

Discriminating foliar adhered from metabolised Pb when monitoring vegetation exposed to windborne contamination

Article

Accepted Version

Tibbett, M. ORCID: <https://orcid.org/0000-0003-0143-2190>, Lardner, T. and De Oliveira, V. H. (2025) Discriminating foliar adhered from metabolised Pb when monitoring vegetation exposed to windborne contamination. *Journal of Hazardous Materials*, 484. 136807. ISSN 0304-3894 doi: 10.1016/j.jhazmat.2024.136807 Available at <https://centaur.reading.ac.uk/119855/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.jhazmat.2024.136807>

Publisher: Elsevier

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Discriminating foliar adhered from metabolised Pb when monitoring vegetation exposed to windborne contamination

Authors: Mark Tibbett^{1,3*}, Tim Lardner², Vinicius H De Oliveira¹

¹Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK

²School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia

³School of Biological Sciences, The University of Western Australia, Perth, WA, Australia

* corresponding author: m.tibbett@reading.ac.uk (Tibbett, M)

15 **Abstract**

16 Monitoring heavy metals in vegetation near mining or industrial sites is crucial for detecting plant
17 contamination; requiring discrimination between metals adhered to foliar surfaces from the internal
18 concentrations. We investigated key factors that might contribute to lead (Pb) accumulation in leaves
19 of local vegetation near a Pb mine: (i) distance from the pollutant source, (ii) morphological
20 characteristics of leaf surfaces, (iii) their susceptibility to Pb loss by washing, and (iv) the effect of
21 contrasting washing reagents in Pb removal. Native plant species were sampled at three field
22 locations, possessing different leaf surface morphologies: glabrous (smooth), resinous (waxy) and
23 hirsute (hairy). After washing with Citranox, EDTA or deionised water, Pb contents were assessed
24 by ICP-OES and SEM-EDX. We observed an order of Pb (and other metals) retention from hirsute >
25 resinous > glabrous, and found: i) greater Pb accumulation in leaves near the mine due to particulate
26 matter (PM) deposition; ii) hirsute leaves retain the highest PM-Pb; iii) higher Pb removal (10-fold)
27 by Citranox and EDTA compared to water; and iv) hirsute leaves retained considerable PM-Pb
28 underneath trichomes despite washing, leading to Pb overestimation. Therefore, for accurate Pb
29 monitoring, washed glabrous leaves are best indicated due to their negligible PM retention.

30

31 **Keywords:** air pollution; heavy metals; lead; leaf morphology; particulate matter, soil, aeolian, dust
32 particles

33

34 **Environmental Implication**

35 Mining can be a source of environmental pollution, arising from tailings, mine drainage and dust
36 spread by wind. Lead (Pb) is a toxic metal that contaminates soil, water, and often the air near mining
37 sites, a significant pathway for human exposure. Monitoring metal pollution in vegetation is crucial
38 for detecting Pb contamination sources. We show how foliar Pb deposition increases closer to the
39 mine, accumulating particularly in hairy leaves (trichomes), confounding estimates of internal Pb
40 (metabolised) with surficial Pb (particulate matter). Our results highlight that simple washing
41 procedures with Citranox and sampling of smooth-surfaced leaves avoids overestimation of foliar Pb
42 caused by dust retention.

43 **Introduction**

44 Metal and metalloid mining is a crucial activity that provides resources for the current
45 industrial society, producing millions of tons of heavy metals annually, especially lead (Pb), zinc
46 (Zn), copper (Cu), nickel (Ni), manganese (Mn), barium (Ba) and chromium (Cr) (Alloway et al.,
47 2013; Tibbett, 2024), with a market capital value of almost a trillion US dollars (Macklin et al., 2023).
48 Yet, mining is also one the biggest sources of heavy metal pollution to the environment, including
49 water, soil and air contamination (Nriagu 1996; Kabata-Pendias and Mukherjee, 2007; Gonzalez-
50 Chavez et al. 2023; Li et al., 2023). Pollution resulting from mining activities can stem mainly from
51 mine drainage, tailings, spreading of minerals during transportation or dust deposition spread by wind
52 (Liao et al., 2008). It has been recently estimated that at least 23 million people are exposed to
53 dangerous metal concentrations as a result of mining waste and tailings from both inactive and active
54 mines (Macklin et al., 2023). Heavy metals also pose a risk when they accumulate in soils and plants,
55 disrupting ecosystem functioning and potentially entering the food chain, in a critical pathway of
56 biomagnification, as consumers ingest contaminated food sources (Tibbett et al., 2021).

57 Monitoring heavy metal levels in vegetation is an important practice to detect contamination
58 in the environment, indicating potential exposure pathways and health risks to humans and animals
59 in the affected area. Multiple factors may influence the accumulation of heavy metals in plants,
60 including edaphic conditions, proximity to pollution source, and plant specific characteristics, such
61 as physiology and morphology (Cuevas et al., 2023). Metal accumulation in plant leaves is generally
62 associated with soil contamination, where ions move into the soil solution, becoming available for
63 root uptake and eventual translocation to shoots (Tibbett et al., 2021). However, airborne particulate
64 matter (PM) is also a common source of pollution, especially in dry environments, urban or near
65 mining sites where dust is frequently emitted and dispersed (Gao et al., 2021; Augustsson et al., 2023;
66 González-Chávez et al., 2023; Gajbhiye et al., 2024). In particular, Pb is an element with high
67 emission rates into the atmosphere (Kabata-Pendias and Mukherjee, 2007), for which topsoil and
68 vegetation are major sinks for PM deposition, especially around active mining sites (Ghaderian et al.,
69 2007; Yang and Cattle, 2017; González-Chávez et al., 2023; Ma et al., 2023). While baseline levels
70 of Pb in soils are around 17 mg kg^{-1} (Steinnes, 2013), topsoils near a Pb smelter were shown to have
71 up to 540 mg kg^{-1} Pb, more than 10 times higher than reference areas (Douay et al., 2008). Humans
72 are also exposed to Pb via atmospheric PM, such as reported by Zheng et al. (2021), in which Pb-
73 bearing dust was a key health issue in Mount Isa, a city close to a Pb mine in Queensland, Australia,
74 with ingestion of surface contaminated fruits and vegetables being a major exposure route.

75 Considering that Pb has low mobility inside plants, generally accumulating more in roots than
76 in leaves (Souza et al., 2012; Castro-Bedriñana et al., 2018), monitoring foliar Pb can be highly
77 influenced by PM deposition when near mining or processing facilities, as internal concentrations

78 may be modest. Furthermore, leaf morphology can also play a major role in PM retention, as dust
79 interception depends on leaf structure, phyllotaxy, presence of trichomes, number of stomata,
80 presence of wax and size of petioles (Prajapati and Tripathi, 2008; Prigioniero et al., 2023). In
81 particular, hirsute (hairy) or waxy leaves are especially prone to PM and metal surface accumulation
82 (Prajapati and Tripathi, 2008; Sanchez-Lopez et al., 2015; Gonzalez-Chavez et al. 2023). However,
83 hirsute leaves do not always retain more PM than glabrous (smooth) leaves, for example, Tiwari et
84 al. (2023) showed that while bigger particles may retain more in rough or trichome-rich leaf surfaces,
85 smooth leaves or with smaller trichomes, retain can smaller particles (respirable range) more
86 efficiently.

87 Sampling is a crucial step in monitoring metal contamination and, while sampling
88 methodologies and analytical techniques are often explored (Haghizadeh et al., 2024), less
89 attention has been given to sample preparation, such as washing methods. Heavy metal removal from
90 leaves after washing has been observed by using water (deionised or distilled), diluted acids and
91 detergents such as EDTA, HCl and Alcanox®, to varying results, depending on the metal in question
92 (Porter, 1986; Oliva and Valdes, 2004; Peryea, 2005; Ram et al., 2014; Nawab et al., 2015; Barrios
93 Arlanzon et al., 2019). For example, Oliva and Valdes (2004), observed no significant reduction of
94 Pb after washing leaves with distilled water only, while Sanchez-Lopez et al. (2015) found Pb
95 removal of 50-70% in leaves washed with Extran 2% (detergent) and HCl (10%), depending on the
96 plant species.

97 Therefore, careful washing of leaves is an important practice to discriminate between internal
98 and surface adhered contamination. Elevated heavy metal concentrations in plant leaves might
99 indicate: a) soil and/water contamination, if metals are metabolised (internally) in plant tissues from
100 root uptake and translocation to shoots; b) atmospheric deposition, when high metal contents are
101 found mostly on the external surface of the leaves; or c) both cases, in which contamination arises
102 from multiple pathways, including direct foliar absorption. However, to better inform intervention
103 and remediation actions and avoid under- or over-estimation of metal concentrations, metabolised Pb
104 should be differentiated from PM deposition as part of the monitoring process. Metabolised Pb will
105 have phytotoxic implications, such as enzyme inactivation, and other systemic nutritional and
106 metabolic disturbances (Zulfiqar et al., 2019), that are quite different from the general PM deposition
107 effects, which affect primarily the leaf surface, increasing shading, decreasing photosynthesis or gas-
108 exchange and altering leaf morphology (Rai, 2016).

109 Here we have investigated three straightforward washing procedures to distinguish internal
110 and surface adhered Pb in different plant species with contrasting leaf surface morphologies, sampled
111 at multiple locations near a lead mine which was a source of PM. We hypothesized that: i) Pb
112 deposition would be higher in plants closer to the mine as a result of higher aeolian PM, compared to

113 farther sites; ii) individuals with hirsute or resinous leaves would present higher Pb concentrations
114 due to surficial PM entrapment by trichomes or wax, respectively, and iii) foliar characteristics
115 (glabrous, resinous, hirsute) and trichomes affect Pb removal efficiency by different washing
116 solutions; iv) aqueous Citranox™ and EDTA solutions (chelating agents) are more effective in Pb
117 removal than deionised water. These were tested by sampling leaves of different plant species
118 presenting contrasting leaf surface morphologies, at different distances to the Pb source, and assessing
119 Pb concentrations (and other metals) using ICP-OES and confirming our results with visualisation
120 under electron microscopy (SEM).

121

122 **2. Material and Methods**

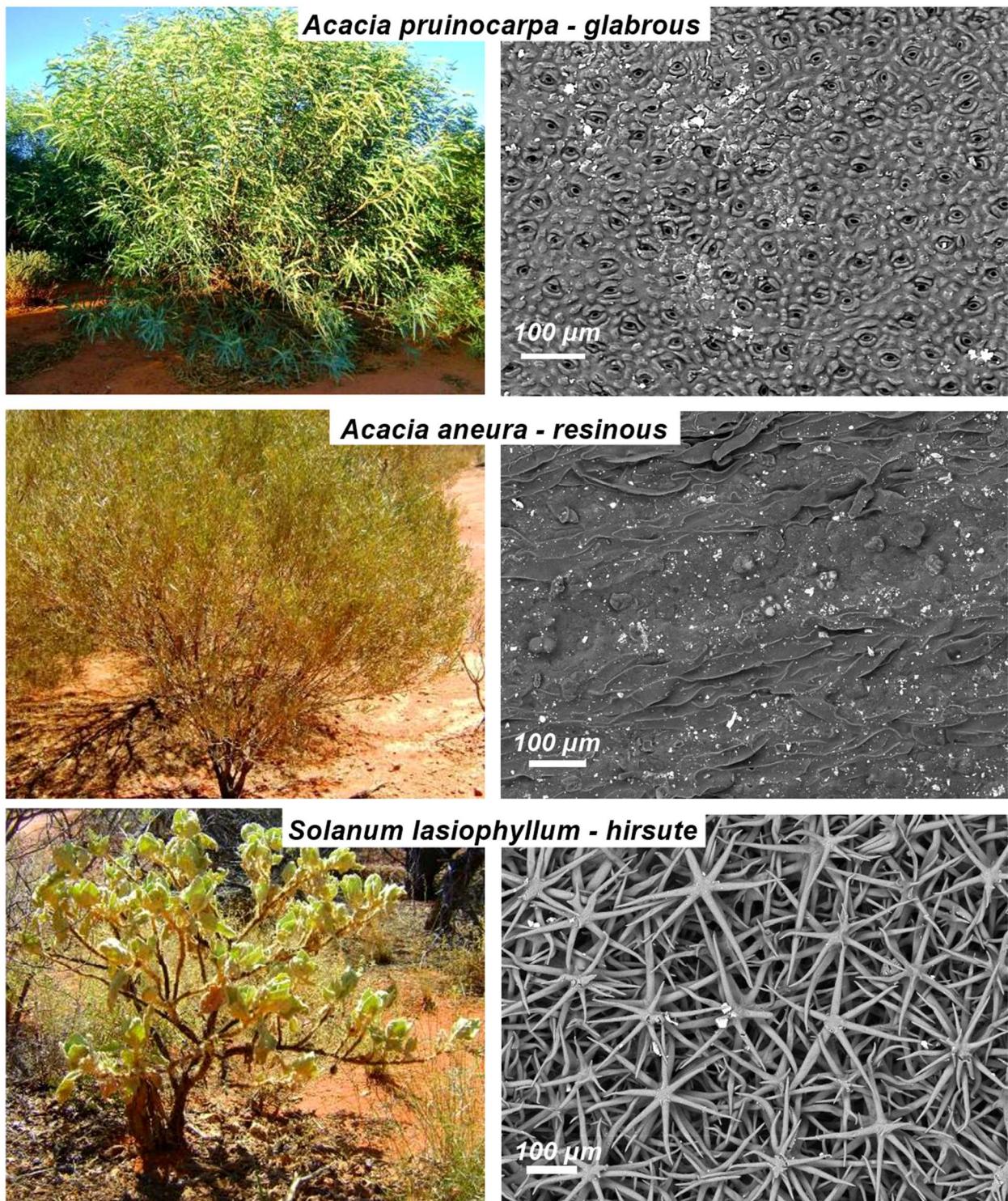
123 *2.1 The site selection*

124 Three sites were selected around a lead carbonate mine (PbCO_3), about 35 km west of Wiluna
125 (Western Australia), an area with a long history of mining activities, especially for gold extraction.
126 The climate in the region is arid and it receives c. 180 mm of rainfall per year on average, most of
127 which falls in summer and autumn months, with wind direction predominantly from the Northeast,
128 based on 1,734 observations from 1975-2016 (The Bureau of Meteorology, 2024).

