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The Casarabe culture (500-1400 cE), spreading over roughly 4,500 km? of the
monumental mounds region of the Llanos de Moxos, Bolivia, is one of the clearest
examples of urbanismin pre-Columbian (pre-1492 CE) Amazonia. It exhibits a

four-tier hierarchical settlement pattern, with hundreds of monumental mounds
interconnected by canals and causeways". Despite archaeological evidence indicating
that maize was cultivated by this society?, it is unknown whether it was the staple crop
and which type of agricultural farming system was used to support this urban-scale
society. Here, we address this issue by integration of remote sensing, field survey and
microbotanical analyses, which shows that the Casarabe culture invested heavily in
landscape engineering, constructing acomplex system of drainage canals (to drain
excess water during the rainy season) and newly documented savannah farm ponds
(toretainwater in the dry season). Phytolith analyses of 178 samples from 18 soil profiles
indrained fields, farm ponds and forested settings record the singular and ubiquitous
presence of maize (Zea mays) in pre-Columbian fields and farm ponds, and an absence
of evidence for agricultural practices in the forest. Collectively, our findings show how
the Casarabe culture managed the savannah landscape for intensive year-round maize
monoculture that probably sustained its relatively large population. Our results have
implications for how we conceive agricultural systems in Amazonia, and show an
example of a Neolithic-like, grain-based agrarian economy in the Amazon.

The role of grain agriculture as the subsistence base of prehistoric
complex societies in both the Old and New World has been a matter
of sustained debate for many decades (see, for example, refs. 4-8).
In Mesoamerica, the earliest evidence of maize as a staple crop dates
to 4,000 calendar years before the present’. The timing and nature
of maize’s role as the staple crop of Andean civilizations, as seen in
early historical accounts, is controversial (see, for example, refs. 6,10).
In Amazonia it is well established, from both archaeological and
palaeoecological data, that maize has been cultivated since at least
6,850 calendar years before the present™; however, to date thereis no
evidence of it being a staple crop. Most societies had mixed economies
relying on multiple cultigens'® . Roosevelt” proposes that the rise
of social complexity in the Amazon was based on maize agriculture.
However, current archaeological evidence has not been conclusive of
maize cultivation being the staple crop of complex societies of the
Amazon®. Current archaeobotanical and palaeoecological data from
Late Holocene complex societies in Amazonia indicate polyculture
(mixed-cropping) agroforestry, not maize monoculture, as the basis
of asubsistence economy™>'82,

Recentarchaeological research hasrevealed evidence for low-density
urbanism, social complexity and large populationsinthe Andeanfoot-
hills of the Upano River region of Ecuador®, and in the monumental

moundsregion (MMR) in the seasonally flooded savannahs of the Boliv-
ian Amazon'. Here in the MMR, the Casarabe people built hundreds of
monumental mounds interconnected by canals and causeways across
aflat forest-savannah mosaic landscape dominated by seasonally
flooded savannahs, with forestsrestricted to non-flooded palaeo-river
levées. Whereas drained fields and terraces, built on extremely fertile
volcanic soils, were clearly integral to low-density agrarian urbanism
of the Upano region®, the type of farming system needed to sustain
the Casarabe culture is still unknown. It has been proposed that the
construction of drainage canals permitted cultivation of the relatively
fertile sediments of the seasonally flooded savannahs of the MMR?*
without the need for deforestation®. However, no agricultural fields or
otherfood productionsystems have hitherto been foundin connection
withsuch canals, leaving unanswered the question of how the Casarabe
people managed to feed its relatively large population. To address this
issue, we combine remote-sensing imagery with a programme of cor-
ing, test pits, radiocarbon dating and pollen and phytolith analyses on
both seasonally flooded savannahs and forest.

We haveidentified two unreported and complementary agrotechnolo-
giesinthesavannahs of the MMR: dense drainage networks and artificial
farm ponds (Fig.1and Extended Data Fig.1), inwhich different portions of
asavannah (Fig.1, top leftinset), or different savannahs within the same
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Fig.1| Two examples of engineered landscape inthe MMR. Triangles
represent monumental mounds; black dots, ponds; thinblacklines, canals;
light grey areas, forest; white areas, savannah; and dark grey areas, lakes. Inset
top left, the northernside ofasavannahis crisscrossed by canals but the
southernsideis dotted with ponds. Insetbottomright, one savannah (to the
east) hasbeen modified by the excavation of adensely packed network of

area (Fig.1, bottomrightinset), have been heavily modified—into either
intricate arrangements of canals or clusters of circular depressions.

