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In multistable dynamical systems driven by weak Gaussian noise, transitions between competing states are
often assumed to pass via a saddle on the separating basin boundary. By contrast, we show that timescale
separation can cause saddle avoidance in nongradient systems. Using toy models from neuroscience and ecology,
we study cases where sample transitions deviate strongly from the instanton predicted by the Freidlin-Wentzell
theory, even for weak finite noise. We attribute this to a flat quasipotential and present an approach based on the

Onsager-Machlup action to aptly predict transition paths.

DOI: 10.1103/PhysRevResearch.6.L.042053

Multistable systems, when randomly perturbed, may un-
dergo transitions between their coexisting attracting states
[1,2]. Examples range from brain activity [3] and gene reg-
ulation [4] to lasers [5], planetary atmospheres [6] and the
earth system [7,8]. Transitions often represent high-impact
low-probability events, e.g., financial crashes [9], ecosystem
collapse [10], and climate tipping points [11-13]. Understand-
ing critical transitions is crucial to assess a system’s stability
and resilience [14].

Noise-driven systems are commonly formulated as
stochastic differential equations of the It6 type,

dx =bx)dt + o X(x)dW,, x(0)=xo, 20, (1)

where x(¢) € RP evolves under the combined effect of the
deterministic drift b(x(t)) : R® — RP? and a stochastic forc-
ing by a D-dimensional Wiener process W, scaled with
noise amplitude o > 0. We assume that the system x = b(x)
possesses multiple attractors (hence being multistable) and
consider nondegenerate noise, ensuring the covariance matrix
0(x) = Z(x)X " (x) € RP*P is invertible [15]. This modeling
framework is fundamental to climate physics (Hasselmann’s
program [16-18]), chemical physics [19], theoretical biology
[4,14], and further applications of complex physics [5,20-22].

The theory and intuition about systems described by
Eq. (1) are often guided by the gradient case, where b(x) =
—VV(x) and isotropic noise is assumed. The potential V :
RP — R then describes an energy landscape that visualizes
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the system’s global stability, with attractors located at local
minima of the landscape and saddles marking “mountain
passes” for noise-induced transitions—where trajectories are
most likely to cross between different valleys. However, most
systems of interest are out of equilibrium, meaning no poten-
tial V exists whose negative gradient is b.

For this general nongradient case, the Freidlin-Wentzell
(FW) theory [23] introduces the guasipotential as an energy-
like scalar field [23-27]. Following a large deviation principle
[28], the quasipotential is computed via a variational approach
of minimizing the FW action functional S (see below). In-
tuitively, this functional measures the “energetic cost” of a
trajectory in the limit of vanishing noise. As o — 0, tran-
sitions between competing attractors concentrate around a
minimum action path, or instanton, and the probability of
deviating from the instanton decays exponentially [23,29].

In most cases, the instanton from one attractor to another
passes through a saddle of b where the quasipotential has a
minimum along the boundary separating the different basins
of attraction [15,30,31]. Transition rates can be computed in
terms of the quasipotential value at the saddle [32]. These
results of the FW theory have established the widespread view
of saddles acting as gateways of noise-induced transitions.

However, the 0 — 0 limit is never attained in reality;
various counterexamples attest that, if the noise is weak yet
noninfinitesimal, noise-induced transitions do not necessarily
pass near a saddle [21,33-39]. Here we show that saddle
avoidance can occur when nongradient dynamics features fast
and slow degrees of freedom. We demonstrate that sample
transition paths may deviate significantly from the FW instan-
ton even for noise so weak that transitions become extremely
rare. We resolve the apparent disagreement between the FW
theory and observations using the quasipotential and introduc-
ing a variational formulation based on the Onsager-Machlup
(OM) action [40-45].

Predicting noise-induced transitions. Rare events tend to
be predictable in the sense that they will most probably occur
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in the least unlikely way. In our context, noise-induced transi-
tions between attractors of x = b(x) become increasingly rare
as 0 — 0. The FW theory quantifies this via a large deviation
principle: consider the set C/,. of paths leading from state x; to
state xz in time 7. For 0 — 0, the probability that a solution
¢, to Eq. (1) initialized at x; remains inside the é tube of the
path ¢, € C/,, follows

al0 Srle ]+ ¢
IP’(,< sup |l¢, — ¢, <5) = exp (—Lzs>, 2

0<t<T o

where < denotes asymptotic logarithmic equivalence and &5
satisfies lims o &5 = 0 [23,46]. The rate function Sr[¢, ] is the
FW action functional,

