑟
(

𝑯 𝑡𝚺−1
𝑥
)

+ 𝑡𝑟
(

𝚺−1
𝑥 𝑽 𝑳𝑡

)

− 𝑡 − 1
2

log |𝚺| − 1
2
𝑡𝑟
(

𝑬𝑡𝚲𝑇𝚺−1𝚲
)

− 1
2
𝑡𝑟
(

𝑭 𝑡𝚺−1) + 𝑡𝑟
(

𝚺−1𝚲𝑮𝑡
)

(16)

where 𝑫𝑡 =
𝑡
∑

𝑖=1
𝔼
[

𝒚𝑖𝒚𝑇𝑖 |𝑿
𝜙
2,𝑡

]

, 𝑬𝑡 =
𝑡
∑

𝑖=2
𝔼
[

𝒚𝑖−1𝒚𝑇𝑖−1|𝑿
𝜙
2,𝑡

]

,

𝑭 𝑡 =
𝑡
∑

𝑖=2
𝔼
[

𝒚𝑖𝒚𝑇𝑖 |𝑿
𝜙
2,𝑡

]

, 𝑮𝑡 =
𝑡
∑

𝑖=2
𝔼
[

𝒚𝑖𝒚𝑇𝑖−1|𝑿
𝜙
2,𝑡

]

, 𝑯 𝑡 =

𝑡
∑

𝑖=1
𝔼
[

𝒙𝜙2,𝑖(𝒙
𝜙
2,𝑖)

𝑇
]

, 𝑳𝑡 =
𝑡
∑

𝑖=1
𝔼
[

𝒚𝑖|𝑿
𝜙
2,𝑡

]

{𝒙𝜙2,𝑖}
𝑇 . The opti-

mal solution of (16) is denoted as 𝜃𝑡 =
{

𝑽 𝑡,𝚺𝑥,𝑡,𝚲𝑡
}

.
At time step (𝑡+1), a normal sample 𝒙𝑡+1 is collected and

divided into 𝒙𝑡+1 =
[

𝒙0,𝑡+1 𝒙1,𝑡+1 𝒙2,𝑡+1
]

. The ACA param-
eters Θ𝐴𝐶𝐴

𝑡+1 = {𝑬̃0,𝑡+1, 𝑬̃1,𝑡+1,𝑨𝑡+1,𝑩𝑡+1,𝑾 𝑓,𝑡+1,𝑾 𝑒,𝑡+1}
are updated based on Θ𝐴𝐶𝐴

𝑡 and 𝒙1,𝑡+1. Detailed calculation
procedure can be found in [16].

The second nonstationary signal is constructed by 𝒙̃2,𝑡+1 =
[

𝒙1,𝑡+1𝑾 ⊥
𝑓,𝑡+1 𝒙2,𝑡+1

]

and RAttPSF-EWC parameters are
updated based on 𝒙̃2,𝑡+1. The keys 𝑪 𝑡+1 are updated based
on 𝑪 𝑡 and 𝒙̃2,𝑡+1 according to online 𝑘-means clustering
algorithm [28]. Subsequently, data 𝒙𝜙2,𝑡+1 are acquired by

(9) and 𝑿𝜙
2,𝑡+1 =

[

𝑿𝜙
2,𝑡;𝒙

𝜙
2,𝑡+1

]

. Here, the expectation of
complete likelihood is calculated recursively as follows [31]:

𝑄̂𝑡+1(𝜃) = 𝑄̂𝑡(𝜃)+𝛾𝑡+1
(

𝔼𝜃̂𝑡

[

log𝑃
(

𝒙𝜙2,𝑡+1, 𝒚𝑡+1, 𝜃
)]

− 𝑄̂𝑡(𝜃)
)

(17)

and 𝜃̂𝑡+1 = argmax 𝑄̂𝑡+1, 𝛾𝑡+1 is the forgetting factor.
Substituting (10) into (17), we get

𝐽 =𝑄̂𝑡+1(𝚲,𝑽 ,𝚺𝑥)

= − 1
2
𝑡𝑟
(

𝑫𝑡+1𝑽 𝑇𝚺−1
𝑥 𝑽

)

− 1
2
𝑡𝑟
(

𝑯 𝑡+1𝚺−1
𝑥
)

−
𝛾̄𝑡+1
2

log |
|

𝚺𝑥
|

|

+ 𝑡𝑟
(

𝚺−1
𝑥 𝑽 𝑳𝑡+1

)

−
𝛾̂𝑡+1
2

log |𝚺|

− 1
2
𝑡𝑟
(

𝑬𝑡+1𝚲𝑇𝚺−1𝚲
)

− 1
2
𝑡𝑟
(

𝑭 𝑡+1𝚺−1)

+ 𝑡𝑟
(

𝚺−1𝚲𝑮𝑡+1
)

(18)

Zhang et al.: Preprint submitted to Elsevier Page 5 of 15



Adaptive monitoring for multimode nonstationary processes

where 𝛾̄𝑡+1 = 𝑡(1 − 𝛾𝑡+1) + 𝛾𝑡+1, 𝛾̂𝑡+1 = (𝑡−1)(1−𝛾𝑡+1)+𝛾𝑡+1
and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑫𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑫𝑡 + 𝛾𝑡+1𝔼
[

𝒚𝑡+1𝒚𝑇𝑡+1|𝑿
𝜙
2,𝑡+1

]

𝑬𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑬𝑡 + 𝛾𝑡+1𝔼
[

𝒚𝑡𝒚𝑡|𝑿
𝜙
2,𝑡+1

]

𝑭 𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑭 𝑡 + 𝛾𝑡+1𝔼
[

𝒚𝑡+1𝒚𝑇𝑡+1|𝑿
𝜙
2,𝑡+1

]

𝑮𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑮𝑡 + 𝛾𝑡+1𝔼
[

𝒚𝑡+1𝒚𝑇𝑡 |𝑿
𝜙
2,𝑡+1

]

𝑯 𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑯 𝑡 + 𝛾𝑡+1𝔼
[

𝒙2,𝑡+1𝒙𝑇2,𝑡+1
]

𝑳𝑡+1 =
(

1 − 𝛾𝑡+1
)

𝑳𝑡 + 𝛾𝑡+1𝔼
[

𝒚𝑡+1|𝑿
𝜙
2,𝑡+1

]

{𝒙𝜙2,𝑡+1}
𝑇

3.2.2. Solution of objective (18)
For the proposed method, recursive expectation maxi-

mization (REM) [31] is used to optimize the objective (18)
for every time instant and obtain the parameters 𝜃𝑡+1 =
{

𝑽 𝑡+1,𝚺𝑥,𝑡+1,𝚲𝑡+1
}

. In E-steps, three sufficient statistics
𝔼
[

𝒚𝑡+1|𝑿
𝜙
2,𝑡+1

]

,𝔼
[

𝒚𝑡+1𝒚𝑇𝑡 |𝑿
𝜙
2,𝑡+1

]

and𝔼
[

𝒚𝑡+1𝒚𝑇𝑡+1|𝑿
𝜙
2,𝑡+1

]

are calculated and would be used for M-steps. It contains
forward recursion and backward recursion, as summarized
in Algorithm 1. In the forward recursion, the posterior
distribution 𝑝

(

𝒚𝑡+1|𝒙
𝜙
2,1,… ,𝒙𝜙2,𝑡+1

)

= 
(

𝝁𝑡+1,𝑼 𝑡+1
)

, is
realized by Kalman filter. In the backward recursion, the
marginal posterior distribution is calculated by Rauch-Tung-
Striebel (RTS) smoother. The initial settings of REM are
{

𝑽 𝐾
,𝚺𝑥,𝐾

,𝚲𝐾
,𝝁𝐾 ,𝑼𝐾

}

for the mode 𝐾 .

