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ABSTRACT

The condition monitoring of nonlinear, nonstationary and multimode processes is a difficult problem.
Traditional multimode process monitoring methods generally assume that data from all potential
modes are available, yet new modes may appear continuously in practice. This paper investigates an
intelligent adaptive monitoring method for multimode nonstationary processes, which can deal with
the appearance of new modes with ease. A full-condition comprehensive framework is proposed to
decompose feature subspaces. First, long-term equilibrium features are extracted by adaptive cointe-
gration analysis (ACA) to identify the mode, without using any prior mode information intelligently
for online applications. Then, recursive attention probabilistic slow feature analysis integrated with
elastic weight consolidation (RAttPSFA-EWC) is investigated to deal with the remaining dynamic
information and extract dynamic and static slow features to maintain continual learning for multi-
modes. Once a new mode is detected automatically, the previously learned knowledge is consolidated
while extracting new features, which is beneficial to enhancing the performance of similar modes. The
proposed ACA-RAttPSFA-EWC acts as online adaptive method by parameter updates with incoming
normal data. Furthermore, several advanced methods are compared to demonstrate the strengths of
ACA-RAtPSFA-EWC, and the proposed method is validated to be effective using a numerical case
and a practical system.

1. Introduction

In order to enhance the safety and reliability of industrial
processes, process monitoring has been becoming essential
and increasingly well researched [1, 2, 3, 4]. Owing to the
switching operating points or raw materials, some industrial
processes typically operate under multiple modes [5, 6, 7].

Multimode process monitoring methods can be classi-
fied as either multiple model methods [8, 9] or single model
methods [10, 11, 12]. In a multiple model method, data are
divided into several clusters and local monitoring models
are built within each cluster. For instance, a common and
specific feature extraction method was explored to monitor
the multimode processes with common features [8]. In [13],
common dictionary and mode-specific dictionaries were
investigated for multiple modes and the mode was identified
via the reconstruction error. Besides, a hierarchical Dirichlet
process integrated with Hidden semi-Markov model was
presented to settle the missing mode information issue [9].
Multiple model methods require complete data from all
potential modes. In industrial applications, data are naturally
nonstationary in each mode and/or novel modes may ap-
pear continuously, which implies that the monitoring model
needs to be retrained, which is impractical.

*Corresponding author
] jingxinzhang@seu.edu.cn (J. Zhang); mwang@uestc.edu.cn (M.
Wang); xuxu@ustc.win (X. Xu); zdh@mail. tsinghua.edu.cn (D. Zhou);
x.hong@reading.ac.uk (X. Hong)
ORCID(S):

Single model methods establish a single monitoring
model for multiple modes, where the multimodal data are
transformed into a unimodal distribution or the model pa-
rameters are updated recursively to adapt to the varying
variations. Recursive slow feature analysis (RSFA) was pre-
sented to isolate temporal dynamics from steady conditions
[12], which was beneficial to identifying modes. Subse-
quently, a recursive exponential slow feature analysis was
developed to distinguish the normal slow changes and incip-
ient faults [14]. Besides, an exponential analytic stationary
subspace analysis was proposed for nonstationary process,
which also could distinguish the real faults from normal
changes while being robust to the disturbances [15]. Re-
cursive cointegration analysis (RCA) was investigated for
single-mode nonstationary processes [11] and the mode was
identified automatically. However, in the case of nonsta-
tionary processes, traditional recursive methods may fail as
these could not quickly track the dramatic variations between
consecutive modes when they are applied to multiple modes.

Consider that data from multiple modes are collected
sequentially, continual learning has been applied to multi-
mode process monitoring [16, 17]. The concept of continual
learning is to consolidate the previously learned knowledge
[18, 19] while assimilating new features from new modes.
The model can be learned continually with limited data and
computational resources. According to the manner of pre-
serving significant information, continual learning methods
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are sorted into regularization-based [20], replay [21] and pa-
rameter isolation methods [22]. Recently an adaptive method
was proposed using adaptive cointegration analysis (ACA),
recursive principal component analysis (RPCA) and elas-
tic weight consolidation (ACA-RPCA-EWC) [16], which
could identify the mode automatically and track the rapid
variations accurately in multimode nonstationary processes.
However, it does not deal with measurement noise directly.
To account for the uncertainty, probabilistic slow feature
analysis with EWC (PSFA-EWC) was investigated for multi-
mode nonstationary processes [17], where the measurement
noise was considered and missing data were modeled with
ease [23]. However, in the aforementioned regularization-
based methods [10, 17], data from multiple modes are re-
quired to be similar in some sense with the mode information
given as a priori.

Since almost all the aforementioned multimode process
monitoring methods assume that data from all potential
modes are available beforehand except for ACA-RPCA-
EWC, it is highly desired to develop a mode-free method
for multimode nonstationary processes. For replay-based
continual learning, a few representative data are stored or
pseudo-data are generated for each mode, which would be
replayed when a new mode arrives. In [24], multimode non-
linear sparse dynamic inner principal component analysis
was proposed to monitor diverse modes, where represen-
tative data from each mode were selected based on cosine
similarity and would be integrated with the new data for
retraining. Similar to [10, 17], the mode information should
be available in advance.

In practical applications, such as the large-scale thermal
power generation plants, it is intractable to obtain the ac-
curate mode information. The process data are obviously
nonstationary or stationary owing to the time-varying load
and the coal type. Besides, the data distribution and the
relationship between variables may also change because
the components of the raw materials vary slowly with the
environment. Meanwhile, since the plants generally operate
under a high-pressure and high-speed rotating condition, the
process data are easily affected by noise. Aforementioned
methods cannot tackle this issue, where the relationship
between variables changes, the mode information is unavail-
able and the noise should be considered simultaneously.

Against this background, this work introduces an adap-
tive method for multimode nonlinear nonstationary pro-
cesses, which provides a comprehensive monitoring frame-
work and could account for uncertainty due to probabilistic
interpretation. The expert knowledge is only used to decom-
pose the variables into several blocks and select the mode-
sensitive variables for offline training. When a new mode
is detected by ACA automatically, only an extremely small
amount of data are collected for offline training and the pre-
viously learned knowledge is preserved to provide continual
learning ability. Subsequently, the model parameters would
be updated adaptively based on the forthcoming data, which
is capable of tracking the dynamic variations accurately and

can provide excellent monitoring performance for nonsta-
tionary processes. Moreover, different from most state-of-
the-art monitoring methods [17, 8], the proposed method
is free from storing historical data and incoming sequential
data from different modes. Meanwhile, it can distinguish the
real faults, nonstationarity and normal mode switching for
online applications without much prior mode information.
The contributions of this paper are summarized below:

a) An adaptive monitoring framework is investigated for
multimode nonstationary processes, where the mode is
identified automatically without human intervention. To
obtain optimal performance, variables are divided into
three parts and feature subspaces are decomposed sys-
tematically to achieve a full-condition monitoring model.
The long-term equilibrium features are extracted via
ACA, which are used to identify the mode automatically.

b) Recursive attention PSFA with EWC (RAttPSFA-EWC)
is investigated to track the slow variations adaptively, and
the learned knowledge of previous modes is consolidated
when a new mode is detected. RAttPSFA-EWC is intro-
duced to deal with the remaining dynamic information
that are unaccounted for by ACA, in which an attention
mechanism is adopted to focus on the significant infor-
mation and model nonlinearity. The measurement noise
is considered using PSFA.

¢) The proposed method is investigated based on the oper-
ating mechanism, expert knowledge and abundant data,
which can provide satisfactory monitoring performance
as well as excellent interpretability. The effectiveness of
the proposed method is validated via a numerical case
and a practical industrial case.

