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Highlights
A benchmark of industrial polymerization process for thermal runaway process monitoring
Simin Li, Shuang-hua Yang, Yi Cao, Xiaoping Jiang, Chenchen Zhou

o Clarify the need for polymerization benchmark study to
develop monitoring algorithms;

o The first publicly available dynamic model for a simpli-
fied industrial polymerization process;

e Extract and simulate five types of faults that could lead to
thermal runaway;

e Two types of monitoring algorithms tested on the dataset
show the applicability and suitability of the benchmark
model.
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Abstract

Polymer production is of paramount importance in the chemical manufacturing industry. However, safety concerns are prevalent due
to the exothermic nature of polymerization reactions, which can cause thermal runaway. The limitations of the current industry-
standard monitoring methods underscore the need for novel techniques to detect faults early. To facilitate the development and
evaluation of such algorithms, benchmarks that enable direct comparisons of performance are required. Addressing this gap,
the present work first introduces an open-source polymerization benchmark model and associated datasets. Derived from reaction
kinetics, mass balance, and energy balance analysis, the differential equation forms the basis of our model. By manipulating relative
parameters, we intentionally induce five typical faults that can lead to thermal runaway. As a result, our benchmark model serves
as an invaluable tool for advancing and validating algorithms for thermal runaway process monitoring, significantly enhancing the
safety of the polymerization process. The effectiveness of the model and dataset is demonstrated by testing multivariate statistical

process monitoring algorithms and deep learning algorithms.

Keywords: batch polymerization, bench mark modelling, thermal runaway, process monitoring

1. Introduction

Thermal runaway is a critical issue in polymerization pro-

faults. Kano et al. (2002) introduced the dissimilarity algo-
rithm (DISSIM) for statistical process monitoring, which was
further developed by Zhao et al. (2007, 2008, 2017); Wang

duction that demands close attention. It can lead to over-pressurizatiofyq Zhao (2020). DISSIM quantitatively evaluates the differ-

and potentially catastrophic thermal explosions. Although haz-
ardous, the current industry-standard monitoring methods—such
as temperature, pressure and inhibitor concentration monitor-
ing(Allen, 2020)—have limitations. These methods only detect
changes in individual variables and are inadequate for promptly
identifying thermal runaway. Early fault detection is essential
to implement effective control measures(Joy et al., 2019; Fin-
kler et al., 2014; Gao et al., 2013) and ensure uninterrupted
production. Therefore, efficient process monitoring of thermal
runaway faults is necessary to enhance reliability and guarantee
safe operations.

Thermal runaway is a typical incipient fault with an ex-
tended induction period(Ando et al., 2021). Multivariate sta-
tistical process monitoring (MSPM) algorithms(Cai and Tian,
2014) have been extensively studied to address this issue and
maintain process safety. For instance, Pilario and Cao (2018)
proposed, and Xiao (2019); Pilario et al. (2019); Wu et al. (2020)
developed canonical variable dissimilarity-based fault detection
algorithms. These algorithms rely on the dissimilarity between
past and future canonical variables to detect process incipient
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ences between distributions of process data. Additionally, Har-
mouche et al. (2014); Chen et al. (2018); Cai and Deng (2020);
Dong et al. (2022) proposed incipient fault detection and diag-
nosis (FDD) algorithms based on Kullback—Leibler divergence
(KLD). KLD measures the dissimilarity between the probabil-
ity densities of the first principal components and reference dis-
tributions obtained during normal and safe operating modes.
Deep learning has gained significant traction in process mon-
itoring in recent years. Yu and Yan (2021) developed an In-
tensified Iterative Learning (IIL) model based on stacked au-
toencoders to enhance industrial fault detection by preserving
feature information. Arunthavanathan et al. (2021) proposed a
novel approach for early potential fault detection using Convo-
lutional Neural Networks (CNNs) and Long Short-Term Mem-
ory (LSTM) networks. Furthermore, Wei et al. (2022) intro-
duced the Target Transformer model, which utilizes an atten-
tion mechanism to capture long-term dependencies in chemi-
cal processes, improving the performance of fault diagnoses.
The aforementioned process monitoring algorithms are claimed
to be more efficient compared to industry-standard monitoring
methods.

Process monitoring algorithms plays a significant role in
risk and safety management systems(Zhou et al., 2023). For in-
stance,, Amin et al. (2021) presented a risk-based FDD method-
ology for nonlinear and non-Gaussian process systems based
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on the R-vine model. This methodology generates a risk pro-
file of the system dynamics and effectively detects faults. The
monitored risk profile detects abnormal situations, and density
quantiles are used to develop a fault diagnosis module. Liu
et al. (2022) proposed a Strong Relevant Mechanism Bayesian
Network (SRMBN) that combines mechanism correlation anal-
ysis and process state transition. This network provides reli-
ability analysis for risk assessment and process safety. Deng
et al. (2023) introduced an improved Slow Feature Analysis
(SFA) algorithm, called Probability-related Randomized SFA
(PRSFA), to enhance the detection of incipient faults. Han et al.
(2023) developed a traceability inference method based on a
Dynamic Uncertain Causality Graph (DUCG) to identify the
root cause of faults in regenerative thermal oxidizers at early
anomaly alarms. This method is designed to ensure the sys-
tem’s operational reliability and stability.

When applying these process monitoring algorithms to a
specific target application, the typical first step before conduct-
ing actual experiments is the verification of the algorithms on
detailed simulation models(Annaswamy et al., 2024). The cur-
rent process monitoring methods are primarily verified on bench-
marks such as the Tennessee Eastman process, CSTR, or wind
turbines(Downs and Vogel, 1993; Pilario and Cao, 2018; Odgaard
et al., 2013). The Tennessee Eastman process simulates an
industrial chemical process involving two simultaneous gas-
liquid exothermic reactions. The CSTR process involves an
exothermic first-order reaction. The wind turbine benchmark
focuses on the system-level dynamics of wind turbines. How-
ever, validation solely on these models is insufficient to confirm
their effectiveness in monitoring thermal runaway in polymer-
ization. Thermal runaway in polymerization presents a more in-
tricate set of mechanism factors, making detection significantly
more challenging. Although several researchers(Cui etal., 2019;
Liu and Wilhite, 2019, 2022; Dakkoune et al., 2018) have con-
tributed to simulating thermal runaway, as listed in Table 1,
their models have limitations. The models are not specifically
designed for developing and assessing process monitoring tech-
niques, and their proprietary nature restricts accessibility. There-
fore, a new benchmark study is necessary to facilitate the de-
velopment and validation of algorithms for monitoring thermal
runaway in polymerization.