Algorithm 1 Updating statistics of the E-steps at (𝑡 + 1)th
sampling instant recursively
Inputs: 𝒙̃𝜙2,𝑡+1, 𝑼 𝑡, 𝝁𝑡, 𝑽 , 𝚺𝑥, 𝚲

Outputs: 𝔼
[

𝒚𝑡+1|𝑿
𝜙
2,𝑡+1

]

, 𝔼
[

𝒚𝑡+1𝒚𝑇𝑡 |𝑿
𝜙
2,𝑡+1

]

, 𝔼
[

𝒚𝑡+1𝒚𝑇𝑡+1|𝑿
𝜙
2,𝑡+1

]

,
𝑼 𝑡+1, 𝝁𝑡+1, 𝑷 𝑡, 𝑲 𝑡+1

1: Forward steps by the Kalman filter:
a) Calculate the prior covariance: 𝑷 𝑡 = 𝚲

(

𝑼 𝑡 − 𝑰
)

𝚲𝑇 + 𝑰

b) Calculate the Kalman gain: 𝑲 𝑡+1 = 𝑷 𝑡𝑽 𝑇 (

𝑽 𝑷 𝑡𝑽 𝑇 + 𝚺𝑥
)−1

c) Update the mean: 𝝁𝑡+1 = 𝚲𝝁𝑡 +𝑲 𝑡+1

(

𝒙̃𝜙2,𝑡+1 − 𝑽 𝚲𝝁𝑡

)

d) Calculate the posterior covariance: 𝑼 𝑡+1 =
(

𝑰 −𝑲 𝑡+1𝑽
)

𝑷 𝑡

2: Backward steps by the RTS smoother
a) Initialize 𝝁̂𝑡+1 = 𝝁𝑡+1, 𝑼̂ 𝑡+1 = 𝑼 𝑡+1

b) Gain: 𝑱 𝑡 = 𝑼 𝑡𝚲𝑇𝑷 −1
𝑡

c) Mean: 𝝁̂𝑡 = 𝝁𝑡 + 𝑱 𝑡
(

𝝁̂𝑡+1 − 𝚲𝝁𝑡
)

3: Calculate the sufficient statistics

a) 𝔼
[

𝒚𝑡+1|𝑿
𝜙
2,𝑡+1

]

= 𝝁̂𝑡+1

b) 𝔼
[

𝒚𝑡+1𝒚𝑇𝑡 |𝑿
𝜙
2,𝑡+1

]

= 𝑱 𝑡𝑼̂ 𝑡+1 + 𝝁̂𝑡+1𝝁̂𝑇
𝑡

c) 𝔼
[

𝒚𝑡+1𝒚𝑇𝑡+1|𝑿
𝜙
2,𝑡+1

]

= 𝑼̂ 𝑡+1 + 𝝁̂𝑡+1𝝁̂𝑇
𝑡+1

In M-steps, the critical parameters
{

𝑽 ,𝚺𝑥,𝚲
}

are opti-
mized alternatively. With regard to 𝑽 ,

𝐽 (𝑽 ) = −
𝑡(1 − 𝛾𝑡+1) + 𝛾𝑡+1

2
log |

|

𝚺𝑥
|

|

− 1
2
𝑡𝑟
(

𝑯 𝑡+1𝚺−1
𝑥
)

− 1
2
𝑡𝑟
(

𝑫𝑡+1𝑽 𝑇𝚺−1
𝑥 𝑽

)

+ 𝑡𝑟
(

𝚺−1
𝑥 𝑽 𝑳𝑡+1

)

(19)

Let the gradient be zero, and we get

𝑽 = 𝑳𝑇
𝑡+1𝑫

−1
𝑡+1 (20)

With regard to 𝚺𝑥 = 𝑑𝑖𝑎𝑔
(

𝜎21 ,⋯ , 𝜎2𝑀
)

,

𝐽 (𝚺𝑥) =
𝑀
∑

𝑗=1

1
𝜎2𝑗

(

−1
2
{

𝑽 𝑫𝑡+1𝑽 𝑇}
𝑗𝑗

−1
2
{

𝑯 𝑡+1
}

𝑗𝑗 +
{

𝑽 𝑳𝑡+1
}

𝑗𝑗

)

−
𝛾̄𝑡+1
2

𝑀
∑

𝑗=1
log 𝜎2𝑗

Let the gradient be zero, we can get

𝜎2𝑗 = 1
𝛾̄𝑡+1

(

𝒗𝑗𝑫𝑡+1𝒗𝑇𝑗 − 2𝒗𝑗𝒍𝑗 +
{

𝑯 𝑡+1
}

𝑗,𝑗

)

(21)

where 𝒗𝑗 is the 𝑗th row of 𝑽 , 𝒍𝑗 is the 𝑗th line of 𝑳𝑡+1 and
𝑗 = 1,… ,𝑀 .

With regard to 𝚲, the objective is reformulated as

𝐽 (𝚲) = −
𝛾̂𝑡+1
2

𝑝2
∑

𝑘=1
log

(

1 − 𝜆2𝑘
)

− 1
2

𝑝2
∑

𝑘=1

{

𝑬𝑡+1
}

𝑘,𝑘

𝜆2𝑘
1 − 𝜆2𝑘

− 1
2

𝑝2
∑

𝑘=1

{

𝑭 𝑡+1
}

𝑘,𝑘
1

1 − 𝜆2𝑘
+

𝑝2
∑

𝑘=1

{

𝑮𝑡+1
}

𝑘,𝑘
𝜆𝑘

1 − 𝜆2𝑘

where 𝛾̂𝑡+1 = (𝑡 − 1)(1 − 𝛾𝑡+1) + 𝛾𝑡+1. Let the gradient be
zero, we can get

𝛾̂𝑡+1𝜆
3
𝑘 +

{

𝑮𝑡+1
}

𝑘,𝑘 𝜆
2
𝑘 −

(

𝛾̂𝑡+1 +
{

𝑬𝑡+1
}

𝑘,𝑘

+
{

𝑭 𝑡+1
}

𝑘,𝑘

)

𝜆𝑘 +
{

𝑮𝑡+1
}

𝑘,𝑘 = 0
(22)

The solution of (22) is acquired analytically and 0 < 𝜆𝑘 < 1,
𝚲 = 𝑑𝑖𝑎𝑔

(

𝜆1,… , 𝜆𝑝2
)

. Repeat the E-steps and M-steps
until convergence, then we can get the optimal parameters
{𝑽 𝑡+1,𝚺𝑥,𝑡+1,𝚲𝑡+1}.

