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Abstract

As the Industrial Internet-of-Things (IIoT) evolves, a growing number of industrial control
systems (ICSs) are connecting to the Internet, making them more vulnerable to malicious
attacks. This paper addresses the detection of false data injection (FDI) attacks, a prevalent
threat to open ICSs. We introduce an innovative anomaly detection technique using isomor-
phic analysis to safeguard ICSs against FDI attacks. Isomorphic analysis involves comparing
transmitted signals with their expected values, which are derived from mathematical models
or isomorphic components. For a comprehensive defense mechanism, we incorporate three
specific detectors: the control signal detector, the actuating signal detector, and the sensor
reading detector. Designed to detect FDI attacks across various parts of the ICS, these de-
tectors ensure the integrity of all transmitted signals throughout the physical control system.
While the control signal detector adopts a threshold method, the other two rely on statistical
approaches. If an attack is detected, the detectors can correct tampered signals before they
reach downstream components, enhancing the system’s overall resilience and fault tolerance.
The effectiveness of these detectors is supported by rigorous mathematical proofs. Moreover,
our experimental findings further reveal the superiority of the isomorphic strategy over prior
work in terms of detection rate, detection time delay, and system resilience.

Keywords: anomaly detection, false-data injection attacks, industrial control systems,
secure control

1. Introduction

Industrial control systems (ICSs) refer to control systems used for industrial production.
They play a significant role in critical national infrastructures, such as power grids, water
treatment plants, natural gas, and refineries. Originally designed without intensive security
considerations due to their isolated operation, modern ICSs have evolved into highly inter-
connected cyber-physical systems as the world becomes more digitally connected. Yet, this
increased connectivity brings forth its own set of challenges. Recent years have witnessed an
increasing trend in documented attacks on ICS infrastructures [1]. Compromises in ICSs, dif-
fering from traditional computer systems, have the potential to cause severe physical damages
like cascading failures across national infrastructures. Hence, it becomes imperative to fortify
ICSs against these threats.
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Table 1: Mathematical models of attacks in ICSs [6].

Attack Type  Mathematical Model

DoS attacks  §[t] € (), when the DoS attack is successful at time ¢

FDI attacks  5[t] = s[t] + As[t], where A,[t] denotes the distortion of s[t] caused by attackers
Replay attacks 3[t] € S, where S; denotes the set of true signals accepted by attackers before time t

ICS-targeted attacks fall into three primary categories: denial-of-service (DoS) attacks,
deception attacks, and direct attacks on physical processes or components [2]. DoS attacks
flood the target with an overwhelming volume of spurious packets, overloading its network
bandwidth [3]. This overload results in the compromised system’s inability to deliver standard
services or provide resource access [4], leading to easily noticeable functionality anomalies. By
comparison, deception attacks that compromise data integrity are usually more subtle and
stealthy. Typical deception attacks include replay attacks and false data injection (FDI) at-
tacks. In replay attacks, attackers record and replay data from undisturbed periods during
system disturbances, misleading operators and preventing them from taking essential cor-
rective actions [5]. Conversely, FDI attacks tamper directly with system signals, leading to
deviations from the expected patterns. Direct attacks can be viewed as an extension of FDI
attacks, as malicious physical interference can yield similar system signal deviations. The
mathematical models of DoS attacks and typical deception attacks are illustrated in Table 1,
where s[t] is the true signal not tampered with by attackers at time ¢ and $§[t] represents the
received signal under attack at time t.

In this work, we introduce a novel system architecture equipped with three isomorphic
detectors to detect FDI attacks in ICSs. These detectors perform isomorphic analysis, con-
trasting transmitted signals with their expected values, which are derived from homogeneous
components or models. Notably, we adopt a broader understanding of FDI attacks: as long
as any signal transmitted among controllers, actuators, and sensors deviates from the norm,
it can be considered the outcome of an FDI attack, regardless of the underlying cause. Even
if the intrusion originates in the IT network, but the impact has propagated to the control
system, our system design also enables reliable attack detection of such intrusions.