This work aims to bridge the gap by proposing a white-
box model based on an actual industrial polymerization process
with modified components, kinetics and operating conditions.
The model incorporates five injectable fault types: human op-
eration fault, inherent fault, equipment fault, sensor fault and
actuator fault. Any of these can result in thermal runaway with-
out intervention. The model equations are derived from reac-
tion kinetics, mass balance, and energy balance analysis. With
comprehensive control measures, we realize the entire produc-
tion process, including the preparation, production, and final
stages. To support further research, we make this model pub-
licly available and provide a pre-processed dataset. The dataset
includes 20 normal datasets and 10 fault datasets for each spe-
cific fault type. This paper provides a detailed explanation of
the modelling process and offers guidelines for model usage.
The model and datasets are suitable for developing and validat-

ing algorithms to monitor the thermal runaway process of poly-
merization. Its suitability is demonstrated through two types of
process monitoring algorithm examples tested on the dataset.

In addition to algorithm development, this work is also of
paramount importance in practical industrial safety. For risk
engineering, the model can help identify potential hazards in
the polymerization process, thereby enabling the development
of strategies to manage risks across all stages of an incident. In
terms of process safety, algorithms validated using this model
can be applied to both laboratory testbeds and real-life experi-
ments. This is crucial for the prompt detection of faults during
actual production, significantly enhancing process safety. The
main contributions of this research are as follows:

1) We first develop a novel white box model based on a sim-
plified industrial polymerization process, which is pub-
licly available.

2) We intentionally simulate five typical faults, which can
induce thermal runaway during the production stage, to
generate comprehensive fault datasets.

3) The proposed model and datasets not only facilitate the
development and validation of process monitoring algo-
rithms but also contribute to the design of control strate-
gies and risk analysis, ultimately enhancing process safety.

In this paper, the sections are arranged as follows: Section 2
provides a detailed description of the emulsion polymerization
process considered for modelling. Section 3 delves into the
mathematical model and elucidates the thermal runaway fault
setting. Section 4 offers insightful guidelines on how to har-
ness this model effectively to develop robust thermal runaway
process monitoring algorithms. Section 5 showcases the versa-
tility of the proposed model in thermal runaway process mon-
itoring by presenting a performance comparison between two
distinct types of process monitoring algorithms. Lastly, Section
6 explores the potential applications and provides concluding
remarks, summarizing the key findings.

2. Process description
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Fig. 1. Graphical description of the Semi-batch emulsion polymerization

process.



Table 1: Comparison of existing thermal runaway model

Author Modeling method Modeling object Application Is model
public?

Cui et al. CFD simulation PS The influence of runaway conditions No

Liu et al. CFD simulation PMMA Interactions of poor mixing and exothermic No
chemistry

Liu et al. MOM PMMA Design for inhibition No

Jiang et al. CFD simulation PMMA Safer operating conditions and effective inhi- No
bition

Dakkoune et Kinetic model Perhydrolysis of formic Fault detection and isolation No

al. acid

The process under consideration involves emulsion poly-
merization of monomer A with initiator B, acid regulator C,
and chain transfer agent E in a semi-batch industrial reactor (as
illustrated in Fig. 1).

In the preparation stage, monomer A, initiator B, acid reg-
ulator C, and chain transfer agent E are simultaneously intro-
duced to the reactor along with the entire water volume. Subse-
quently, the reactor is sealed, and the gas phase is evacuated to
create a controlled environment.

In the production stage, heating is initiated by circulating
hot water through the jacket to maintain the reactor tempera-
ture. Once a specific temperature threshold is reached, the hot
water flow is stopped, and cooling water is introduced to regu-
late the temperature. Concurrently, the remaining monomer A
and initiator B are continuously fed into the reactor to ensure a
stable polymerization reaction.

In the final stage, the feeding of monomer A and initiator
B is ceased after the desired cumulative amount has been deliv-
ered. Simultaneously, as the reaction progresses, the gas pres-
sure within the batch decreases, indicating the completion of
the reaction when it reaches a predetermined value.

In industrial operations, three primary control loops are em-
ployed: close-loop PID temperature control, close-loop PID
pressure control, and open-loop manual reaction rate control.
Pressure control is maintained by adjusting the monomer feed
flow to keep a constant reactor gas pressure. Temperature con-
trol is achieved by regulating the jacket cooling water inlet flow
to maintain a constant reactor temperature. Reaction rate con-
trol stabilizes the reaction rate by adjusting the initiator feed
flow. The overarching objective of this intricate process is to
ensure the polymerization reaction proceeds at an optimal rate
while sustaining stable temperature and pressure conditions.

3. Polymerization process modelling

The primary objective of this study is to develop a com-
prehensive mathematical model that accurately describes the
thermal runaway phenomenon in industrial polymerization pro-
duction. The model description is delineated into five distinct
parts: (I) Reaction model, (II) Temperature model, (IIT) Pres-
sure model, (IV) Variable and parameter setting, and (V)Thermal
runaway fault setting.

3.1. Reaction model

Emulsion polymerization is conceptualized as a two-phase
system, consisting of a gas phase and a liquid phase. Initiator

B, acid regulator C, and chain transfer agent E are predomi-
nantly present in the liquid phase, while monomer A primarily
resides in the gas phase. The polymerization reaction occurs as
monomer A diffuses into the liquid phase.

The polymerization process encompasses four fundamental
steps: chain initiation, chain growth, chain transfer and chain
termination(Farina, 1987). These sequential steps govern the
formation of polymer chains during the emulsion polymeriza-
tion process.