3.2.3. Calculating importance measure
The Fisher information matrix (FIM) is calculated by the

covariance of the gradient of the log likelihood function at
the local optimum [17]. At time step (𝑡 + 1), the gradient
about 𝑽 is

∇𝑽 log 𝑃
(

𝒙𝜙2,𝑡+1, 𝒚𝑡+1|𝜃𝑡+1
)

=𝚺−1
𝑥,𝑡+1

(

𝑽 𝑡+1𝒚𝑡+1 − 𝒙𝜙2,𝑡+1
)

𝒚𝑇𝑡+1
(23)
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Algorithm 2 Offline training of the proposed method
Inputs: Data 𝑿𝐾 , keys 𝑪𝐾−1, AttPSFA-EWC parameters of mode 𝐾−1

{𝑽 𝐾−1
,𝚲𝐾−1

,𝛀𝑉
𝐾−1

,𝛀Λ
𝐾−1

}
Outputs: Keys 𝑪𝐾 , CA parameters

{

𝑨(𝐾),𝑩(𝐾)}, AttPSFA-EWC
parameters

{

𝑽 𝐾
,𝚺𝑥,𝐾

,𝚲𝐾
,𝑭 𝑉

𝐾
,𝑭Λ

𝐾

}

, EM parameters
{

𝝁𝐾 ,𝑼𝐾
}

1: For the 𝐾th mode, divide the data 𝑿𝐾 into three parts accord-
ing to correlation analysis and expert experience, namely, 𝑿𝐾 =
[

𝑿0,𝐾 𝑿1,𝐾 𝑿2,𝐾
]

;
2: Perform traditional CA on 𝑿1,𝐾 and get the initial parameters

{𝑨(𝐾),𝑩(𝐾),𝑾 𝑓,𝐾 ,𝑾 𝑒,𝐾}:
a) Calculate two prediction errors via least squares;
b) Compute 𝑨(𝐾) and 𝑩(𝐾), obtain 𝑾 𝑓,𝐾 and 𝑾 𝑒,𝐾 via solving (5);

3: Construct 𝑿̃2,𝐾 and perform AttPSFA-EWC on 𝑿̃2,𝐾 :

a) According to online 𝑘-means clustering, calculate the keys 𝑪𝐾

based on 𝑪𝐾−1 and 𝑿̃2,𝐾 ;

b) Map data 𝑿̃2,𝐾 to a high-dimensional space via (9) based on
𝑪𝐾 , and denoted as 0𝑿

𝜙
2,𝐾 . The mean and standard derivation are

denoted as 𝝁̃𝜙
𝐾 and 𝚺̃𝜙

𝐾 , and the processed data are labeled as 𝑿𝜙
2,𝐾 .

c) Perform PSFA-EWC on 𝑿𝜙
2,𝐾 [17]:

i) Calculate sufficient statistics via Kalman filter and RTS;

ii) Maximize (12) to get
{

𝑽 𝐾
,𝚺𝑥,𝐾

,𝚲𝐾

}

;

iii) Calculate FIM 𝑭 𝑉
𝐾

and 𝑭Λ
𝐾

;

iv) The posterior mean and covariance of latent variables 𝒀 are 𝝁𝐾
and 𝑼𝐾 .

Then, define

𝒇𝑉
𝑡+1 =𝚺

−1
𝑥,𝑡+1

(

𝑽 𝑡+1𝒚𝑡+1 − 𝒙𝜙2,𝑡+1
)

𝒚𝑇𝑡+1𝒚𝑡+1
(

𝑽 𝑡+1𝒚𝑡+1 − 𝒙𝜙2,𝑡+1
)𝑇

𝚺−1
𝑥,𝑡+1

(24)

The FIM about 𝑽 is updated as follows:

𝑭 𝑉
𝑡+1 = 𝑭 𝑉

𝑡 + 𝒇𝑉
𝑡+1 (25)

Similarly, the gradient and FIM with respect to 𝜆𝑘 is

∇𝜆𝑘 log 𝑃
(

𝒙𝜙2,𝑡+1, 𝒚𝑡+1|𝜃𝑡+1
)

=
−𝜆3𝑘 + 𝑦𝑡+1,𝑘𝑦𝑡,𝑘𝜆2𝑘 +

(

1 − 𝑦2𝑡+1,𝑘 − 𝑦2𝑡,𝑘
)

𝜆𝑘 + 𝑦𝑡+1,𝑘𝑦𝑡,𝑘
(

1 − 𝜆2𝑘
)2

≜𝑔
(

𝑦𝑡+1,𝑘, 𝑦𝑡,𝑘, 𝜆𝑘
)

𝑓𝜆𝑘
𝑡+1 = 𝑔

(

𝑦𝑡+1,𝑘, 𝑦𝑡,𝑘, 𝜆𝑡+1,𝑘
)2, 𝑘 = 1,⋯ , 𝑝2

and 𝒇Λ
𝑡+1 = 𝑑𝑖𝑎𝑔

(

𝑓𝜆1
𝑡+1,⋯ , 𝑓

𝜆𝑝2
𝑡+1

)

. Then, the FIM about 𝚲
is updated by

𝑭Λ
𝑡+1 = 𝑭Λ

𝑡 + 𝒇Λ
𝑡+1 (26)

3.3. Summary of the monitoring procedure
At time step (𝑡 + 1), a collected sample 𝒙0𝑡+1 is scaled

as 𝒙𝑡+1, and divided as 𝒙𝑡+1 =
[

𝒙0,𝑡+1 𝒙1,𝑡+1 𝒙2,𝑡+1
]

.
𝑾 𝑓,𝑡 and 𝑾 𝑒,𝑡 have already been obtained by ACA after
time step 𝑡. Let 𝒙̂1,𝑡+1 =

[

𝒙1,𝑡+1𝑾 𝑓,𝑡 𝒙0,𝑡+1
]

, 𝑇 2
𝑓 and 𝑇 2

𝑒
are designed to reflect the static and dynamic long-term
equilibrium relationships, which would be used to identify
the modes.

𝑇 2
𝑓 = 𝒙̂1,𝑡+1𝒙̂𝑇1,𝑡+1 (27)

𝑇 2
𝑒 = 𝒆0,𝑡+1𝑾 𝑒,𝑡𝑾 𝑇

𝑒,𝑡𝒆0,𝑡+1
𝑇 (28)

where the prediction error 𝒆0,𝑡+1 is the last sample of 𝑬̃0,𝑡+1.
The remaining information of ACA is constructed by

𝒙̂2,𝑡+1 =
[

𝒙1,𝑡+1𝑾 ⊥
𝑓,𝑡 𝒙2,𝑡+1

]

. The mapped sample 𝒙̂𝜙2,𝑡+1
is calculated using (9) based on 𝒙̂2,𝑡+1 and 𝑪 𝑡. Similar to

Algorithm 3 Online monitoring of the proposed method
Inputs: Keys 𝑪𝐾 , CA parameters