A comparison between our methodology and existing research is presented in Table 2.
Our approach is white-box and based on an explicit system model. In contrast to black-box
methods, like those employing machine learning [7, 8, 9, 10], our white-box technique does
not necessitate prior data collection. In situations requiring adaptability to environmental
changes or user preferences, the white-box model offers a distinct advantage due to its thor-
ough understanding of system dynamics. Among white-box detection techniques, the dynamic
watermark detection method [11] is a representative one. This technique integrates an addi-
tional watermark into the original control system to detect anomalies caused by both FDI
and replay attacks in sensor readings. However, introducing this external watermark can,
to an extent, impair the system’s overall performance, which is an undesirable outcome in
practical applications. Moreover, its detection capability is primarily restricted to abnormal
sensor readings. Different from the dynamic watermark detection approach [11], our technique
mainly utilizes the system’s inherent noise to detect FDI attacks, thereby eliminating the need
for additional watermarks. Furthermore, we provide comprehensive protection, covering all
signals within the control system, including control signals, actuating signals, and sensor read-
ings. In contrast, the watermarking method mainly focuses on sensor readings. A distinctive
feature of our methodology is its capacity to resist attacks by correcting malicious signals,



Table 2: Comparison of related work.

No Pre-collected Adapts to Environment FDI Attack Detection " .
Data Needed P?Pference Changes / Controller Actuator Sensor Fault Torlerance  No Additional Noise Introduced
White-box Isomorphic Analysis v v v v v v v
Watermark v v X X v X X
Black-box (eg. machine learning) X X v v v v v

therefore endowing the system with a fault tolerance capability. Additionally, our system is
compatible with dynamic watermarking [11] to detect replay attacks, enhancing its versatility.
The main contributions of our work are listed as follows:

e We introduce a novel system architecture that incorporates three isomorphic detectors,
each applying isomorphic analysis—a method of comparing transmitted signals with
expected values derived from mathematical models—to ensure comprehensive protection.
By utilizing the inherent noise of the system, our approach not only detects anomalies
but also corrects them across controllers, actuators, and sensors, achieving a level of
all-encompassing defense not provided by existing methods.

e A rigorous mathematical proof is provided to establish the theoretical foundation for
our method’s ability and prove our method can theoretically detect any effective FDI
attacks.

e Experiments are conducted to validate the effectiveness of our detection method. The re-
sults indicate our approach outperforms the conventional dynamic watermarking method
in terms of detection rate, time delay, and minimized signal distortion during attacks.

The remainder of this paper is organized as follows. Section 2 presents a review of the
related work. In Section 3, we clarify potential attack scenarios and discuss engineering solu-
tions to guarantee the reliability of signals transmitted by isomorphic detectors. In Section 4,
we elaborate on our isomorphic analysis detection method, providing the theoretical proofs of
our method. Section 5 details the experimental setup, a comprehensive analysis of the com-
pared performance of our proposed methods, and a case study demonstrating the effectiveness
of our detection method. In Section 6, we evaluate resource consumption and discuss the
limitations of our approach. Finally, Section 7 concludes our work and suggests directions for
future research.

2. Related Work

Extensive research has been conducted on the anomaly detection of typical attacks on
ICSs due to their critical roles in infrastructure. Anomaly detection methods for ICSs can be
broadly categorized into model-based and data-driven approaches [5]. Model-based methods
utilize explicit physical models, offering a ‘white-box’ perspective. In contrast, data-driven
methods, often considered ‘black-box’ approaches, are advantageous in situations where a
precise physical model is not available.

2.1. Data-driven Anomaly Detection

The rise of Machine Learning (ML), and notably Deep Learning (DL), has paved the way
for advanced data-driven methods in recent years. These methodologies typically reconstruct
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Figure 1: The architecture and vulnerabilities of the control system in ICS. Attacks in red numbers (attack
(D-(®)) denote potential cyber-attacks. The attack (attack (6)) in black numbers denotes potential direct
attacks.

system signals based on learned patterns, using the reconstruction error as the primary crite-
rion for anomaly detection [12]. Alternatively, some researchers approach anomaly detection
as a classification task, aiming to distinguish the ‘abnormal’ class of signals using labeled
datasets.

Prominent traditional ML techniques in ICSs include the support vector machine (SVM)
[7], isolation forest (IF) [13], the Gaussian mixture model [8], and association rule mining [14].
Specifically, Esmalifalak, et al. [7] presented a machine learning methodology for identifying
stealthy false data injections in smart grids. By leveraging supervised learning through a
distributed SVM and employing Principal Component Analysis (PCA) for data reduction,
their approach offers a robust solution for enhancing the security of power systems against
sophisticated attacks. Ding et al. [13] developed an anomaly detection framework tailored
for streaming data, employing the IF algorithm alongside a sliding window mechanism. This
approach effectively addresses the dynamic nature of streaming data, demonstrating superior
anomaly detection performance in real-time scenarios.