The rest of this paper is organized below. Section 2
explains the problem statement by reviewing the procedure
of ACA, and introducing attention PSFA (AttPSFA) for a
single nonlinear dynamic mode. Section 3 outlines the ob-
jective of AttPSFA-EWC and introduces the technical details
of the proposed RAttPSFA-EWC for multimode processes.
Then, the monitoring procedure is summarized and several
advanced approaches are discussed. The effectiveness of
ACA-RAttPSFA-EWC is demonstrated using a numerical
case and a practical pulverizing system in Section 4. The
conclusion is provided in Section 5.

2. Preliminaries

2.1. Problem statement

Assume that nonstationary data from multiple modes are
received sequentially. To describe a single mode Mg (K =
1,2,...), let X g € RV&X" be collected for offline training,
where N is the number of samples and m is the number of
variables. This work investigates an online adaptive moni-
toring method for multimode nonstationary processes based
on cointegration analysis (CA) and AttPSFA, as outlined in
Sections 2.2 and 2.4, respectively.

Zhang et al.: Preprint submitted to Elsevier

Page 2 of 15



Adaptive monitoring for multimode nonstationary processes

According to correlation analysis, prior knowledge and
the augmented Dickey-Fuller (ADF) test [16], data X  are
decomposed into X  — {X 0k X1x X, K}. First, data
X g represent the stationary variables in each mode that
are sensitive to mode switching, which are selected by the
ADF test and prior knowledge. Then, data X, x denote
the nonstationary ones that share similar trends, which are
selected based on the process mechanism. The remaining
nonstationary data X, g have no prominent role in any mode
[16]. Note that the data decomposition may vary for multiple
modes. Specifically, the dimension of data X, g is same for
different modes, while the dimensions of X x and X, g
may be different.

For offline training procedure, CA extracts the long-term
equilibrium features from X g, as described in Section 2.2.
The rest information after CA together with X, ;- would
be processed by AttPSFA-EWC in Section 3.1. For online
applications, when the system operates normally, the model
parameters are updated adaptively by ACA in Section 2.3
and RAttPSFA-EWC in Section 3.2. Note that data X ) x are
only used to calculate the monitoring statistics.

2.2. Cointegration analysis for mode M

CA aims to deal with nonstationary time series data,
which are stationary after being differentiated several times
[11]. The linear combinations of aforementioned nonstation-
ary variables (called cointegration variables) are stationary
after the CA algorithm. Intuitively speaking, cointegration
variables furnish the long-term equilibrium relationship,
which would be broken when a real fault happens.

We refer to X g as primary nonstationary signal. CA
aims to extract long-term equilibrium features from nonsta-
tionary data X, g offline. Consider the primary nonstation-
ary signal X, x € RNkXm at mode My, consisting of
N g consecutive vector observations {xt}t]\i’]< with x, € R™
[25, 26]. To estimate the CA parameters, construct the vector
error-correction (VEC) model below:

p—l1
Ax,= ) QAx, ;+Tx,_ +e, (1)

J=1

in which Ax, = x;, —x,_; and p; is the order of VEC
model. ¢, is the Gaussian white noise with €, ~ N (0, E).
I = YW;,K € Rmxm Y € R™*" and the cointegration
matrix W K € R™>" are of full rank r, and r is estimated
by the trace test [26]. CA seeks to make the equilibrium
errors, namely each column of X x W ; g, as stationary as
possible.

To estimate W/ i, initially define the temporal differ-
ence vector Ax, ,; = X, — X, and the augmented

T

vector Ax‘l’1 = [AxlT szT szl] € RP" Then, con-
T

struct the matrices 4X, = [Axplﬂ AXp 42 o AxNK] €

RWNk=PUXM and AXP1 =
Ng—p

RNk=PDXP1m1_ Two sets of the prediction errors E, and E|

T
[Ax‘l’l Axg1 e AxXP! ] S

are defined according to

E,= AX, —AX"O 2)

E = X, - AX|®. 3)

Then, the regression parameters @ and @ are estimated

using ordinary least squares, such that Eg E,and ElrE | are
minimized for (2) and (3) respectively.

According to the Johansen test [26], W 1K is estimated
by solving the eigenvalue decomposition (EVD) problem

2811 — 81085 So1| =0 4)
where Sij = N;EiTEj, i,j=0,1, Ais the corresponding
> —P1

eigenvalue of EVD problem. Subsequently, (4) is reformu-
lated equivalently as

APy = 1B Ow 4)
0 S S 0
w AK) = 01 (K) — |200
here [510 0 ] and B** = 0 S“]' The

generalized eigenvectors corresponding to r largest eigenval-
ues are included in W g = [wy, -, w,| € R>™>"_ For the
Kth mode M, the dynamic cointegration matrix W', x and
W ; g are generated as the top and bottom halves of W,
We,K ] .

namely, Wy = [ w
f.K

2.3. Adaptive cointegration analysis

ACA [16] was introduced for online applications where
the parameters can be adjusted to track the slow variation
of the cointegration relationship. Here only the critical steps
are outlined, and the further details can be found in [16].

For online applications, the mode index K is dropped to
simplify notation. At time step (¢ 4+ 1), a new sample x?H is
collected and scaled as x,, ;. Similarly, x,,; is decomposed
into X, — X041 X141 X041 } The cointegration
variables x;,,; are extracted and the matrix X, =

T
[ XITJ xth + ] is constructed for ACA. As described

in Appendix A in [16], the prediction errors EO’, +1 and
E 1.++1 are updated recursively, A,,; and B, are calculated
adaptively based on A, and B,. Subsequently, the objective
of ACA is transformed into solving the generalized EVD
problem below:

A Wi = Bt+1Wt+1[it+l (6)

which is settled by a standard EVD. The elements in the
diagonal matrix A, are listed in descending order. W,

is the corresponding eigenmatrix and W, | = [ et+l ] .

2.4. AttPSFA for a single dynamic mode
PSFA was proposed [27] and applied to monitoring lin-
ear nonstationary processes [23]. The slowest features were
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extracted and the monitoring statistics were constructed
to distinguish both nominal operating points and dynamic
behaviors. Besides, it could deal with measurement noise
and missing data conveniently [23].

In this section, a nonlinear extension of PSFA (called
AttPSFA) is investigated for nonlinear nonstationary pro-
cesses, where attention mechanism is adopted to focus on
the global and local important features. The original data are
mapped to a high-dimensional feature space and then PSFA
is adopted to extract the significant slowest features. For a
single dynamic mode Mg, the residue of primary signal
through CA is then combined with X, ., for the offline
training of AttPSFA.

AttPSFA seeks to extract the slowest varying nonlinear
latent features from the time-varying signal XZ,K’ con-
structed by

Xy i = [XI,KW}_,K XZ,K] @)

f.K
is the identity matrix with appropriate dimension. We refer
to X 2.k s the secondary nonstationary signal.

To capture the significant global and local information,
as well as to model the nonlinearity in secondary non-
stationary signal X 2.x» the data are mapped onto a high-
dimensional feature space based on the attention mechanism.
Consider an attention function between X, and ¢(X,):

-1
where W = T =W (WD W, i) W7 and 1

T .
Byxp = 2 ®)

where ¢(X,) = {¢;(X,)} € RM  and M is predefined by
the user. C = {c;},j = 1,..M are aset of M keys.d > 0
is a scaling hyperparameter.