1T
Srio) = 5 / 16, = b))y . 3
0

which measures the “work™ done against b, as weighted via

the Q metric ||v]|g := v/ (v, 0~ 'v). This implies that, in the
limit 0 — 0, the most probable path connecting x; to xr is
by far the instanton, ¢*'" := argmin, ccr 70 Srle,] [29].
Starting from a reference attractor xg = x;, the “difficulty” of

reaching any state x is given by the FW quasipotential,

Vr(xp) = inf inf Sr[e,]. 4

i
T>0 o, GCL_,

By definition, Vx(xg) = 0 is the strict global and unique strict
local minimum.

Now suppose Eq. (1) has two stable equilibria xg and x;,
with basins of attraction Bg, B, C RP, separated by the basin
boundary dB. We define a transition path (bfL as a trajectory
that, after exiting a small neighborhood R around xg, enters a
small neighborhood L around x; without re-entering R. Tran-
sitions can reach x, at zero action after crossing the boundary
daB (by following a flow line of b); therefore, as o — 0, the
most probable location to cross 9B is at the global minimum
of Vg when restricting to d3. This minimum is typically a
saddle of b and determines the Kramers-like scaling law of
the mean first-exit time (tfF), i.e., the expected waiting time
until a trajectory initialized at xg leaves Bg, through (tRF) <
explo ~2 mingeys Vr(x)] [23,46-50]. This emphasizes the rel-
evance of saddles for noise-induced transitions as o — 0.

Apart from the mean first-exit time, a second timescale
characterizing the transition is the mean transition time (tfL),
i.e., the average time gbfL takes to travel to L after last leaving
R. Large values of XL := (tRL)/(tRL) indicate that individual
transitions are rare and therefore occur as a memoryless Pois-
son process. In what follows we choose o sufficiently small
such that 7XL > 1, in which case one might expect the FW
theory to apply. We investigate the transition behavior in two
paradigmatic two-dimensional multiscale models, one driven
by additive noise and another by multiplicative noise.

FitzHugh-Nagumo model. Let us first consider the
FitzHugh-Nagumo (FHN) model, which was originally con-
ceived to describe a spiking neuron [51,52] and has been
widely studied as a multiscale conceptual model in theoretical
neuroscience. The model can be written as
e (=P +u— v))

&)

X"=bFHN(u,U)=( —Bv+u

Here x = (4, v) € R? is the two-dimensional state vector,
¢ > 0 denotes the timescale parameter, and we set § = 3.
We consider Eq. (1) with b = bpyny and identity covari-
ance matrix Q = I, (additive noise). The noise-free system
is bistable, possessing stable equilibrium points at xg; =
+(/2/3,1/2/3%) and a saddle point at x,; = (0, 0).

For ¢ <« 1, Eq. (5) describes a fast-slow system where
u is fast, while v is slow [53]. In the u direction, deter-
ministic trajectories rapidly approach the critical manifold
Co := {(u, v) € R? : v = —u® + u} to which the slow dynam-
ics is confined as ¢ — 0 [53]. The cubic form of Cj yields
two saddle-node bifurcations with respect to v. Two stable
branches of C, are separated by an unstable branch between
the fold points vy = +/4/33.

For such stochastic fast-slow systems with 0 < ¢ « 1,
one anticipates sample trajectories to closely track the stable
part of Cy until they approach a fold point, where they may
abruptly transition to the opposite stable branch [54,55]. By
contrast, the FW theory predicts that sample transition paths
pass arbitrarily near the saddle for sufficiently small o [23].
We thus face two competing limits, 0 — 0 and ¢ — 0, when
studying weakly noise-driven multiscale systems [56].

Using Monte Carlo simulations, we sample 100 transitions

fL for each ¢ € {0.01, 0.1, 1, 10}, fixing o (&) to maintain
rRL 2 10° (details can be found in the Supplemental Material
[57]). The ensembles of transition paths concentrate within a
tube around a mean sample transition path (MTP), which we
compute by spatial averaging over the ensemble [Fig. 1(a)].
Additionally, using the geometric minimum action method
(gMAM) [58], we compute the corresponding instantons ¢**-
which minimize the FW action functional Sy [Eq. (3)].