Deep learning models have further diversified the methods available. Examples include
the long short-term memory (LSTM) network [9], the graph neural network (GNN) [15], and
the transformer [10]. To be specific, Feng et al. [9] developed a multi-level anomaly de-
tection framework for ICS, utilizing network package signatures alongside LSTM networks.
Moreover, this approach combines regular communication patterns and a Bloom filter for effi-
cient anomaly detection at the package content level, with a stacked LSTM network providing
time-series level detection.

However, data-driven methods, while convenient due to their independence from explicit
physical models, suffer from adaptability issues concerning the environment and user prefer-
ences. Their effectiveness is usually limited by the availability of a large number of training
datasets.

2.2. Model-based Anomaly Detection

Model-based techniques utilize known physical models, providing insights grounded in
system operational logic. Leveraging the explicit physical model of a control system, observers
can be deployed to estimate the dynamics of a system [16, 17]. For instance, in [18], the
authors proposed a real-time DoS attack detection scheme with a set of observers designed
using sliding mode and adaptive estimation theory. As for FDI attacks, in [19], two adaptive



sliding mode observers with online parameter estimation are designed to estimate state attacks
and sensor attacks, respectively, showing that the constructed residual signals approach can
detect the attacks with ultimately uniformly bounded errors. Manandhar et al. [20] adopted
the Kalman filter to estimate the state process variables and proposed the y2-detector and
Euclidean detector to build a robust security framework for the smart grid to detect system
attacks, such as DoS attacks and FDI attacks. Similarly, Chen et al. [21] proposed extended
state observer with H,, performance to estimate and detect FDI attacks for discrete-time
nonlinear CPSs. Hu et al. [22] developed an FDI attack detection method for electric vehicle
charging systems, utilizing time-frequency analysis to identify anomalies. This approach,
while effective for its targeted FDI attacks on the charger or during the charger sensor signal
transmission, cannot handle all kinds of FDI attacks, such as those targeted at the controller.
Our methodology offers a more comprehensive FDI attack detection framework applicable
across all components in 1CSs.

A noteworthy technique is ‘dynamic watermarking’, proposed by Satchidanandan and Ku-
mar [11]. They assessed the system’s ability to respond appropriately to intentionally in-
troduced signals, termed ‘watermarks’, by studying its closed-loop behavior in linear time-
invariant systems with Gaussian noise models. Further development in this field led to the
introduction of ‘time-varying dynamic watermarking’ as detailed in [23]. This method serves
as an advanced linear time-varying adaptation of its predecessors, incorporating a matrix
normalization factor specifically designed to address the system’s temporal fluctuations. A
foundational assumption of these dynamic watermarking techniques is the trustworthiness of
the controllers and actuators, presupposing them to be uncompromised, ensuring the reliability
of the transmitted data.

A critical observation from existing research, such as [24, 25, 20, 11, 21], is the focus on
attacks compromising only measurements. This perspective often neglects the broader threat
landscape, where controllers, actuators, and sensors are all potential targets. Recognizing this
gap, our work proposes a novel architecture with isomorphic detection to comprehensively
secure every physical component in the system.

3. Operational Feasibility

The interconnection of intelligent components to the Internet has transformed ICSs into
open systems, making every networked component susceptible to cyber threats. To validate
the realism and practicality of our application background, we detail potential attacks that
an open ICS might confront and outline their execution. Additionally, we discuss engineering
solutions to guarantee the reliability of signals transmitted by isomorphic detectors.

3.1. Attack Scenarios

Open ICSs, despite their improved control and communication capabilities, face increasing
exposure to cyber threats. Figure 1 demonstrates potential direct and cyber-attacks on these
systems, including direct attacks on the process ((6)) and cyber-attacks ((D-(5)) on smart
controllers, actuators, and sensors.

In Figure 1, attacks (I), 3), and () indicate scenarios where controllers, actuators, or
sensors are compromised, leading to the generation of incorrect signals. Specifically, regarding
the controller, attack (I) can involve the manipulation of controller parameters. Concerning
smart actuators, which possess embedded software or firmware that interprets control signals
and converts them into appropriate actions, attack (3) can be updating this firmware with a

5
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Figure 2: The architecture of the control system deployed with isomorphic detectors in ICS. The inner closed
loop with bold black links denotes the real control system in operation. The blue, green, and yellow outer
loops denote the logic of isomorphic detectors for the controller, actuator, and sensor, respectively.

malicious version to dictate how the actuator responds to legitimate control signals or even
introduce new, unauthorized functionalities. As for the sensor, firmware is used to process
the raw signals of some physical property (like temperature, pressure, light, etc.) for signal
interpretation, compensation, calibration, etc. Attack (4) can be replacing legitimate firmware
with a malicious version that sends false readings or allows for remote tampering.