129 As this study aims to discriminate leaf surface Pb (due to PM deposition) from internal foliar
130 Pb concentrations to better inform monitoring schemes, we selected these locations based on their
131 distances from the mining areas and tailing deposits. The three sites (Fig. 1; Table S1) were
132 categorised based on their distance from the Pb source, which we hypothesised to present different
133 likelihoods of Pb-contaminated PM accumulating on leaf surfaces of the surrounding vegetation: 1)
134 “Site 0” was located within a Pb-concentrate tailing storage area, 2) “Site 1”, located at 1.1 km from
135 the tailing storage, and “Site 2”, located approximately 7.2 km away from both Site 0 and Site 1 (Fig.
136 S1), but in the vicinity of another Pb ore body allowing some limited Pb deposition. Considering the
137 predominant wind direction (NE), Site 2 is expected to be downwind in relation to the mining site
138 (Site 0).

Figure 1. Sampling locations, “Site 0” located within a Pb-concentrate tailing storage area, “Site 1”, located at 1.1 km from the tailing storage, and “Site 2”, located approximately 7 km away from both Sites 0 and 1. Yellow arrow indicates the mining site.

139


140 **2.2 Sampling**

141 Leaf sampling occurred 10 months after mining activities in the area ceased for care and
 142 maintenance, in February 2012, with an atypical rainfall of < 10 mm compared to the average in that
 143 month of c. 40 mm. Individual plants that were targeted for sampling were growing within 30 m of
 144 the marked GPS location (Fig. 1, Fig S1).

145 Samples were taken at breast height (1.3 to 1.5 m) for all species and involved the excision of
 146 a small branch (with pruning shears), comprising a sufficient number of mature leaves to allow
 147 replication of washing treatments; two individual plants were selected to represent each of three
 148 species common to the locality (Table S2). Sampling of small branches rather than individual leaves
 149 retained freshness of individual leaves prior to analysis. Care was taken to avoid sampling damaged
 150 growth. Upon excision, each sample was immediately placed in a re-sealable polyethylene bag and
 151 placed into an ice box to maintain sample freshness. All samples were kept in darkness at
 152 approximately 4°C until processed in the laboratory; a period of not more than six days.

153 The same species were targeted for sampling at each site, with similar surface characteristics
 154 that were hypothesised to influence dust retention, categorised here as Leaf Types: *Acacia*
 155 *pruinocarpa* Tindale (Fabaceae), representing the glabrous (smooth) type, *Acacia aneura* F.Muell.
 156 ex Benth., representing the resinous (waxy) type, and *Solanum lasiophyllum* Dunal (Solanaceae), as
 157 the hirsute (hairy, with non-glandular stellate trichomes) leaf type (Fig. 2). We should note that some

158 individuals of *S. lasiophyllum* were shorter than the Acacia species, where samples were taken from
159 the top, at around 1 meter tall.

Figure 2. Images of the three selected species (left) from the field site and their respective scanning electron microscopy (SEM) images (right). Bright spots correspond to heavy mineral particles (scale: 100 µm). These images illustrate the three foliar types assessed in this study with glabrous (smooth), resinous (waxy) and hirsute (hairy) surfaces.

160

161 2.3 Washing treatments

162 All mature leaves were removed from the branches of the two sampled individuals
163 (representing each species) and were pooled to comprise one composite sample. Each composite
164 sample was thoroughly mixed and divided into two subsample groups, then again mixed and divided
165 to obtain four homogenised subsamples of roughly equal mass (Table S2).

166 Each subsample was subjected to one of four washing treatments: 1) leaves washed in 0.01
167 mol L⁻¹ ethylene di-amine tetra-acetic acid (EDTA); 2) leaves washed in 1% CitranoxTM (a
168 commercial blend of surfactants and weak organic acids); 3) leaves washed in purified de-ionised
169 (milli-Q) water, and 4) leaves left unwashed. Subsamples designated for washing were manually
170 shaken for one minute in 100 mL of solution in a closed container (c. 4 Hz). Owing to their larger
171 size, leaves of *A. pruinocarpa* were washed by the same method, but in 200 mL of solution. After
172 these treatments, a 10 mL aliquot of the washing solutions were taken for analysis. Washed leaves
173 were then rinsed in running de-ionised water and patted dry with paper towels.

174

175 2.4 Sample preparation and analyses

176 After washing procedures, a few leaves per subsample were selected at random with tweezers
177 and set aside for scanning electron microscopy. All remaining leaves were then dried in a ventilated
178 oven at 65°C to a constant weight (c. 72 hours). Leaf subsamples were then homogenised by milling
179 into a fine powder using a Sunbeam EM0400 multi-grinder. For each subsample approximately 0.15
180 g of ground leaf material was used for leaf digestion using HNO₃ (3 mL) and HClO₄ (1 mL) (Zasoski
181 and Burau, 1977). For quality control, we included two blanks (no samples added) and an in-house
182 reference material (*Medicago sativa*); our plant elemental analysis is certified by ASPAC (Australasia
183 Soil and Plant Analysis Council) for several elements, including Pb. Digested extracts were
184 determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) using a Perkin
185 Elmer Optima 5300 DV optical emission spectrometer. The limit of detection for Pb was of 0.44 mg
186 kg⁻¹; due to the discrepancy in Pb concentration in our reference material in relation to our analysed
187 samples, we refrained from providing recovery rates.

188 Considering that a known mass of leaf material (g) for each sample was washed in a known
189 volume of solution, it was possible to determine the surface Pb concentration per unit of leaf mass
190 that was removed during washing in mg kg⁻¹, instead of mg L⁻¹. Therefore, we determined the Pb
191 present in the washing solution (Surface Pb, mg kg⁻¹), the Pb concentration in digested leaves (Foliar
192 Pb, mg kg⁻¹), and the digested foliar Al and Fe concentrations (mg kg⁻¹).

193

194 2.5 Scanning Electron Microscopy of leaf surfaces

195 From each leaf sample that was designated for microscopic examination, a small section (3-5
196 mm²) of leaf tissue was excised from an area adjacent to the mid rib and halfway between the leaf

197 base and tip. Each of these was affixed to a 12.6 mm, pin type scanning electron microscope (SEM)
198 mount with double sided carbon tape. To enhance conductivity of particularly thick and/or hairy
199 samples, conductive carbon paint was applied to sample edges. All samples were then coated in
200 graphite carbon to a thickness of approximately 20 nm. Samples were examined under a Tescan
201 Vega3 SEM fitted with an Oxford Instruments X-Max 50 silicon drift, energy dispersive x-ray
202 microanalysis system (EDS).

203 In order to verify if Pb-bearing particles were still present in the hirsute leaves after washing
204 (beneath trichomes), images were also taken from Citranox-treated leaves after trichome removal, for
205 EDX (Energy Dispersive X-ray Spectrometry) readings. For this, leaf surfaces were carefully scraped
206 with a flat edged scalpel blade, cleaned with ethanol between samples. The X-ray spectra were
207 obtained at a working distance of 15 mm and voltage of ≤ 15 KeV, from targeted grains of dust or
208 surface soil materials identified in backscattered electron images, and AZtec software was used to
209 identify elements from spectral patterns. All SEM imaging and analyses were conducted at the Centre
210 for Microscopy, Characterisation & Analysis at The University of Western Australia.

211

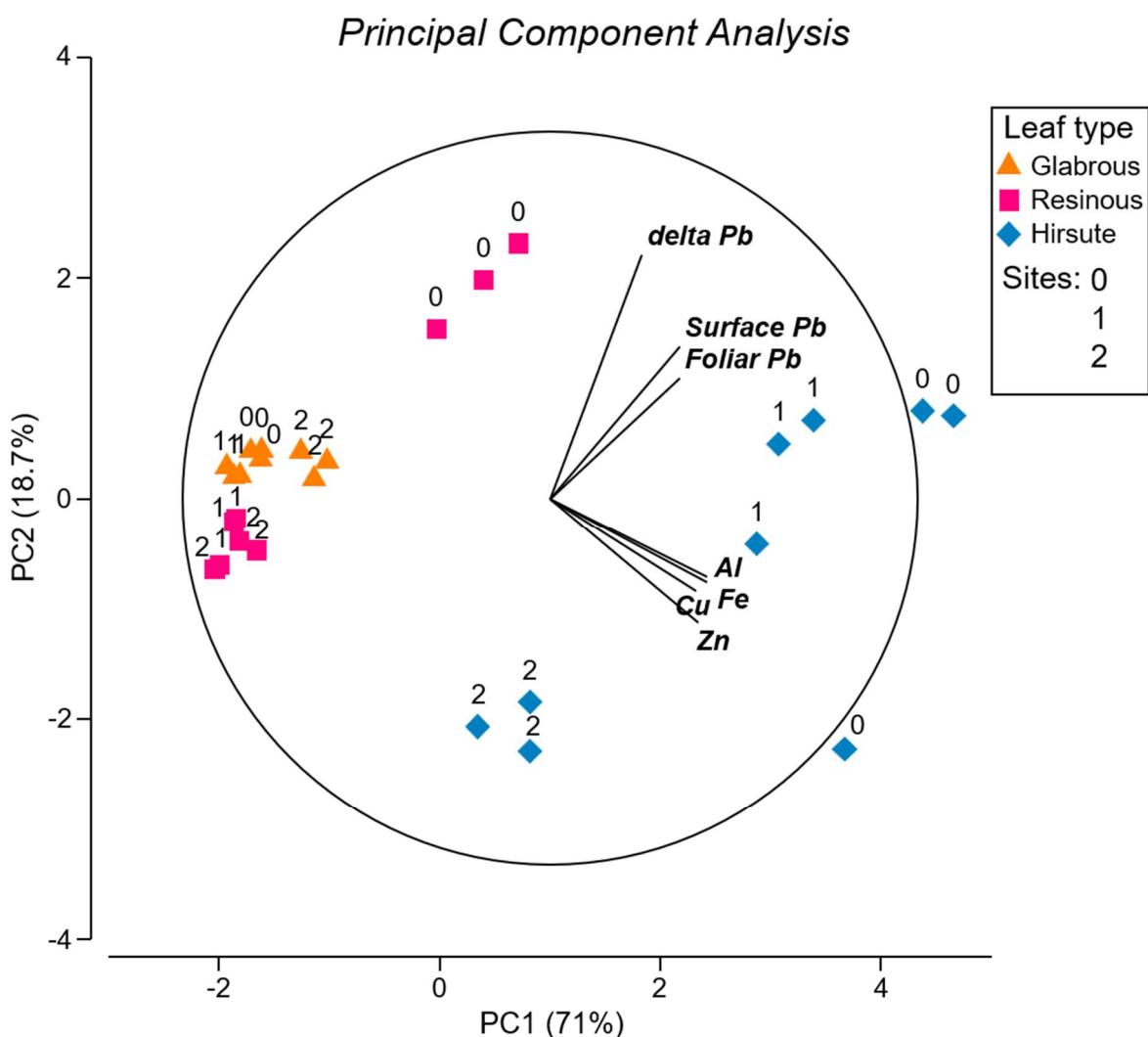
212 *2.6 Data Analysis*

213 All variables were transformed by $x^{1/4}$ to attain a normal distribution, and before multivariate
214 analyses, data was z-scored normalised to render the variables in the same scale (Legendre and
215 Legendre, 2012; Dago et al., 2021). To better summarise the data and observe particular patterns, a
216 Principal Component Analysis (PCA) was carried out in the transformed data set using seven
217 variables: Surface Pb, Foliar Pb, Al, Cu, Fe, Zn, and delta Pb, which is the difference in foliar Pb
218 concentrations between unwashed and washed samples. The multivariate variability in these samples
219 was captured by a Euclidean distance matrix, which was further used for a Three-Way
220 PERMANOVA (Permutational Multivariate Analysis of Variance), with 9999 permutations for main
221 effects and pairwise tests (Anderson, 2017), at 5% significance level. Factors compared were: Site
222 (0, 1, 2), Wash type (EDTA, Citranox, water) and Leaf type (glabrous, resinous, hirsute).

223 Univariate PERMANOVA (9999 permutations, $\alpha = 0.05$) was carried out to detect differences
224 between factors for each variable, separately, (9999 permutations, $\alpha = 0.05$). All statistical analyses
225 were performed using the software Primer-e v7 with the PERMANOVA+ add-on (Anderson et al.,
226 2008; Clarke and Gorley, 2015).

227

228


229

3. Results

230

3.1 Multivariate analyses show hirsute leaves association with Pb, Al and Fe

231 The PCA of seven metal variables was able to explain 89.7% of the data variability (Fig. 3),
232 and showed a clear separation between leaf types, in which hirsute leaves from Sites 0 and 1 were
233 associated with both foliar Pb and the surface Pb removed in washing, while hirsute leaves from Site
234 2 were associated with higher amounts of other metals (Al, Zn, Cu and Fe). All glabrous leaves were
235 negatively correlated with all metal concentrations, regardless of sampling sites. Interestingly,
236 resinous leaves had an intermediate pattern, comparable to the glabrous leaves when sampled from
237 Sites 2 and 1, but closer to hirsute leaves when sampled at Site 0, bearing higher Pb concentrations.