The drainage network

Inone of the savannahs under study (Fig. 2), the small canals converge
into larger canals that drain the whole savannah toward Lake Francia
to the north (Fig. 1b). We identified three orders of drainage canals:
the first order (1in Fig. 2b), the smallest, are around 4 m wide and
25 cm deep, the second order (2 in Fig. 2b) are around 8 m wide and
70 cmdeep and the main canal (third order) that drainsinto the lake is
14 mwide and 1.8 m deep (3 in Fig. 2b), becoming 3.2 m deep about
1.5 km before reaching the lake. Overall, the drainage network drains
towards the north, becoming ever deeper with respect to the general
topography. Several stratigraphic profiles of the canals show that the
original depth of the canal network was around 80 cm deeper than
at present for the second-order canals (see profiles 667 and 671 in
Extended DataFig.2) and around 45 cm deeper for the first-order canals
(forexample, profile 674 in Extended Data Fig. 2). The drainage network
isassociated with circular elevated platforms roughly 50 cmin height,
resembling pre-Columbian forest islands", and with small mounds of
around 2-3 min diameter. The elevated platforms are surrounded by
deep canals (profiles 666 and 677 in Extended Data Fig. 2).

Soil cores were collected from severallocations bothinside the canals
and between them (Fig. 2b). Phytolith analysis shows a high abundance
of phytoliths derived from the cob glumes and leaves of Zea mays in
almostall canal soil profiles (Extended Data Fig. 2), with sporadic pres-
ence of Cucurbita spp. (666 and 677), Manihot sp. (677), Calathea sp.
(674) and Lagenaria sp. (667) phytoliths. We cannot exclude the pos-
sibility that Cucurbitawas cultivated in greater amounts thanimplied
by the phytolith assemblage, because some domesticated Cucurbita
varieties may lack scalloped phytoliths?.
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drainage canals, and two other savannahs, to the west, are dotted with ponds;
inthe former, the network of canals drainsinto Lake Francialocated about4 km
tothe north. 690 and 695 indicate the locations of the two farm ponds sampled
for this study. Inset top right, boundaries of Amazonia as defined in ref. 43 and
theimage of World Countries Generalized provided by ESRIunder the ArcGIS
Prolicence.Scalebar, 5 km. Credit: European Commission JRC.

The majority of Oryza phytoliths are concentrated inthe upper levels
of allthe profiles. Most upper-level glume phytoliths were from domes-
ticated plants (Methods), whereas those from lower levels in the soil
profiles (30-50 cm depth) were classified as wild species. These results
arenotsurprising, because some of these fields are currently being used
togrowmodern Asian rice”. The low production of diagnostic wavy-top
rondel phytoliths in maize® and the high abundance of these, relative
tothe sporadic presence of phytoliths of other cultivars, indicate that
maize was by far the principal cultivar inthese savannahs. We attribute
the absence of maize phytolithsin the uppermost 20-25 cmof the canal
soil profiles to sedimentary fill from adjacent fields over recent decades
or centuries—aninference corroborated by our soil phytolith datafrom
fields between the canals (Extended DataFig. 3). Here, maize phytoliths
appearinonly one of the three profiles, suggesting that the cultivated
area is likely to have been established along the canals, probably on
elevated rims that have since eroded into the canals. It is probable
that, while in use, the original depth of the canals was maintained by
their periodic re-excavation and redistribution of canal sediment fill
alongthe canal margins, where maize was then planted (Extended Data
Fig.4), mimicking what has been proposed for raised-field agriculture
in other regions of the Llanos de Moxos®.