Furthermore, attacks (2) and (5) highlight the vulnerabilities during signal transmission
for controllers and sensors, respectively. The action of the actuator is directly posed on the
process, so there is no transmitted signal between the actuator and the process. Therefore,
malicious alterations to actuating signals during transmission would only result in false alarms
without affecting the physical systems. Hence, we do not consider the attack on the transmit-
ted actuating signal.

On the other hand, attack (6) represents physical attacks on the process, such as con-
taminating a water supply or introducing impurities to a chemical process. While the rise of
sophisticated cyber threats is undeniable, the age-old threat of physical tampering still exists.
Protecting against both cyber and physical threats is vital for comprehensive security.

3.2. Reliability of Isomorphic Detectors

Figure 2 illustrates the role of isomorphic detectors in safeguarding the control system.
Specifically, we utilize three isomorphic detectors, each designated for control signals, actuating
signals, and sensor readings. These detectors identify anomalies by comparing transmitted
signals to their expected values. If anomalies are detected in the transmitted signals, suggesting
potential attacks, the isomorphic detectors employ two strategies to effectively counteract these
disruptions. Firstly, when control signals or sensor readings are found malicious, they send
the expected values to the downstream components. Secondly, in the presence of malicious
actuating signals, they initiate corrective actions of the actuator. These expected values can
be derived from mathematical models or isomorphic components. For example, to deduce the



Table 3: Summary of Signal and Function Notations.

Notation Description

g(+) Control policy

h(-) Actuator modelling function

t Time index

Ue[t], Galt], Ft] Transmitted control signal, actuating signal, and measurement at time ¢, respectively
uelt], ualt], ylt] True control signal, actuating signal, and measurement at time ¢, respectively

s ylt] Expected control signal, actuating signal, and measurement at time ¢, respectively
flagc[t], flag.[t], flags[t] Flags indicating malicious control signal, actuating signal, and measurement at time ¢, respectively
t Actuating noise, process noise and measurement noise at time ¢, respectively
Aglt], Anlt], ALJt], Agt] Distortion of the actuating signal, actuating noise, innovation, and system state at time ¢, respectively
2 2

02,02, 02 o Variance of the actuating noise, process noise, measurement noise, and innovation, respectively

yit] Historical measurements from the start to time ¢t — 1

x[t], 7[t], &[t], =[t] True system state, prior and posterior estimates of the system state, and innovation at time ¢

alt), z7[t], z[t], [t] Calculated actuating noise, prior and posterior estimates of the system state, and innovation at time ¢

u[t] Self-adaptive coefficient for reliance on sensor readings at time ¢

plt] P-value of the statistical test used in detector III at time ¢

a,b,c,d State coefficient, input coefficient, output coefficient, and direct transmission coefficient in the process model
k Steady-state Kalman gain

P Unique solution of the Riccati equation

K, S Scale and shift hyperparameters in u[t] function

expected value of a control signal, one can model the controller’s control policy or employ an
auxiliary controller with an identical control policy to mimic the behavior of the functioning
controller. The expected values of transmitted signals provide a reference for anticipated
system behaviors. Preserving their integrity is paramount to the reliability of our detection
methodology.

There are many protective measures in engineering to achieve this. To name a few: 1)
Network segmentation: keep the isomorphic components detached from the main network and
operate them on a secured, exclusive server, sheltering the virtual components from potentially
vulnerable parts of the original network. 2) Immutable infrastructure: establish a structure
where virtual components, once set up, remain unchanged. Any changes or updates are made
by replacing the entire system rather than editing the existing one. This limits the ability
of an attacker to make persistent changes. 3) Access control: tighten access, allowing only a
select few trusted individuals to modify the virtual component setup, or employ multi-factor
authentication to enhance security.

Incorporating these strategies ensures the expected values remain a reliable metric for
anomaly detection, reinforcing the trustworthiness of our isomorphic detectors.