Figure 3. Principal component analysis using seven variables from leaves sampled in three different Sites: 0, 1 and 2; three leaf types: glabrous (smooth), resinous (waxy), and hirsute (hairy), under different washing treatments. Surface Pb: Pb concentration in the washing solution; Foliar Pb, Al, Cu, Fe and Zn: internal concentrations in washed leaves, delta Pb (the difference in foliar Pb concentrations between unwashed and washed samples): foliar Pb_{unwashed} – foliar Pb_{washed} samples).

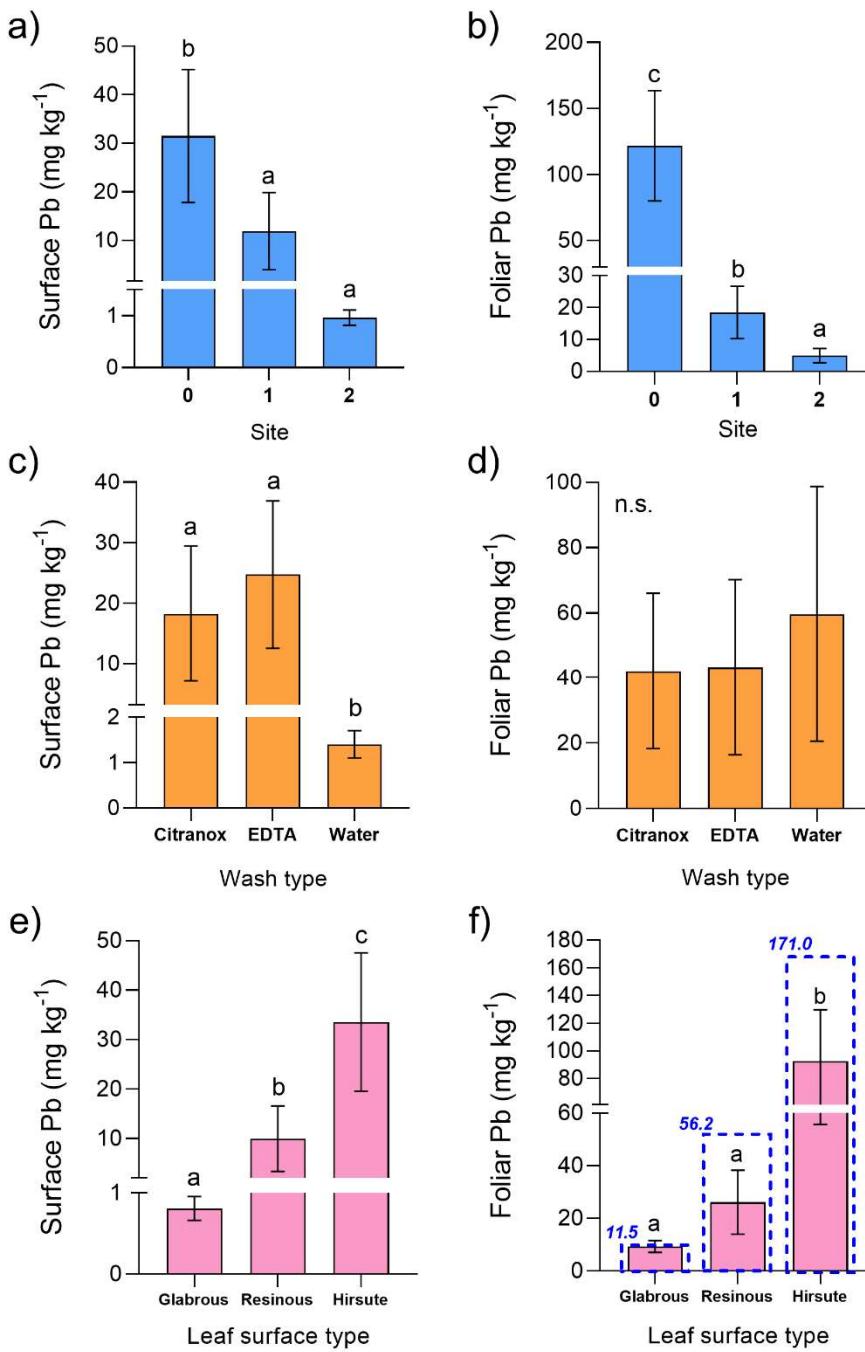
239 Site 0 was mostly correlated to the Pb variables, but only for the hirsute and resinous leaf
240 types (Fig. 3). Site 1 was also correlated to Surface and Foliar Pb, but only for hirsute leaves, while
241 most resinous samples and all glabrous samples (from all sites) were negatively correlated to all metal
242 concentrations. PERMANOVA detected significant multivariate differences among all leaf
243 morphologies, and the three site locations ($p < 0.01$).

244

245 *3.2 EDTA and Citranox are more efficient in Pb removal*

246 When analysing each variable individually, it is clear that leaves from Site 0 had overall more
247 surface Pb removed by washing than Sites 1 and 2, of 30 mg kg^{-1} on average (Fig. 4a), and a similar
248 pattern was seen in the Foliar Pb concentrations, reaching levels of around 120 mg kg^{-1} Pb (Fig. 4b).
249 Leaves from the Site 2 presented overall much lower Pb concentrations, with only 1 mg kg^{-1} of surface
250 Pb removal, and around 5 mg kg^{-1} of internal foliar Pb (Figs. 4a, 4b).

251 Both EDTA and Citranox solutions presented great efficiency in removing surface Pb, with
252 washed-off Pb concentrations being 18-fold and 13-fold higher than in water treatments, respectively
253 (Fig. 4c). Naturally, these different washing solutions did not influence internal foliar Pb (Fig. 4d).

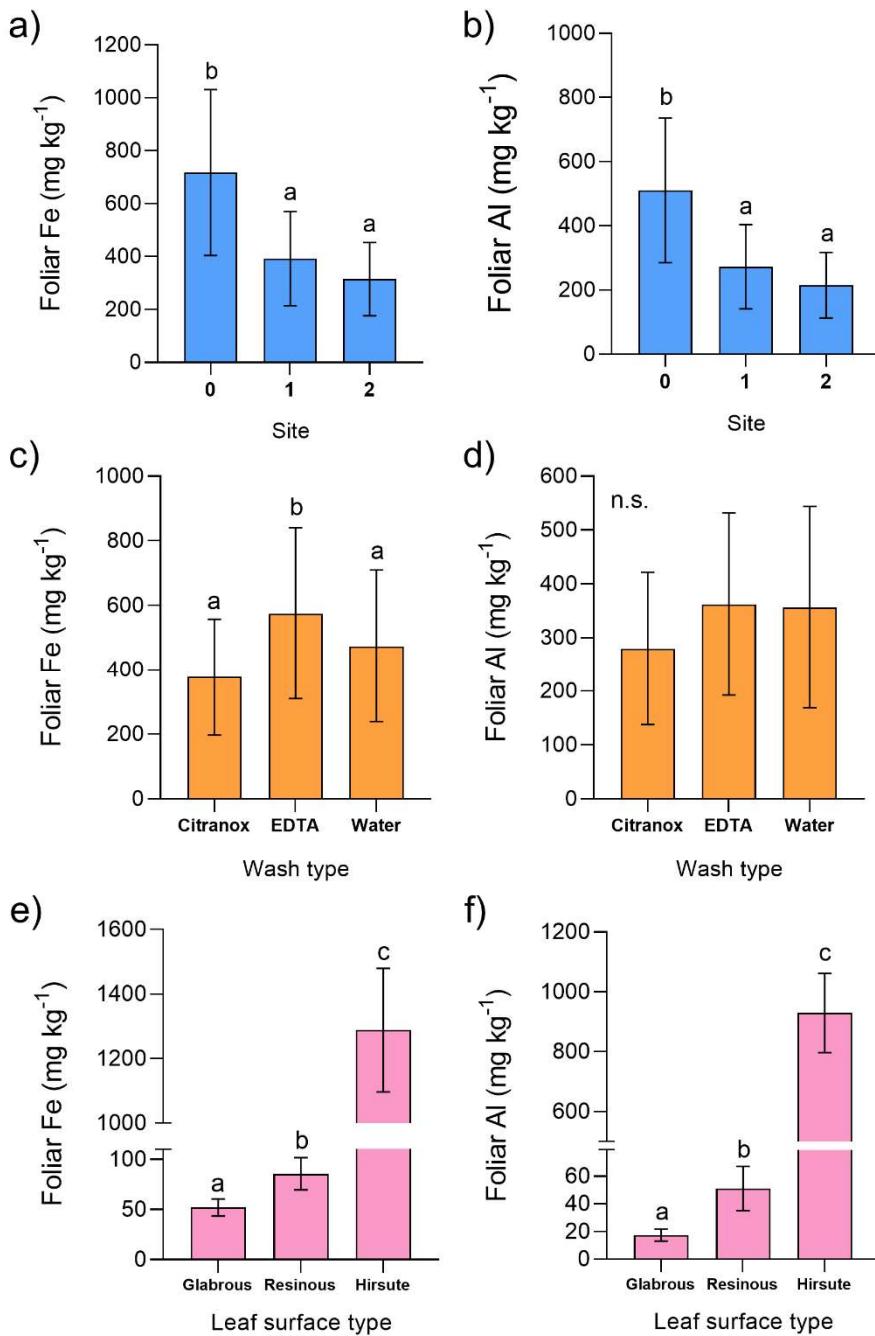

254

255 *3.3 High Pb accumulation and removal from hirsute leaves*

256 Leaf surface morphology had a significant impact on surface Pb removal, in the order of
257 hirsute > resinous > glabrous (Fig. 4e), with only 0.8 mg kg^{-1} Pb being removed from the latter. As
258 for the internal Pb concentrations, no differences were detected between glabrous and resinous leaves,
259 but both were significantly lower than in hirsute leaves (92 mg kg^{-1}) (Fig. 4f). Washed hirsute and
260 resinous leaves presented almost half of the foliar Pb detected in unwashed leaves, while it had little
261 difference on glabrous types (Fig. 4f).

262 Considering total Pb as the internal foliar Pb + washed-off Pb concentrations, we observed
263 that EDTA and Citranox could remove on average 50% of the total Pb by washing off dust particles
264 from hirsute and resinous leaves, with EDTA removing up to 83% (Table S3). In glabrous leaves,
265 however, these solutions have little effect, removing only 16% of the total Pb, and in some cases as
266 little as 3 and 5%, for Citranox and EDTA, respectively.

267


Figure 4. Pb concentration (a, c, e) from leaf surfaces after washing with EDTA, Citranox or water, from three different sampling sites (0, 1, 2) and leaf morphological types: glabrous (smooth), resinous (waxy), and hirsute (hairy). Foliar Pb concentrations (b, d, f) were determined in all samples by acid digestion. Displayed values are averages ($n = 9$) with standard error. Different letters correspond to significant pairwise differences, detected by PERMANOVA ($p < 0.05$). Values displayed with the dotted bars in f) correspond to mean values from unwashed samples.

268

269 *3.4 Foliar Fe, Al and other metals*

270 Although we did not assess Fe and Al concentrations in the washing solutions, these elements
 271 were determined in the digested samples after washing. Leaves from the site closest to the mine (Site
 272 0), presented higher Fe and Al concentrations than the other sampling sites, on average 718 and 510
 273 mg kg⁻¹, respectively (Figs. 5a, 5b). Interestingly, unlike with foliar Pb or Al (Fig. 5d), washing with
 274 EDTA significantly increased Fe concentrations within leaves (Fig. 5c).

275

Figure 5. Foliar Fe (a, c, e) and Al (b, d, f) from different leaf types (glabrous, resinous, hirsute), sampled at three different sites (0, 1, 2), after washing with EDTA, Citranox or de-ionised water. Displayed values are averages ($n = 9$) with standard error. Different letters correspond to significant pairwise differences, detected by PERMANOVA ($p < 0.05$).