Theforest

Forest in the study region grows on elevated surfaces, mostly fluvial
levees, that remain above the water level during the rainy season. Four
soil profiles were dug and sampled across the forest, along a transect
from the savannah to alarge 15-ha monumental mound (Fig. 2a and
Extended DataFig.3), toreveal to what extent the forest was cleared for
agriculture.No charcoal or any other evidence of fire was visible in any of
the profiles. Phytolith profiles are all similar and do not show any obvious
stratigraphic change, apart fromaslight reductionin Arecaceae (palms)
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Fig.2|Drainage canals and digital elevation model. a, The complete drainage
network.Numbered dotsindicate the location of phytolith profiles. b, Detail
of the digital elevation model of the northern part of the drainage network.
Dashedlines represent the forest-savannah boundary, showing that a great
deal of the drainage network s presently covered by forest. See Fig. 1b for
location.Scalebars,1km (a), 500m (b).

and an increase in Poaceae (grass) phytoliths, which could indicate a
slight opening of the forest canopy. No cultivar phytoliths were foundin
any of the profiles (Extended Data Fig. 3). Although our data cannot show
the extent towhich the forest was used for agroforestry, wood harvest-
ing, hunting or cultivation of medicinal plants, the absence of charcoal
does show that slash-and-burn agriculture did not take place here.

The clusters of farm ponds

A large portion of the savannahs in the MMR contains clusters of cir-
cular depressions of 10-100 min diameter. They are often connected,
either by canals or directly by adjacency. These ponds are similar to

natural depressions called gilgais, an Aboriginal Australian name for
water holes, that formin vertisols because of repeated expansion and
contractions of the clay*’. To understand their genesis and use, we
sampled two ponds in two different savannahs. Profiles 690 (Fig. 3)
and 689 (Extended DataFig. 3) were excavated and cored, respectively,
inalarge pond of roughly 100 m in diameter, with its central depres-
sionabout 60 cmbelow the surroundings. Profile 695 (Extended Data
Fig.3) was excavatedinapond of roughly 30 mindiameter,and witha
central depression currently 40 cm below the surrounding savannah.
Pond profile 690 exhibits a very irregular, sharp contact between the
organic sediment fill and the grey, inorganic clay below (Extended
Data Fig. 5), and shows no evidence of shear surfaces (slickensides),
suggesting that the pond was excavated and is not agilgai. The anthro-
pogenicorigin of these depressionsis further supported by their size,
which is far larger than the 15-20-m-diameter gilgais***, and by their
clustered linear distribution (Extended DataFig. 6). Sediment profiles
from both ponds show the continuous presence of maize phytoliths
and pollen (Fig. 3 and Extended DataFig. 7) throughout, with phytoliths
of Cucurbita sp. presentin only two adjacent samplesin profile 690 at
around 40 cm depth, and a pollen grain of Manihot at approximately
50 cm depth (Extended Data Figs. 3, 7 and 8). No other cultivars were
detected. The chronology of pond profile 690 indicates that this system
wasinuse around 1250-1550 calendar years CE (Extended DataFig. 5).

Today, the majority of these ponds hold water for most of the year,
maintaining wet soil until the very end of the dry season. If this hydro-
logical balance is representative of the past, these ponds would have
provided sufficient water for maize cultivation around their margins
throughout the dry season. This is not dissimilar to the k’hochas in
the Bolivian altiplano®, where yields are up to four times higher than
for regional rainfed production. Similar pond-based farming systems
havebeen described in Bangladesh and India***, where ponds provide
anintegrated production system that includes fish farming, poultry
and cultivation of pond dykes. A very similar system could have been
in place in the MMR, where swamp eels (Synbranchus marmoratus)
were animportant part of the diet of the Casarabe culture®; the Mus-
covy duck (Cairina moschata), the only known domesticated animal
in the Amazon®, was probably kept®®*. Bones of S. marmoratus were
found in pond 695 at a depth of 70 cm (Extended Data Fig. 9). During
the dry season, these farm ponds would have served as ‘watering holes’,
attracting game.