{

𝑨(𝐾),𝑩(𝐾)}, RAttPSFA-EWC
parameters

{

𝑽 𝐾
,𝚺𝑥,𝐾

,𝚲𝐾
,𝛀𝑉

𝐾
,𝛀Λ

𝐾

}

, REM parameters
{

𝝁𝐾 ,𝑼𝐾
}

1: Initialize 𝑡 = 𝑁𝐾 , 𝑪 𝑡 = 𝑪𝐾 , 𝑨𝑡 = 𝑨(𝐾), 𝑩𝑡 = 𝑩(𝐾), 𝑽 𝑡 = 𝑽 𝐾
,

𝚺𝑥,𝑡 = 𝚺𝑥,𝐾
, 𝚲𝑡 = 𝚲𝐾

, 𝑭 𝑉
𝑡 = 𝑁𝐾𝑭 𝑉

𝐾
, 𝑭Λ

𝑡 = 𝑁𝐾𝑭Λ
𝐾

,
𝝁𝑡 = 𝝁𝐾 , 𝑼 𝑡 = 𝑼𝐾 ;

2: Collect a sample 𝒙𝑡+1 and divide the sample into three blocks, namely,
𝒙𝑡+1 =

[

𝒙0,𝑡+1 𝒙1,𝑡+1 𝒙2,𝑡+1
]

;
3: Construct 𝒙̂1,𝑡+1 =

[

𝒙1,𝑡+1𝑾 𝑓,𝑡 𝒙0,𝑡+1
]

and 𝒙̂2,𝑡+1 =
[

𝒙1,𝑡+1𝑾 ⊥
𝑓,𝑡 𝒙2,𝑡+1

]

, and calculate 𝒙̂𝜙2,𝑡+1 based on 𝒙̂2,𝑡+1 and
𝑪 𝑡;

4: Calculate test statistics via (27)–(31) and judge the operating conditions
using monitoring rules detailed in Section 3.3:
a) Normal, go to step 5 and update ACA-RAttPFSA-EWC parameters;

b) The mode is switched normally. Let 𝑪𝐾 = 𝑪 𝑡, 𝚲𝐾
= 𝚲𝑡,

𝑽 𝐾
= 𝑽 𝑡, 𝛀𝑉

𝐾
= 𝛀𝑉

𝐾−1
+ 1

𝑡 𝑭
𝑉
𝑡 , 𝛀Λ

𝐾
= 𝛀Λ

𝐾−1
+ 1

𝑡 𝑭
Λ
𝑡 ,

𝐾 = 𝐾 + 1. Collect normal data 𝑿0
𝐾 ∈ ℜ𝑛0×𝑚, call Algorithm 2;

Return to step 1.

c) Faulty, alarm is triggered.

5: Update the thresholds by RKDE;
6: Calculate two prediction errors 𝑨𝑡+1 and 𝑩𝑡+1, and get the parameters

{𝑾 𝑓,𝑡+1,𝑾 𝑒,𝑡+1} by solving (6);

7: Construct 𝒙̃2,𝑡+1 =
[

𝒙1,𝑡+1𝑾 ⊥
𝑓,𝑡+1 𝒙2,𝑡+1

]

, perform RAttPSFA-EWC
on 𝒙̃2,𝑡+1:
a) According to online 𝑘-means clustering, update the keys 𝑪 𝑡+1 based

on 𝒙̃2,𝑡+1 and 𝑪 𝑡;

b) The high-dimensional sample 0𝒙
𝜙
2,𝑡+1 is obtained using (9) based on

𝑪 𝑡+1 and 𝒙̃2,𝑡+1, the preprocessed sample is denoted as 𝒙𝜙2,𝑡+1;

c) Optimize the objective (17) based on REM:

i) Calculate three sufficient statistics using Algorithm 1;

ii) Update parameters using (20)–(22);

iii) Return to step i) until convergence;

d) Update the FIMs by (25) and (26);

8: Move to the next time step 𝑡 + 1, return to step 2.
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Table 1
Descriptions of different monitoring subspaces

Subspace Dimension Statistics Description

ACA Static subspace 𝑚1 𝑇 2
𝑓 Monitor the static long-term equilibrium relation

Dynamic subspace 𝑚1 𝑇 2
𝑒 Monitor the dynamic long-term equilibrium relation

RAttPSFA-EWC
Static subspace 𝑝2 𝑇 2 Monitor the static slow variations
Static subspace 𝑀 𝑆𝑃𝐸 Monitor the prediction error

Dynamic subspace 𝑝2 𝑆2 Monitor the dynamic slow variations

[17], three monitoring statistics are designed to monitor the
short-term dynamics. According to Kalman filter equation,

𝒚𝑡+1 = 𝚲𝑡+1𝒚𝑡 +𝑲 𝑡+1

[

𝒙̂𝜙2,𝑡+1 − 𝑽 𝑡+1𝚲𝑡+1𝒚𝑡
]

where 𝑲 𝑡+1 is the Kalman gain and calculated in Algorithm
1. Then, the 𝑇 2 statistic is defined as

𝑇 2 = 𝒚𝑇𝑡+1𝒚𝑡+1 (29)

To design the 𝑆𝑃𝐸 statistic, the bias between the true
value and one-step prediction is calculated at time step (𝑡+1).
The prediction error follows Gaussian distribution, namely

𝜺𝑡+1 = 𝒙̂𝜙2,𝑡+1 − 𝑽 𝑡+1𝚲𝑡+1𝝁𝑡 ∼ 
(

𝟎,𝚽𝑡+1
)

where𝚽𝑡+1 = 𝑽 𝑡+1𝚲𝑡+1𝑷 𝑡𝚲𝑇
𝑡+1𝑽

𝑇
𝑡+1+𝚺𝑥,𝑡+1+𝑽 𝑡+1𝚺𝑡+1𝑽 𝑇

𝑡+1.
𝝁𝑡 is the prior mean and 𝑷 𝑡 is the prior covariance, which are
calculated by Algorithm 1. The 𝑆𝑃𝐸 statistic is designed to
characterize the noise and calculated by

𝑆𝑃𝐸 = 𝜺𝑇𝑡+1𝚽
−1
𝑡+1𝜺𝑡+1 (30)

𝑆2 statistic is designed to monitor temporal dynamics[23].

𝑆2 = 𝒚̇𝑇𝑡+1𝚵
−1𝒚̇𝑡+1 (31)

where 𝒚̇𝑡+1 = 𝒚𝑡+1 − 𝒚𝑡, 𝚵 = 2
(

𝑰𝑝2 − 𝚲𝑡+1

)

[23].
For the proposed ACA-RAttPSFA-EWC, data are de-

composed into five subspaces and the corresponding statis-
tics are designed to reflect the variations, as summarized
in Table 1. The offline thresholds are estimated by ker-
nel density estimation (KDE) and the online thresholds
are updated by recursive KDE (RKDE) [16]. The offline
training and online monitoring procedures are summarized
in Algorithms 2 and 3, respectively. The comprehensive
procedure of ACA-RAttPSFA-EWC is depicted in Figure
1. The major differences between ACA-RPCA-EWC and
ACA-RAttPSFA-EWC are highlighted.