The computed instantons always pass through the saddle.
They approach it at an angle relative to 93 that narrows
as ¢ decreases, becoming tangential to 98 when ¢ < 1/8
[36] [Fig. 1(a)]. For ¢ € {1, 10}, the MTP closely matches
the instanton and all sample paths cross the basin boundary
within ~o distance on either side of the saddle. Contrarily, for
e € {0.01, 0.1}, sample transitions avoid the saddle: the MTP
diverges from the instanton after getting close to the basin
boundary [34], which happens before reaching the saddle.
Once the noise kicks the trajectory into the competing basin, it
is repelled from the basin boundary stronger than it is attracted
towards the saddle.

This multiple timescale effect manifests itself in the ratio
of the negative and positive eigenvalues A, of the Jacobian
of b at the saddle, p := [A_|/Ay. If u < 1, Ref. [36] has
shown that sample transition paths avoid the saddle on an ex-
tended lengthscale O(o#*) [59,60]: their exit locations (where
they cross the basin boundary) follow a one-sided Weibull
distribution [61], whose mode approaches the saddle only
logarithmically as o — 0 [35,36]. This contrasts with the
case n > 1 where the distribution of exit locations is centered
around the saddle on the lengthscale O(o) as o — 0 [36].
In the FHN model, u < 1 if and only if 0 < & < 1/8, and
we have u = (B — 1)e + O(e?) as ¢ — 0, which highlights
the link between saddle avoidance and timescale separation
(see Fig. S1 in the Supplemental Material [57]). The case
e = 0.01 exemplifies the fast-slow behavior anticipated for
& — 0: the MTP escapes from the basin boundary near the
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FIG. 1. FHN model for ¢ = (0.01, 0.1, 1, 10) at o(¢) = (0.08, 0.12,0.12,0.04). (a) Phase space with equilibria x; z (red), saddle x)
(black), drift b (gray flow lines), instanton @*R- (green), 50 sample transition paths (light blue), MTP (blue dashed), and basin boundary (BB,
orange); critical manifold Cy (red) for ¢ — 0 (left) and 1/e — 0 (right panel). (b) Like panel (a) but with Vg(x) on a logarithmic colormap
(black: Vi = 0; brighter = larger Vi), showing x.. (blue circle) where MTP crosses BB. (c) Vi (x) along BB, indicating values at x,, (black) and
x. (blue), and the region Z (red shading).

bifurcation point v} where Cy becomes unstable [Fig. 1(a)].In ~ skewed away from the saddle: the boundary-crossing loca-
the inverse limit 1/& — 0 (where u > 1), the corresponding tion x.(¢,0) of the MTP lies at the end of Z, far from
critical manifold given by Bv = u is globally stable; the limit- ~ Xa. This is likely related to the instanton approaching the
ing behavior of both o and 1/ aligns by forcing the instanton ~ basin boundary tangentially. Yet, Kramers’ scaling of the
and sample transition paths onto Cy, as seen for ¢ = 10. mean first-exit time (t) < exp[o 2 Vr(xy)] is empirically

Can we understand the observed transition behavior by =~ observed for all transition path ensembles (see Fig. S2 of
means of the quasipotential Vi [Eq. (4)], which measures the ~ the Supplemental Material [57]). We attribute this to the

difficulty of reaching a point x from xz? As o — 0, the prob- quasipotential barrier height at the mean crossing point
ability of passing through the global minimum x* of Vg along  X.(g, o) being Vr(x.) ~ Vi(xy) + o2, yielding a comparable
the basin boundary 88 approaches 1 [23]. For finite o, how-  exponential scaling as long as % < Vg(xy). The subex-
ever, the large deviation principle underlying the FW theory =~ ponential prefactor in Kramers’ formula is approximately
[Eq. (2)] suggests that transitions may cross with similar prob- ~ constant in the examined range of o values (not shown)
ability in regions Z(0) = {z € 3B : Vr(z) < Vr(x*) + 0%} and hence does not break the exponential scaling. This sup-

We compute Vi for the four & cases considered using ports the suitability of the saddle for predicting transitions
the OLIM4VAD algorithm [62] (see the Supplemental Ma- rates, even if the corresponding transition paths avoid the
terial [57]). For & = 10, a steep and narrow trench of low saddle.

quasipotential connects xz with x; [Fig. 1(b)]. As ¢ decreases, A finite-noise variational formulation. While the quasipo-
however, V¢ increasingly flattens along the v direction, leading ~ tential can explain the occurrence of saddle avoidance, the
to an extended quasipotential plateau around the saddle xy,. question remains how to predict the location distribution of