276

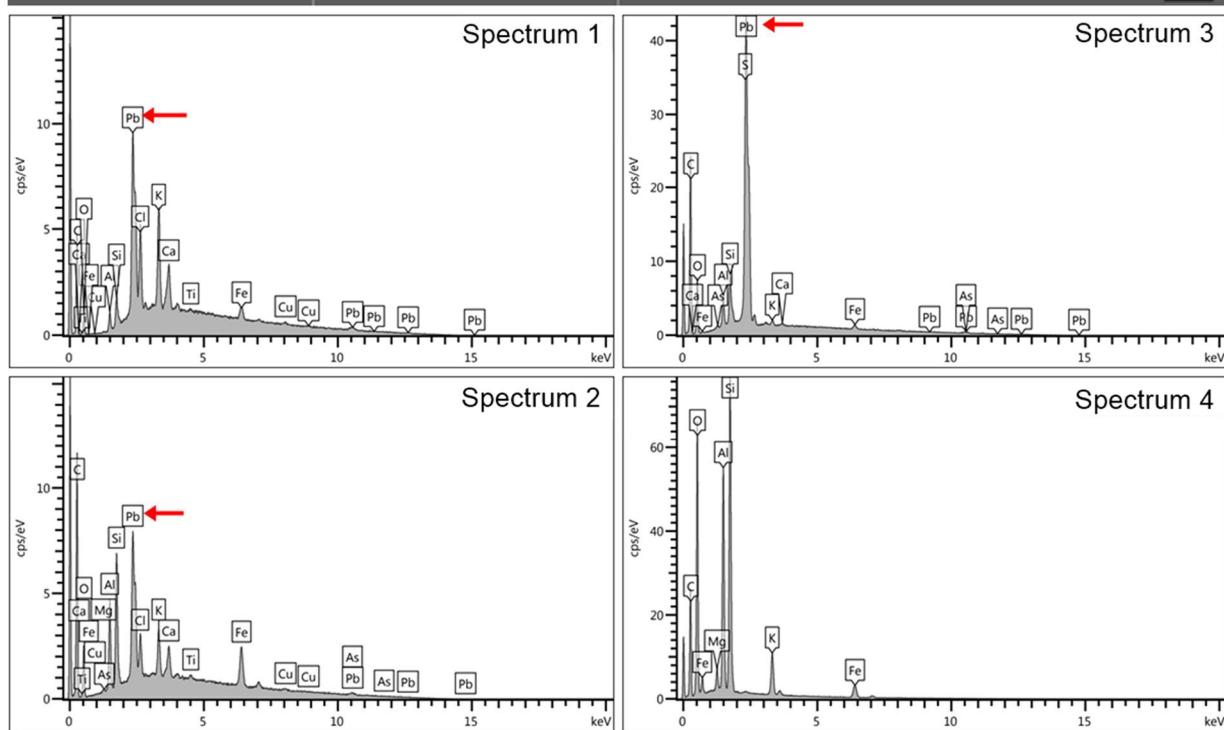
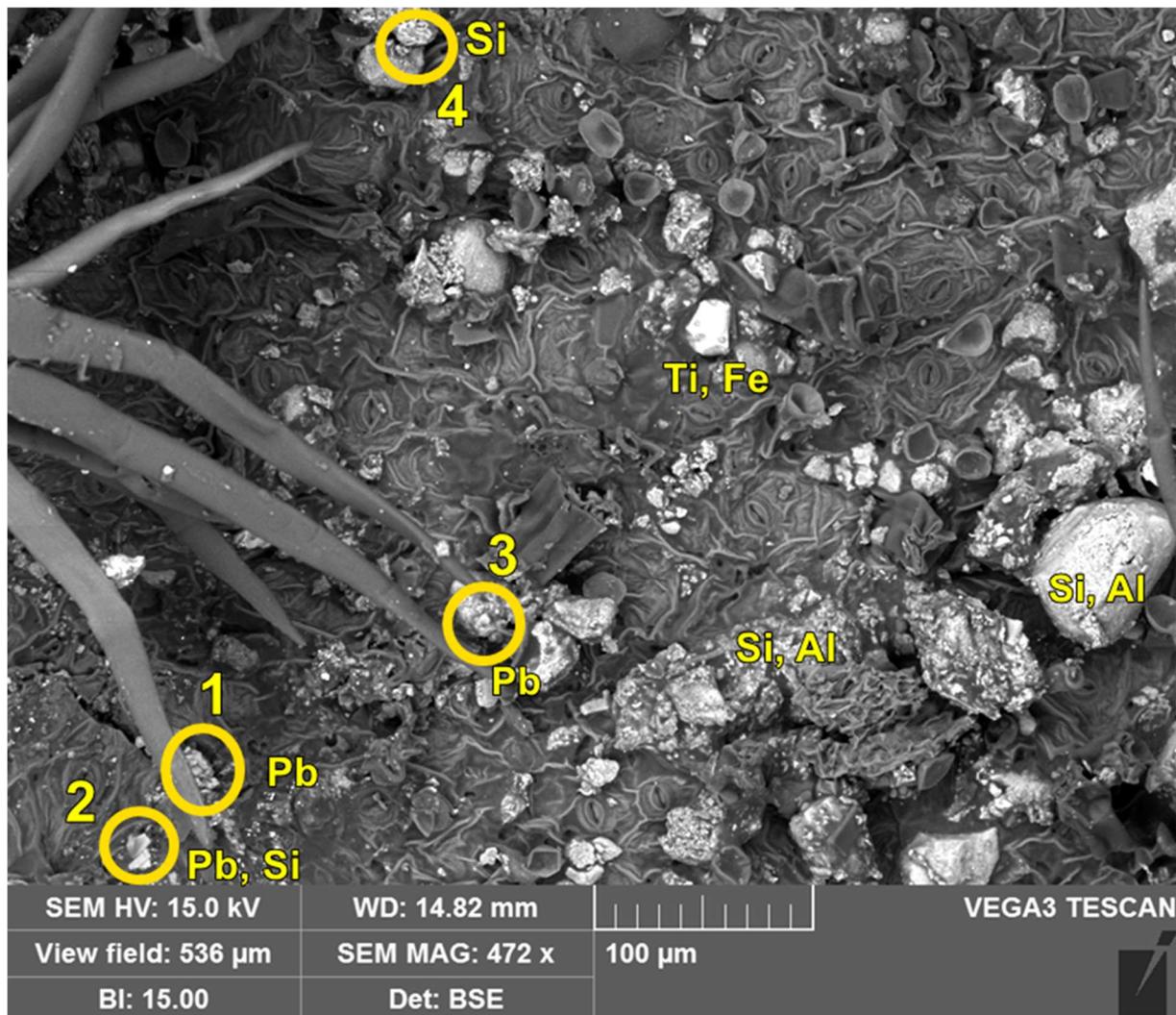
277 As with Pb, Hirsute leaves also presented the largest Fe and Al levels, of around 1,290 and
278 930 mg kg⁻¹, respectively, with their concentrations following a similar pattern of hirsute > resinous
279 > glabrous (Figs. 5e, 5f). Hirsute leaves also had higher Cu and Zn levels and resinous leaves
280 presented the highest Mn concentration, 10 times higher than glabrous and 2.5 times than hirsute
281 leaves (Table 1).

282

283

Table 1. Internal foliar metal concentrations from different leaf types (glabrous, resinous, hirsute), sampled at three different sites, after washing with EDTA, Citranox or de-ionised water¹. Values are the average \pm standard errors (n = 9).

Factor	Cu	Mn	Mo	Zn
	----- mg kg ⁻¹ -----			
<i>Site</i>	n.s.	***	n.s.	**
0	11.7 \pm 4	144 \pm 34 a	0.94 \pm 0.1	55.4 \pm 23 b
1	10.4 \pm 3	46.6 \pm 10 b	0.82 \pm 0.1	42.5 \pm 17 a
2	8.0 \pm 1	205 \pm 66 a	0.88 \pm 0.1	33.6 \pm 12 a
<i>Wash type</i>	n.s.	n.s.	n.s.	n.s.
EDTA	9.0 \pm 2	133 \pm 50	0.84 \pm 0.1	36.0 \pm 13
Citranox	10.2 \pm 3	136 \pm 52	0.95 \pm 0.1	43.7 \pm 17
Water	10.8 \pm 3	127 \pm 45	0.85 \pm 0.1	51.8 \pm 22
<i>Leaf type</i>	***	***	n.s.	***
Glabrous	6.1 \pm 0.5 b	29.1 \pm 3 a	0.93 \pm 0.1	7.5 \pm 0.2 a
Resinous	4.3 \pm 0.2 a	261 \pm 57 c	0.82 \pm 0.1	13.9 \pm 0.4 b
Hirsute	19.6 \pm 2.5 c	105 \pm 21 b	0.90 \pm 0.1	110 \pm 13 c



¹ - Asterisks symbolise significant effects detected for each factor: * p < 0.05, ** p < 0.01, *** p < 0.001 or n.s. p \geq 0.05. Different letters represent significant pairwise differences between metal concentrations within each factor (PERMANOVA, p < 0.05).

284

285 3.5 Particulate matter accumulation underneath trichomes

286 After careful removal of trichomes in a sample from Site 0 (high Pb) that had been washed
 287 with Citranox, it was clear that many PM remained adhered to the leaf surface, as shown under SEM
 288 (Fig. 6). EDX spectra taken at different spots showed the presence of high Pb-bearing particles, as
 289 well as other elements such as Al, Fe, silicon (Si) and titanium (Ti).

290

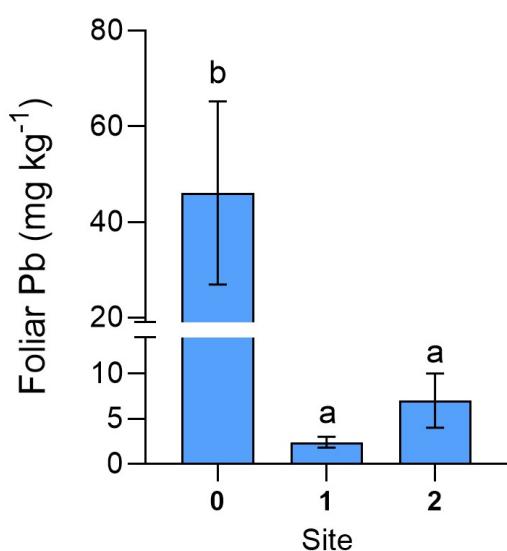


Figure 6. Backscattered electron micrograph of a hirsute leaf surface (*S. lasiophyllum* from Site 0) after Citranox washing and trichome removal. Circles indicate particulate matter of various sizes and compositions, from which EDX spectra were taken (1-4, displayed below, red arrows indicate Pb spectra). Other metals detected at high levels are also displayed: Si, Al, Fe and Ti.

291 3.6 Foliar Pb concentrations after exclusion of hirsute leaves

292 Considering the high Pb retention found in hirsute leaves despite washing procedures, we
 293 analysed the data for foliar Pb excluding all hirsute samples (Fig. 7). It becomes evident that hirsute
 294 samples led to an overestimation of internal Pb in samples from Sites 0 and 1 (Fig. 4). The latter,
 295 which previously presented 20 mg kg⁻¹ Pb (Fig. 4b), had an almost 10-fold decrease after exclusion
 296 of hirsute samples, to around 2.5 mg kg⁻¹ (Fig. 7), which was statistically similar to levels found in
 297 Site 2 (7 km away from the mine) (PERMANOVA, $p > 0.05$). With only glabrous and resinous
 298 samples, we found no significant differences between efficacy of washing solutions in Pb removal
 299 (Fig. S6), therefore the efficacy of washing solutions also depend on leaf morphology.

300

301 **Figure 7.** Foliar Pb concentration determined
 302 by acid digestion in sample collected at three
 303 different distances from the Pb source. Hirsute
 304 leaves were excluded from this analysis.
 305 Displayed values are averages ($n = 6$) with
 306 standard error. Different letters correspond to
 307 significant pairwise differences, detected by
 308 PERMANOVA ($p < 0.05$).

301

302 **4. Discussion**303 *4.1 Is atmospheric Pb deposition related to distance from the mine?*

304 Higher Pb accumulation and Pb removal by washing were found in sites closer to the Pb
 305 source, especially in the hirsute leaves from *S. lasiophyllum* (Sites 0 and 1) and in the resinous *A. aneura* (Site 0). This confirms our initial hypothesis that distance to the mining site is an important
 306 factor in Pb PM accumulation, where Sites 0 and 1 accumulated high and medium levels of surficial
 307 Pb, respectively, implicating the mine as the primary source of airborne Pb. Atmospheric deposition
 308 of Pb is often the result of dust and PM emitted from Pb mines and tailings (Kabata-Pendias and
 309 Mukherjee, 2007; Liao et al., 2008; Zheng et al., 2021), as was the case in the current study. In the
 310 Australian mining town of Broken Hill, high topsoil concentrations of Pb were found to be emitted
 311 from the Pb mined orebody in a concentric manner at up to 0.8 km from the source, and isotopic
 312 analysis indicated such topsoil enrichment was mostly due to the dispersion of Pb-rich dust and PM,
 313 and not as a result of other sources, such as petrol or paint flakes (Yang and Cattle, 2017). According
 314

315 to Raji and Palamuleni (2023), agricultural products within 1 km of a gold mine could be detrimental
316 to human health due to high levels of metals. In this work, the Pb concentrations found in washed
317 leaves reached around 100 mg kg^{-1} , which are similar to values reported for vegetation close to a
318 Pb/Zn mine in China, of 187 mg kg^{-1} (Hu and Ding, 2009), or close to a highly populated city in
319 India, around 120 mg kg^{-1} (Gajbhiye et al., 2022). These are much higher than reported some urban
320 European cities, found to be up to 15 mg kg^{-1} (Rodushkin et al., 2016; Pallavicini et al., 2018).

321 The distance effects on PM deposition observed in our data were greatly influenced by leaf
322 morphology; and after removing hirsute samples from the analyses, we found very low foliar Pb
323 concentrations in Site 1, similar to the values found in the farthest Site 2 (Fig. 7). Therefore, if
324 glabrous leaves are targeted and adequately washed, a distance of 1 km could mitigate PM
325 entrapment, allowing for more accurate discrimination between surface adhered and internal Pb,
326 when monitoring vegetation near mining sites.

327

328 *4.2 To what extent do leaf surface morphologies and trichomes affect Pb entrapment?*

329 We show here that hirsute leaves tend to be more prone to general PM retention and
330 consequently heavy metal retention, including Pb particles. Trichomes increase the leaf area by
331 several fold, providing an additional surface for particulate retention (Corada et al., 2021), especially
332 in leaves with stellate trichomes (Prigioniero et al., 2023), which are exactly the type found in *S.*
333 *lasiophyllum*. Both the amount of surface Pb removed by washing and the internal Pb detected after
334 acid digestion were significantly higher in hirsute leaves when compared to glabrous and resinous
335 types. This pattern was followed for Cu, Zn, Fe and Al (Figs. 5e, 5f; Table 1) in and on the leaves.
336 Sanchez-Lopez et al. (2015) reported elevated concentrations of Pb, Zn and Cu in unwashed hirsute
337 leaves from individuals close to mine tailings and proposed their use as ‘Phytobarriers’ to prevent
338 dust dispersion and limit the spread of heavy metals by wind.