Attention mapping is defined as

M
Attention(x,,C, VT) = Z softmax(X,, C)jvj,

j=1

in which v’ is the element in ¥ and V7 is pseudo-inverse
of ¥, and V would be explained in (10). Besides,

softmax(X,,C); = M ©

T exp(e;(%2))

For convenience, the compatibility function of softmax(-)
is denoted as Ox;’ and the mapped data matrix is o X g’ - The

mean and standard deviation of (X f x are calculated and

denoted as ﬁi and f‘.i Then, data (X ;5 x are normalized
(zero mean and unit variance) and the processed data are
labeled as X f k- The initial keys CX of the current mode
My are determined using an online k-means clustering
algorithm [28] based on CX~! and XZ,K'

Consider representing the time-varying observations,
X;S’K = {xl(.p} € RNVNkXM ysing a state-space model with

a first-order Markov chain architecture [29].

x;l’ =Vy +e, e~N (O,Ex)
yi=Ay,_ +¢&, & ~N(0X) (10)
yi=u, u~~N(0,%))

where Y g = {y;} € RN«*P2 contains the latent variables,
P, < M. A = diag </11,...,/1p2>, with the constraint

A%? + £ = I. The emission matrix is V € RMXP2 and

measurement noise variance is X, = diag (012, "',0'12\/[).

Let 6, = {V.X,}.0, = {£.A}, 0 = {0,.0,}. The
joint distribution and the complete log likelihood function
are [27]

Ng Nk
P (XjKIYK) =P(y) [P v [ P (x;.ﬁ|yi>
i=2 i=1

(1D
Nk
log P (XiK,YK|0> =Y log P (xf’|yi,0x)
i=1
Nk
+ log P(Y1|21) + Zlog p (.Yilyi—l’A) (12)
i=2

respectively, which is optimized using the expectation max-
imization (EM) method [30].

3. Proposed ACA-RAttPSFA-EWC

This paper investigates an adaptive monitoring frame-
work for multimode nonstationary processes, where a nor-
mal mode is identified automatically without abundant prior
knowledge for online applications. When a new mode is
detected by ACA, a small amount of data are collected to
retrain the CA in Section 2.2 and AttPSFA-EWC models
in Section 3.1. For online monitoring, the long-equilibrium
features from primary nonstationary signals are extracted
firstly and the corresponding ACA model parameters are
updated recursively to track the slow variation of cointegra-
tion relationship in Section 2.3. The remaining nonstationary
information is processed by the proposed RAttPSFA-EWC,
the parameters of which are updated adaptively in Section
3.2. Then, the monitoring procedure is summarized in Sec-
tion 3.3. Eventually, the proposed ACA-RAttPSFA-EWC is
compared with several advanced approaches in Section 3.4.

3.1. AttPSFA-EWC for multiple modes

The objective of this work is to introduce an adaptive
monitoring method with continual learning ability for se-
quential nonstationary modes. One main contribution of this
paper is proposing AttPSFA-EWC for multimode nonlinear
dynamic process monitoring that addresses the secondary
nonstationary signals using EWC to combat catastrophic
forgetting and EM to obtain optimization solution for offline
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data. For online monitoring, the model parameters are up-
dated adaptively to track the slow variations.

For online monitoring of a mode K, initially the model
parameters are pre-trained offline and then the model param-
eters are updated adaptively. When a new mode is detected
by ACA, a small amount of data X ;- are collected for offline
training. The significant knowledge learned from AttPSFA
is preserved when a new mode arrives. The objective of
AttPSFA-EWC is also automatically modified by adding an
extra quadratic term to AttPSFA, which represents regular-
ization according to the importance of model parameters,
as estimated by EWC [20]. Similar to [17], the objective
function of K existing modes is formally described by

J(0) =log P (XZK,YK|0>

(13)
14 A
= Jreg (VMK—I ’ QMK_I ’ AMK—I ’ QMK_] )
subject to the AttPSFA model (10) and
14 A
Jreg (VMK—I > QMK,l’ AMK—I QMK 1 )
V-V ’
__YI,K ” - MK—I QV (14)
K-1
|2} ) 2
— "k Z QMK_I,i</1i - ’IMK_I,i>
i=1
where ¥y,  and A, are the optimal parameters of
14 A :
last mode My _;, Q My and Q My, e the corresponding

importances, wa ; is the ith element of the diagonal

matrix Q/Jt/l Nk and y, g are the hyper-parameters and
pre-defined by the user. The objective (13) is optimized by
EM and the detailed procedure can be found in [17]. Using
the Kalman filter, the final posterior mean and covariance of
latent variables Y g are denoted as pg and U g respectively.

Correspondingly, the final solution of (13) is denoted as
v A 14 A

{V st Eerto Batgs Flo Py, J Fly, and Flyare

the Fisher information matrices with regard to V', and

A Mg after the offline training procedure, respectively.

3.2. Online RAttPSFA-EWC updating

For online applications, the parameters of AttPSFA-
EWC model are updated adaptively. For notational simplic-
ity, it is assumed that the data x; and corresponding slow
features y; start from i = 1 at the beginning and end at i = ¢
for each mode.

3.2.1. Objective function design

At time step 7, data X, = {x, ..., x,} are collected and
divided into X, = [X or X1, X 2,,]. Features with common
trends are extracted by ACA in Section 2.3 and parameters
04 = (E.E, A, B W, W,,)} areobtained. More
detailed information can be found in [16].

The remaining nonstationary information is constructed

using 5(2,, = [XUWJL,J Xz’,], where W;J = I -

-1
W, (WT W, ,) WT The mapped data are calculated

by (9) and denoted as X ] ¢ . For RAttPSFA-EWC, the expec-
tation of complete hkehhood is designed as

t
= ZIE [logP(xii,yi|0)] (15)
i=1
Based on (10)—(13), Qt is described as

O,A,V.,X))

1

b o) e

+or (2L - =l tog |z - %tr (EATE'A)

- %tr (F ") +1r (Z7'AG,)

(16)
t ® ! ¢
where D, = Y E [yiyiT|th], E,=YE [yi_lyiT_1|X2t],
i=1 | =2 ’
t
F,=)E [yl.yﬂXft],
i=2 '

t t
TE [xi[(xii)T], L= XE [y,|xjt] (x?,)7. The opti-
= i=

mal solution of (16) is denoted as 6, = {V . Z, ., A, }.

At time step (1+1), anormal sample x;, ; is collected and
divided into x;, | = [xo +1 X1041 X2 ,+1] The ACA param-
eters ®ACA = {Eoss1- Ey 1 A1 Bigys Wit Wer)
are updated based on @tACA and x; ;. Detailed calculation
procedure can be found in [16].

The second nonstationary signal is constructed by X, ,,; =

1
G, = ‘Z:Z[E[yiyiT_llX;it], H, =
i=

[xl’, +1W}J 41 X2 +1] and RAtPSF-EWC parameters are

updated based on X, ,, ;. The keys C,; are updated based

on C, and X,,,; according to online k-means clustering

®

algorithm [28]. Subsequently, data X541

©) and X = [X¢

are acquired by

2,t+1 2,17 2 t+1
complete likelihood is calculated recursively as follows [31]:

] Here, the expectation of

0,11(0) = 0,(0+7,11 (Eg, [10g P (%3, ¥11.0) | - 0,(0))
arn
and 9, 4] = argmax 0, +1» ¢4 18 the forgetting factor.
Substituting (10) into (17), we get

J=0,,,(A,V,X,)

1 _ 1 -
==t (D, VTEY) - St (Hip 2 b

_ T —log|Z,|+1r (=

WL, - %1 E| (18)
- %tr (E ATZTIA) - %Ir (F =71

+1r (Z7AG,,)
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= Y4 1)+ Veg1s Vi = =D =y )47

and
D, = (1 - 7z+1) D, +y4E :yt+1y£1|Xiz+1]
E=(1=741) E +74E yty,IXit+1]
J Froi=(1=741) Fi+ 74 E _Yt+1y£1|Xiz+1]
G, = (1 - 7’;+1) G, +r4E :Yt+ly?|Xf,;+1]
H, . = (1 - 7t+1) H,+7,E [xZ t+1x§t+1]
L = (1 - 7t+1) Li+y4,E }’t+1|X2,+1] {x 2,+1}T