In the chain initiation stage, initiator B undergoes decom-
position, resulting in the formation of active free radicals R*.
Subsequently, monomer A reacts with these active free radicals,
leading to the formation of active polymer P;. The chemical re-
action equations for the chain initiation stage are as follows:

B — R*, (D
A+R* > P,. 2)

The chain growth stage involves the combination of an ac-
tive polymer P,, (consisting of n chain segments) with monomer
A, resulting in the formation of the active polymer P,,; (now
comprising n + 1 chain segments):

P,+A— P, 3

In the chain transfer stage, the active polymer P, with n
chain segments can undergo transfer reactions with monomer
A, acid regulator C, and chain transfer agent E, resulting in the
formation of the dead polymer D, with n chain segments and
corresponding active free radicals:

P,+A — D, + Py, )
P,+C— D, +R’, 5)
P,+E —> D, +R". (6)

In the chain termination stage, the active polymer P, with n
chain segments and active polymer P,, with m chain segments
are coupled and terminated to form a dead polymer D,,, with
n + m chain segments:

Py + Py = Dy (N
The polymerization of A follows a free-radical mechanism.

To facilitate calculations, we have simplified the reaction pro-
cess. Initially, we assume equal activity among the primary free



radicals generated during each elementary reaction. Addition-
ally, the kinetic parameters governing chain growth, chain ter-
mination, and chain transfer are assumed to be independent of
chain length. Furthermore, within the considered temperature
range, we exclusively account for the coupling termination re-
action. Consequently, the reaction rates for each step are given
by the equations below:

Ry = kg * € ¥ x [B] = k; * [B], @®)
Ry = koo ¢ ¥ # [A]# [R°] = ks * [A] * [R], ©)
Ry = kso # e # [A] % [P,] = ks % [A] % [P, ], (10)
Ry = kag % € % % [P,] % [A] = ky % [P,]  [Al, (11
Rs = kso * € %  [P,] % [C] = ks * [P,]  [C], (12)
Re = keo * € % % [P,] * [E] = ko % [P,] * [E], (13)
Ry = koo % ¢ 7 % [P,]  [Py] = ks # [P,] % [P,]. (14)

Based on relevant literature and research(Sun et al., 2014),
we fine-tuned the activation energies and pre-exponential fac-
tors and obtained the kinetic parameter settings shown in Table
2. It is important to emphasize that these reaction rate equa-
tions exhibit a high degree of universality when applied to other
types of emulsion polymerization. However, adjustments to the
relative kinetic parameters are necessary to tailor them to the
specific process under investigation.

For acid regulator C:

dNe _ d(CIV)

dt dt

= (- ) ks[CIP, DV, (18)

y=2
For chain transfer agent E:

dNg _ d(E]W)
dr ~ dr

(= > K[EIP V. (19)
y=2

For active polymer with a chain length of n = 1:

dNp, _ d(P1IVD)

o T (k2[A][R™] = ks[A][P1] + Z ka[A][PyDV1.

y=2
(20)

For active polymer with a chain length of n > 2:

dNp, _ d([P,1V1) _
dr dt

— k[P, 1[E] - Z ka[Py1[P, D V1. (2D
y=2

For dead polymer with a chain length of n > 2:

dNp,  d([D,]V)
e~ dr

=(ks[A][P,] + ks[P,]1[C] + ke[P,][E]

1

[STE]

+ ) KPP,y VA 22)
Table 2: Settings for pre-exponential factors(l/s) and activation ener- y=2
gies(J/kmol)
Reaction  Reaction Pre-exponential  Activation Since the chain length n can be very large, the number of
label factor energy differential equations for the concentration variation of active
1 B R’ 1.13 lO:f 1.37 10: polymers is infinite. To facilitate the calculation, the method
i }1);"11; = }I:nl+1 31'.6225111%5 }?g: %87 of moments is introduced, which converts infinite differential
4 P,+A—D,+P 332106 530 % 107 equations to finite ones. We denote
5 P,+C - D, +R* 1051 2.00 * 107
6 P, +E > D, +R* 1051 2.00 % 107 o
7 P, +P, = Dy 1.38 % 108 1.36 % 107 A = n"[P,], (23)
According to the principle of conservation of materials(Jokilehto, n=1
2010), we can derive the differential equation for the change in S
the amount of substance for each component. Hm = Z n"[Dp]. 24)
For the active free radical R*: n=2
« o Therefore, the moment equations can be listed as
dNg-  d([R*]WV) ; ’
o = a = Bl RIAIRT + 3 (ks + k)PICHVL.
y=2 a4 =(ka[ AJ[R"] = (ks[C] + k6 [E]) Ao — kz ) V1, (25)
15
o AAUWD) _y[ATR"T + (ks + k)AL — (kilA] + ks[P;I[C]
Based on relevant research, the liquid volume of the reactor dr V7 3T 0™ W4 S
is approximately linearly related to the amount of monomer in + ks[EDA; — k3402, (26)
the liquid phase. Therefore, we denote V; = Vi + aMy . d(LV)
For monomer A: % =(ka[A][R"] + (ks + ka)[A]Ao + 2k3[A] 4
dNa _ d([A]V) _ 1000F N — (ka[ Al + ks[P/1[C] + ke [ED A, — ks dod)Vi, (27
d[A — i 1 :( MAVlg —kz[A][R]_Z(k3 +k4)[A][P_\])‘/1d(H V) ( 4[ ] 5[ j][ ] 6[ ]1) 2 740 2) 1 ( )
=2 oW1 2
: ———— =((k4Ca + ksCc + ksCg) Ay + —k745) V1, 28
(16) ar ((k4Ca + ksCc + k¢CE) Ao 270)1 (28)
d(u; v,
For initiator B: % =((ksCa + ksCc + keCp) A1 + k7401 V1, (29)
dn d([BIV) 1000Fiy, d(w, V;
‘B = ! =( L k1 (BDW. an M :((k4CA +ksCc + kGCE)/lz + k7(/l()/12 + /1%))V1 (30)
dr dr MgV, dt

(k3[Al([Pp-1] = [Pn]) = ka[A][P,] = ks[P,][C]



The differential equation for the amount-of-substance change
of each component can be expressed by moments.
For active free radicals R*:

e _ ARV _ (4, [B] = ko[ ATR"] + s[ClAo + ke[EL0) V.

dr dr
(3D
For monomer A:
dNy _ d(AIV) _1000Fy .
s = — A][R*] - A .
” ” ( MV, ka[A][R™] = (k3 + kg)[A] o)V
(32)
For acid regulator C:
dNc _ d([C]W)
— = ——= = (=ks5[C]Ap)V1. 33
o i (=ks[Clp)W1 (33)
For chain transfer agent E:
dNg _ d([E]V))
— = = (=kg[E]Ap)V1. 34
o I (=k6[E]0)V1 34