339 Resinous leaves from *A. aneura* also presented higher superficial Pb concentrations than the
340 glabrous type, but not as high as in hirsute leaves (Fig. 4e), suggesting an intermediate surface
341 retention capacity. Higher PM retention in waxy or resinous leaves have also been indicated
342 previously, as oil production and wax deposition is conductive of particle retention (Dzierzanowski
343 et al., 2011; Li et al., 2024), although a systematic review has classified wax as having low
344 effectiveness in trapping PMs in urban areas (Corada et al., 2021). Thus, glabrous leaves appear to
345 be the most adequate foliar morphological type when monitoring internal Pb concentrations in
346 vegetation close to mines or mine tailings, i.e. within 1 km radius, to avoid overestimation due to PM
347 retention, although 100% PM removal is not guaranteed despite washing (Fig. S2). We should note
348 that even after washing, Pb concentrations inside glabrous leaves may not stem solely from soil
349 uptake, as Pb can be absorbed directly from PM adhered to the leaf surface (e.g. via open stomata)

350 and only more refined techniques such as isotopic discrimination analyses will be able to provide a
351 more informative picture into Pb pollution sources in the environment (Bi et al., 2018; Gao et al.,
352 2021; Ma et al., 2023). Glabrous morphology is still preferable to hirsute types in monitoring and
353 washing leaf field samples, as Gao et al. (2022) have recently demonstrated that trichomes can also
354 enhance Pb absorption from airborne PM, possibly introducing another artefact during washing
355 procedures.

356

357 *4.3 Does leaf morphology affect washing efficacy?*

358 Washing leaves decreased Pb concentration to various degrees, depending mostly on leaf
359 morphological type and solution used (Fig. 4). As initially hypothesised, solutions based on chelating
360 agents, i.e. EDTA and Citranox were more effective in surface Pb removal than deionised water,
361 without influencing internal Pb concentrations. These results are in accordance with what was
362 observed for Cu removal in different plant species, where Alconox or EDTA treatments had a higher
363 removal rate in comparison to water, also less pronounced in glabrous leaves (Faucon et al., 2007).
364 Here, the average Pb removal from glabrous leaves was from 13-19%, while those were of 22 to 63%
365 for resinous, and from 30 to 49% in hirsute leaves (Table S3). This indicates that glabrous leaves are
366 less susceptible to overestimation of accumulated Pb and able to provide more accurate representation
367 of possible contamination, such as via soil, water and even direct absorption from PM in foliar
368 surfaces (Fig. S2). Similarly, Barrios Arlanzon et al. (2019) observed different Pb concentrations in
369 hirsute leaves of different plant species after various washing procedures, also finding higher Pb
370 accumulation in the species with more hairy and sticky leaves.

371 Our results, along with the aforementioned studies, indicate that the efficacy of different
372 washing solutions depend on leaf morphological types and that water washing, in particular, may not
373 be enough to remove most metals from leaf surfaces (Adhikari and Struwig, 2024), as previously
374 suggested by Ataabadi et al. (2012), especially from trichome-rich leaves. Indeed, running water was
375 only able to remove around 66% of PM from leafy vegetables in urban environments and decrease
376 its Pb contents (Augustsson et al., 2023), nonetheless, many other studies tend to only use water as
377 the washing protocol, especially as to mimic household practices for vegetable washing (Ram et al.,
378 2014; Xiong et al., 2014; Sharma et al., 2020; Gajbhiye et al 2022; Wu et al., 2022).

379 However, surface leaf morphology is often not a considered factor when water is selected for
380 the washing procedure (Hu and Ding 2009; Serbula et al., 2012; Zalud et al., 2012; Xiong et al., 2019;
381 Wu et al., 2022; Li et al., 2023; Raji and Palamuleni, 2023). For instance, Nawab et al. (2015), used
382 water washing (deionised) while monitoring metal accumulation in the vegetation near a mining area,
383 where samples of 23 plant species were collected, but the presence of trichomes or wax was not a
384 considered factor. Similarly, leaf samples were washed with solely with water when monitoring metal

385 pollution in dry riverbeds, including the species *Dittrichia viscosa* (Cuevas et al., 2023) known for
386 its sticky leaves. In contrast, in the study by Gajbhiye et al. (2022), leaf morphology was a major
387 factor when assessing PM retention in plants, yet only water washing was implemented.

388 Another reason for careful selection of washing reagents is that some of them may enhance
389 cuticle permeability and even fix metals onto the leaf surface (Porter, 1986; Oliva and Valdes, 2004),
390 also leading to metal overestimation. Such permeability alteration is possibly the reason we observed
391 higher internal Fe in leaves treated with EDTA, as Fe-EDTA is a common fertiliser applied to crop
392 leaves to correct Fe-deficiency, allowing foliar absorption (Rodríguez-Lucena et al., 2010).
393 Considering the similarities between Citranox and EDTA in Pb removal, the former might be a better
394 alternative as to avoid the infiltration of Fe into leaves.

395 Despite higher Pb removal from hirsute foliar surfaces in comparison to other leaf types, these
396 leaves still presented larger internal Pb concentrations, as well as higher internal Fe, Al, Cu and Zn.
397 Such results could be due to: 1) *S. lasiophyllum* may have an intrinsic capacity for metal
398 accumulation, considering that other *Solanum* species have been considered for heavy metal
399 phytoremediation, such as *S. nigrum* and *S. viarum* (Dou et al., 2022; Shukla et al., 2023); 2) its
400 trichomes may enhance Pb foliar absorption (Gao et al., 2022) or act as a detoxifying sink for metals,
401 as accumulation in the base of trichomes is a common mechanism for heavy metal tolerance in many
402 hirsute leaves (Blamey et al., 2015; Ricachenevsky et al., 2021; Shukla et al., 2023); or 3) the stellate
403 trichomes from hirsute *S. lasiophyllum* are a physical barrier that hinders the washing process,
404 leading to overestimation of metals even after washing. Imaging via SEM shows that the latter is
405 more likely, as many metallic particles remained adhered onto the surface of Citranox-washed leaves,
406 beneath the trichomes, including Pb, Fe and Al-bearing minerals. It appears that airborne dust
407 particles that become trapped in hirsute leaves eventually become deposited at the leaf surface. This
408 probably occurs through the shaking motion of leaves as they are buffeted by breezes, or perhaps also
409 through dynamic pressure differentials that would occur between the boundary layer of still, moist
410 air at the leaf surface that is produced by the leaf hairs and the higher pressure, ambient moving air
411 above the leaf hairs. We speculate that this difference in dynamic air pressure may result in the
412 formation of eddies or drafts between the hairs, pushing trapped dust down to the leaf surface where
413 the air is still. The PM size trapped in hirsute leaves are mostly over 10 μm , in line with the results
414 reported by Tiwari et al. (2023), indicating that trichome-rich leaves are prone to retaining larger
415 particles than smoother leaves.

416 Interestingly, the resinous leaves of *A. aneura* presented the highest Mn concentrations. Such
417 elevated Mn may of course stem from residual dust remaining after washing, but because this was
418 the only element found in a higher level compared to hirsute leaves, it seems that this may be a
419 characteristic of *A. aneura*, as Mn was shown to be involved in deposition of cuticular waxes in

420 resinous leaves (Hebbern et al., 2009; Alejandro et al., 2017). Thus, the mechanisms by which PM is
421 effectively removed or retained deserves further investigation, considering PM sizes, metal type and
422 the physical and chemical barriers found in foliar surfaces.

423

424 **Conclusions**

425 We show here that particulate matter deposition of Pb is a considerable fraction of the total
426 foliar Pb near mining sites, depending on leaf morphological characteristics and the distance to the
427 pollution source. This superficial Pb can be removed after simple washing procedures to different
428 extents, mostly by EDTA and Citranox, and less so by deionised water, especially in hirsute leaves.
429 Nevertheless, regardless of washing procedures, it is clear that leaf surface morphology is a crucial
430 factor when monitoring Pb pollution in the environment, especially near mining sites and mine
431 tailings, where higher PM dispersion and deposition are likely to occur. As shown here and in the
432 literature, metal removal due to washing will depend on its chemical nature and interactions with
433 metals, as well as the physical barriers from diverse foliar morphologies, with resinous and hirsute
434 leaves being more prone to metal retention from air contamination. Therefore, in order to better assess
435 internal Pb in plants and monitor the possible pathway of soil contamination, glabrous leaves appear
436 to be a more reliable choice to avoid overestimation, provided they are not from a metal
437 hyperaccumulator species. Although more costly, only isotopic studies will be able to determine Pb
438 sources and discriminate between internal Pb due to soil uptake and Pb arising from direct foliar
439 absorption.

440

441 **References**

442 Adhikari, S., Struwig, M. 2024. Profile of potentially toxic elements in leaves of edible ornamental
443 plants cultivated in roadside soils in Mahikeng, South Africa. *South African Journal of
444 Botany*. 174: 75-84. <https://doi.org/10.1016/j.sajb.2024.09.001>

445 Alejandro, S., Cailliatte, R., Alcon, C., Dirick, L., Domergue, F., Correia, D., Castaings, L., Briat,
446 J.F., Mari, S., Curie, C. 2017. Intracellular distribution of manganese by the trans-golgi
447 network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis.
448 *The Plant Cell*. 29, 3068–3084. <https://doi.org/10.1105/tpc.17.00578>

449 Alloway, B.J. 2013. Sources of heavy metals and metalloids in soils. In: Alloway, B.J. (Ed.) *Heavy
450 Metals in Soils*. Springer, Dordrecht, pp. 11-50. <https://doi.org/10.1007/978-94-007-4470-7>

451 Anderson, M.J., Gorley, R.N., Clarke, K.R. 2008. *PERMANOVA+ for PRIMER: Guide to Software
452 and Statistical Methods*. Plymouth: PRIMER-E.

453 Anderson, M.J. 2017. *Permutational Multivariate Analysis of Variance (PERMANOVA)*. In *Wiley
454 StatsRef: Statistics Reference Online*. American Cancer Society, 1-15.
455 <https://doi.org/10.1002/9781118445112.stat07841>

456 Ataabadi, M., Hoodaji, M., Najafi, P. 2012. Assessment of washing procedure for determination of
457 some airborne metal concentrations. *African Journal of Biotechnology*. 11, 4391-4395.
458 <https://doi.org/10.5897/AJB11.2781>

459 Augustsson, A., Lundgren, M., Qvarforth, A., Engström, E., Paulukat, C., Rodushkin, I., Moreno-
460 Jiménez, E., Beesley, L., Trakal, L., Hough, R.L. 2023. Urban vegetable contamination –
461 The role of adhering particles and their significance for human exposure. *Science of The
462 Total Environment*. 900: 165633. <https://doi.org/10.1016/j.scitotenv.2023.165633>

463 Barrios Arlanzón, M.Y., González-Chávez, M.C.A., Carrillo-González, R., Sánchez-López, A.S.,
464 Carrillo López, L.M. 2019. Alternative washing protocols for releasing metals deposited on
465 leaf surfaces. *Communications in Soil Science and Plant Analysis*, 50, 1148-1160.
466 <https://doi.org/10.1080/00103624.2019.1604733>

467 Bi, C., Zhou, Y., Chen, Z., Jia, J., Bao, X. 2018. Heavy metals and lead isotopes in soils, road dust
468 and leafy vegetables and health risks via vegetable consumption in the industrial areas of
469 Shanghai, China. *Science of The Total Environment*. 619–620: 1349-1357.
470 <https://doi.org/10.1016/j.scitotenv.2017.11.177>

471 Blamey, F.P.C., Hernandez-Soriano, M.C., Cheng, M., Tang, C., Paterson, D.J., Lombi, E., Wang,
472 W.H., Scheckel, K.G., Kopittke, P.M. 2015. Synchrotron-based techniques shed light on
473 mechanisms of plant sensitivity and tolerance to high manganese in the root environment.
474 *Plant Physiology*. 169, 2006–2020. <https://doi.org/10.1104/pp.15.00726>

475 Castro-Bedriñana, J., Chirinos-Peinado, D., Garcia-Olarte, E., Quispe-Ramos, R. 2021. Lead transfer
476 in the soil-root-plant system in a highly contaminated Andean area. PeerJ. 9:e10624.
477 <https://doi.org/10.7717/peerj.10624>

478 Clarke, K.R., Gorley, R.N. 2015. PRIMER v7: User Manual/Tutorial. Plymouth: PRIMER-E.

479 Corada, K., Woodward, H., Alaraj, H., Collins, C.M., de Nazelle, A. 2021. A systematic review of
480 the leaf traits considered to contribute to removal of airborne particulate matter pollution in
481 urban areas. Environmental Pollution. 269: 116104.
482 <https://doi.org/10.1016/j.envpol.2020.116104>

483 Cuevas, J., Faz, Á., Martínez-Martínez, S., Gabarrón, M., Beltrá, J., Martínez, J., Acosta, J.A. 2023.
484 Bio-monitoring of metal(loid)s pollution in dry riverbeds affected by mining activity. Plants,
485 12, 3775. <https://doi.org/10.3390/plants12213775>

486 Dago, D.N., Kablan, G.A.J., Konan, A.A., Hermann, D.L., Dagnogo, D., Nafan, D., Malerba, G.
487 2021. Normality assessment of several quantitative data transformation procedures.
488 Biostatistics and Biometrics Open Access Journal. 10, 555786.
489 <https://doi.org/10.19080/BBOAJ.2021.10.555786>

490 Dou, X., Dai, H., Skuza, L., Wei, S. 2022. Cadmium removal potential of hyperaccumulator *Solanum*
491 *nigrum* L. under two planting modes in three years continuous phytoremediation.
492 Environmental Pollution. 307, 119493. <https://doi.org/10.1016/j.envpol.2022.119493>

493 Douay, F., Roussel, H., Pruvot, C., Waterlot, C. 2008. Impact of a smelter closedown on metal
494 contents of wheat cultivated in the neighbourhood. Environmental Science and Pollution
495 Research, 15, 162–169. <https://doi.org/10.1065/espr2006.12.366>

496 Dzierżanowski, K., Popek, R., Gawrońska, H., Sæbø, A., Gawroński, S.W. 2011. Deposition of
497 particulate matter of different size fractions on leaf surfaces and in waxes of urban forest
498 species. International Journal of Phytoremediation, 13, 1037-1046.
499 <https://doi.org/10.1080/15226514.2011.552929>

500 Faucon, M.P., Shutcha, M.N., Meerts, P. 2007. Revisiting copper and cobalt concentrations in
501 supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations
502 in soil. Plant and Soil. 301, 29–36. <https://doi.org/10.1007/s11104-007-9405-3>