4. Anomaly Detection using Isomorphic Analysis for False Data Injection Attacks

Consider a single-output-single-input (SISO) control system, which typically includes a
controller, an actuator, a sensor, and a physical process as the controlled object. For instance,
a water level control system is a common example of such a system in industrial settings, where
maintaining a critical parameter—Ilike the water level—at a specific setpoint is essential. In
this system, the controller determines the desired water level, a valve acts as an actuator to
adjust the water flow, a sensor monitors the current water level, and the tank itself is the
physical process.

In this context, we propose a general architecture with isomorphic detectors to safeguard
signals transmitted throughout the system and strive to maintain the normal operation of the
system even in the face of FDI attacks. In Figure 2, the bold black inner loop represents the
control system in operation, and the blue, green, and yellow external loops denote the logic of



isomorphic detectors designated for the control signals, actuating signals, and sensor readings,
respectively. The isomorphic detectors are deployed to verify the consistency of control signals,
actuating signals, and sensor readings. They validate received data based on the isomorphic
components or models.

Notations of Signals. As detailed in Table 3, @.[t], 4,[t], and y[t] denote the control
signal, the actuating signal, and the measurement transmitted in the system at time ¢. Here,
t € N indicates the time index. wu.[t], u,[t], and y[t] denote the true and honest control signal,
actuating signal, and measurement, which are only known to the attacker. The expected
values for the control, actuating, and sensor signals at time ¢, derived from the control policy,
actuator model, system model, and Kalman filter, are represented by u.[t], 4,[t], and y[t].
flag.[t], flag,[t], and flags[t] indicate whether the control signal, actuating signal, and sensor
readings are malicious or not at time t.

4.1. Detector I for the Control Signal

In Figure 1, attacks (I) and (2) are targeted for control signals. The process for testing
control signals includes the calculation of expected control signal u.[t] and the test of consis-
tency between transmitted control signal 4.[t] and expected control signal @.[t]. The following
control policy is used to calculate true control signal u.[t].

Control Policy. Consider the controller using a history-dependent control policy to generate
control signals. The expected value of the control signal at time ¢ can be calculated by

uc[t] = g(y[t — 1)), (1)

where ¢g(-) denotes the control policy; y[t] := [9[0], 9[1], ..., g[t — 1]] denotes all the historical
measurements. The control policy can be deployed in the downstream smart actuator through
the program or conducted on a redundant controller operating under the same control law.

Test for Control Signals. Check whether the difference between transmitted control signal
U.[t] and expected control signal u.[t] satisfies:

eft] — alft) = 0. (2)

Since the control signals are electrical signals and the control policy is accurate, the difference
between transmitted control signal .[t] and expected control signal u.[t] should be strictly
Zero.

Fault Tolerance. If transmitted control signal .[t] and expected control signal u.[t] pass
the test, the flag indicating malicious control signals flag.[t] should be 0, which means the
controller is honest and reports the correct control signal, and vice versa. If flag.[t] is 1, the
downstream actuator should execute expected control signal @.[t] as the correct control signal
instead of @.[t].

4.2. Detector II for the Actuating Signal

In Figure 1, attacks (3) are targeted for actuating signals. The process for testing actuating
signals includes the calculation of expected actuating signal u,[t] and the test of the consistency
between transmitted actuating signal ,[t] and expected actuating signal ,[t]. The following
is the actuator model.



Actuator Model. Consider an actuator that can impose a physical influence on the physical
process by executing the control signal. The expected actuating signal 4,[t] and the true
actuating signal u,[t] at time ¢ can be obtained by

(t.[t]), (3)
(@c[t]) + nlt] = uqt] + nlt], (4)

where h(-) denotes the modelling function for the actuator, n[t] € R is the actuating noise.
{n[t]} has a zero mean independent identically distributed (i.i.d.) Gaussian sequence with 0
mean and o2 > ( variance. Notably, true actuating signal u,[t] is only known to the attacker
and unknown to the detector. For detector I, only transmitted actuating signal @,[t] can be
obtained , which is possibly faulty, and expected actuating signal ,[t] can be calculated to
test the integrity of transmitted actuating signal ,[t].

Since the actuating signal is related to physical actions, unlike electrical signals, the dif-
ference between transmitted actuating signal @,[t] and expected actuating signal @, [t] cannot
be strictly zero. The computation of expected actuating signal @,[t] and the verification of
transmitted actuating signal ,[t] can be embedded in the downstream smart sensor. This
integration aims to safeguard the integrity of actuating signals, particularly to prevent adverse
effects on the physical process.