The automatic monitoring is enabled with Line 4 in
Algorithm 2 which continuously assesses three conditions
online: a) No fault and same mode: continue using online
monitoring; (b) No fault with new mode being detected,
move to next mode using Algorithm 1 for offline training,
which then returns to Step 2 of Algorithm 2; and (c) fault
is triggered with report. Specifically, the monitoring rules in
Algorithm 3 are summarized as follows:

a) If all statistics are below their thresholds, the process op-
erates normally in the same mode. The ACA-RAttPSFA-
EWC parameters are updated adaptively;

b) If 𝑇 2
𝑓 or 𝑇 2

𝑒 is out of control, it indicates that the static
or dynamic long-term equilibrium relationship between
cointegration variables is broken. If 𝑇 2

𝑒 returns to normal,
process dynamics are still controlled and a new mode
arrives, and then a few normal samples are collected to
establish the initial monitoring model. Otherwise, a fault
is detected and a fault alarm is triggered;

c) If 𝑇 2 or 𝑆𝑃𝐸 is above the threshold, a steady deviation
from the predefined operating modes occurs. If 𝑆2 is
beyond the threshold, it indicates that a potential anomaly
may have occurred and the process needs to be checked
carefully.

3.4. Discussion
RSFA [12], RCA [11], ACA-RPCA-EWC [16], PSFA-

EWC [17] are adopted to compare with the proposed ACA-
RAttPSFA-EWC. Aforementioned methods are based on
SFA or CA, and deeply intertwined. RSFA, PSFA-EWC
and ACA-RAttPSFA-EWC are built on the foundation of
SFA and also share the virtues of SFA, which focus on the
slow variations of dynamics. In addition, PSFA-EWC and
the proposed method can deal with measurement noise and
missing data owing to probabilistic interpretation, where EM
is adopted to optimize the parameters. Except for PSFA-
EWC, the parameters of four methods are updated recur-
sively online and the mode is identified automatically.

Comprehensive comparison of five methods are summa-
rized briefly in Table 2. Several critical characteristics are
discussed deeply to reflect the performance.

a) Mode identification. Real fault, normal mode switching
and nonstationarity may occur in multimode nonstation-
ary processes, which can make data vary dynamically.
RSFA and PSFA-EWC cannot identify the modes with-
out human intervention, because it is difficult to judge
the root cause of dynamic variations. In some practical
situations, it is hard to obtain the mode information in
advance. RCA, ACA-RPCA-EWC and ACA-RAttPSFA-
EWC can identify modes automatically, and distinguish
the mode switching and real faults. Since manipulated
variables are considered in ACA-RPCA-EWC and ACA-
RAttPSFA-EWC, they are robust to the mode misidenti-
fication caused by human parameter adjustment [16].
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Figure 1: The flowchart of the proposed method

Table 2
Performance comparison of five methods in multimode nonstationary process monitoring

Methods Intelligent mode
identification

Model track
accuracy Nonlinearity Dealing with

uncertainty
Memory

properties
Online real-time

performance
Algorithm
complexity

RSFA [12] Poor Poor No No No Poor Low
RCA [11] Good Poor No No No Good Low

PSFA-EWC [17] Poor Poor No Yes Yes Poor Low
ACA-RPCA-EWC [16] Excellent Excellent No No Yes Excellent Medium
ACA-RAttPSFA-EWC Excellent Excellent Yes Yes Yes Excellent High

b) Feature extraction. ACA-RPCA-EWC and the proposed
ACA-RAttPSFA-EWC method both extract significant
features to monitor the long-term equilibrium relation.
As illustrated in Table 1, the latter one further extracts
dynamic and static features to monitor the slow variation
and prediction error, while ACA-RPCA-EWC only con-
siders static features after ACA. Although the procedure
of AttPSFA-EWC and PSFA-EWC is similar, features
with long-term equilibrium relation are neglected for
PSFA-EWC. This characteristic is also applied to RSFA.
Conversely, RCA merely extracts features with common
trends and the remaining features are ignored.

c) Nonlinearity and dealing with uncertainty. Attention
mechanism is adopted in the proposed ACA-RAttPSFA-
EWC method, where data are mapped to a high-dimensional
space to cope with nonlinearity and latent variables are
extracted thereafter. The other four methods are applied
to linear nonstationary processes. Moreover, PSFA-EWC
and ACA-RAttPSFA-EWC use probabilistic interpreta-
tion to characterize uncertainty and EM is adopted to
solve the optimization issue, which makes them also
potentially deal with missing data. However, RSFA, RCA
and ACA-RPCA-EWC fail to deal with uncertainty.

d) Model track accuracy. RSFA and RCA are designed
for a single nonstationary mode and may fail to pro-
vide tracking performance for multimode nonstation-
ary processes. PSFA-EWC requires a few representa-
tive data when a new mode arrives. Then, the model
is trained and would be used without any updating for
online monitoring. The performance may be decreased
abruptly if the modes vary significantly. ACA-RPCA-
EWC and ACA-RAttPSFA-EWC are mode-free monitor-
ing methods, which could offer tracking accuracy owing
to the comprehensive variable decomposition, adaptive
updating and the previously consolidated knowledge.
Furthermore, ACA-RAttPSFA-EWC may provide better
performance than ACA-RPCA-EWC because dynamic
characteristics are further extracted after ACA algorithm.

e) Memory properties. RSFA and RCA do not store the
previously learned knowledge. PSFA-EWC calculates
the FIM after the training procedure and would not be
updated before a new mode arrives. For ACA-RPCA-
EWC, the FIM of a certain mode is calculated at the
end of each mode. For ACA-RAttPSFA-EWC, the FIM
of each sample is calculated at each sampling instant
and thus the FIM of a mode is obtained finally once
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a new mode arrives. Theoretically, the FIM of ACA-
RAttPSFA-EWC may contain more significant informa-
tion. Thus, the memory characteristics may be better to
other methods.

f) Online real-time performance. This paper mainly refers
to the real-time monitoring performance when a new
mode arrives. PSFA-EWC trains the parameters offline
and then the model is used for online monitoring. When
a new mode appears, a certain amount of data should be
collected to retrain the model. During this period, the
systems are monitored by an inaccurate model, which
may influence the online real-time performance. When
the mode switches, RSFA could not track the rapid and
dynamic variations based on a few data, and thus the on-
line monitoring would be unsatisfactory. RCA can extract
rough long-term equilibrium features and the model is
corrected based on the forthcoming data. ACA-RPCA-
EWC and ACA-RAttPSFA-EWC provide a comprehen-
sive monitoring framework and the significant features
are extracted deeply, which are beneficial to establishing
an accurate model based on limited data. Thus, their
online monitoring performance would be excellent and
optimal among five methods.

g) Algorithm complexity. This mainly refers to the online
computational complexity. PSFA-EWC calculates the
three statistics based on the trained parameters without
updating, thus the online complexity may be the least.
The complexity of RSFA and RCA comes in second
place, because the parameter updating rules are intu-
itively explicit. Compared to RSFA and RCA, the com-
plexity of ACA-RPCA-EWC is a little higher because
more variables are considered and more parameters need
to be updated. The complexity of ACA-RAttPSFA-EWC
is particularly complicated because REM algorithm is
adopted to optimize the objective function.

4. Experimental analysis
In this section, RSFA [12], RCA [11], ACA-RPCA-

EWC [16], PSFA-EWC [17] are compared in a numerical
case and a pulverizing system case. The offline training
and online monitoring data are the same for all methods.
Fault detection rates (FDRs), false alarm rates (FARs) and
detection delay (DD) are used to evaluate the performance.