503 Gajbhiye, T., Pandey, S.K., Malik, T.G., Kim, K., Khan, M.L. 2022. Micro-morphological analysis
504 of foliar uptake and retention of airborne particulate matter (PM)-bound toxic metals:
505 Implications for their phytoremediation. Chemistry and Ecology. 38(7): 636-654.
506 <https://doi.org/10.1080/02757540.2022.2108021>

507 Gajbhiye, T., Tiwari, A., Malik, T.G., Dubey, R., Pandey, S.K., Alharby, H.F., Hakeem, K.R. 2024.
508 SEM-EDS-based rapid measurement and size-fractionated speciation of airborne particulate

509 matter and associated metals utilizing plant leaves. Environmental Science and Pollution
510 Research. 31: 47144–47156. <https://doi.org/10.1007/s11356-024-34222-9>

511 Gao, P., Xue, P., Dong, J., Zhang, X., Sun, H., Geng, L., Luo, S., Zhao, J., Liu, W. 2021. Contribution
512 of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via
513 stomata. Journal of Hazardous Materials. 407: 124356.
514 <https://doi.org/10.1016/j.jhazmat.2020.124356>

515 Gao, P., Zhang, X., Xue, P., Dong, J., Dong, Y., Zhao, Q., Geng, L., Lu, Y., Zhao, J., Liu, W. 2022.
516 Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate
517 foliar uptake of Pb in atmospheric PM2.5. Environmental Pollution. 293: 118585.
518 <https://doi.org/10.1016/j.envpol.2021.118585>

519 Ghaderian, S.M., Hemmat, G.R., Reeves, R.D., Baker, A.J.M. 2007. Accumulation of lead and zinc
520 by plants colonizing a metal mining area in Central Iran. Journal of Applied Botany and
521 Food Quality, 81, 145-150

522 González-Chávez, M.C.A., Santiago-Martínez, M.E., Corona-Sánchez, J.E., Ruiz-Olivares, A.,
523 Carrillo-González, R. 2023. Wild plants canopies may adsorb dust particles eroded from
524 mine tailings, decreasing potentially toxic elements dispersion. International Journal of
525 Environmental Science and Technology. 20, 1277–1288. <https://doi.org/10.1007/s13762-022-04042-w>

526 Haghizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S.,
527 Delnabi Asl, S., Aghababai Beni, A. 2024. Comprehensive analysis of heavy metal soil
528 contamination in mining Environments: Impacts, monitoring Techniques, and remediation
529 strategies. Arabian Journal of Chemistry 17, 105777.
530 <https://doi.org/10.1016/j.arabjc.2024.105777>

531 Hebborn, C.A., Laursen, K.H., Ladegaard, A.H., Schmidt, S.B., Pedas, P., Bruhn, D., Schjoerring,
532 J.K., Wulfsohn, D., Husted, S. 2009. Latent manganese deficiency increases transpiration in
533 barley (*Hordeum vulgare*). Physiologia Plantarum. 135(3): 307-316.
534 <https://doi.org/10.1111/j.1399-3054.2008.01188.x>

535 Hu, X., Ding, Z. 2009. Lead/cadmium contamination and lead isotopic ratios in vegetables grown in
536 peri-urban and mining/smelting contaminated sites in Nanjing, China. Bulletin of
537 Environmental Contamination and Toxicology. 82: 80–84. <https://doi.org/10.1007/s00128-008-9562-y>

539 Kabata-Pendias, A., Mukherjee, A. B. 2007. Trace Elements from Soil to Human. Springer Berlin,
540 Heidelberg. <https://doi.org/10.1007/978-3-540-32714-1>

541 Legendre, P.; Legendre, L. 2012 Ordination in reduced space. Developments in environmental
542 modelling, 24, 425–520. <https://doi.org/10.1016/B978-0-444-53868-0.50009-5>

544 Li, Q., Han, Z., Tian, Y., Xiao, H., Yang, M. 2023. Risk assessment of heavy metal in farmlands and
545 crops near Pb-Zn mine tailing ponds in Niujiaotang, China. *Toxics*.
546 <https://doi.org/10.3390/toxics11020106>

547 Li, Q., Liao, J., Zhu, Y., Ye, Z., Chen, C., Huang, Y., Liu, Y. 2024. A study on the leaf retention
548 capacity and mechanism of nine greening tree species in central tropical Asia regarding
549 various atmospheric particulate matter values. *Atmosphere*. 15, 394.
550 <https://doi.org/10.3390/atmos15040394>

551 Liao, G., Liao, D., Li, Q. 2008. Heavy metals contamination characteristics in soil of different mining
552 activity zones. *Transactions of Nonferrous Metals Society of China*. 18, 207-211.
553 [https://doi.org/10.1016/S1003-6326\(08\)60037-0](https://doi.org/10.1016/S1003-6326(08)60037-0)

554 Ma, C., Lin, L., Yang, J., Liu, F., Berrettoni, M., Zhang, K., Liu, N., Zhang, H. 2023. Mechanisms of
555 lead uptake and accumulation in wheat grains based on atmospheric deposition-soil sources.
556 *Science of the Total Environment*, 885, 163845.
557 <https://doi.org/10.1016/j.scitotenv.2023.163845>

558 Macklin, M.G., Thomas, C.J., Mudbhakal, A., Brewer, P.A., Hudson-Edwards, K.A., Lewin, J.,
559 Scussolini, P., Eilander, D., Lechner, A., Owen, J., Bird, G., Kemp, D., Mangalaa, K.R.
560 2023. Impacts of metal mining on river systems: a global assessment. *Science*, 381, 1345-
561 1350. <https://doi.org/10.1126/science.adg6704>

562 Nawab, J., Khan, S., Shah, M.T., Khan, K., Huang, Q., Ali, R. 2015. Quantification of heavy metals
563 in mining affected soil and their bioaccumulation in native plant species. *International
564 Journal of Phytoremediation*, 17, 801–813. <https://doi.org/10.1080/15226514.2014.981246>

565 Nriagu, J.O. 1996. A history of global metal pollution. *Science* 272(5259): 223-224.
566 <https://doi.org/10.1126/science.272.5259.223>

567 Oliva, S.R., Valdés, B. 2004. Influence of washing on metal concentrations in leaf tissue.
568 *Communications in Soil Science and Plant Analysis*. 35, 1543-1552.
569 <https://doi.org/10.1081/CSS-120038553>

570 Pallavicini, N., Engström, E., Baxter, D.C., Öhlander, B., Ingri, J., Hawley, S., Hirst, C., Rodushkina,
571 K., Rodushkin, I. 2018. Ranges of B, Cd, Cr, Cu, Fe, Pb, Sr, Tl, and Zn concentrations and
572 isotope ratios in environmental matrices from an urban area. *Journal of Spectroscopy*.
573 <https://doi.org/10.1155/2018/7408767>

574 Peryea, F.J. 2005. Sample washing procedures influence mineral element concentrations in zinc-
575 sprayed apple leaves. *Communications in Soil Science and Plant Analysis*. 36, 2923–2931.
576 <https://doi.org/10.1080/00103620500306098>

577 Prajapati, S.K., Tripathi, B.D. 2008. Seasonal variation of leaf dust accumulation and pigment content
578 in plant species exposed to urban particulates pollution. *Journal of Environmental Quality.*
579 37, 865-870. <https://doi.org/10.2134/jeq2006.0511>

580 Prigioniero, A., Postiglione, A., Zuzolo, D., Niinemets, Ü., Tartaglia, M., Scarano, P., Mercurio, M.,
581 Germinario, C., Izzo, F., Trifuggi, M., Toscanesi, M., Sciarrillo, R., Guarino, C. 2023. Leaf
582 surface functional traits influence particulate matter and polycyclic aromatic hydrocarbons
583 air pollution mitigation: Insights from Mediterranean urban forests. *Journal of Cleaner
584 Production.* 418, 138158. <https://doi.org/10.1016/j.jclepro.2023.138158>

585 Porter, J.R. 1986. Evaluation of washing procedures for pollution analysis of *Ailanthus altissima*
586 leaves. *Environmental Pollution Series B, Chemical and Physical.* 12, 195-202.
587 [https://doi.org/10.1016/0143-148X\(86\)90009-1](https://doi.org/10.1016/0143-148X(86)90009-1)

588 Rai, P.K. 2016. Impacts of particulate matter pollution on plants: Implications for environmental
589 biomonitoring. *Ecotoxicology and Environmental Safety.* 129: 120-136.
590 <https://doi.org/10.1016/j.ecoenv.2016.03.012>

591 Raji, I.B., Palamuleni, L.G. Toxic Heavy Metals in Soil and Plants from a Gold Mining Area, South
592 Africa. *Heavy Metals – Recent Advances.* Available online:
593 <http://dx.doi.org/10.5772/intechopen.109639> (accessed on 10 October 2024).

594 Ram, S.S., Majumder, S., Chaudhuri, P., Chanda, S., Santra, S.C., Maiti, P.K., Sudarshan, M.,
595 Chakraborty, A. 2014. Plant canopies: bio-monitor and trap for re-suspended dust
596 particulates contaminated with heavy metals. *Mitigation and Adaptation Strategies for
597 Global Change,* 19, 499–508. <https://doi.org/10.1007/s11027-012-9445-8>

598 Ricachenevsky, F. K., Punshon, T., Salt, D. E., Fett, J. P., Guerinot, M. L. 2021. *Arabidopsis thaliana*
599 zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. *Scientific
600 Reports.* 11, 5278. <https://doi.org/10.1038/s41598-021-84508-y>

601 Rodríguez-Lucena, P., Hernández-Apaolaza, L., Lucena, J. J. 2010. Comparison of iron chelates and
602 complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of
603 soybean. *Journal of Plant Nutrition and Soil Science.* 173, 120-126.
604 <https://doi.org/10.1002/jpln.200800256>

605 Rodushkin, I., Pallavicini, N., Engström, E., Sörlin, D., Öhlander, B., Ingrı, J., Baxter, D.C. 2016.
606 Assessment of the natural variability of B, Cd, Cu, Fe, Pb, Sr, Tl and Zn concentrations and
607 isotopic compositions in leaves, needles and mushrooms using single sample digestion and
608 two-column matrix separation. *Journal of Analytical Atomic Spectrometry.* 31: 220-233.
609 <https://doi.org/10.1039/C5JA00274E>

610 Sánchez-López, A.S., Carrillo-González, R., González-Chávez, M.C.A., Rosas-Saito, G. H.,
611 Vangronsveld, J. 2015. Phytobarriers: Plants capture particles containing potentially toxic

elements originating from mine tailings in semiarid regions. Environmental Pollution. 205, 33-42. <https://doi.org/10.1016/j.envpol.2015.05.010>

Sharma, P., Yadav, P., Ghosh, C., Singh, B. 2020. Heavy metal capture from the suspended particulate matter by *Morus alba* and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere. 254: 126863. <https://doi.org/10.1016/j.chemosphere.2020.126863>

Serbula, S.M., Miljkovic, D.J., Kovacevic, R.M., Ilic, A.A. 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety. 76: 209-214. <https://doi.org/10.1016/j.ecoenv.2011.10.009>

Shukla, P., Kidwai, M., Narayan, S., Shirke, P. A., Pandey, K. D., Misra, P., Chakrabarty, D. 2023. Phytoremediation potential of *Solanum viarum* Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. Environmental Science and Pollution Research. 30, 41878–41899. <https://doi.org/10.1007/s11356-023-25174-7>

Souza, S.C.R., de Andrade, S.A.L., de Souza, L.A., Schiavinato, M.A. 2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management. 110, 299-307. <https://doi.org/10.1016/j.jenvman.2012.06.015>

Steinnes, E. 2013. Lead. In: Alloway, B.J. (Ed.) Heavy Metals in Soils. Springer, Dordrecht, pp. 395-409. https://doi.org/10.1007/978-94-007-4470-7_14

The Bureau of Meteorology. 2024. Wind Roses for Selected Locations in Australia. Available online: http://www.bom.gov.au/climate/averages/wind/selection_map.shtml (accessed in 10 October 2024).

Tibbett, M. 2024. Post-mining ecosystem reconstruction. Primer. 34(9), PR387-R393. May 06. <https://doi.org/10.1016/j.cub.2024.03.065>

Tibbett, M., Green, I., Rate, A., De Oliveira, V.H., Whitaker, J. 2021. The transfer of trace metals in the soil-plant-arthropod system. Science of The Total Environment, 779, 146260. <https://doi.org/10.1016/j.scitotenv.2021.146260>

Tiwari, A., Gajbhiye, T., Pandey, M., Tirkey, A., Kim, K.H., Pandey, S.K. 2023. A practical option for the selection of suitable plants for the management of airborne particulate matter (PM). International Journal of Environmental Science and Technology. 20: 11537–11548. <https://doi.org/10.1007/s13762-022-04579-w>

Wu, H., Sui, F., Duan, H., Si, T., Li, H., Wang, J., Huang, X., Li, L., Drosos, M., Joseph, S., Dong, C., Pan, G. 2022. Comparison of heavy metal speciation, transfer and their key influential factors in vegetable soils contaminated from industrial operation and organic fertilization.