The reaction rate R, is defined as the A monomer consump-
tion rate in the reactor, which can be calculated as

Ra = (k[A][R*] + (k3 + ka)[A]20) V1. (35

The number average molecular weight M, and the weight
average molecular weight M,, can be calculated by the follow-
ing equations:

— +A4

M, = My (36)
Ho + Ao

— + A

M, = M2 37)
M+ A

3.2. Temperature model

The heat transfer process in polymerization can be divided
into two parts: jacket and reactor transfer. Based on the as-
sumption that the reactor and the jacket are well-mixed, the
dynamic heat balance of the stirred tank reactor and external
jacket is written as

dT,
(Mscp,s + MACp,A)E = Qfeed + QW + Qr + Qslir - Qloss, (38)

d7;
MiCoi—

= Qin,j - Qoul,j = Ow. (39

In Equation (38), the left side is the term describing the heat
accumulation in the reactor. The heat change of initiators and
other additives is assumed to be negligible. On the right side of
the equation, Qr.q is the heat input due to the feeds, Qy, is the
heat flow through the reactor wall, Q; is the reaction heat, Qg
is the energy input due to the stirrer, Qo is the heat loss to the
surroundings, and M is the mass of the reactor contents.

The presence of Qfeeq is due to the temperature difference
between the monomer feed and the reactor. It can be calculated
as

Qfeed = Fin,ACp,A(TA - Tr)' (40)

Under steady-state conditions, the heat flow through the re-
actor wall is given by

Ow =US(Tj-T)). (41)

Chain growth plays a dominant role in the polymerization
process. Assuming that the heat of reaction is equal to the heat
released by chain growth, the heat of reaction is

Or = AHk3[A] V1. (42)

As Qjoss 18 a result of evaporation and condensation pro-
cesses, it is influenced by the geometry of the reactor and the
temperature difference between the reaction mixture and its sur-
roundings. n empirical formula is used, considering the ambient
temperature and the reaction temperature:

Qtoss = b1(T = Tamp)™. (43)
The energy input by stirring is computed by:
Ouir = KpN*d’. (44)

Stirrer heat is estimated at 0.5 W, which is negligible and
therefore excluded from further calculations.

Therefore, the temperature change of the reactor can be cal-
culated as follows:
dT,
O =(Fin ACpa(Ta = To) + US(T; — T;) + AH = k3[A]doVi

= bi(T; - Tamb)b2 + Qstir)/(Mst,s + MACp,A)- (45)

In Equation (39), the left side of the equation describes how
much heat accumulates in the jacket media mass. On the right
side, Oy, j represents the heat input due to the jacket feeds, Qou
is the heat output and Q,, is the heat flow through the reactor
wall.

Oin;j and Qg are included in the equation because jacket
heat exchange is a continuous process. These values are defined
as

(46)
(47)

Oinj = FiCpTinj,
Qoutj = FjCpT;.

Thus, the temperature change of the jacket can be calculated
as

drT.
4 =(FiCpj(Tinj — T;) = US(T; — T1)/M;Cyp;.

dr (48)

3.3. Pressure model

According to the ideal gas lawLearning (2021) PV = nRT,
the change of reactor gas pressure can be expressed as
dn, gA dTr

=R(T,—=— + Nop—).
(T a é”Adt)

d(PV,)

dr (49)

. T . . .
Since % has already been calculated in previous section,

A

.y, . .
we now need to determine —$=. The change in Ny, is the




difference between the A monomer feed rate Fj, o and the A
dissolution rate in the liquid phase F:

dNga 1000
dt

(FmA gl)~ (50)

According to the solute penetration model(Abraham et al.,
1995), Fg can be calculate using the following equation:

P
Fa =k(Alo — [A]) = k(5 —[AD 619}

where Henry’s law(Sander, 2015) states that [A]y = f}. In this
paper we assume k to be constant as the temperature variation
is minimal.

By combining Equation (50) and (51), we obtain

dNga 1000

4 (FmA k(— - [AD). (52)

Therefore, the pressure change of the reactor can be calcu-
lated as follows:

d(PV, ) dT,

ROV N 1000T
Cdr &ATqr

———(Fina — k(— —-[AD).  (53)

3.4. Variable and parameter setting

The process has four manipulated variables and seven mea-
sured variables as listed in Table 3-4. Disturbances are intro-
duced to each manipulated variable, and noises are added to
each measured variable. All disturbances and noises follow a
normal distribution, and relative variances can be found in Ta-
ble 3-4. Relative parameter values are given in Table 5.

Table 3: Disturbances in the manipulated variables

Variable Description Variance ~ Units
Fina Monomer A feed rate 1074 kg/s
Finp Initiator B feed rate 10716 kg/s
Tiin Jacket water inlet temperature 1 K

Fj Jacket water inlet flow 0.01 kg/s

Table 4: Noises in the measured variables

Variable Description Variance Units
[A] A concentration 1074 mol/L
[B] B concentration 1074 mol/L
[C] C concentration 10°1 mol/L
[E] E concentration 10713 mol/L
T, reactor temperature 1073 K

P reactor pressure 107 Pa
Ra reaction rate 100 kg/h

3.5. Thermal runaway fault setting

In this benchmark model, several faults are considered, cov-
ering different kinds of possible faults in the polymerization
process. Table 6 summarizes the five introduced typical fault
scenarios. Fault 1 corresponds to a sudden change in initia-
tor feed, while the remaining faults exhibit gradual drifts. Al-
though these faults vary in severity, they may all lead to thermal
runaway. Different fault simulations can be achieved using spe-
cific switches.

Fault 1: Change in initiator feed. In this polymerization
process, the addition of initiator is controlled based on artifi-
cial experience. To ensure reaction rate stability, we adopted a

Table 5: Constant values in the mathematical model

Parameter Description Value Units
Coa Monomer heat capacity 804 J/(kg * K)
UsS Heat transfer coefficient 16870 W/K
AH Standard reaction heat 172700 J/mol
Vio Liquid volume 2 m?