Note that the monitoring statistics of ACA-RAttPSFA-
EWC and ACA-RPCA-EWC can be separated into tow
parts, namely, the ACA and the remaining part. Specifi-
cally, ACA-RAttPSFA-EWC and ACA-RPCA-EWC adopt
ACA to identify the mode and the corresponding ACA
parameters are the same. Therefore, they share the same
results of 𝑇 2

𝑓 and 𝑇 2
𝑒 in the following experiments. The

monitoring indexes 𝑇 2
𝑒 and 𝑇 2

𝑓 of ACA are listed under
ACA-RAttPSFA-EWC in Table 3. For ACA-RPCA-EWC,
the remaining statistics 𝑇 2 and𝑆𝑃𝐸 are provided by RPCA-
EWC separately. With regard to ACA-RAttPSFA-EWC, the

rest monitoring statistics 𝑇 2, 𝑆𝑃𝐸 and 𝑆2 are calculated by
RAttPSFA-EWC.

4.1. Numerical cases
Consider the following numerical data [16]:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑧1 = 𝑎1𝑡 + 𝑏1 + 𝜀1
𝑧2 = 𝑎2𝑡 + 𝑏2 + 𝜀2
𝑧3 = 𝑎3𝑡2 + 𝑏3𝑡 + 𝑐3 + 𝜀3
𝑧4 = 𝑎4𝑡2 + 𝑏4𝑡 + 𝑐4 + 𝜀4
𝑧5 = 𝑎5 + 𝜀5
𝑧6 = 𝑎6𝑒−𝑡 + 𝑏6𝑡 + 𝑐6 sin 𝑡 + 𝑑6 + 𝜀6
𝑧7 = 𝑎7𝑒−𝑡 + 𝑏7𝑡3 + 𝑐7 cos 𝑡 + 𝑑7 + 𝜀7

where noise 𝜀𝑗 ∼  (0, 0.09) , 𝑗 = 1,… , 7. The coefficients
are shown as follows.

For mode 1:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎1 = 1.5, 𝑏1 = 4;
𝑎2 = 1, 𝑏2 = 2.5;
𝑎3 = −0.8, 𝑏3 = 1.6, 𝑐3 = 1;
𝑎4 = 0.6, 𝑏4 = −1.2, 𝑐4 = 2;
𝑎5 = 3;
𝑎6 = 0.4, 𝑏6 = −0.1, 𝑐6 = 0.2, 𝑑6 = 0.8;
𝑎7 = 0.6, 𝑏7 = 0.1, 𝑐7 = 0.6, 𝑑7 = 0.4;

(32)

For mode 2:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎1 = 1.5, 𝑏1 = 3.5;
𝑎2 = 2, 𝑏2 = 2;
𝑎3 = 0.4, 𝑏3 = −0.8, 𝑐3 = 2;
𝑎4 = −0.2, 𝑏4 = 0.4, 𝑐4 = 1.5;
𝑎5 = 2;
𝑎6 = 0.6, 𝑏6 = −0.1, 𝑐6 = 0.4, 𝑑6 = 0.8;
𝑎7 = 0.6, 𝑏7 = 0.3, 𝑐7 = 0.4, 𝑑7 = 0.4;

(33)

For mode 3:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎1 = 1.2, 𝑏1 = 3;
𝑎2 = 2, 𝑏2 = 2.5;
𝑎3 = 0.4, 𝑏3 = −0.8, 𝑐3 = 1;
𝑎4 = −0.3, 𝑏4 = 0.6, 𝑐4 = 1.5;
𝑎5 = 1.6;
𝑎6 = 0.4, 𝑏6 = −0.1, 𝑐6 = 0.3, 𝑑6 = 0.6;
𝑎7 = 0.5, 𝑏7 = 0.2, 𝑐7 = 0.5, 𝑑7 = 0.8;

(34)

Data from three successive modes are collected and 500
samples are generated from each mode. There are 1200
normal samples and the faulty data are generated as follows:

a) Case 1: 𝑧1 is added 0.5 from the 201th sample in mode
3.

b) Case 2: 𝑧6 is added 0.8 from the 201th sample in mode
3.

𝑧1 and 𝑧2 are nonstationary and share the same trend.
The same is true for 𝑧3 and 𝑧4. 𝑧5 is stationary for each
mode and would change when the mode switches. 𝑧6 and 𝑧7
change irregularly and dramatically. According to the prior
knowledge, ADF test and correlation analysis, the variables
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Table 3
Evaluation indices of the numerical case and the practical coal pulverizing case studies

Case
number Indices RSFA RCA PSFA-EWC ACA-RPCA-EWC ACA-RAttPSFA-EWC

𝑇 2 𝑆2 𝐷2 𝑇 2 𝑇 2
𝑒 𝑆2 𝑇 2 𝑇 2

𝑒 𝑆2 𝑇 2 𝑆𝑃𝐸 𝑇 2
𝑓 𝑇 2

𝑒 𝑇 2 𝑆𝑃𝐸 𝑆2

Case 1 FDRs 0 0 0.33 1.00 31.00 0 100 100 3.00 0 0 99.67 99.67 98.67 99.34 0
FARs 3.91 7.36 1.09 2.73 14.55 2.73 1.36 4.45 5.18 5.09 9.18 10.73 3.45 8.45 8.73 2.00
DD 300 300 0 14 5 300 0 0 0 300 300 1 1 1 300 300

Case 2 FDRs 0 0 0.33 99.67 31.67 0 87.00 100 6.33 100 100 0 0 99.67 99.67 2.33
FARs 3.91 7.36 1.09 2.73 14.55 2.73 4.09 6.00 6.18 5.09 9.18 10.75 3.45 11.36 9.73 3.45
DD 300 300 0 1 1 300 0 0 5 0 0 300 300 1 1 1

Case 3 FDRs 0 100 0.92 0 0 0 100 100 100 0 0 6.08 96.11 90.06 75.87 90.26
FARs 40.65 99.93 1.52 0.52 6.02 0 97.97 95.97 95.43 2.07 1.38 1.15 1.97 9.47 8.19 1.29
DD 3601 0 64 3601 3601 3601 - - - 3601 3601 3380 11 308 309 453

Case 4 FDRs 100 0 5.56 0 0 3.82 100 100 100 74.02 81.33 74.27 99.76 91.34 95.16 85.69
FARs 89.55 10.66 0.85 0.03 0.21 3.92 96.95 95.55 95.10 2.33 4.03 1.36 1.77 2.87 2.09 1.03
DD 0 2067 130 2067 2067 234 - - - 537 386 532 5 179 97 296

Case 5 FDRs 0 0 10.68 98.18 0 0.25 100 100 100 98.16 98.33 98.43 99.83 97.63 97.63 97.59
FARs 0 3.17 0.89 0.04 0.20 2.98 98.57 94.76 94.02 0.61 0.06 0.73 1.40 6.36 3.65 0.59
DD 4720 4720 18 86 4720 51 - - - 87 51 74 3 112 112 114

Table 4
Offline training time (s) of all algorithms

Methods Case 1 Case 2 Case 3 Case 4 Case 5
RSFA 0.1881 0.0083 0.0409 0.0132 0.0163
RCA 0.1178 0.0095 0.0244 0.0161 0.0337

PSFA-EWC 112.04 142.9973 23512.5 19430.1 17239.26
ACA-RPCA-EWC 0.1752 0.0460 0.0723 0.0717 0.0656

ACA-RAttPSFA-EWC 5.6099 5.8662 156.5373 59.9634 135.2942

are decomposed into three blocks, i.e., 𝒙1 =
[

𝑧1, 𝑧2, 𝑧3, 𝑧4
]

,
𝒙0 = 𝑧5, and 𝒙2 =

[

𝑧6, 𝑧7
]

. In this experiment, 100
normal samples are adopted to train the initial model and
then sequential normal samples are utilized to update the
parameters. When a new mode arrives, 20 normal samples
are collected to retrain the model offline. The five methods
share the same training and testing data.