646 Journal of Soils and Sediments. 22: 1735–1745. <https://doi.org/10.1007/s11368-022-03187-y>

648 Xiong, T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., Sobanska, S., Foucault, Y.,
649 Dumat, C. 2014. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to
650 particulate matter. Environmental Geochemistry and Health. 36: 897–909.
651 <https://doi.org/10.1007/s10653-014-9607-6>

652 Xiong, T., Zhang, T., Dumat, C., Sobanska, S., Dappe, V., Shahid, M., Xian, Y., Li, X., Li, S. 2019.
653 Airborne foliar transfer of particular metals in *Lactuca sativa* L.: Translocation,
654 phytotoxicity, and bioaccessibility. Environmental Science and Pollution Research. 26:
655 20064–20078. <https://doi.org/10.1007/s11356-018-3084-x>

656 Yang, K., Cattle, S.R. 2017. Effectiveness of cracker dust as a capping material for Pb-rich soil in the
657 mining town of Broken Hill, Australia. CATENA. 148, 81-91.
658 <https://doi.org/10.1016/j.catena.2016.02.022>

659 Zalud, P., Száková, J., Sysalová, J., Tlustoš, P. 2012. Factors influencing uptake of contaminated
660 particulate matter in leafy vegetables. Central European Journal of Biology. 7: 519–530.
661 <https://doi.org/10.2478/s11535-012-0029-0>

662 Zasoski, R.J., Burau, R.G. 1977. A rapid nitric-perchloric acid digestion method for multi-element
663 tissue analysis. Communications in Soil Science and Plant Analysis. 8, 425-436.
664 <https://doi.org/10.1080/00103627709366735>

665 Zheng, J., Noller, B., Huynh, T., Ng, J., Taga, R., Diacomanolis, V., Harris, H. 2021. How the
666 population in Mount Isa is living with lead exposure from mining activities. The Extractive
667 Industries and Society. 8, 123-134. <https://doi.org/10.1016/j.exis.2020.11.008>.

668 Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., Anjum,
669 M.Z. 2019. Lead toxicity in plants: Impacts and remediation. Journal of Environmental
670 Management. 250: 109557. <https://doi.org/10.1016/j.jenvman.2019.109557>

671

672 **Supplementary files**673 **Title:** Discriminating foliar adhered from metabolised Pb when monitoring vegetation exposed to
674 windborne contamination675 **Authors:** Mark Tibbett, Tim Lardner, Vinicius H De Oliveira

676

677 **Table S1:** Sampling sites selected for this study, GPS coordinates and likelihood of
678 Pb accumulation in leaf surfaces.

Sites	GPS Coordinates (decimal degrees)	Elevation	Likelihood of surface Pb
Site 0	26°31'20.46"S 119°56'35.88"E	573 m	High
Site 1	26°31'13.88"S 119°57'18.91"E	548 m	Moderate
Site 2	26°35'16.00"S 119°55'43.39"E	556 m	Low

677

678

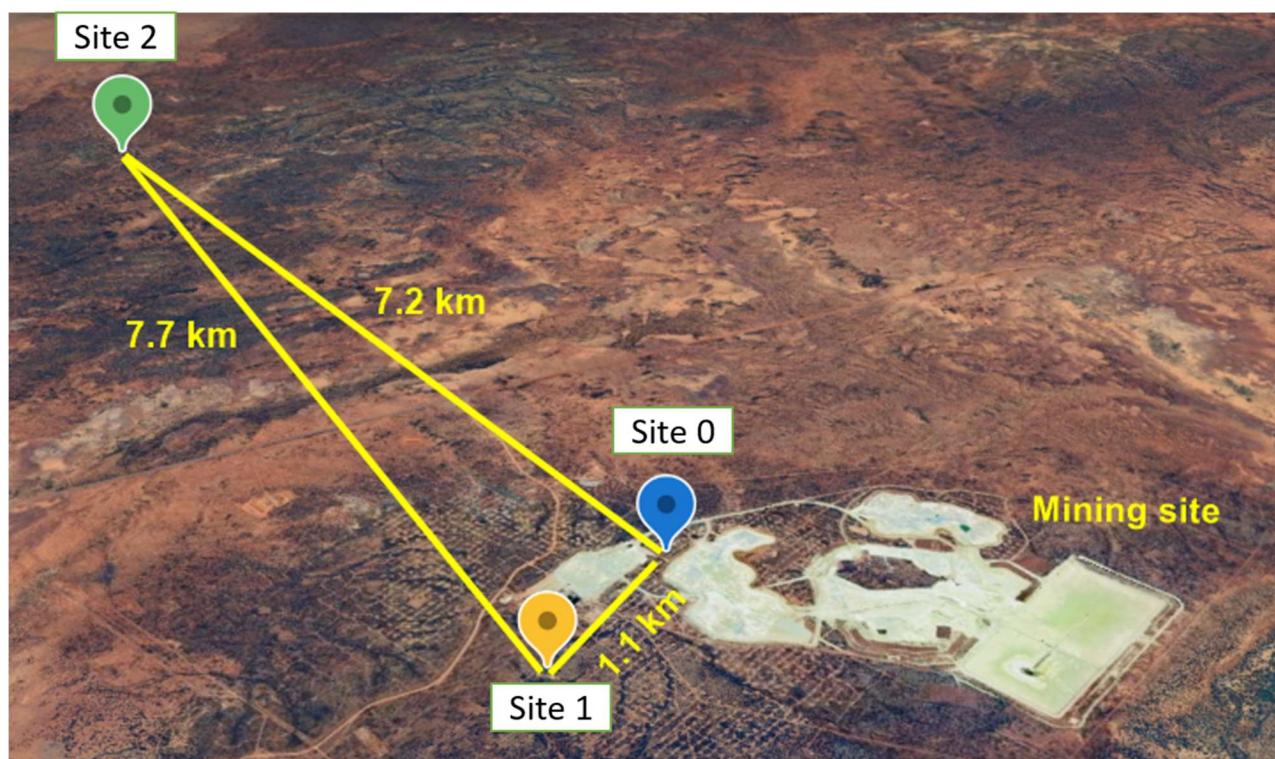
679

680 **Table S2.** Mean weights of composite foliage samples (\pm standard error) from two
681 individuals of each plant species from each site (n = 4).

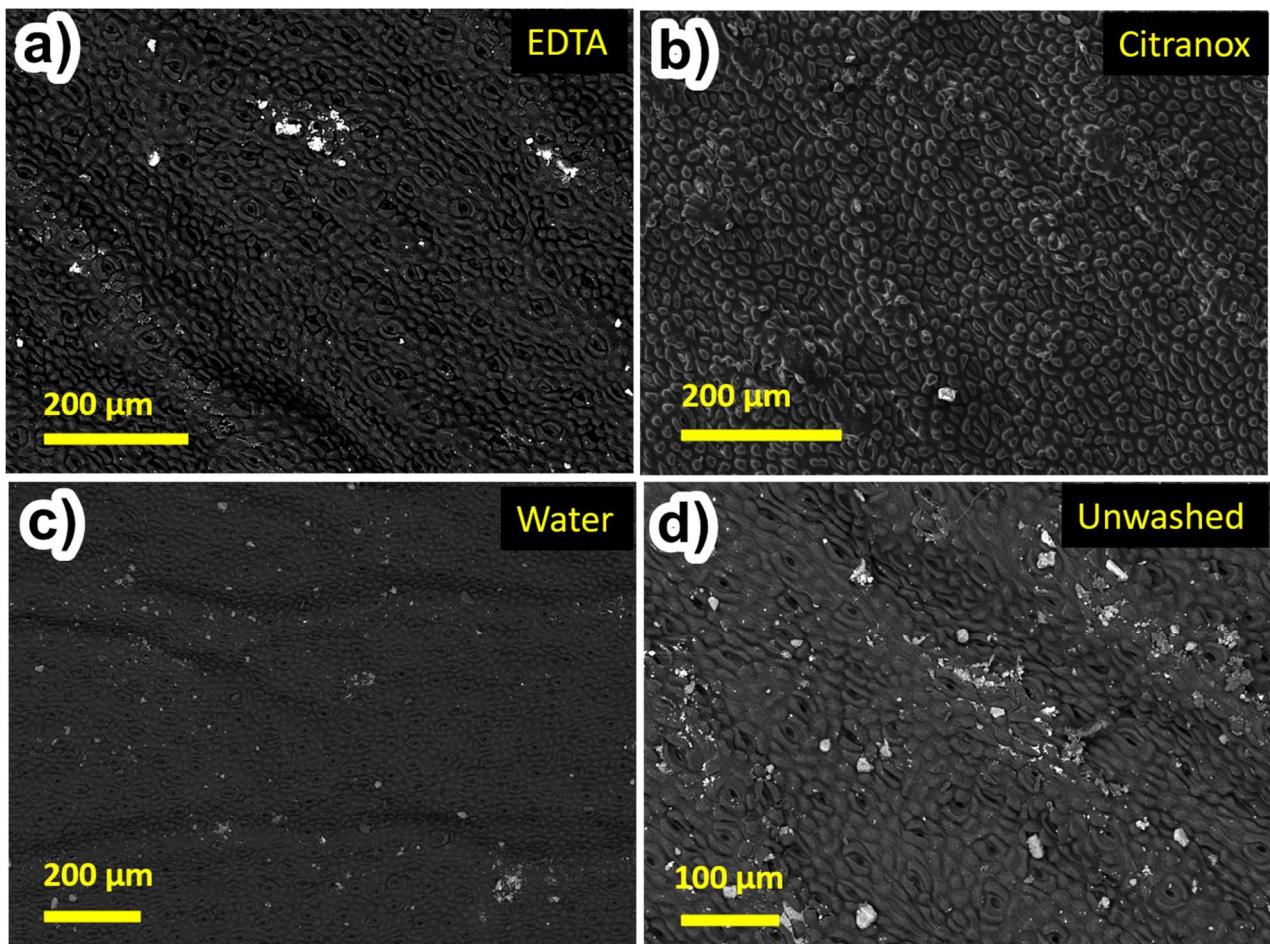
Site	Plant species	Leaf type	Mean sample dry weight (g)
0	<i>Acacia pruinocarpa</i> Tindale	glabrous	2.9 \pm 0.14
	<i>Acacia aneura</i> Benth.	resinous	1.7 \pm 0.11
	<i>Solanum lasiophyllum</i> Poir.	hirsute	0.8 \pm 0.08
1	<i>Acacia pruinocarpa</i> Tindale	glabrous	8.5 \pm 0.27
	<i>Acacia aneura</i> Benth.	resinous	3.2 \pm 0.17
	<i>Solanum lasiophyllum</i> Poir.	hirsute	1.2 \pm 0.06
2	<i>Acacia pruinocarpa</i> Tindale	glabrous	6.9 \pm 0.15
	<i>Acacia aneura</i> Benth.	resinous	2.7 \pm 0.14
	<i>Solanum lasiophyllum</i> Poir.	hirsute	1.3 \pm 0.03

680

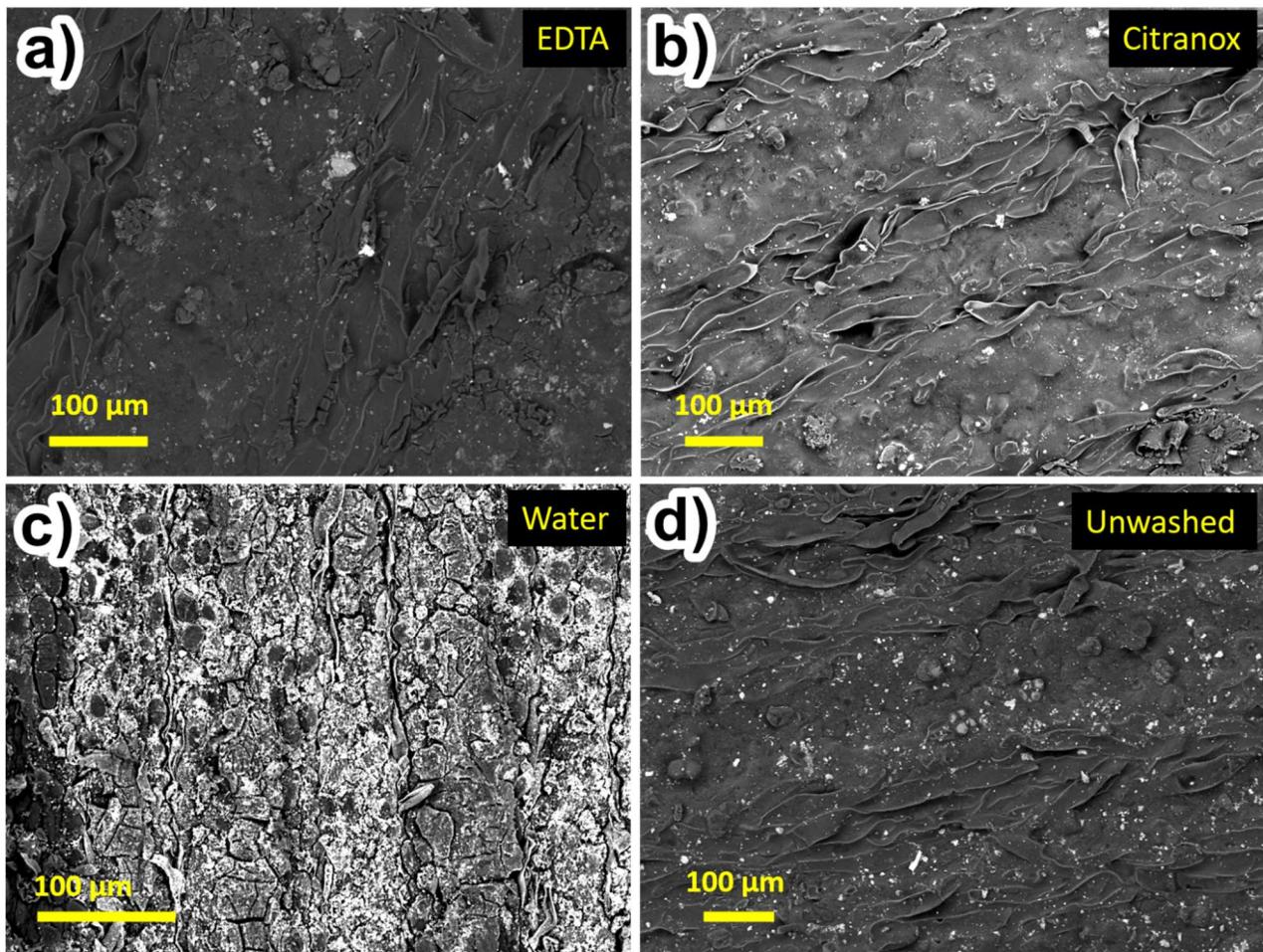
681


Table S3. Pb removed from leaf surfaces (across all sites) after washing with EDTA, Citranox or Milli-Q water. Values are percentages in relation to the total Pb concentration: surface Pb + internal foliar Pb (n = 3).