14 Reactor volume 6 m
Tamb Environment temperature 293 K
Ta Inlet monomer temperature 333 K
Ostir Stirring heat 0.5 w
M Mass of reactor liquid phase 2000 kg
M; Mass of jacket water 2000 kg
Cps:Cpj Heat capacity 4200 J/(kg = K)
R Ideal gas constant 8.314 J/(mol x K)
a Coefficient 0.667 /
by Coeficient 1
by Coeflicient 2 /
k Coefficient 0.0562 /
H Coeflicient 700 /

Table 6: Fault scenarios in the mathematical model

Fault  Description Type Classification
1 Change in initiator feed step Human operation fault
2 Gel effect slow drift ~ Inherent fault
3 Heat transfer fouling slow drift ~ Equipment fault
4 Inaccurate thermometer slow drift ~ Sensor fault
5 Jacket cooling water valve sticky ~ slow drift ~ Actuator fault

two-stage initiator feeding strategy: faster during the ramp-up
phase and slower to maintain a steady rate. However, due to
operator inexperience, a delayed switching could result in an
excessive initiator addition, leading to increased reaction rate
and potential thermal runaway.

Normally, the initiator feed is changed at 5300s. But in
the fault scenario, this change is delayed by 1140 seconds. A
human operation fault resulting in a step change in the initiator
feed rate can deviate the initiator concentration, [B], from the
desired level in the reactor. An excessive initiator can increase
the chain initiation rates, R; and R, subsequently enhancing
the chain growth rate, Rs;. This acceleration of the initiation
and growth rates ultimately elevates the reaction rate, Rx. The
increased reaction rate generates excess heat, Q;, causing a rise
in the reactor temperature, 7.

Fault 2: Gel effect. During the polymerization process,
as the reaction proceeds, monomers gradually transform into
polymers, leading to an increase in the viscosity of the reac-
tion system. When the viscosity of the reaction system reaches
a critical point, the system transitions from a flowing liquid to
a viscous syrup. Consequently, chain segments encounter sig-
nificant resistance during rearrangement. Active free radicals
at the chain ends experience challenges in reacting with other
chain-end radicals for termination, resulting in a significant re-
duction in the termination rate constant. However, the active
free radicals at the chain ends persist, and the system’s viscos-
ity does not impede monomer diffusion sufficiently to halt the
polymerization reaction.

Marten and Hamielec (1982) propose a modelling of the gel
= M;levgf and I is the critical judgment
In this model, when the reaction starts,

As the reaction progresses, the I value

effect, denoting as /
value of Gel effect.
I<13 and k7,real = k7.



gradually increases. When [ exceeds I3, the Gel effect occurs,
and k7 ea can be calculated as

k7,real _ (chr)L-zefG(V%fﬁ). (54)
k7 M,

The free volume fraction, V;, is calculated as

Vi = 0.025 + Aap (T} — Top)gp + Aam(T; — Tom)dm (55)

where ¢, = (}:gﬁ( and gy = 1 — ¢y,

This is an inherent fault characterized by a slow drift change
in the chain termination rate constant, k;. According to the
polymerization rate equation, the termination rate constant, k7,
undergoes a gradual decrease, while the chain growth rate con-
stant, k3, remains nearly constant. Consequently, the ratio of k3
to k7 increases substantially. Given the positive correlation be-
tween the polymerization reaction rate, R, and this ratio, there
is a significant elevation in the reaction rate. The increased re-
action rate generates excess heat, Q;, resulting in a rise in the
reactor temperature, 7.

Fault 3: Heat transfer fouling. In the reaction stage, a vis-
cous product is produced. Heat transfer coeflicients are reduced
if products adhere to reactor walls, which leads to reduced heat
transfer capacity of the jacket. If the rate of heat generation
from the reaction exceeds the jacket’s maximum heat transfer
capacity, thermal runaway will occur.

Here, we denote US .y = US — c3t representing an equip-
ment fault that leads to a gradual reduction in the heat transfer
coefficient. As US . decreases, the heat flow through the re-
actor wall, Qy, decreases, resulting in an increase in reactor
temperature, 7.

Fault 4: Inaccurate thermometer. There are several reasons
for inaccurate thermometer readings. The first is electrical or
mechanical faults in the temperature sensor. Additionally, any
products attached to the temperature sensor can impact temper-
ature measurements. These faults can introduce a fixed offset
or a gain factor in measurements. An inaccurate thermometer
can disrupt temperature control and potentially lead to thermal
runaway.

Here, we denote Tyyeq = Ty — ca 1t — cap. If sy # 0 and
¢4 = 0, it can perform a gain factor in measurement. If ¢4 = 0
and ¢4 # 0, it can perform a fixed offset in measurement. In
this model, we set c4» = 0 to monitor a sensor fault charac-
terized by a slow drift change. This fault causes the measured
reactor temperature, T;, to be lower than and deviate gradually
from the actual reactor temperature, T, ... The incorrect tem-
perature measurement leads to untimely feedback and adjust-
ment of the jacket cooling water flow, Fj, by the temperature
controller, reducing the efficiency of the jacket heat exchange,
Q. Consequently, despite insignificant changes in the mea-
sured temperature, the real reactor temperature, 7,1, has al-
ready exceeded the control range.

Fault 5: Jacket cooling water valve sticky. The phenomenon
of hydraulic valve body sticking typically occurs due to in-
creased friction as the valve core moves. This is known as
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Fig. 2. Trends of sample at normal condition: (a)7; at normal condition, (b)Ra

at normal condition.

“damped sticking”, where small particles accumulate between
the hydraulic valve core and the valve body, resulting in in-
creased friction of the valve core. Damped sticking leads to
a decreased response speed of the valve. If the jacket cooling
water valve becomes sticky, adjustments in cooling water flow
may be delayed, affecting heat exchange and potentially caus-
ing thermal runaway.

Here, we denote Fj.a = Fj — cst, representing an actua-
tor fault with a slow drift change. This fault causes the actual
jacket cooling water flow, Fj rcar, to be lower than and gradually
deviate from the intended control output, F;j. Consequently, the
efficiency of the jacket heat exchange, Oy, decreases, leading
to an increase in the reactor temperature, T}, as described by
Equation (38). Relative parameter values can be found in Table
7.

Table 7: Model parameters in fault setting

Parameter Value Units
Tom 167 K
Tgp 383 K
Aam 1073 K™!
Ac, 481074 K!

A ;04 oo /
f 0.966471—].164*194’3Tr _ /
1.19504-3.3+10~4 7
G 1.11 /
c 0.5 /
2 1.75 /
c3 30 W/(K *s)
(%] 0.0001 K/s
C42 0 K
cs 0.013 kg/s?