Define calculated actuating noise n[t] as the difference between transmitted actuating signal
U, [t] and expected actuating signal u,[t], denoted by 7i[t] := g [t] — @, [t]. Therefore, we have
the test for actuating signals.

Test for Actuating Signals. Check whether the calculated actuating noise sequence {nt]}
belongs to a normal Gaussian distribution with 0 mean and o2 variance, denoted by {n[t]} ~

N(0,07).

The test has an asymptotic form below:
I. {n[t]} is Gaussian-distributed;

II. {n[t]} is of 0 mean:

71
Am 2 nft] = 0; (5)
1. {A[t]} is of o2 variance:
e 2
Tlggj;n [t] = o2. (6)

Here, T represents the total number of observational time steps or samples over which the
system’s behavior is analyzed. The condition where T" approaches infinity, denoted by limy_, .,
assumes that our theoretical model conducts tests over an infinite time interval. However, real-
world applications necessitate adjustments to accommodate practical limitations. Therefore,
in practice, these tests are reduced to statistical tests over a finite time interval using sliding
windows to continually analyze and refresh data segments.



Fault Tolerance. If transmitted actuating signal sequence {,[t]} passes the corresponding
statistical test, the flag indicating malicious actuating signal flag,[t] should be 0, which means
the actuator is honest and reports the correct actuating signal, and vice versa. If flag,[t] is
1, the actuator should utilize expected actuating signal u,[t], provided by the detector, to
execute as the correct actuating signal, rather than relying on transmitted actuating signal
Uq[t]. If the actuator is out of control, the system should be stopped in case of major safety
accidents.

For a system without attacks, the transmitted actuating signal should be identically equal
to the true actuating signal, denoted by w,[t] = u,[t]; the calculated actuating noise should be
identically equal to the true actuating noise, denoted by n[t] = n[t]. Therefore, the distortion
of actuating signal A,[t] := U4[t] — uu[t], which is equal to the distortion of the actuating
noise A,[t] := n[t] — n[t], should be consistently 0 at every time step ¢t. However, certain
attacks might alter transmitted actuating signal sequence {,[t]} within the noise range such
that it bypasses detection. While such manipulations may lead to a non-zero noise distortion
A, [t], they are still considered ineffective since transmitted actuating signal sequence {@,[t]}
maintains the same distribution as true actuating signal sequence {u,[t]}.

For a system exposed to potential attacks, Theorem 1 ensures that any attack will be either
detected or ineffective.

Theorem 1. If the transmitted, possibly faulty, actuating signal sequence {u,[t]} passes test
1. II. and III. in order to remain undetected, then:

i. there are three possible values for the power of the distortion of the actuating signal
sequence {Ay[t]}:

-1
1
lim — ZA?L[t] € {0,202 402};
=0

T—oo T t

ii. the mean-square performance of true actuating signal sequence {u,[t]} is the same as the
reported mean-square performance of transmitted actuating signal sequence {u,[t]}:

g [t]- (7)

Proof. 1f transmitted actuating signal sequence {i,[t]} passes the test for actuating signals,
the calculated actuating noise sequence {n[t]} can be seen as another Gaussian noise sequence
with 0 mean and o2 variance and

Ua[t] = h(tclt]) + nft].

It is obvious that there are three possible values for the power of the distortion of the actuating
signal sequence {A,[t]}:

= 0 {all) = {nfd).
Th_r)]go T g AZ[t] = 2(7721 {?[t]} ind_ {nl[t]} are independent.
=0 4o {n[t]} {n[t]}.
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The mean-square performance of true actuating signal sequence {u,[t]} is

T-1

i Z w2l = Jim >~ (G2l + 1] + 20l
1 T-—1
1 —2 2
= Jim, 7 > (@l + ()

=0
- lim —
0+£I;OTZ“

since expected actuating signal @,[t] and actuating noise n[t] are independent. Similarly, the
mean-square performance of transmitted actuating signal sequence {,[t]} is

1 2
Fin g 2 tall = 0+1£20TZ“

since expected actuating signal 4,[t] and calculated actuating noise 7n[t] are independent.
The proof is completed.