3.2.2. Solution of objective (18)

For the proposed method, recursive expectation maxi-
mization (REM) [31] is used to optimize the objective (18)
for every time instant and obtain the parameters 6,,; =
{V, 1 Sl Ay +1} In E-steps, three sufficient statistics

E [yf+1|X2t+1]’ E [yf+1yt |X21+1] and E [yf+1yr+1|X2t+1]
are calculated and would be used for M-steps. It contains
forward recursion and backward recursion, as summarized
in Algorithm 1. In the forward recursion, the posterior

2,1° 2,1+1
realized by Kalman filter. In the backward recursion, the
marginal posterior distribution is calculated by Rauch-Tung-
Striebel (RTS) smoother. The initial settings of REM are

{VMK’Ex,MK’AMK’”K’UK} for the mode M.

d15tr1but1onp<yt+1|x x? ) =N (py1,U ), is

Algorithm 1 Updating statistics of the E-steps at (z + 1)th
sampling instant recursively
Inputs: ile, U,p,V,Z A

¢ ¢
Outputs: E [yf+1 |X2 r+1] E [y,+1yT|X2J+1], E [yH'ly:—I |X2,r+1]’

Uiiis Heprs P Koy
1: Forward steps by the Kalman filter:

a) Calculate the prior covariance: P, = A (U, — I) AT +1

b) Calculate the Kalman gain: K, ., = P,VT (VP,VT + zx)“
c) Update the mean: u,, | = Ap, + K, (ifH_l - VAﬂ,)

d) Calculate the posterior covariance: U, = (I - K, V) P,

2: Backward steps by the RTS smoother
= Hit1> Oz+1 =U,,
b) Gain: J, = U,AT P!

a) Initialize 1,

- Aﬂr)
3: Calculate the sufficient statistics

a) E [}’r+1|X2,+1] B

¢) Mean: i, = p; + J, (I‘H—]

b) E [YI+1}’,T|X2,,H] = Jrﬁr+1 +i‘t+1f‘,T

] — 1 ~ AT
c) E [Yr+1yz;1 |X2’,+1] =U g+ iy,

In M-steps, the critical parameters {V, x., A} are opti-
mized alternatively. With regard to V,

JV)=- wl 2 |2x| - %t" (Ht+12;1)
— %tr (D, VIE'W) +1r (E]'VL,y,)
19)
Let the gradient be zero, and we get
v=L! D} (20)
With regard to X, = diag (612, e 6]2\4),
JE=3 L (2D V)
~ o-f 3 1+1

- M
1 14
) {Ht+1}jj + {VLI+1}jj> B %l z 1’ logo-f
j=

Let the gradient be zero, we can get

2 1

o, = —

<vD,+1v ~ 2wl + {H,, ), ) @1
Visl

where v; is the jth row of V', I; is the jth line of L, and

j=1L....M
With regard to A, the objective is reformulated as

7’t+lzl z{ t+1}kk1 /12
__Z{ t+l}kk1 +Z{ l+1}kk1 /12

k=
= ¥41) + 7:41- Let the gradient be

J(A) = 1-43) -

where §,,; = (t — D(1
zero, we can get

77t+1)°z + {Gt+l}k,k )”i - <}A/t+l + {Et+l}k,k
+ {Ft+1}k,k> A+ {Gri}yy =0

The solution of (22) is acquired analytically and 0 < 4; < 1,
A = diag <,11, A

(22)

)
until convergence, then we can get the optimal parameters

{Vt+l’2x,t+1’At+1 1.

). Repeat the E-steps and M-steps

3.2.3. Calculating importance measure

The Fisher information matrix (FIM) is calculated by the
covariance of the gradient of the log likelihood function at
the local optimum [17]. At time step (f + 1), the gradient
about V is

Vy log P( 2,+1’Yt+1|91+1>

1 ¢ 23)
_y- T
_Zx,t+l (Vt+1yt+l - x2,t+l) Vit
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Algorithm 2 Offline training of the proposed method

Inputs: Data X, keys C K=1_ AttPSFA-EWC parameters of mode M K1
A

Vv
{VMK—I ’AMK—l > QMK_I > QMK_l }

Outputs: Keys ck , CA parameters {A<K),B(K)}, AttPSFA-EWC

parameters { VMK s ZX‘MK s AMK s FKAK s FAMK }, EM parameters

{ﬂK! UK}
1: For the Kth mode, divide the data X into three parts accord-
ing to correlation analysis and expert experience, namely, Xy =

[Xox X1k Xok|:
2: Perform traditional CA on X, and get the initial parameters

{A(K>,B(K), Wk Wk}
a) Calculate two prediction errors via least squares;

b) Compute AX) and B, obtain W, x and W, ¢ via solving (5);

3: Construct X 2.k and perform AttPSFA-EWC on X 2K:

a) According to online k-means clustering, calculate the keys CX
based on CX~! and X, k5

b) Map data XZ,K to a high-dimensional space via (9) based on

ck , and denoted as (X f K The mean and standard derivation are
denoted as [Nli and fl‘,/’(, and the processed data are labeled as X f K
¢) Perform PSFA-EWC on X g’ K [17]:
i) Calculate sufficient statistics via Kalman filter and RTS;
ii) Maximize (12) to get {VMK s zx,M,( ,AMK };
v A
iii) Calculate FIM F Mg and F Mg
iv) The posterior mean and covariance of latent variables Y are py
and Ug.

Then, define

vV _y-1 ) T
t+1 _Zx,t+l (Vt+1yt+1 - x2,t+1) Vi1 Y41
’ T, (24)
(Vf+1yf+1 - x2,t+1> DN
The FIM about V is updated as follows:
VvV _ gV v
Ft+1_Ft +ft+1 (25)

Similarly, the gradient and FIM with respect to A is

¢
Vj log P <x2,z+1’yt+1|9t+l>
3 2 2 2
— A+ VYA + (1 “Vik T Y,,k> Ak Vi 1adik

(1-4)°

ég (yt+1,k’yt,k’ Ak)

4 2
ft-fl =8 (yl+1,k7 yt‘ky AH‘],k) ,k = 1’ N

nd fA = di o £'7) Then, the FIM about A
a +1 — @lag +1° 2+l ) en, the abou
is updated by
A A A
Foo=F +f5, (26)

3.3. Summary of the monitoring procedure

At time step (¢ + 1), a collected sample x?+ | is scaled

as x,,, and divided as x,,; = [ Xo.41 X141 Xosg1 |-
W, and W, have already been obtained by ACA after
time step 7. Let %,y = [xl,tHWf,t xo’,H], T? and Te2
are designed to reflect the static and dynamic long-term
equilibrium relationships, which would be used to identify
the modes.