The simulation results are summarized in Table 3. RSFA
fails to monitor Case 1 and Case 2 because the FDRs of three
statistics are close to 0. Although the FDR of RCA in Case
2 is 99.67%, the FARs of two cases are 14.55%. Therefore,
RCA could not detect the faults in the two cases accurately.
PSFA-EWC can monitor two cases accurately, where the
FDRs are 100% and the FARs are lower than 6.2%. For
ACA-RAttPSFA-EWC and ACA-RPCA-EWC, the FDRs of
𝑇 2
𝑓 and 𝑇 2

𝑒 are 99.67% in Case 1, which is in accordance
with the fact that the cointegration relationship is broken
owing to the faulty variable 𝑧1. The FDRs of RAttPSFA-
EWC approach 100%, while the FDRs of RPCA-EWC are
0. ACA-RAttPSFA-EWC and ACA-RPCA-EWC provide a
similar monitoring accuracy in Case 2. Since the fault occurs
in variable 𝑧6 and the cointegration relationship remains the
same, the FDRs of 𝑇 2

𝑓 and 𝑇 2
𝑒 are 0. RAttPSFA-EWC and

RPCA-EWC can detect the fault accurately, where the FDRs
are 99.67% and 100% respectively. Besides, the FARs are
lower than 12%.

Table 5
Online testing time (s) of all algorithms

Methods Case 1 Case 2 Case 3 Case 4 Case 5
RSFA 7.8775 7.5701 582.2558 482.75 512.6431
RCA 1.4266 1.2026 40.6655 25.4663 25.4418

PSFA-EWC 0.0174 0.0145 1.5378 0.6454 3.2370
ACA-RPCA-EWC 3.7974 3.3710 60.5120 50.2188 102.5709

ACA-RAttPSFA-EWC 226.2915 226.2252 4651.879 7405.276 9775.15

The offline training time and online testing time are
listed in Tables 4 and 5, respectively. RSFA and RCA con-
sume similar computational resources for the training proce-
dure. ACA-RPCA-EWC takes the second place, followed by
ACA-RAttPSFA-EWC. PSFA-EWC costs the most expen-
sive computational resources, because the retraining proce-
dure would be conducted when a new mode arrives and the
optimization issue is settled by EM. For online applications,
1400 samples are utilized. RCA is the least computationally
complicated, ACA-RPCA-EWC and RSFA come second.
With regard to ACA-RAttPSFA-EWC, the testing time is
0.1616 second on average for each testing sample, which
is accepted. Different from the aforementioned adaptive
methods, there is no need to update the PSFA-EWC model
parameters and thus the testing time is the least.

In conclusion, ACA-RAttPSFA-EWC and ACA-RPCA-
EWC can identify the mode automatically and monitor two
cases accurately. PSFA-EWC can also provide excellent
monitoring performance, but the mode identification may
require the prior knowledge for online applications. RSFA
and RCA could not track the rapid variations in multimode
nonstationary processes and the monitoring performance is
unsatisfactory.

4.2. Pulverizing System Case
4.2.1. System description

The coal pulverizing system of a 1030-MW ultra-supercritical
thermal power plant in China is adopted to illustrate the
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Table 6
Data information of the coal pulverizing system

Case
number Coal type Number of

testing data
Fault

instant Fault cause

Case 3 Yinni—Menghun—Yinni 14120 10520 The temperature of the coal mill increases abnormally
Case 4 Aoemng—Aomei—Aomeng 9800 7734 Opening of the regulating baffle of primary air is abnormally large
Case 5 Waigou—Shenhun 14120 9401 There is oil leakage at the bearing of the rotary separator motor

Figure 2: The structure of the coal pulverizing system

effectiveness of the proposed method. It is an important
auxiliary machinery and locates at the forefront of the
power plant, which would influence the operating condition
significantly. It aims to grind raw coal into coal powder
with desired fineness and the temperature is also taken
into consideration to guarantee the process safety and the
combustion efficiency. The structure is depicted in Figure 2,
including the coal feeder, rotary separator, coal mill, etc.

The process data of the large-scale thermal power plant
are mainly affected by the coal and unit loading. Various
types of coal may be fired according to the economic ben-
efit and environmental requirement. For different types of
coal, the process data may vary with the real-time load
significantly. Thus, if one coal is regarded as a mode, the
system is still nonstationary in each mode. According to the
historical fault record and fault effects, two typical faults
from the outlet temperature (Cases 3 and 4) and the rotary
separator (Case 5) are considered in this paper. The detailed
information of practical data is summarized in Table 6. The
sampling interval is 20s. Note that it is difficult to estimate
accurately when the coal changes, and therefore the accurate
mode switching time is unavailable.

4.2.2. Data analysis
In this paper, 26 critical variables are selected and

decomposed according to process mechanism, prior knowl-
edge and expert experience. As listed in Table 7, the vari-
ables are divided into three blocks, i.e.,𝒙1 =

[

𝑧1, 𝑧2,… , 𝑧12
]

,
𝒙0 =

[

𝑧13, 𝑧14, 𝑧15, 𝑧16
]

, and 𝒙2 =
[

𝑧17, 𝑧18,… , 𝑧26
]

. The
variables in 𝒙1 are generally nonstationary in each mode

Table 7
Variable description of the coal pulverizing system

Description Variable
Rotary separator speed 𝑧1
Coal mill seal air pressure 𝑧2
Differential pressure between seal air and grinding bowl 𝑧3
Upper and lower differential pressure of coal mill bowl 𝑧4
Instantaneous coal feeding capacity 𝑧5
Motor speed of coal feeder 𝑧6
Generator active power 𝑧7
Air powder mixture pressure 𝑧8
Cold primary air electric regulating baffle position feedback 𝑧9
Primary air flow 𝑧10
Primary air pressure 𝑧11
Coal mill current 𝑧12
Primary air temperature at the outlet of the air preheater 𝑧13, 𝑧14
Coal feeder current 𝑧15
Outlet temperature 𝑧16
Planetary gear box input bearing temperature 𝑧17, 𝑧18
Temperature of planetary gearbox bearings 𝑧19 ∼ 𝑧22
Inlet air temperature of forced draft fan 𝑧23, 𝑧24
Bearing temperature of rotary separator 𝑧25, 𝑧26
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Figure 3: Partial cointegration variables in 𝒙1 of the practical
system
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(a) Partial stationary variable in 𝒙0
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(b) Partial variable in 𝒙2
Figure 4: Partial variables in 𝒙0 and 𝒙2 of the practical system

and vary with the real-time load, as depicted in Figure 3.
Since it is hard to mix the coal evenly and the component
of the same coal may vary with the time as environment,
the long-term equilibrium may vary slowly for one mode.
Therefore, this paper involved ACA to track the variation
adaptively. Variables in 𝒙0 are stationary in each mode and
may be regulated to another value when the coal changes, as
described in Figure 4a. For instance, the outlet temperature is
desired to remain the same for one coal. However, the actual
value may change frequently around the set value owing to
the controller and other factors. It is assigned to 𝒙0 based
on the process mechanism and should be stationary for local
modes. Variables in 𝒙2 may be affected by environment or
change irregularly. For example, the inlet air temperature is
closely linked with the environment and is nonstationary for
local modes, as listed in Figure 4b.