4.3. Detector 111 for the Sensor Reading

In Figure 1, attacks (9)-(6) can lead to malicious sensor readings. The process of testing
sensor readings differs from the above two. Firstly, the transmitted actuating signal @,[t] and
the sensor reading gt], serving as the system input and output respectively, are used to derive
the Kalman filter’s innovation Z[t] at time ¢. Then, the statistical properties of calculated
innovation sequence {Z[t]} are tested to ensure the honesty of the sensor readings, thereby
preventing the generation of erroneous control signals due to compromised sensor data.

Process Model. Consider a scalar linear time-invariant process described by

z[t + 1] = ax[t] + bu,[t] + wt], (8)
ylt] = exlt] + dig[t] + vlt], (9)

where a,b,c,d € R are coefficients for the SISO control system; a is the state coefficient,
affecting the system’s next state; b is the input coefficient, determining how the input signal
affects the state; ¢ is the output coefficient, determining how the state variable influences
the output; d is the direct transmission coefficient, indicating the direct impact of the input
on the output without going through the system’s dynamics. z[t] € R denotes the system
state at time t. 4,[t] and y[t] € R are the system input and output at time ¢, respectively.
w(t],v[t] € R are the process noise and measurement noise. w[t] and v[t] are zero-mean i.i.d.
Gaussian noises with variances o2 > 0 and 02 > 0 respectively, independent of the initial state
x[0] of the system. y[t] is the true measurement of the sensor at time ¢, which is known to
the attacker and unknown to the detector. g[t] is the transmitted measurement in the system
at time ¢, which might be altered by a potential attacker. According to the system model,
the true estimation of the system states can be obtained using true measurement y[t] by the
Kalman filter:

11



#711) = adlt — 1] + baaft — 1], (10)
Z[t] :yt] _Ci._[t] _daa[t]v ( 1)
2] = 271 + k2[t], (12)

—_

where z7[t] and Z[t] denote the true prior and posterior estimates of the system state z[t];
{z[t]} denotes the true innovation sequence, which is an i.i.d. Gaussian sequence with zero
mean and variance 02 = Pc? + 0% k = Pc/o? denotes the steady-state Kalman gain; P is the

unique solution of the Riccati equation:
P =a*P — a*P*c /(P + o2) + 02

However, the detector can only get transmitted measurement g[t] instead of true measure-
ment y[t] to obtain the estimation of the system states by the Kalman filter:

I[t] = axft — 1] + big[t — 1], (13)
Z[t] = glt] — i [t] — dig]t], (14)
Z[t] = 27 [t] + kZ[t], (15)

where 2~ [t] and Z[t] denote the calculated prior and posterior estimates of the system state z[t];
{Z[t]} denotes the calculated innovation sequence. It is crucial to note that these calculated
values are possibly faulty, underscoring the necessity of conducting tests on sensor readings to
validate their integrity.

The statistical test for the calculated innovation sequence {Z[t]} can be deployed in the
downstream controller to verify the integrity of sensor readings. The Kalman filter can be
deployed within the controller as well or on the remote end.

Test for Sensor Readings. Check whether the calculated innovation sequence {Z[t]}, which
is possibly faulty, belongs to a normal Gaussian distribution with 0 mean and o? variance,
denoted by {z[t]} ~ N(0,0%). The test has an asymptotic form below:

I. {Z[t]} is Gaussian-distributed,;

II. {Z[t]} is of 0 mean:

=
A 2 Z[t] = 0; (16)
1. {z[t]} is of o2 variance:
N 2
Tlgrolo T Zz [t] = o:. (17)

In practice, the above tests over an infinite time interval should be reduced to a finite time
interval using sliding windows.
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Figure 3: The p-p function with different values of K and S. K and S are the scale and shift parameters,
respectively.

Fault Tolerance. If calculated innovation sequence {Z[t]} passes the corresponding statistical
test, the flag indicating malicious measurement flag;[t] should be 0, which means the sensor is
honest and reports the correct sensor readings, and vice versa. If flag[t] is 1, the detector will
send expected measurement F[t] = ¢z~ [t] + diia[t] instead of transmitted measurement ] to
the controller to generate correct control signals, which means we depend on the system model
instead of the possibly faulty sensor readings to get the output. Given that the estimation of
the system state is a recursive process, we attempt to mitigate the influence of possibly faulty
sensor readings through the following modification of the Kalman filter:

zft] = 2~ [t] + ple)k2[t], (18)

where p[t] € [0, 1] is a self-adaptive coefficient that determines the extent to which the Kalman
filter relies on possibly faulty sensor readings. A smaller value of u[t] represents reduced
reliance on these readings and enhanced fault tolerance of the system. However, this can lead
to an increased false alarm rate (FAR) due to potential distortions in the original distribution
of calculated innovation sequence {Z[t]}. It is imperative to balance fault tolerance with FAR.