27

2 _ 4 oT
Tf = X+1% 141

T2

T T
e — €0t+1 We,tWe,teO,tH (28)
where the prediction error e ., ; is the last sample of EO’, -
The remaining information of ACA is constructed by

¢
2,t+1

is calculated using (9) based on %,,,; and C,. Similar to

Xy 41 = [xUHW}J xz,,ﬂ]. The mapped sample X

Algorithm 3 Online monitoring of the proposed method

Inputs: Keys ck , CA parameters {A(K),B(K)}, RAttPSFA-EWC
parameters {VMK’EXYMK’AMK’QLK’QJQAK } REM parameters
{ug.Ug}

I: Tnitialize t = Ny, C, = CX, A, = A%, B, = BR, Vv, =V,
0= Zeme A = Ay FY = NKFVK, F} = NKFAK,

t
Ho=pg, U =Ug;
2: Collect a sample x,, | and divide the sample into three blocks, namely,

Xi+1 :[ X041 X1+l X241 ];
3: Construct %y .44 = [xl,,_,_,Wf’, xo,z+1] and X,y

[xl,,_HW#J x27,+1], and calculate fchH

based on X,,.; and
s
4: Calculate test statistics via (27)—(31) and judge the operating conditions
using monitoring rules detailed in Section 3.3:
a) Normal, go to step 5 and update ACA-RAttPFSA-EWC parameters;
b) The mode is switched normally. Let Cx = C;, Ay, = A,

— vV _ oV LpV oA _ OA 1 pA
VMK_V"QMK_QMK_]+?FY’QMK_QMK_]+?FI’
K = K + 1. Collect normal data X?( € R"o*m _call Algorithm 2;

Return to step 1.

¢) Faulty, alarm is triggered.

W

: Update the thresholds by RKDE;
6: Calculate two prediction errors A, and B, ., and get the parameters
{Wf,t+1 s W 141} by solving (6);

7: Construct X, ,,1 = [xl’,+] Wj;JJrl X5 441 ] , perform RAttPSFA-EWC
On X, 41t
a) According to online k-means clustering, update the keys C, | based
on X, and Cy;
b) The high-dimensional sample Oxim is obtained using (9) based on
C,;) and X, ., the preprocessed sample is denoted as xim;
¢) Optimize the objective (17) based on REM:
i) Calculate three sufficient statistics using Algorithm 1;
ii) Update parameters using (20)—(22);
iii) Return to step i) until convergence;

d) Update the FIMs by (25) and (26);

8: Move to the next time step ¢ + 1, return to step 2.
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Table 1
Descriptions of different monitoring subspaces
Subspace Dimension  Statistics  Description
ACA Static subspace m T} Monitor the static long-term equilibrium relation
Dynamic subspace my Te2 Monitor the dynamic long-term equilibrium relation
Static subspace Pr T2 Monitor the static slow variations
RAttPSFA-EWC Static subspace M SPE Monitor the prediction error
Dynamic subspace D s2 Monitor the dynamic slow variations

[17], three monitoring statistics are designed to monitor the
short-term dynamics. According to Kalman filter equation,

— N
Yir1 = A1y + Kiyy X1~ Vt+lAt+1yt]

where K, ; is the Kalman gain and calculated in Algorithm
1. Then, the T2 statistic is defined as

T> =yl v (29)

To design the S PE statistic, the bias between the true
value and one-step prediction is calculated at time step (z+1).
The prediction error follows Gaussian distribution, namely

€41 = ’AC;SJ.H ~ VAt ~ N (0,®,,)

T T T
where @, =V A PA LV +E i+ o Z V

H; is the prior mean and P, is the prior covariance, which are
calculated by Algorithm 1. The S PE statistic is designed to
characterize the noise and calculated by

T -1
SPE=¢, D@ &,

41 (30)

S? statistic is designed to monitor temporal dynamics[23].

S* =yl By (31)
where 1 = Yot = ¥ E=2 (1, = Ay ) (231,

For the proposed ACA-RAttPSFA-EWC, data are de-
composed into five subspaces and the corresponding statis-
tics are designed to reflect the variations, as summarized
in Table 1. The offline thresholds are estimated by ker-
nel density estimation (KDE) and the online thresholds
are updated by recursive KDE (RKDE) [16]. The offline
training and online monitoring procedures are summarized
in Algorithms 2 and 3, respectively. The comprehensive
procedure of ACA-RAttPSFA-EWC is depicted in Figure
1. The major differences between ACA-RPCA-EWC and
ACA-RAttPSFA-EWC are highlighted.

The automatic monitoring is enabled with Line 4 in
Algorithm 2 which continuously assesses three conditions
online: a) No fault and same mode: continue using online
monitoring; (b) No fault with new mode being detected,
move to next mode using Algorithm 1 for offline training,
which then returns to Step 2 of Algorithm 2; and (c) fault
is triggered with report. Specifically, the monitoring rules in
Algorithm 3 are summarized as follows:

t+1°

a) If all statistics are below their thresholds, the process op-
erates normally in the same mode. The ACA-RAttPSFA-
EWC parameters are updated adaptively;

b) If sz or T2 is out of control, it indicates that the static
or dynamic long-term equilibrium relationship between
cointegration variables is broken. If Te2 returns to normal,
process dynamics are still controlled and a new mode
arrives, and then a few normal samples are collected to
establish the initial monitoring model. Otherwise, a fault
is detected and a fault alarm is triggered;

¢) If T2 or S PE is above the threshold, a steady deviation
from the predefined operating modes occurs. If S? is
beyond the threshold, it indicates that a potential anomaly
may have occurred and the process needs to be checked
carefully.

3.4. Discussion

RSFA [12], RCA [11], ACA-RPCA-EWC [16], PSFA-
EWC [17] are adopted to compare with the proposed ACA-
RAttPSFA-EWC. Aforementioned methods are based on
SFA or CA, and deeply intertwined. RSFA, PSFA-EWC
and ACA-RAttPSFA-EWC are built on the foundation of
SFA and also share the virtues of SFA, which focus on the
slow variations of dynamics. In addition, PSFA-EWC and
the proposed method can deal with measurement noise and
missing data owing to probabilistic interpretation, where EM
is adopted to optimize the parameters. Except for PSFA-
EWC, the parameters of four methods are updated recur-
sively online and the mode is identified automatically.

Comprehensive comparison of five methods are summa-
rized briefly in Table 2. Several critical characteristics are
discussed deeply to reflect the performance.

a) Mode identification. Real fault, normal mode switching
and nonstationarity may occur in multimode nonstation-
ary processes, which can make data vary dynamically.
RSFA and PSFA-EWC cannot identify the modes with-
out human intervention, because it is difficult to judge
the root cause of dynamic variations. In some practical
situations, it is hard to obtain the mode information in
advance. RCA, ACA-RPCA-EWC and ACA-RAttPSFA-
EWC can identify modes automatically, and distinguish
the mode switching and real faults. Since manipulated
variables are considered in ACA-RPCA-EWC and ACA-
RAttPSFA-EWC, they are robust to the mode misidenti-
fication caused by human parameter adjustment [16].
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Off-line training phase

On-line monitoring phase

New sample X1 I:

44 Collect training data Xx
- ' — | Variable block
I Variable decomposition | P X1 = [Xows Xuen Xoul
: v y -
Stationary Cointegration Remaining Stationary C(;lntegratlon Rdemamlng
data XO,K data XLK data XZK data Xot+1 ata X101 ata Xo41 Let
v | l ¢—‘—¢ t=t+1
CA in Subsection 2.2 y
Construct data Construct data
— — T 01 = [T Wi @ Zog1 = (T WTy T
[initial Wy, | [Tnitial W, | [Initial w7 et = oL Wie o I
¥
~ Construct data _ Construct data RAHPSFA-EWC %’"3"““ e
X1k =(X1,kWisk Xoxl Xox = [Xl kWi Xo l\’} Update model in 2,t+1

AttPSFA-EWC
in Subsection 3.1

Calculate statistics |_
by (27-31)
v

Calculate thresholds
by KDE

New mode

Y Subsection 3.2 rGpdate ACA model
Calculate statistics in Subsection 2.3, get

A

_ <
Let K=K+1 |«

by (27-31) Wiaand We 1
P Update thresholds | i
v by RKDE
Judge Normal
conditio

Figure 1: The flowchart of the proposed method

Table 2
Performance comparison of five methods in multimode nonstationary process monitoring
Methods In.tellig_erlt n.10de Model track Nonlinearity Dealing .vvith Memory Online real-time Algorith_m
identification accuracy uncertainty  properties performance complexity
RSFA [12] Poor Poor No No No Poor Low
RCA [11] Good Poor No No No Good Low
PSFA-EWC [17] Poor Poor No Yes Yes Poor Low
ACA-RPCA-EWC [16] Excellent Excellent No No Yes Excellent Medium
ACA-RAttPSFA-EWC Excellent Excellent Yes Yes Yes Excellent High

b) Feature extraction. ACA-RPCA-EWC and the proposed
ACA-RAttPSFA-EWC method both extract significant
features to monitor the long-term equilibrium relation.
As illustrated in Table 1, the latter one further extracts
dynamic and static features to monitor the slow variation
and prediction error, while ACA-RPCA-EWC only con-
siders static features after ACA. Although the procedure
of AttPSFA-EWC and PSFA-EWC is similar, features
with long-term equilibrium relation are neglected for
PSFA-EWC. This characteristic is also applied to RSFA.
Conversely, RCA merely extracts features with common
trends and the remaining features are ignored.