A pre-Columbiangreenrevolution

The combination of these two types of landscape engineering—drain-
age canals and farm ponds—is unique to the MMR. We argue that it
was a highly innovative agricultural strategy that enabled the Casar-
abe culture to substantially increase the cultivation period for maize,
as well as providing easy access to fish, birds and game. Through the
sophisticated system of drainage canals, some savannah wetlands
were converted into drained fields suitable for intensive maize mono-
cultureinthe wet season, whereas the construction of clusters of farm
ponds in other savannahs provided a reservoir of water that allowed
potirrigation, which enabled the continuation of maize agriculture
throughout the dry season. The combination of these two water man-
agement systems would have allowed at least two harvests of maize
per year. The lack of any evidence of cultivation and fire in the nearby
forested areas suggests that slash-and-burn agriculture was unlikely
tohavebeen practised. Instead, this pre-Columbian Casarabe culture
probably preserved the spatially limited, and hence highly valuable,
forest resource for other key ecosystem services, such as firewood,
building materials, medicinal plants and probably polyculture agro-
forestry. These data are corroborated by palaeoecological studies in
the MMR that show no substantial change in forest cover® during the
Casarabe culture period. There are at least seven monumental mounds
surrounding the drainage network and five surrounding the savannah
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Fig.3|Relative frequencies of phytoliths recovered from farm pond,
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presence of plant taxalower than1% inabundance. Vertical axis is the depth of

with the pond cluster, which includes profile 690. These form part of
thefour-tier settlement pattern belonging to a political structure that
guaranteed food production and agricultural infrastructure mainte-
nance for hundreds of years'2. Even though micro-and macrobotanical
remains from monumental mounds show the presence of a variety of
food and industrial crops, including maize, manioc, lerén, squash,
peanuts, cotton, yams and palms*®*, our data suggest that maize was
the staple crop for the Casarabe culture when the drainage and pond
agricultural system wasin operation. Our data show that the absence of
other cultigen pollenin MMR lake cores®, and the greater abundance
of maize macroremains, phytoliths and starch grainsin the sediments
and ceramics of Mendoza and Salvatierramonumental mounds*®*, is
not due to low pollen productivity/preservation or taphonomic bias,
butinsteadreflects areal phenomenon of greater reliance on maizein
the diet compared with other cultigens.

Our results overturn the assumption that the seasonally flooded
savannah of southwestern Amazonia is suitable only for cattle
ranching and intensive Asian rice agriculture, and unsuitable for
nutrient-demanding crops such as maize. These findings have impli-
cations for our understanding of pre-Columbian subsistence econo-
mies across Amazonia and beyond. They indicate that, during the
late Holocene, alongside intensive polyculture (mixed-cropping)
agroforestry on Amazonian Dark Earths®, other agricultural systems
such as drained fields and farm ponds in the Llanos de Moxos were
primarily focused on the cultivation of maize. These practices bear
similarities to agricultural strategies observedinlater Andean states
and chiefdoms*. Collectively, as long argued, intensive cultivation
of maize has had a major role in supporting the economy of some of
the most complex societies in the Americas. The Casarabe people
demonstrated the ability to establish a highly intensive monoculture
farming system on the savannahs based on maize, maintaining the
surrounding forest cover and supporting one of the most complex
pre-Columbian societies in lowland South America. The Casarabe
culture of the MMR provides a clear example of when the rise of
social complexity is linked to intensive food production and, more
specifically, to maize monoculture. It also confirms the role of grain
agriculture as the main driver for increasing social complexity and,
probably, inequality’.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Phytolith processing and identification

Phytoliths were extracted from sediments following previously pub-
lished methods**. Phytoliths were identified and counted using a Zeiss
Axioscope 40 light microscope at X500 magnification. Phytolith iden-
tifications were made using published material for the Neotropics*™,
and by direct comparison with the phytolith reference collection of
the Archaeobotany and Palaeoecology Laboratory (Department of
Archaeology, University of Exeter, UK) and at the phytolith labora-
tory of ICTA-UAB (Universitat Autdbnoma de Barcelona). A minimum
0f200 diagnostic randomly placed phytoliths were counted per slide.
Afull scan of slides was performed to detect the presence of squash,
manioc and maize. The average size of attributes measured on Oryza
glume phytoliths identified in the pond/canal systems followed the
model proposed by Hilbert et al.*°. Overall, all glume phytolith mean
widthand height measurements were compared withthe Monte Castelo
site to assess the likelihood of a domesticated origin. Glume phyto-
lithsidentified inupper layers fromssites at which O. sativais currently
cultivated were analysed using prediction calculations proposed by
Zhao et al.>'. We confirmed the presence of Asian domesticated rice
on all upper layers. Overall, our analysis indicates that the origin of
rice phytoliths from our samples was statistically similar to both wild
botanical specimens (Oryza latifolia and Oryza alta) and lower layers
(1-)) from the Monte Castelo site®.