Along 9B, Vi indeed assumes a global minimum at x; for transition paths for finite noise. If the noise is additive, there is
all ¢, but its curvature around x;; becomes small for ¢ < 1 increasing confidence [41,43,44,63] that the appropriate vari-
[Fig. 1(c)]. The low curvature implies the lack of a clear  ational problem entails minimizing the OM action [40-45],
“mountain pass” and a widened “danger zone” Z (o) around
xy, whose arc length converges more slowly to 0 as o —
0. This large deviation theoretical argument aligns with the
occurrence of saddle avoidance on the extended lengthscale
O(c") (see above and Ref. [36]). which adds a o-dependent correction term to the FW action.
Sample transition paths do not distribute proportionally This term acts as a ‘“penalty” proportional to the diver-
to exp(—Vg/o?) across the flat quasipotential region but are  gence of b along the path. As we show in the Supplemental

2

T
521¢,1 = Srlo,] + "7/ V - bio,)dr, ©)
0
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FIG. 2. FHN model. (a) FW (green) and OM (dark blue) min-
imizer compared with sample paths (light blue) for the transition
fL , showing the path-space sampling density (gray) and the basin
boundary (orange). (b) Cross section along the basin boundary (pro-
jected onto v). Top lines: quasipotential from minimizing FW/OM;
histograms: crossing point distributions for direct sampling (light
blue) vs path-space sampling using FW (green) and OM (dark blue)
functionals; sampled first-exit point distribution (cyan) compared to
rescaled Weibull distribution (magenta).

Material [57], saddle avoidance is directly related to a positive
divergence at the saddle.

Minimizing the OM action allows us to derive a candidate
for the most probable transition path. Although the minimiza-
tion over all T > O is ill-defined in the OM case [45], one
can often select a characteristic path travel time T; here we
fix T = (t*L) to match the kinetics of the transition process.
Numerically, we use the OM action formulation to perform
path-space sampling (see the Supplemental Material [57]),
which yields a transition path density identical to that of
sampling Eq. (1) via Monte Carlo simulation conditioned on
the start and end points [64,65].

We focus on the FHN model for ¢ = 0.1 and o = 0.119.
The minimizer of the OM action over C}, avoids the sad-
dle and yields an appropriate approximation of the MTP
[Fig. 2(a)]. Further, path-space sampling using the OM action
indeed recovers the observed transition path density [un-
like using the FW action, see Fig. 2(b)], and the first-exit
points are accurately described by the Weibull distribution
p(o, e, A) with A = 1.23, corroborating Ref. [36]. The dif-
ference between the first-exit point and boundary crossing
point distributions in Fig. 2(b) results from transition paths
sometimes crossing the basin boundary multiple times before
reaching the competing attractor.

Our results show that the OM minimizer gives better
predictions of sample transition paths. This motivates con-
structing a finite-noise, finite-time quasipotential landscape in
the spirit of Eq. (4) but with T fixed and S% replacing Sy. This
quantity exhibits a minimum on the basin boundary where
sample transition paths are observed to cross [Fig. 2(b)].

Two competing species. In multiscale systems with more
than two attractors, the FW theory may accurately predict
the path of one transition scenario while failing for another.
We show this in a system of two competing species A and B

Arclength along BB Arclength along BB

FIG. 3. COMP model. (a) V45 with respect to x,p (brighter in-
dicates larger V,p) for ¢ € {1, 0.01}, FW instantons to x4 (magenta)
and x; (green), and corresponding MTPs for o (¢) = (0.0425, 0.006)
(dashed blue); the OM minimizer (yellow) is shown for the saddle-
avoidant scenario. Basin boundaries (BB, gray lines), attractors (red
points), and saddles (white crosses) are shown. (b) V45 along the solid
and dashed BB displayed in panel (a), as a function of arc length from
the respective saddle, highlighting Z (red shading) for the solid BB.

perturbed by multiplicative noise (COMP) [66]. The growth
of each population is modeled with an Allee effect [67] ac-
cording to

o x(x—ag)(1 —x)— Baxy
beomnp (2, ¥) = (8[y(y —ap)(1—y)— ﬂBxy])' M

Here x and y denote the population densities of species A
and B, respectively, which each go extinct below their critical
densities ay = 0.1 and ap = 0.3. The parameter ¢ represents
the ratio of net growth rates of the two species. The com-
petition term is controlled by 4 = 0.18 and B = 0.1. This
choice of parameters yields four stable equilibrium points: a
state x4p where both species coexist, two states x4 and xp
where only one species survives, and a full extinction state xg.
Additionally, four saddle points and one repeller exist in the
non-negative quadrant [Fig. 3(a)]. As with the FHN model, we
investigate the dynamics of Eq. (1), now for b = bcomp and a
state-dependent covariance matrix Q = diag(x, y) mimicking
population fluctuations [68,69].