¢) Nonlinearity and dealing with uncertainty. Attention
mechanism is adopted in the proposed ACA-RAttPSFA-

d)

EWC method, where data are mapped to a high-dimensional

space to cope with nonlinearity and latent variables are
extracted thereafter. The other four methods are applied
to linear nonstationary processes. Moreover, PSFA-EWC
and ACA-RAttPSFA-EWC use probabilistic interpreta-
tion to characterize uncertainty and EM is adopted to
solve the optimization issue, which makes them also
potentially deal with missing data. However, RSFA, RCA
and ACA-RPCA-EWC fail to deal with uncertainty.

€)

Model track accuracy. RSFA and RCA are designed
for a single nonstationary mode and may fail to pro-
vide tracking performance for multimode nonstation-
ary processes. PSFA-EWC requires a few representa-
tive data when a new mode arrives. Then, the model
is trained and would be used without any updating for
online monitoring. The performance may be decreased
abruptly if the modes vary significantly. ACA-RPCA-
EWC and ACA-RAttPSFA-EWC are mode-free monitor-
ing methods, which could offer tracking accuracy owing
to the comprehensive variable decomposition, adaptive
updating and the previously consolidated knowledge.
Furthermore, ACA-RAttPSFA-EWC may provide better
performance than ACA-RPCA-EWC because dynamic
characteristics are further extracted after ACA algorithm.

Memory properties. RSFA and RCA do not store the
previously learned knowledge. PSFA-EWC calculates
the FIM after the training procedure and would not be
updated before a new mode arrives. For ACA-RPCA-
EWC, the FIM of a certain mode is calculated at the
end of each mode. For ACA-RAttPSFA-EWC, the FIM
of each sample is calculated at each sampling instant
and thus the FIM of a mode is obtained finally once
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a new mode arrives. Theoretically, the FIM of ACA-
RAttPSFA-EWC may contain more significant informa-
tion. Thus, the memory characteristics may be better to
other methods.

f) Online real-time performance. This paper mainly refers
to the real-time monitoring performance when a new
mode arrives. PSFA-EWC trains the parameters offline
and then the model is used for online monitoring. When
a new mode appears, a certain amount of data should be
collected to retrain the model. During this period, the
systems are monitored by an inaccurate model, which
may influence the online real-time performance. When
the mode switches, RSFA could not track the rapid and
dynamic variations based on a few data, and thus the on-
line monitoring would be unsatisfactory. RCA can extract
rough long-term equilibrium features and the model is
corrected based on the forthcoming data. ACA-RPCA-
EWC and ACA-RAttPSFA-EWC provide a comprehen-
sive monitoring framework and the significant features
are extracted deeply, which are beneficial to establishing
an accurate model based on limited data. Thus, their
online monitoring performance would be excellent and
optimal among five methods.

g) Algorithm complexity. This mainly refers to the online
computational complexity. PSFA-EWC calculates the
three statistics based on the trained parameters without
updating, thus the online complexity may be the least.
The complexity of RSFA and RCA comes in second
place, because the parameter updating rules are intu-
itively explicit. Compared to RSFA and RCA, the com-
plexity of ACA-RPCA-EWC is a little higher because
more variables are considered and more parameters need
to be updated. The complexity of ACA-RAttPSFA-EWC
is particularly complicated because REM algorithm is
adopted to optimize the objective function.

4. Experimental analysis

In this section, RSFA [12], RCA [11], ACA-RPCA-
EWC [16], PSFA-EWC [17] are compared in a numerical
case and a pulverizing system case. The offline training
and online monitoring data are the same for all methods.
Fault detection rates (FDRs), false alarm rates (FARs) and
detection delay (DD) are used to evaluate the performance.

Note that the monitoring statistics of ACA-RAttPSFA-
EWC and ACA-RPCA-EWC can be separated into tow
parts, namely, the ACA and the remaining part. Specifi-
cally, ACA-RAttPSFA-EWC and ACA-RPCA-EWC adopt
ACA to identify the mode and the corresponding ACA
parameters are the same. Therefore, they share the same
results of T} and Te2 in the following experiments. The

monitoring indexes Te2 and T2 of ACA are listed under
ACA-RAttPSFA-EWC in Table 3. For ACA-RPCA-EWC,

the remaining statistics T2 and S PE are provided by RPCA-
EWC separately. With regard to ACA-RAttPSFA-EWC, the

rest monitoring statistics 72, S PE and S? are calculated by
RAt®PSFA-EWC.

4.1. Numerical cases
Consider the following numerical data [16]:

-

zy=ait+b; +¢;

Zy 02t+b2+82

Zy = azt* + byt + ¢35 + €5

3 zy=agt byt oyt ey

Z5 =a5+£5

zg = age™" + bgt + cgsint + dg + £¢
27 = aze™" + byt> + ¢;cost +dy + €,

\

where noise g~ N (0,0.09),j =1,...,7. The coefficients
are shown as follows.

For mode M,:

( a = I.S,bl =4,
a, = 1,b2 = 25,
as = —08,b3 = 1.6,03 = 1,

d 4, =06,b=—12,¢,=2; (32)
as = 3,
ag = 0.4,bg = —0.1, ¢4 = 0.2, dg = 0.8;
a7 = 0.6, b7 = 0.1, C7 = 06, d7 = 0.4;

\

For mode M,:
(@, =15, =3.5;
ay=2,by=2;
a3 =04,b; =-0.8,c5 =2;
4 a3 =-02,b,=04,c, =1.5; (33)
as =2;

ag = 06, b6 = _01, Ce = 04, d6 = 08,
a; = 06, b7 = 03, C7 = 04, d7 = 04,

For mode M5:

(4, =12,b, = 3;
a, = 2, b2 = 25,
as = 04, b3 = —08, C3 = l,

§ A4 = _03, b4 = 06, Cy = 15, (34)
as = 16,
ag = 04, b6 = —0.1,06 = 0'3’d6 = 06,
a7 = 0.5, b7 = 0.2, C7 = 05, d7 = 0.8,

\

Data from three successive modes are collected and 500
samples are generated from each mode. There are 1200
normal samples and the faulty data are generated as follows:

a) Case 1: z; is added 0.5 from the 201th sample in mode
M.

b) Case 2: z¢ is added 0.8 from the 201th sample in mode
M.