For this practical coal pulverizing system, the partial
variables are seriously affected by noise owing to the en-
vironmental disturbance and system noise, as depicted in
Figure 3. The long-term equilibrium information from 𝒙1
is extracted after ACA and the remaining information with
noise is represented as 𝒙1𝑾 ⊥

𝑓 . As mentioned in Section

3.3, 𝒙̂2 =
[

𝒙1𝑾 ⊥
𝑓 𝒙2

]

is processed by RAttPSFA and the
contained noise is monitored by 𝑆2 statistic.

4.2.3. Experimental results and discussion
One thousand normal samples are adopted initially for

offline training. When a new normal mode arrives, 90 normal
samples are used for offline training. Then the model is
updated and used for online monitoring. During 30 minutes,
the model of the last mode is utilized for online monitoring,
which is utilized to illustrate the real-time monitoring per-
formance.

The monitoring consequences of three cases are listed in
Table 3. Owing to the limitation of paper length, the moni-
toring charts of Case 4 are provided as a representative, as
described in Figure 5. Different from the other four methods,

10-2

100

102

102

0 2000 4000 6000 8000

Samples

100

(a) RSFA

100

1010

10-10

100

1010

0 2000 4000 6000 8000

Samples

100

(b) RCA

100

105

1010

100

105

1010

0 2000 4000 6000 8000

Samples

100

(c) PSFA-EWC

100

1010

100

1010

0 2000 4000 6000 8000

Samples

100

1010

(d) ACA-RAttPSFA-EWC:
RRAttPSFA-EWC

0 2000 4000 6000 8000
100

0 2000 4000 6000 8000

Samples

100

(e) ACA

0 2000 4000 6000 8000
100

0 2000 4000 6000 8000

Samples

100

(f) ACA-RPCA-EWC: RPCA-EWC

Figure 5: Monitoring charts of Case 4

the mode information is required to be available for PSFA-
EWC. RSFA is unable to monitor three cases accurately.
The FARs of Cases 3 and 4 are higher than 85%, which
indicate that RSFA fails to track the rapid and dramatical
variations between modes and the normal changes may be
misjudged as a fault. As shown in Figure 5a, the FAR of
𝑇 2 statistic is 89.55%. Conversely, the FDR of Case 5 is
lower than 11%, which means that the fault is misidentified
as normal variation. RCA can detect the fault in Case 5,
in which the FDR is 98.18% and the FAR is lower than
3%. However, the FDRs of Cases 3 and 4 are lower than
6%. The normal nonstationary variations and the real fault
could be separated by RCA (as shown in Figure 5b). PSFA-
EWC also fails to monitor three cases and the FARs are
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higher than 94%. As illustrated in Figure 5c, only a few
data are collected to retrain the monitoring model when
a new mode arrives, which is directly applied to online
monitoring without updating. This model contains limited
critical information of the operating mode, thus leading to
terrible monitoring performance.

Since ACA is both used in ACA-RPCA-EWC and ACA-
RAttPSFA-EWC, they share the same results of 𝑇 2

𝑓 and
𝑇 2
𝑒 , as described in Figure 5e. The differences focus on the

short-term dynamics, which are extracted by RPCA-EWC
(Figure 5f) and RAttPSFA-EWC (Figure 5d). The mode
can be identified by ACA and the FDRs of 𝑇 2

𝑒 are higher
than 96%. When a new mode arrives, 90 normal samples
are used to establish initial CA, PCA-EWC and AttPSFA-
EWC models, which would be updated respectively and
recursively based on the forthcoming data. In other words,
the ACA-RAttPSFA-EWC and ACA-RPCA-EWC monitor-
ing models are corrected gradually for online applications.
For Case 3, RPCA-EWC fails to detect the fault accurately
and the FDRs are 0. Relatively speaking, RAttPSFA-EWC
can detect the fault accurately, and the FDRs of 𝑇 2 and
𝑆2 are higher than 90%. With regard to Case 4, the FDR
of RAttPSFA-EWC is higher than 95%, while the FDRs
of RPCA-EWC are lower than 82%. RAttPSFA-EWC and
RPCA-EWC can provide excellent performance for Case
5. Although ACA-RPCA-EWC and ACA-RAttPSFA-EWC
can identify the mode accurately due to the accurate ACA
model, ACA-RAttPSFA-EWC can deliver more desirable
performance than ACA-RPCA-EWC because nonlinear dy-
namic features are extracted deeply by RAttPSFA-EWC.
Furthermore, uncertainly such as noise is considered and
the proposed method enhances interpretability due to the
probabilistic form.

The training and testing time are listed in Tables 4 and
5, which can reflect the computational complexity directly.
Among four adaptive monitoring methods, the proposed
ACA-RAttPSFA-EWC costs the most expensive computa-
tional resources. For Cases 3–5, the testing time for each
sample is 0.3294, 0.7556 and 0.6923 second on average,
respectively. The sampling interval is 20s and thus the on-
line computational complexity is accepted for the proposed
ACA-RAttPSFA-EWC method. For PSFA-EWC, the train-
ing time is far higher than that of other adaptive methods,
even higher than the sum of training time and testing time.
The online complexity of PSFA-EWC is the lowest since
the parameters have already been estimated after the training
procedure.

In conclusion, ACA-RAttPSFA-EWC provides the most
excellent performance of the five methods, where the FDRs
are satisfactory and the FARs are acceptable. Besides, the
mode could be identified automatically without any human
intervention for online applications, which makes it conve-
nient for industrial systems.

5. Conclusion
This paper has introduced an intelligent adaptive moni-

toring method for multimode nonstationary processes, which
can identify the mode automatically and account for mea-
surement noise. The ACA algorithm extracts the long-term
equilibrium features and the remaining dynamic information
is further decomposed by the proposed RAttPSFA-EWC.
The attention mechanism is adopted to focus on the global
and local important information. AttPSFA-EWC has been
proposed to handling the high-dimensional data for offline
training procedure, which shares the similar framework with
PSFA-EWC. Then, the parameters are updated recursively
based on the forthcoming data for online monitoring. In
comparison with several advanced methods using a nu-
merical case and a practical coal pulverizing system, the
effectiveness of ACA-RAttPSFA-EWC is validated.

Since regularization-based continual learning requires
similarity among multiple modes and is suitable for short-
term monitoring tasks, the continual learning ability of
ACA-RAttPSFA-EWC would decrease if more diverse modes
emerge continuously. Therefore, an adaptive monitoring
method needs to be investigated to monitor long-term mul-
tiple nonstationary modes.
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