Several transition scenarios are possible. We focus on the
extinction of one species, realized by the two scenarios AB —
A and AB — B. If both species have similar net growth rates
(¢ & 1), both scenarios are characterized by a well-defined
transition channel and distinct quasipotential minimum on the
relevant basin boundary (Fig. 3). The MTPs track the FW
instanton and cross near the corresponding saddle. Contrar-
ily, the two scenarios differ when one species grows faster
than the other (e.g., ¢ = 0.01): transitions AB — A follow
the instanton in a narrow quasipotential channel, whereas for
AB — B the MTP detaches from the instanton and avoids the
saddle in a region of flat quasipotential Vs induced by the
fast-slow dynamics.

For the COMP system, it is possible to obtain the OM
minimizer as before by performing a coordinate transform,
x — 2/xand y — 2 /y, that effectively leads to an additive

L042053-4
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noise problem (see Supplmental Material [57]). Again, we
find that the OM minimizer avoids the saddle and agrees with
the MTP obtained from direct simulation samples [Fig. 3(a)].

Discussion. Multiscale dynamics can cause noise-induced
transitions to bypass the saddle point between competing
attracting states. Since physical systems are typically nongra-
dient, noisy, and multiscale, this phenomenon can appear in
various applications, even where transitions classify as rare
events. Transition path ensembles may deviate strongly from
the minimizer of the FW action for weak yet finite noise, while
Kramers’ law remains valid. These properties are possible due
to a flat quasipotential along the basin boundary, which may
occur due to timescale separation in the drift term for additive
and multiplicative noise alike.

Despite avoiding the instanton, sample transition paths
still tend to bundle within a tube around a typical transition
path, manifesting the general notion of dynamical typicality
[70,71]. For additive noise of finite amplitude, minimizing
the OM action (for an appropriate path travel time 7') yields
an apt prediction of this most probable transition path and
the transition path distribution, in contrast to minimizing the
FW action. For multiplicative noise, computing finite-noise
most probable transition paths is a topic of ongoing research
[41,63,72]. Interestingly, estimating the FW minimizer with
machine learning using deep gMAM [73] yields a path that
more closely resembles the OM minimizer instead of the true
FW instanton [74]. Addressing the mathematical challenges
of multiplicative and degenerate noise is of great interest for
future work.

Reference [36] presented a path-geometric study of saddle
avoidance in two dimensions based on the local stability at
the saddle. Our work complements this by (a) providing a
global stability viewpoint based on the quasipotential, (b)
considering the stability of the critical manifold around the
saddle, and (c) clarifying the link between saddle avoidance,
positive divergence at the saddle, and multiscale dynamics.
These concepts may enable anticipating saddle avoidance
also in nongradient fast-slow systems of higher dimension:
if the saddle exists on an unstable branch of the critical
manifold, we conjecture that repulsion away from the saddle
outweighing attraction towards it will generally cause the

instanton to approach the basin boundary tangentially, result-
ing in a quasipotential plateau along the saddle’s stable set.
Other physical interpretations of saddle avoidance, such as
anisotropic friction [37], may be interpreted as a multiscale
feature. Linking our findings to recent literature on coarse-
graining [75,76] could provide further insights into multiscale
stochastic systems.

While transitions driven by Lévy noise are known to avoid
the saddle [77], our results challenge the generic role of
saddles as gateways of noise-induced transitions also under
Gaussian noise. Saddle avoidance limits the classical applica-
bility of the FW theory for predicting most probable transition
paths in multiscale systems, since the regime of weak but
finite noise will often apply to rare events of relevance. Es-
pecially for high-impact low-likelihood events, understanding
where in state space transitions will likely occur is crucial to
assess a system’s resilience to random fluctuations.

The data shown in Figs. 1-3 are publicly available at [78].
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