Pollen processing and identification

Samples for pollen analysis were treated following a protocol designed
toimprove the recovery of large pollen grains—in particular, those of
cultigens®. Two tablets of the exotic marker Lycopodium clavatum were
addedto each sample to facilitate the calculation of pollen concentra-
tion per cubic centimetre®. Pollen and spores were analysed using a
Leica DMLB microscope at X400 and x1,000 magnification, and iden-
tifications were made using the modern pollen reference collection at
the University of Reading, as well as the Neotropical pollen database*
and specialized atlases® . In every sample, a total of 300 randomly
placed terrestrial pollen grains were counted.

Drone light detection and ranging

Alight detection and ranging survey was conducted using a Zenmause
L1sensor mounted onaMatrice 300 real-time kinematic (RTK) drone
and aD-RTK 2 base station. We used a postprocessing kinematic solu-
tionrather than RTK for data correction, because of malfunctioning
of thelatter device. Four flights at an altitude of 100 m and speed of
6 ms'were needed to cover the entire area; point density was 477 m™2.
The missions were planned with DJI Pilot 2,v.9.0.5.5. We set the sensor
to detect three returns, its maximum limit, to ensure the recording
of laser bounce on the ground through the tree canopy, which cov-
ered around 50% of the surveyed area. Data were processed using
D-RTK 2 data in the postprocessing kinematic workflow of DJITerra
software according to the Zenmuse L1v.1.1 operation guidebook®.
Terramatch software v.023.014 was used in the Spatix environment
to align datasets, correct trajectories, delete overlapping points
and smooth noise points, following the workflow steps explained
inthe user guide.

Radiocarbon dating

Accelerator mass spectrometry radiocarbon dating was performed on
seven samples from profile 690 at the Oxford Radiocarbon Accelerator
Unit and Beta Analytic; dates are reported in Extended Data Table 1.
The samples dated at the Oxford Radiocarbon Accelerator Unit were
chemically pretreated using anacid-base-acid protocol for the insolu-
ble humin fraction of sediments, and subsequently dated following
their protocols®. The same acid-base-acid protocol was used by Beta
Analytic. Radiocarbon dates were calibrated using SHCAL20 (ref. 60),

modelled using the P_Sequence command and outlier modelling in
OxCal v.4.4.4 (refs. 61-64). The code used is available in Supplemen-
tary Information.

Inclusion and ethics

The study included several South Americanresearchers (S.Q.,J.I.,L.H.,
E.N. and M.R.) who contributed to various aspects of the research
project. Theresearch s locally relevant, and several local institutions
(Gobernacion del Beni, Universidad Autonoma del Beni and Alcaldia
deTrinidad) have repeatedly expressed public support. We have a col-
laboration Agreement with CIBIOMA at Universidad Auténoma del Beni
José Ballivian for training of local students in phytolith analysis (we are
currently setting up alaboratoryin Trinidad). We have provided train-
ing and materials to Museo Etnoarqueolégico Kenneth Lee in Trinidad.
Thetype of study we performed did not require the approval of alocal
ethics review committee. The local and regional research relevant to
our study has been taken into account in citations.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All phytolith and pollen data supporting the findings of this study are
available in Supplementary Information. Phytoliths were identified
using the sources referenced in Methods. Pollen was identified using
the Neotropical pollen database (https://research.fit.edu/paleolab/
pollen-database/) and the sources referenced in Methods.
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Extended DataFig.1|Field view ofacircular farm pond. The diameter of the
pondisca.70 metres.
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Extended DataFig. 4 |Artwork representing how farmponds and drainage
canals were probably used for maize agriculture. Maize was planted around

the pond and along the edges of the canals. Canals and ponds are here depicted
together for simplicity. Credit:J. P. Guevara.
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Extended DataFig. 6 | Pond cluster with location of profile 695. Most of the
pondsarealigned and are connected by depressions/canals.Image provided by
ESRIunder the ArcGIS Prolicense.
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Extended DataFig. 8| Microphotographs showing examples of key
phytolith morphologiesidentified and their taxonomic and anatomical
associations. (A-D) Zeamays cob, WAVY-TOP RONDEL (A-690 80-85 cm; B-690
40-45cm; C-690 65-70 cm; D-666 65-65 cm); (E) Poaceae non-diagnostic to
maizeleaf/stem/inflorescence, spiney WAVY-TOP RONDEL (666 40-45 cm);