The polymerization process and thermal runaway faults sim-
ulation model is available online(Li, 2024). Fig. 2 illustrates
the simulation results under normal operating conditions. As
shown, the reaction temperature steadily increases to a peak of
351 K and is then maintained at this level by the reaction tem-
perature controller. Simultaneously, the reaction rate is held
steady within a range of 900-1000 kg/h. Relative thermal run-
away simulation results are shown in Fig. 3. It can be observed
that when a fault occurs, the reaction rate and reactor temper-
ature initially remain stable at the beginning. However, as the
fault progresses significantly, the reaction rate and reactor tem-
perature increase rapidly, leading to thermal runaway.

The exothermic nature of the polymerization reaction plays
a critical role in understanding these faults. Faults 1 and 2 con-
tribute to an increase in heat release, whereas faults 3, 4, and 5
reduce the heat transfer capacity of the jacket. Initially, when
a fault occurs, the heat release rate is within the jacket’s heat
transfer capacity, resulting in a relatively stable reactor temper-
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ature. However, as the fault intensifies, the exothermic reaction
rate surpasses the jacket’s cooling capacity, causing a rise in the
reaction temperature. This temperature increase, coupled with
the positive feedback loop between reaction temperature and
rate, can ultimately lead to thermal runaway. If thermal run-
away is not handled properly, it may cause product loss at the
very least, or even exposition, personal injury or death. There-
fore, employing process monitoring algorithms to promptly de-
tect faults and prevent the escalation of positive feedback and
thermal runaway is crucial. The simulation results are con-
firmed to be similar to the actual production process. However,
due to confidentiality principles, we are unable to provide spe-
cific data on the actual process.

4. Use of the model for algorithm development

4.1. Data generation and preprocessing

The model file(Li, 2024) includes partially preprocessed nor-
mal and faulty datasets, without data normalization. Normal
condition has 20 datasets while each fault has 10 faulty datasets.
Each dataset represents a complete batch process, organized as
an 11-column matrix. The manipulated variables, variables,
u = [Fa Fg Fj Tinjl, are represented by the first four columns,
while the last seven columns represent the measured variables,
y = [[A] [B] [C] [E] T; P Ra]. Each row is a sample taken at 10-
second intervals. We encourage readers to run the model them-
selves and collect data using the operation manual provided in
the open access link, which contains more detailed informations
about this model.

Data generation. To establish the model conditions, the
solver, relative tolerance, maximum simulation time, and nor-
mal/fault conditions were specified. The model was then run

Data alignment. Various methods, including head align-
ment, dynamic time warping (DTW), and others, can be used
to align multiple training datasets in the time direction. These
methods ensure data synchronization, enabling effective train-
ing and comparison across different datasets

Data normalization. To ensure an equal contribution of
each variable during dimensionality reduction, the datasets ware
normalized. This was achieved by calculating the mean and
variance of each variable and scaling the data so that the mean
becomes zero and the variance equals one.

Normalization involves two steps. As the first step, we sub-
tract the sample mean of each variable:

1 20
Xiean = 2_0 ;Xl

Second, we scale each variable to unit variance:

(56)

X; = (Xi — Xmean)/ X . (57)

Subsequently, we expand the three-dimensional normal datasets
along the batch direction for ease of calculation, as shown in
Fig. 3.

Xirain = [)_fl;)_fz; e ;)_(20]- (58)
For new sample, the normalization procedure is similar:

Xtestk = (X — Xmean)/ Xt (59)

multiple times, and the data was obtained in the MATLAB workspace

for subsequent analysis.

Data filtering. The sampling interval was determined, and
the data was filtered to acquire the normal and faulty datasets
with a fixed sampling rate.
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4.2. Process monitoring algorithm selection

In this part, we choose appropriate process monitoring algo-
rithms to enable early fault detection, diagnosis of root causes,
and severity assessment. The goal is to prevent potential fail-
ures or system shutdowns by providing timely identification
and understanding of faults.

MSPM algorithms. Statistical process monitoring algorithms
utilize time-series features extracted through multivariate ap-
proaches for fault detection, identification, and reconstruction.
Monitoring statistics, such as Hotelling’s T2 and the squared
prediction error (SPE), can be calculated from these time-series
features to detect faults. Associated thresholds are defined for
comparison with the monitoring statistics. Upon fault detec-
tion, contribution plots help identify the process variables that
significantly impact the fault occurrence.

Machine learning algorithms. Unsupervised learning algo-
rithms, such as clustering analysis, can detect anomalies, in-
cluding faulty conditions or new normal operating states. This
is achieved by analysing unlabelled raw data and identifying
patterns without predefined labels. In contrast, supervised clas-
sification and regression algorithms rely on labelled data and
extracted features to accurately detect, diagnose, and assess the
severity of faults. In the context of the benchmark dataset, la-
beling can be performed using a priori normal/fault information
during the pre-processing stage.

4.3. Performance evaluation

We evaluate monitoring results using three performance in-
dices: fault detection rate (FDR), fault detection time (FDT),
and false alarming rate (FAR). Specifically, the FDR, as rep-
resented by Equation (60), signifies the proportion of samples
that exceed the control limit relative to all actual faulty samples.
On the other hand, the FDT denotes the time interval between
the introduction of a fault and its initial detection. We define
the FAR, as given by Equation (61), as the fraction of samples
that surpass the control limit among all normal samples.

N,
FDR = ——— x 100%, (60)
Nrp + Nty
N,
FAR = — N % 100%. ©61)

Nrp + Npn

5. Demonstration of process monitoring algorithms on the
model

5.1. MSPM algorithms

As polymerization is a dynamic process, it’s better to choose
dynamic MSPM techniques such as canonical variate analysis
(CVA). Furthermore, it has been concluded that canonical vari-
ate dissimilarity analysis (CVDA) outperforms traditional CVA
methods and other dissimilarity-based methods, like KLD, DIS-

SIM, and growing curvilinear component analysis (GCCA)(Safaeipour

et al., 2021). Therefore, CVDA and its relevant algorithms,
mixed-kernel canonical variate dissimilarity analysis (MK-CVDA),
and canonical variate dissimilarity and mixed-kernel principal
component analysis (CVD-MKPCA), are employed to monitor
the five thermal runaway faulty processes.