z; and z, are nonstationary and share the same trend.
The same is true for z; and z4. z5 is stationary for each
mode and would change when the mode switches. z4 and z4
change irregularly and dramatically. According to the prior
knowledge, ADF test and correlation analysis, the variables
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Table 3
Evaluation indices of the numerical case and the practical coal pulverizing case studies
Case Indices RSFA RCA PSFA-EWC ACA-RPCA-EWC ACA-RAttPSFA-EWC
number s P T TP s 1P 12 s® 12 SPE. T? T} T? SPE S’
Case 1 FDRs 0 0 0.33 1.00 31.00 O 100 100 3.00 0 0 99.67 99.67 98.67 99.34 0
FARs 391 736 1.09 273 1455 273 136 4.45 5.18 5.09 9.18 10.73 3.45 8.45 8.73 2.00
DD 300 300 0 14 5 300 0 0 0 300 300 1 1 1 300 300
Case 2 FDRs 0 0 0.33 99.67 3167 0 87.00 100 6.33 100 100 0 0 99.67 99.67 2.33
FARs 391 736 1.09 273 1455 273 409 6.00 6.18 5.09 9.18 10.75 3.45 11.36 9.73 3.45
DD 300 300 0 1 1 300 0 0 5 0 0 300 300 1 1 1
Case 3 FDRs 0 100 0.92 0 0 0 100 100 100 0 0 6.08 96.11 90.06 75.87 90.26
FARs 40.65 99.93 152 0.52 6.02 0 97.97 95.97 95.43 2.07 1.38 1.15 197 947 8.19 1.29
DD 3601 0 64 3601 3601 3601 - - - 3601 3601 3380 11 308 309 453
Case 4 FDRs 100 0 5.56 0 0 3.82 100 100 100 74.02 81.33 74.27 99.76 91.34 95.16 85.69
FARs 89.55 10.66 0.85 0.03 0.21 3.92 96.95 95.55 95.10 2.33 4.03 136 177 287 209 1.03
DD 0 2067 130 2067 2067 234 - - - 537 386 532 5 179 97 296
Case 5 FDRs 0 0 10.68 98.18 0 0.25 100 100 100 98.16 98.33 98.43 99.83 97.63 97.63 97.59
FARs 0 3.17 0.89 0.04 0.20 2.98 98.57 94.76 94.02 0.61 0.06 0.73 140 6.36 3.65 0.59
DD 4720 4720 18 86 4720 51 - - - 87 51 74 3 112 112 114
Table 4 Table 5
Offline training time (s) of all algorithms Online testing time (s) of all algorithms
Methods Casel Case2 Case3 Case4 Caseb Methods Casel Case2 Case3 Case4 Caseb
RSFA 0.1881 0.0083 0.0409 0.0132 0.0163 RSFA 7.8775 7.5701 582.2558 482.75 512.6431
RCA 0.1178 0.0095 0.0244 0.0161 0.0337 RCA 1.4266 1.2026 40.6655 25.4663 25.4418
PSFA-EWC 112.04 142.9973 23512.5 19430.1 17239.26 PSFA-EWC 0.0174 0.0145 1.5378 0.6454 3.2370
ACA-RPCA-EWC 0.1752 0.0460 0.0723 0.0717 0.0656 ACA-RPCA-EWC 3.7974 3.3710 60.5120 50.2188 102.5709

ACA-RAttPSFA-EWC 5.6099 5.8662 156.5373 59.9634 135.2942 ACA-RAttPSFA-EWC 226.2915 226.2252 4651.879 7405.276 9775.15

are decomposed into three blocks, i.e., x; = [z 1> 22, 23, 24],
Xy = z5, and x, = [zﬁ, z7]. In this experiment, 100
normal samples are adopted to train the initial model and
then sequential normal samples are utilized to update the
parameters. When a new mode arrives, 20 normal samples
are collected to retrain the model offline. The five methods
share the same training and testing data.

The simulation results are summarized in Table 3. RSFA
fails to monitor Case 1 and Case 2 because the FDRs of three
statistics are close to 0. Although the FDR of RCA in Case
2 s 99.67%, the FARs of two cases are 14.55%. Therefore,
RCA could not detect the faults in the two cases accurately.
PSFA-EWC can monitor two cases accurately, where the
FDRs are 100% and the FARs are lower than 6.2%. For
ACA-RAttPSFA-EWC and ACA-RPCA-EWC, the FDRs of
T2 and Te2 are 99.67% in Case 1, which is in accordance
with the fact that the cointegration relationship is broken
owing to the faulty variable z;. The FDRs of RAttPSFA-
EWC approach 100%, while the FDRs of RPCA-EWC are
0. ACA-RAttPSFA-EWC and ACA-RPCA-EWC provide a
similar monitoring accuracy in Case 2. Since the fault occurs
in variable z¢ and the cointegration relationship remains the
same, the FDRs of T’ j% and Te2 are 0. RAttPSFA-EWC and
RPCA-EWC can detect the fault accurately, where the FDRs
are 99.67% and 100% respectively. Besides, the FARs are
lower than 12%.

The offline training time and online testing time are
listed in Tables 4 and 5, respectively. RSFA and RCA con-
sume similar computational resources for the training proce-
dure. ACA-RPCA-EWC takes the second place, followed by
ACA-RAttPSFA-EWC. PSFA-EWC costs the most expen-
sive computational resources, because the retraining proce-
dure would be conducted when a new mode arrives and the
optimization issue is settled by EM. For online applications,
1400 samples are utilized. RCA is the least computationally
complicated, ACA-RPCA-EWC and RSFA come second.
With regard to ACA-RAttPSFA-EWC, the testing time is
0.1616 second on average for each testing sample, which
is accepted. Different from the aforementioned adaptive
methods, there is no need to update the PSFA-EWC model
parameters and thus the testing time is the least.

In conclusion, ACA-RAttPSFA-EWC and ACA-RPCA-
EWC can identify the mode automatically and monitor two
cases accurately. PSFA-EWC can also provide excellent
monitoring performance, but the mode identification may
require the prior knowledge for online applications. RSFA
and RCA could not track the rapid variations in multimode
nonstationary processes and the monitoring performance is
unsatisfactory.

4.2. Pulverizing System Case
4.2.1. System description

The coal pulverizing system of a 1030-MW ultra-supercritical

thermal power plant in China is adopted to illustrate the
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Table 6
Data information of the coal pulverizing system
Case Coal type Number of Fault Fault cause
number testing data  instant
Case 3 Yinni—Menghun—Yinni 14120 10520  The temperature of the coal mill increases abnormally
Case 4 Aoemng—Aomei—Aomeng 9800 7734 Opening of the regulating baffle of primary air is abnormally large
Case 5 Waigou—Shenhun 14120 9401 There is oil leakage at the bearing of the rotary separator motor

raw coal hopper

for boiler feed

air powder
mixture
coal feeder

rotary
separator

primary air

coal mill

stone coal
scuttle

Figure 2: The structure of the coal pulverizing system

effectiveness of the proposed method. It is an important
auxiliary machinery and locates at the forefront of the
power plant, which would influence the operating condition
significantly. It aims to grind raw coal into coal powder
with desired fineness and the temperature is also taken
into consideration to guarantee the process safety and the
combustion efficiency. The structure is depicted in Figure 2,
including the coal feeder, rotary separator, coal mill, etc.

The process data of the large-scale thermal power plant
are mainly affected by the coal and unit loading. Various
types of coal may be fired according to the economic ben-
efit and environmental requirement. For different types of
coal, the process data may vary with the real-time load
significantly. Thus, if one coal is regarded as a mode, the
system is still nonstationary in each mode. According to the
historical fault record and fault effects, two typical faults
from the outlet temperature (Cases 3 and 4) and the rotary
separator (Case 5) are considered in this paper. The detailed
information of practical data is summarized in Table 6. The
sampling interval is 20s. Note that it is difficult to estimate
accurately when the coal changes, and therefore the accurate
mode switching time is unavailable.