(F) Poaceae leaf, CROSS VARIANT-1(69530-35 cm); (G) Manihot sp. secretory
cell, HEART-SHAPED (677 20-25 cm); (H) cf. Calathea sp.rhizome, FLAT
DOMED CYLINDER (690 30-35 cm); (1) Oryza sp. husk, DOUBLE-PEAK GLUME

(69520-25 cm); (J) Cucurbitasp. rind, SCALLOPED SPHEROID (680 25-30 cm);
(K) Lagenariasp.rind, irregularly-shaped SCALLOPED SPHEROID (667 45-
50 cm); (L) cf. Euterpe sp. all plant parts, large dense SPHEROID ECHINATE
(66730-35 cm); (M) Bactris/Astrocaryum all plant parts, CONICAL TO HAT-
SHAPED BODY (665 20-25); (N) Multiple plants species (e.g. Commelinaceae
and Phaseolus sp.) trichome, HOOK-SHAPED HAIR (665 30-35 cm); (O)
Marantaceae seed, CILINDRICAL BODY (67135-40 cm). Scale=20 pm.
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Extended DataFig. 9 |Bones of Synbranchus marmoratusfoundinpond 695
atadepth of 70 cm. Bones of S. marmoratus are often found in monumental
mounds. It hibernatesinthe mud anditis apredictable and ready available
source of proteins. Scalebarincm.




Extended Data Table 1| Radiocarbon dates conducted on pond 690 and used in the associated Bayesian age depth model

Lab code

Beta
690512

Beta
690513
OxA-
42634
OxA-
42637
OxA-
42636
Beta
690511
OxA-
42635

Material/ depth
Pretreatment
(cm)

Seed/ABA 12.5
Charred 12.5
material/ABA

Leaf/ABA 37.5
Leaf/ABA 70
Leaf/ABA 92.5
Leaf/ABA 112.5
Charred 120
material/ABA

+

(range)

2.5

2.5
2.5
0.5
2:5
2.5

0.5

UCage =
(BP) (10)
Modern:

F14C=1.0188 +
0.0038

280 30
447 18
679 19
1061 19
860 30
800 19

Calibrated date

range

from to

(95.4%) = (95.4%)
1950 -
1511 1800
1447 1612
1295 1394

990 1130

1163 1276
1226 1285

Modelled date

median

1534

1463

1374

1311

1258

1239

from
(95.4%)

1505

1446

1315

1264

1233

1221

to
(95.4%)

1668
1494
1396
1344

1279

1268

The date ranges are given as highest probability density ranges at the 95.4% level;the modelled dates are taken from Model 1 referred to in supplementary information which is an age-depth
model and so the dates are estimates for the dates of the sediment at the given depths rather than estimates of age of the samples where they are outliers; for the modelled dates the median
date for the posterior distributions is also given. ABA stands for acid-base-acid.
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

these points even when the disclosure is negative.

Data are quantitative. The study includes mapping of landscape elements based on visual analysis of remote sensing data and LIDAR;
soil and subsoil sampling of forest and savannah; 14C of the samples from a farm pond; phytolith extraction and visual (microscope)
analysis (counting of individual phytoliths) of samples gathered from forest and savannah (canals, fields and farm ponds); pollen
extraction and visual (microscope) analysis (counting of individual pollen grains) of samples gathered from a farm pond.

Stratigraphic profiles have been investigated both using a motor corer and excavations. Sediments sampled for phytolith and pollen
analysis have been taken from profiles exposed during excavations. Samples are reppresentative of the local environments where

they have been taken.

Samples have been taken from stratigraphic profiles at different depths. Some profiles were sampled with a 5 cm resolution (i.e.
pond 690), others at 10 cm resolution. The depth of each sample is indicated in the Y axe of each phytolith or pollen graph.