The Gaussian kernel function (Equation (62)) is utilized for
kernel expansion:

2
[lx; —xj||
h

with an empirically determined kernel width of 7 = 50m. We
find that a maximum of three lags is significant at the 5% con-
fidence level; thus, the past and future measurements are set to
3. To ensure minimal information loss, the number of reserved
canonical variables is set to capture approximately 90% of the
total sum of eigenvalues or singular values. Control limits are
calculated with 95% confidence using kernel density estima-
tion. Any four consecutive samples exceeding the control limit
are classified as faults.

k(xi, xj) = exp(— ) (62)

5.2. Deep learning algorithms

With the rapid advancement of artificial intelligence, deep
learning has found increasingly extensive applications in pro-
cess monitoring. Among the myriad deep learning algorithms,
CNNs have been prominently applied to fault diagnosis. The
hallmark feature of CNNs is their weight-sharing convolutional
structure, which reduces model complexity and the number of
parameters, thereby effectively mitigating the issue of over-fitting.
However, CNNs do not inherently capture long-term dependen-
cies in sequential data over time. This limitation is addressed
by LSTM networks, which are specifically designed to pro-
cess time series data and learn long-term dependencies. Con-
sequently, the employment of both CNN and LSTM algorithms
is warranted in monitoring the five thermal runaway fault pro-
cesses.

Table 8 illustrates the architectural designs of the CNN and
LSTM neural networks. The CNN architecture comprises 3
convolutional layers, 3 max pooling layers, and 2 fully con-
nected (FC) layers. Conversely, the LSTM architecture includes
1 LSTM layer and 3 FC layers. To facilitate training, the dataset
was randomly partitioned into three subsets: a training set, a
validation set, and a test set. Specifically, the training set en-
compassed 14 normal datasets and 3 datasets per fault type,
while the validation set contained 6 normal datasets and 2 datasets
per fault type. The test set contains 5 datasets for each fault

type.



Table 8: Neural networks for fault detection of the proposed model

Architecture

Conv(8)-Pool(2)-Conv(16)-Pool(2)-Conv(32)-Pool(2)-FC(64)-FC(6)
Lstm(120)-FC(64)-FC(6)

Neural network

CNN
LSTM

5.3. Monitoring results

Table 9-11 presents the average FDRs, FDTs, and FARs
across five fault scenarios, calculated over ten tests. Initially,
We focus on the MSPM algorithms. From Table 11, all MSPM
algorithms exhibit lower FARs. When comparing CVDA and
CVA in Table 10, it is evident that CVDA detects faults earlier,
suggesting that dissimilarity analysis is more sensitive to minor
fault variations. Additionally, Nonlinear feature-based algo-
rithms outperform those based on linear features. For example,
MK-CVDA and CVD-MKPCA detect faults significantly ear-
lier than CVA and CVDA. Specifically, CVD-MKPCA yields
shorter FDTSs for Fault 1,2,4 and 5, while MK-CVDA show-
ing improved results for the Fault 3 scenario.In the following
discussion, we focus on a comparative analysis between non-
linear feature-based methods, namely MK-CVDA and CVD-
MKPCA. While MK-CVDA demonstrates superior FDRs and
FDTs for Fault 3, CVD-MKPCA consistently outperforms other
methods across Faults 1, 2, 4, and 5. The results in Table 9-
11 reinforce the conclusion that CVD-MKPCA surpasses other
methods for almost all faults. This aligns with findings from a
CSTR case study in a previous article(Wu et al., 2020), further
support for the effectiveness of our proposed model.

Table 9: Comparison of fault detection rates for the five faults in batch poly-
merization process

Algorithm CVA  CVDA MK-CVDA CVD-MKPCA CNN LSTM
Fault1  98.66% 99.23%  99.24% 99.55% 100%  98.64%
Fault2  96.40% 96.80%  96.83% 96.87% 95.62% 96.93%
Fault3  84.85% 86.57%  88.16% 86.05% 78.75% 86.05%
Fault4  95.07% 95.76%  96.46% 96.61% 92.02% 95.60%
Fault5  86.20% 81.09%  86.98% 89.10% 78.07% 98.15%

Table 10: Comparison of fault detection times(samples) for the five faults in
batch polymerization process

Algorithm CVA CVDA MK-CVDA CVD-MKPCA CNN LSTM

Fault 1 8 5 5 4 1 1

Fault 2 32 30 28 25 40 28
Fault 3 36 33 30 33 186 52
Fault 4 28 22 17 22 45 25
Fault 5 38 35 35 32 160 46

We subsequently evaluated the performance of deep learn-
ing algorithms, including CNN and LSTM. During network
training, the accuracy of CNN and LSTM exhibited similar val-
ues, with CNN achieving 93.09% and LSTM attaining 93.50%.
However, LSTM demonstrated superior performance compared
to CNN regarding FDRs and FDTs. Specifically, LSTM yielded
higher FDRs and lower FDTs for Faults 2, 3, 4, and 5. The
ability of both CNN and LSTM to detect Fault 1 at its first oc-
currence may be attributed to the subtle differences between
Fault 1 and normal conditions, which may have led to inaccu-
rate classification during training and subsequently resulted in a
high FAR. Notably, all other faults maintained a low false alarm
rate. In summary, LSTM outperforms CNN in monitoring ther-
mal runaway faults in the polymerization process, emphasizing
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Table 11: Comparison of false alarm rates for the five faults in batch polymer-
ization process

Algorithm CVA CVDA MK-CVDA CVD-MKPCA CNN LSTM
Fault 1 1.76% 1.58% 2.77% 1.71% 11.87% 15.91%
Fault 2 091% 1.41% 1.33% 1.62% 0 0
Fault 3 0.87% 1.41% 1.79% 1.21% 0 0.12%
Fault 4 1.79%  1.79% 2.35% 1.82% 0 0.44%
Fault 5 201% 1.37% 2.23% 2.42% 0 0.12%

the importance of capturing long-term dependencies.

CVD-MKPCA and LSTM exhibit comparable FDRs, but
CVD-MKPCA demonstrates greater sensitivity to most faults.
More advanced network structures can be designed for the LSTM
algorithm to enhance its sensitivity to faults further. MSPM and
deep learning algorithms have their own advantages and disad-
vantages. MSPM algorithms require a smaller number of nor-
mal samples for training compared to deep learning algorithms,
whereas deep learning algorithms can leverage both normal and
fault samples to train more accurate models. The choice of a
specific algorithm depends on the particular requirements and
constraints of the problem at hand.