Leaf type	Wash type	Mean removal	Minimum removed %	Maximum removed
Glabrous	EDTA	13	5	21
	Citranox	19	3	39
	Water	14	4	28
Resinous	EDTA	63	43	83
	Citranox	39	19	37
	Water	22	3	42
Hirsute	EDTA	49	27	61
	Citranox	47	32	66
	Water	30	1	85


Hirsute = Resinous > Glabrous (PERMANOVA, p < 0.05)

EDTA = Citranox > Water (PERMANOVA, p < 0.05)


Removal percentage was not significantly different across sites (PERMANOVA, p = 0.15)

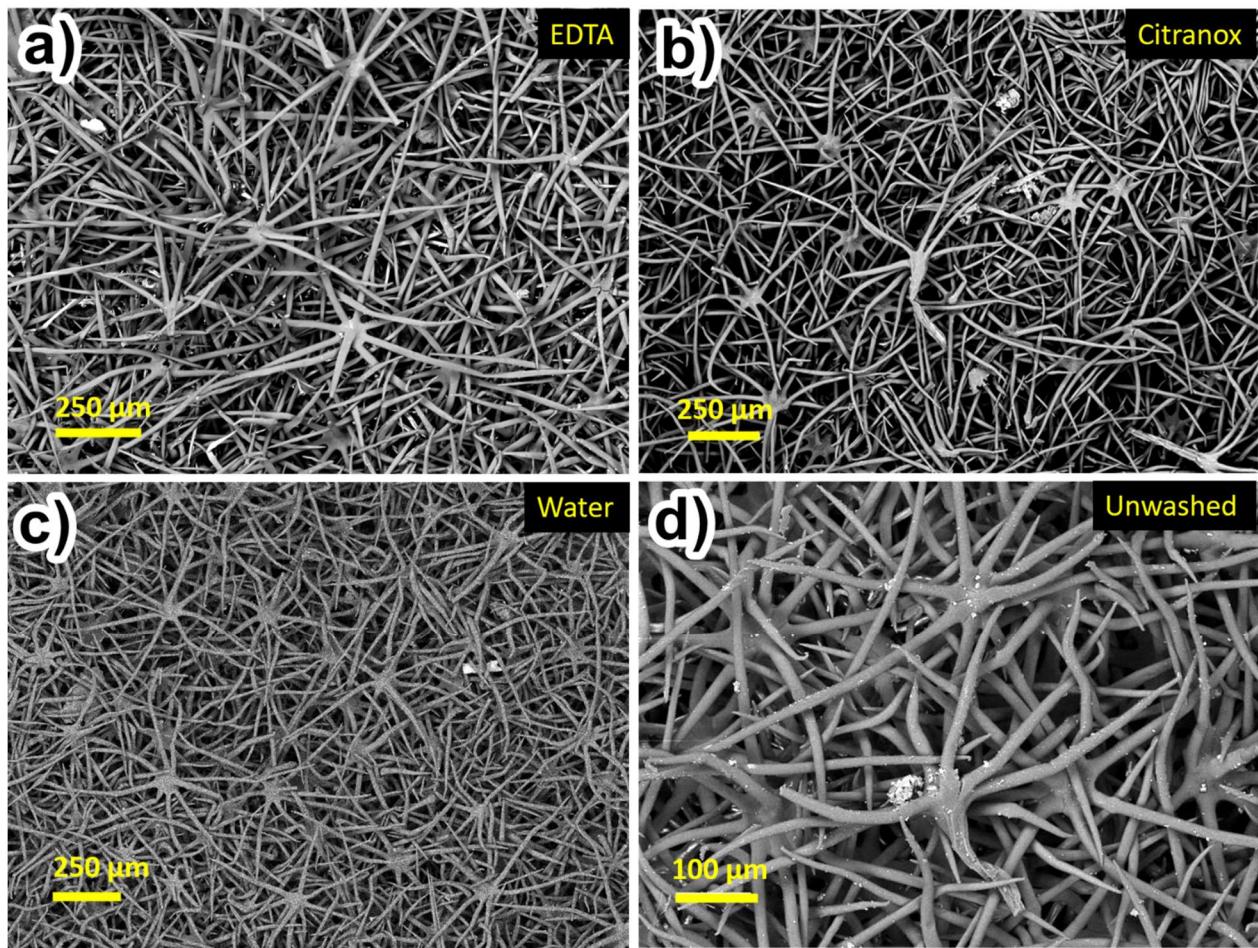
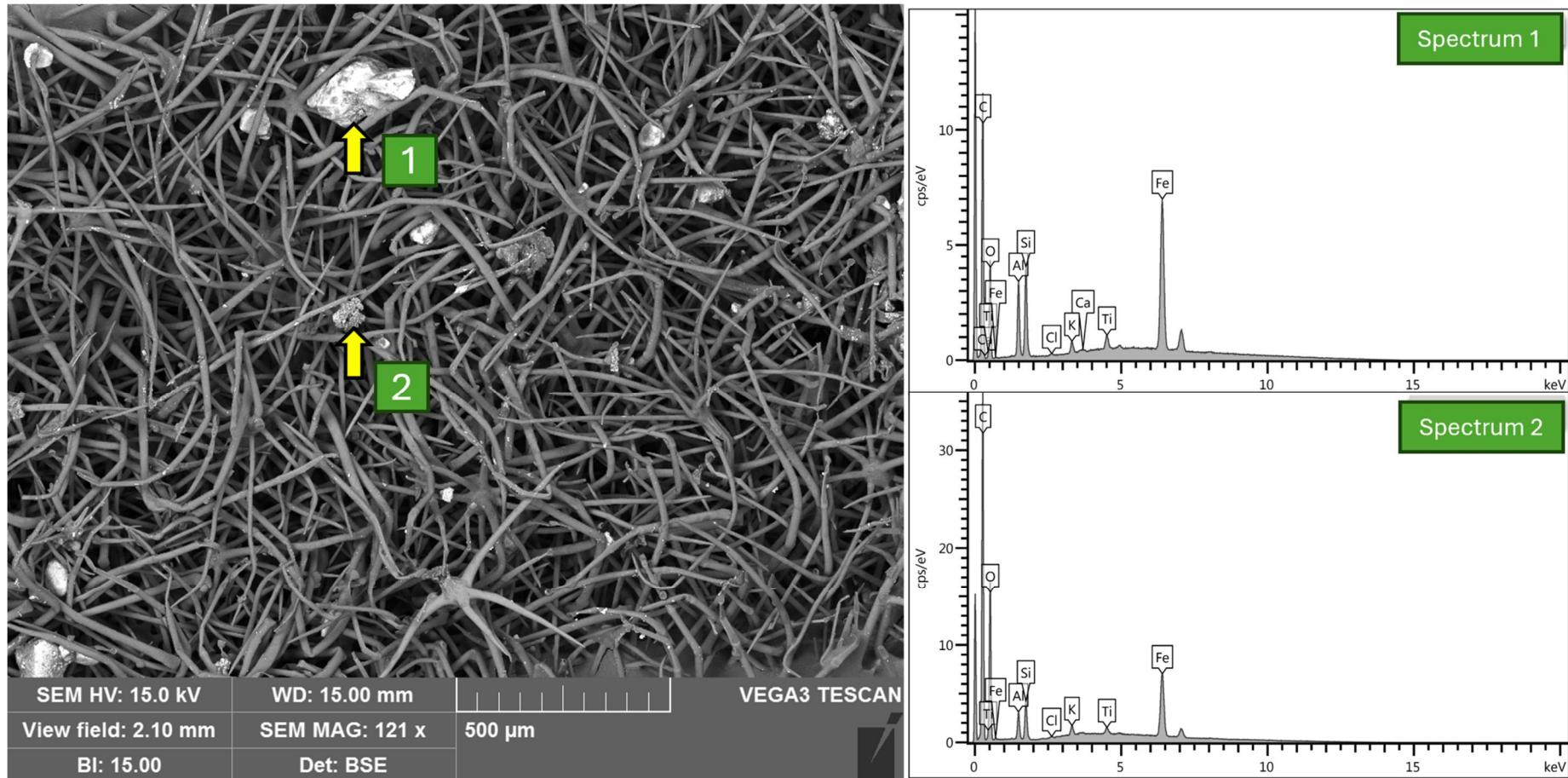
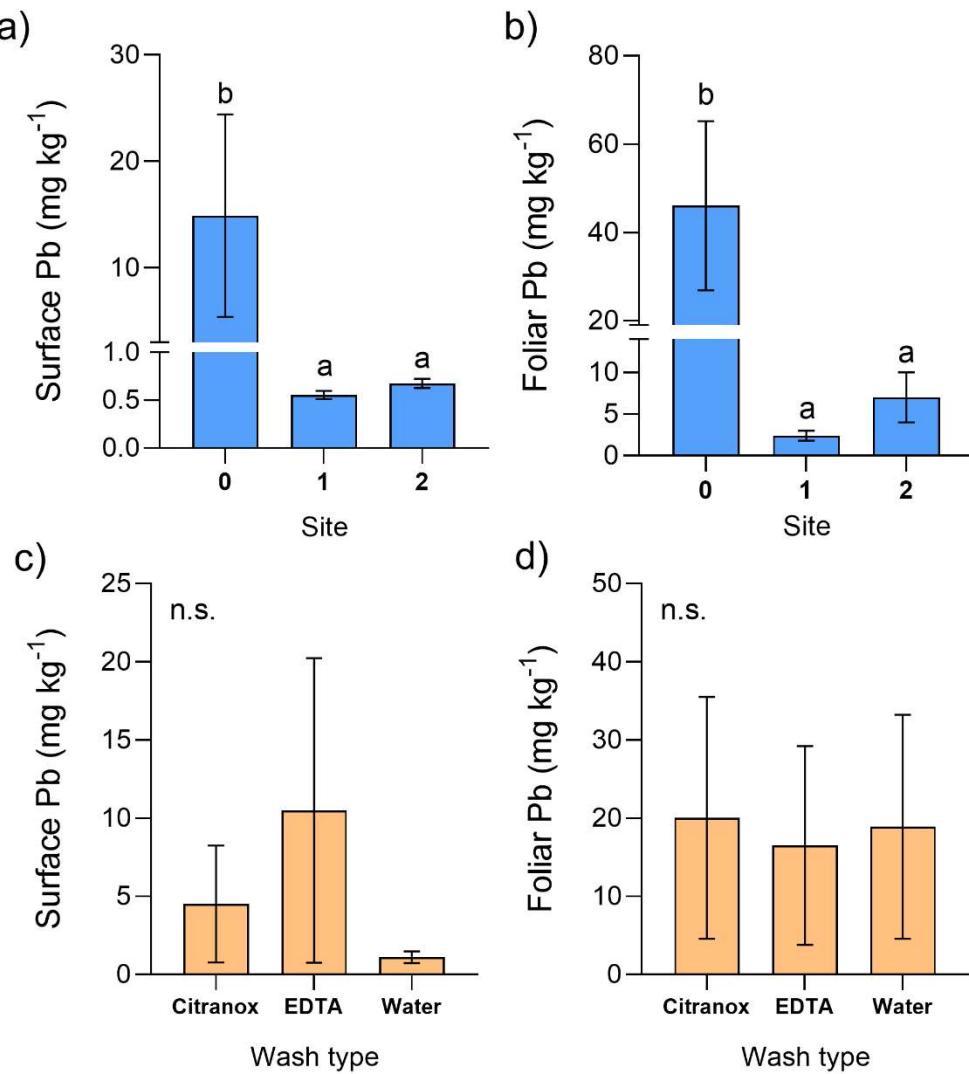

Figure S1. Aerial view showing the location of the three sampling sites, with different distances from the Pb-source (tailings from a mining site).

Figure S2. Backscattered electron micrographs of the glabrous leaf surfaces of washed and unwashed samples of *Acacia pruinocarpa* from Site 0: EDTA (a), Citranox (b), Milli-Q water (c) and unwashed (d). Surface dust particles show up as bright structures against the darker leaf surface, indicating the presence of heavier elements.


Figure S3. Backscattered electron micrographs of the resinous leaf surfaces of washed and unwashed samples of *Acacia aneura* from Site 0: EDTA (a), Citranox (b), Milli-Q water (c) and unwashed (d). Surface dust particles show up as bright structures against the darker leaf surface, indicating the presence of heavier elements.


Figure S4. Backscattered electron micrographs of the hirsute leaf surfaces of washed and unwashed samples of *Solanum lasiophyllum* (hirsute) from Site 0: EDTA (a), Citranox (b), Milli-Q water (c) and unwashed (d). Surface dust particles show up as bright structures against the darker leaf surface, indicating the presence of heavier elements.

685

686

Figure S5. Backscattered electron micrograph of an unwashed hirsute leaf surface (*S. lasiophyllum* from Site 2), yellow arrows indicate particulate matter of various sizes and compositions, from which EDX spectra were taken. No Pb was found in these particles. Over 20 spectra were taken from multiple points and particles, and no considerable Pb was detected.

Figure S6. Surface Pb (a, c) from leaf surfaces after washing with EDTA, Citranox or water, from three different sampling sites (0km, 1km, 7km), after the exclusion of hirsute samples. Foliar Pb concentrations (b, d) determined by acid digestion, after exclusion of hirsute samples. Different letters correspond to significant pairwise differences, detected by PERMANOVA ($p < 0.05$).

687
688