Samples have been collected in the field and air-dried in Bolivia before being shipped. Charcoal fragments and vegetal remains for
14C have been collected in situ, enveloped in aluminium foil and stored in plastic bags. Field observations have been wrote down on
a notebook. The researchers were aware of the study hypothesis at the time of sampling.

Sampling has been done in 2021. Lidar has been done in 2023. Samples have been taken in the Beni department, Bolivia.

No data was excluded

The experiments consisted in counting a standard number (200) of diagnostic phytoliths and pollen grains. This number is considered
sufficient to be representative of the sample, therefore it is not standard practice to repeat the counting.

Sampling was not completely random. We identified several potential locations to sample on satellite imagery, we choose those to
excavate based on their accessibility and ownership of the land. However, none of these criteria affect the representativeness of our

sample.

Sampling was not blind because we sampled soil and subsoil, so we knew the origin of each sample. In the lab samples where coded

with numbers. Sample extraction and phytolith counting was blind because the origin of the sample was unknown during these steps.

Pollen counting was not blind, because we analyzed pollen from only 1 profile, and this was known.

Did the study involve field work? Yes D No

Field work, collection and transport

Field conditions

Sampling has always being performed during the dry season, between August and October
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Location Fieldwork took place in the Beni department, Bolivia. The area surveyed is enclosed in a square area: up right corner lat -14° 50" Lon
-64° 10"; down left corner Lat -15°; Lon -64° 45". Average elevation 180 ma s I. All sampling was performed on land.

Access & import/export Field sites have been accessed with the permission of the land owner. Authorizations for export of samples have been obtained by
the Bolivian Ministry of Medioambiente y Agua (MMAYANMABCCGDF/DGBAP/MEGN°®0342/2021) Autorization for flying the drone
with the LIDAR has been obtained by DSO - OPERACIONES, Direccion General de Aerondutica Civil de Bolivia (1ZNBL13)

Disturbance All the savannah coring and excavation have been performed on land used for pasture with almost complete absence of wild fauna.

The test pits in the forest where very small and we didn't produce any noise during the excavation or the sampling. The excavation
pits were refilled with the excavated sediments in order to restore the aspect of the sites previous to the excavation.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies [x]|[ ] chip-seq
[] Eukaryotic cell lines [x]|[ ] Flow cytometry
D Palaeontology and archaeology E] D MRI-based neuroimaging

[ ] Animals and other organisms
[ ] clinical data

[ ] bual use research of concern

[] Plants

=] [x] [ [=] [=] [x] [x] &

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o ) )
Authentication Describe-any-authentication-procedures foreachseed stock-used-or-novel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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	Maize monoculture supported pre-Columbian urbanism in southwestern Amazonia

	The drainage network

	The forest

	The clusters of farm ponds

	A pre-Columbian green revolution

	Online content

	Fig. 1 Two examples of engineered landscape in the MMR.
	Fig. 2 Drainage canals and digital elevation model.
	Fig. 3 Relative frequencies of phytoliths recovered from farm pond, profile 690.
	Extended Data Fig. 1 Field view of a circular farm pond.
	Extended Data Fig. 2 Phytolith profiles of drainage canals.
	Extended Data Fig. 3 Phytolith profiles of causeway (675), fields (676, 679,680, 706), ponds (689, 695), forest (702, 703, 704, 705) and canal (708).
	Extended Data Fig. 4 Artwork representing how farm ponds and drainage canals were probably used for maize agriculture.
	Extended Data Fig. 5 Profile of pond 690 with associated age/depth model.
	Extended Data Fig. 6 Pond cluster with location of profile 695.
	Extended Data Fig. 7 Diagram of relative frequencies of pollen recovered from farm pond, profile 690.
	Extended Data Fig. 8 Microphotographs showing examples of key phytolith morphologies identified and their taxonomic and anatomical associations.
	Extended Data Fig. 9 Bones of Synbranchus marmoratus found in pond 695 at a depth of 70 cm.
	Extended Data Table 1 Radiocarbon dates conducted on pond 690 and used in the associated Bayesian age depth model.