6. Discussions and conclusions

6.1. Discussions

The proposed benchmark model can be used for studying
several problems:

6.1.1. Thermal runaway fault detection and diagnosis

In this work, we establish a polymerization model and in-
troduce five faults that may cause the thermal runaway phe-
nomenon. The model and datasets are accessible for assessing
the performance of MSPM methods in detecting thermal run-
away faults during polymerization. We can also diagnose their
root causes and severities to avoid potential failures or shut-
downs in the system.

6.1.2. Control strategy design

Currently, there are two main PID controllers: the reactor
temperature controller and the reactor pressure controller. The
reaction rate is typically managed based on empirical knowl-
edge and expertise. Numerous control strategies can be em-
ployed to mitigate the possibility of thermal runaway.

6.1.3. Thermal runaway risk analysis

Risk analysis is crucial for industrial processes such as poly-
merization thermal runaway. By conducting a risk analysis of
this benchmark model, we can identify factors contributing to
thermal runaway, including reaction heat, monomer concentra-
tion, and solvent selection. This enables us to anticipate poten-
tial issues and implement appropriate measures to optimize the
process and mitigate the risk of thermal runaway.



6.2. Conclusions

In this paper, we present a multivariable, nonlinear math-
ematical model of a simplified industrial polymerization pro-
cess. To the best of our knowledge, this is the first publicly
available model capable of simulating thermal runaway in poly-
merization specifically for the development of process monitor-
ing algorithms. The model encompasses five fault scenarios,
including excessive initiator addition, the Gel effect, heat trans-
fer fouling, inaccurate thermometer readings, and sticking of
the jacket cooling water valve, all of which can lead to ther-
mal runaway. Accompanying the model are relative normal and
faulty datasets that are also made publicly available for other re-
searchers to utilize in developing and validating their own pro-
cess monitoring algorithms. Additionally, we discuss the step-
by-step usage procedure of this model and datasets for effective
algorithm development. We establish the model’s applicability
and suitability by testing two types of process monitoring algo-
rithm examples. Furthermore, beyond algorithm development,
this model holds potential for applications in control strategy
design and thermal runaway risk analysis, thereby contributing
to enhanced production process safety and improved product
quality.
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Nomenclature

[Alo Balanced concentration of A at the gas-liquid interface
[molL™1]

[Y] Liquid phase concentration of Y [mol L1

Aay Fault parameter

Aap  Fault parameter

AH Standard heat of reaction for chain growth [J mol~!]

€ Model parameter

Am m-th moment of active polymers

M m-th moment of dead polymers

Moy Weight average molecular weight when I = #3

M, Number average molecular weight
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Es

Eg

Monomer heat capacity A [Tkg™' K']

Jacket media heat capacity [JTkg™! K™']

Reactor solvent heat capacity [J kg™' K]

Impeller diameter [m]

Active energy for initiatir decomposition [J mol~']

Active energy for chain initiation [J mol™']

Active energy for chain growth [Jmol™']

Active energy for chain transfer to monomer [J mol~']
Active energy for chain transfer to acidic regulator [J mol™!]

Active energy for chain transfer to chain transfer agent
[Jmol~']

Active energy for chain termination [J mol™']
Monomer A dissolution rate in liquid phase [kgs™!]
Monomer A feed rate [kgs™']

Initiator B feed rate [kgs™']

Jacket water feed rate [kgs™']

Model parameter

Henry’s constant for momomer A [PaL mol™!]
Gaussian kernel parameter

Critical judgementvalue of Gel effect

Stirrer constant

Mass transfer coefficient related to temperature [kg L mol~! s7']



kio
kao
k3o

kao

kso

keo

k7,real
k7o

m

Nry
Nrp
Nry
Nrp
Nga
Ny

Oin,j
Oloss
Qoutj
Or
Ostir
Ow
Ofeed

Ry

R,

Pre-exponential factor for initiatir decomposition [s™!]
Pre-exponential factor for chain initiation [s™1]
Pre-exponential factor for chain growth [s™]

Pre-exponential factor for chain transfer to monomer

[s71]

Pre-exponential factor for chain transfer to acidic reg-
ulator [s™!]

Pre-exponential factor for chain transfer to chain trans-
fer agent [s™']

Actual chain termination rate constant
Pre-exponential factor for chain termination [s~1

The number of measured variables and manipulated
variables

Mass of A in liquid phase [kg]

Molecular weight of A [gmol™']

Molecular weight of B [g mol~']

Mass of jacket media [kg]

Mass of reactor solvent [kg]

Stirrer speed [rs™!]

The number of false negative samples

The number of false positive samples

The number of true negative samples

The number of true positive samples

Amount of A in the gas phase of the reactor [mol]
Amount of Y in the liquid phase of the reactor [mol]
Gas pressure [Pa]

Heat input to the jacket [J]

Heat loss to the surroundings [J]

Heat output from the jacket [J]

Reaction heat [J]

Energy input due to the stirrer [J]

Heat flow through the reactor [J]

Heat input due to the feeds [J]

Ideal gas constant [J mol~! K]

Reaction rate of initiator decomposition [mol s71]

Reaction rate of chain initiation [mol s~!]
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R3 Reaction rate of chain growth [mol s71]

Ry Reaction rate of chain transfer to monomer [mols™!]

Rs Reaction rate of chain transfer to acidic regulator [mol s

Rg Reaction rate of chain transfer to chain transfer agent
[mols~!]

R, Reaction rate of chain termination [mol s™!]

S Heat transfer area [m?]

Tom Fault parameter

Typ Fault parameter

Tamp  Temperature of environment [K]

Ta Temperature of A feed [K]

Tin; Temperature of jacket feeds [K]

T; Temperature of jacket media [K]

T, Temperature of reactor [K]

U Heat transfer coefficient [Wm™2K™']

|4 Total volume of the reactor [m’]

Vier Free voolume fraction value when I = t;

Vi Free volume fraction

Vio Volume of solvent [m?]

V, Reactor gas volume [m?]

Wi Reactor liquid volume [m?]

X Monomer conversion
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