4.2.2. Data analysis

In this paper, 26 critical variables are selected and
decomposed according to process mechanism, prior knowl-
edge and expert experience. As listed in Table 7, the vari-
ables are divided into three blocks, i.e., x| = [z}, 2), ..., 219,
Xy = [213, Z145 2155 216], and x, = [z17, Zigs-ens 226]. The
variables in x; are generally nonstationary in each mode

Table 7
Variable description of the coal pulverizing system
Description Variable
Rotary separator speed z;
Coal mill seal air pressure z5
Differential pressure between seal air and grinding bowl z3
Upper and lower differential pressure of coal mill bowl z4
Instantaneous coal feeding capacity Zs5
Motor speed of coal feeder zg
Generator active power z7
Air powder mixture pressure zg
Cold primary air electric regulating baffle position feedback Zg
Primary air flow Z10
Primary air pressure Z1)
Coal mill current Z15
Primary air temperature at the outlet of the air preheater Z13, Z14
Coal feeder current Z15
Outlet temperature Zi6
Planetary gear box input bearing temperature Z17, Z1g8
Temperature of planetary gearbox bearings Z19 ~ Zp)
Inlet air temperature of forced draft fan 253, Zp4
Bearing temperature of rotary separator Zys5, Zog
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- Primary air pressure
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Figure 3: Partial cointegration variables in x, of the practical
system
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0
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Figure 4: Partial variables in x,, and x, of the practical system

and vary with the real-time load, as depicted in Figure 3.
Since it is hard to mix the coal evenly and the component
of the same coal may vary with the time as environment,
the long-term equilibrium may vary slowly for one mode.
Therefore, this paper involved ACA to track the variation
adaptively. Variables in x are stationary in each mode and
may be regulated to another value when the coal changes, as
described in Figure 4a. For instance, the outlet temperature is
desired to remain the same for one coal. However, the actual
value may change frequently around the set value owing to
the controller and other factors. It is assigned to x, based
on the process mechanism and should be stationary for local
modes. Variables in x, may be affected by environment or
change irregularly. For example, the inlet air temperature is
closely linked with the environment and is nonstationary for
local modes, as listed in Figure 4b.

For this practical coal pulverizing system, the partial
variables are seriously affected by noise owing to the en-
vironmental disturbance and system noise, as depicted in
Figure 3. The long-term equilibrium information from x;
is extracted after ACA and the remaining information with
noise is represented as lej;. As mentioned in Section

33,%) = [xl W; xz] is processed by RAttPSFA and the

contained noise is monitored by .S? statistic.

4.2.3. Experimental results and discussion

One thousand normal samples are adopted initially for
offline training. When a new normal mode arrives, 90 normal
samples are used for offline training. Then the model is
updated and used for online monitoring. During 30 minutes,
the model of the last mode is utilized for online monitoring,
which is utilized to illustrate the real-time monitoring per-
formance.

The monitoring consequences of three cases are listed in
Table 3. Owing to the limitation of paper length, the moni-
toring charts of Case 4 are provided as a representative, as
described in Figure 5. Different from the other four methods,
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Figure 5: Monitoring charts of Case 4

the mode information is required to be available for PSFA-
EWC. RSFA is unable to monitor three cases accurately.
The FARs of Cases 3 and 4 are higher than 85%, which
indicate that RSFA fails to track the rapid and dramatical
variations between modes and the normal changes may be
misjudged as a fault. As shown in Figure 5a, the FAR of
T? statistic is 89.55%. Conversely, the FDR of Case 5 is
lower than 11%, which means that the fault is misidentified
as normal variation. RCA can detect the fault in Case 5,
in which the FDR is 98.18% and the FAR is lower than
3%. However, the FDRs of Cases 3 and 4 are lower than
6%. The normal nonstationary variations and the real fault
could be separated by RCA (as shown in Figure 5b). PSFA-
EWC also fails to monitor three cases and the FARs are
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higher than 94%. As illustrated in Figure Sc, only a few
data are collected to retrain the monitoring model when
a new mode arrives, which is directly applied to online
monitoring without updating. This model contains limited
critical information of the operating mode, thus leading to
terrible monitoring performance.

Since ACA is both used in ACA-RPCA-EWC and ACA-
RAttPSFA-EWC, they share the same results of TJ% and

Tez, as described in Figure Se. The differences focus on the
short-term dynamics, which are extracted by RPCA-EWC
(Figure 5f) and RAtPSFA-EWC (Figure 5d). The mode
can be identified by ACA and the FDRs of Te2 are higher
than 96%. When a new mode arrives, 90 normal samples
are used to establish initial CA, PCA-EWC and AttPSFA-
EWC models, which would be updated respectively and
recursively based on the forthcoming data. In other words,
the ACA-RAttPSFA-EWC and ACA-RPCA-EWC monitor-
ing models are corrected gradually for online applications.
For Case 3, RPCA-EWC fails to detect the fault accurately
and the FDRs are 0. Relatively speaking, RAttPSFA-EWC
can detect the fault accurately, and the FDRs of T? and
S? are higher than 90%. With regard to Case 4, the FDR
of RAttPSFA-EWC is higher than 95%, while the FDRs
of RPCA-EWC are lower than 82%. RAttPSFA-EWC and
RPCA-EWC can provide excellent performance for Case
5. Although ACA-RPCA-EWC and ACA-RAttPSFA-EWC
can identify the mode accurately due to the accurate ACA
model, ACA-RAttPSFA-EWC can deliver more desirable
performance than ACA-RPCA-EWC because nonlinear dy-
namic features are extracted deeply by RAttPSFA-EWC.
Furthermore, uncertainly such as noise is considered and
the proposed method enhances interpretability due to the
probabilistic form.

The training and testing time are listed in Tables 4 and
5, which can reflect the computational complexity directly.
Among four adaptive monitoring methods, the proposed
ACA-RAttPSFA-EWC costs the most expensive computa-
tional resources. For Cases 3-5, the testing time for each
sample is 0.3294, 0.7556 and 0.6923 second on average,
respectively. The sampling interval is 20s and thus the on-
line computational complexity is accepted for the proposed
ACA-RAttPSFA-EWC method. For PSFA-EWC, the train-
ing time is far higher than that of other adaptive methods,
even higher than the sum of training time and testing time.
The online complexity of PSFA-EWC is the lowest since
the parameters have already been estimated after the training
procedure.

In conclusion, ACA-RAttPSFA-EWC provides the most
excellent performance of the five methods, where the FDRs
are satisfactory and the FARs are acceptable. Besides, the
mode could be identified automatically without any human
intervention for online applications, which makes it conve-
nient for industrial systems.

5. Conclusion

This paper has introduced an intelligent adaptive moni-
toring method for multimode nonstationary processes, which
can identify the mode automatically and account for mea-
surement noise. The ACA algorithm extracts the long-term
equilibrium features and the remaining dynamic information
is further decomposed by the proposed RAttPSFA-EWC.
The attention mechanism is adopted to focus on the global
and local important information. AttPSFA-EWC has been
proposed to handling the high-dimensional data for offline
training procedure, which shares the similar framework with
PSFA-EWC. Then, the parameters are updated recursively
based on the forthcoming data for online monitoring. In
comparison with several advanced methods using a nu-
merical case and a practical coal pulverizing system, the
effectiveness of ACA-RAttPSFA-EWC is validated.

Since regularization-based continual learning requires
similarity among multiple modes and is suitable for short-
term monitoring tasks, the continual learning ability of
ACA-RAttPSFA-EWC would decrease if more diverse modes
emerge continuously. Therefore, an adaptive monitoring
method needs to be investigated to monitor long-term mul-
tiple nonstationary modes.
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