Hence, the value of self-adaptive coefficient p[t] should be closer to 1 when sensor readings
are more reliable and closer to 0 when sensor readings are more suspicious. The function
determining self-adaptive coefficient p[t] is given by:

plt] € [0,1=5),

B ﬁ, AMt] = K - tan(mw(0.5 + p[t] + 9))
u[t]_{ e 1 plte1-25,1],

where p[t] € [0, 1] represents the p-value of the statistical test used in the detector III, which
is positively correlated with the signal’s reliability; K and S are the scale and shift hyperpa-
rameters to adjust the shape and position of the function for the desired self-adaptive effect
of self-adaptive coefficient u[t]. Figure 3 shows the p-p function with different values of K
and S. By leveraging the tan(:) function, the domain of definition is mapped from [0, 1] to
(—00, +00). Subsequently, the sigmoid function is employed to produce the S-shaped curve.
This S-shape function is capable of distinguishing between two states with a gentle transition,
which aligns with our objectives. The parameters K and S adjust the shape of the function
and the ‘boundary’ between ‘trust the sensor reading’ and ‘not trust the sensor reading’,
respectively.
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For a system without attacks, the transmitted measurement should be identically equal to
the true measurement, denoted by 4, [t] = u,[t]; the calculated innovation should be identically
equal to the true innovation, denoted by Z[t] = z[t]; Therefore, the distortion of innovation
A.[t] := Z[t] — z[t] should be consistently 0 at every time step t. Certain attacks altering
calculated posterior estimates of the system state fv[t] within the noise range to avoid detection
are still considered ineffective as they have no impact on the control system performance.

For a system exposed to potential attacks, Theorem 2 ensures that any attack will be either
detected or ineffective.

Theorem 2. If the calculated, possibly faulty, innovation sequence {Z[t]} passes test I. II. and
III. in order to remain undetected, then:

1. there are three possible values for the power of the distortion of the innovation sequence

{A[t]}
lim —ZA2 € {0,202, 402};

T—oo0 T’

1. the mean-square performance of true posterior estimates of the system state sequence
{z[t]} is the same as the reported mean-square performance of calculated posterior esti-
mates of the system state sequence {Z[t]}:

TIEEO—Z —lei:o—Z 19

Proof. 1f calculated innovation sequence {Z[t]} passes the test for sensor readings, it can be
seen as a Gaussian noise sequence with 0 mean and ¢ variance It is obvious that there are
three possible values for the power of the distortion of the innovation sequence {A,[t]}:

=N 0 )= el)
Tlgléo T Z AZ[t] = 20'§ {%[t]} ind {z[t]} are independent,
= 4o {2t} = —{=[1)-

Since calculated innovation equals true innovation plus the distortion, denoted by Z[t] =
z[t] + A.[t], and from test III. for the measurement, shown in (17), we have

T-1 T-1

lim lZ(Z[t]+Az[t])2ZThm =572 + A2 + 242l

T—oo T
=0 t=0

Since the variance of true innovation sequence {z[t]} is o2, denoted by limy_,o 7 S 22t =

o2, we have
-1

i > (820 +2801:4) = 0. (20)

Define the distortion of the system state as the difference between the calculated and true
posterior estimates of the system state, denoted by A,[t] := z[t] — Z[t]. Note that
AL[t] = azft — 1] + bitg[t — 1] + kZ[t] — (aZ[t — 1] + bitg[t — 1] + kz[t])
=al;t — 1] + kEAL[t].
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Therefore, we have
t—1
= ka'A.ft — ). (21)
i=0

Since the calculated posterior estimate of the system state equals the true posterior estimate
of the system state plus the distortion, denoted by z[t] = Z[t] + A,[t], we have

1 T—-1 1 T—-1
. - 29 BT - A 2
Fimn 7 2 = i 2 6l Al
t=0 t=0
1 T-1
1 - ~2 2 A
= Jim ;@c [t] + A2[t] + 28, [t])2[t]).

The mean of both true and calculated innovation sequences, denoted by {Z[t]} and {z[t]}, is

0. Therefore, we have
E{A[t]} = E{2[t]} — E{=[t]} =

Invoking the fact that the distortion of innovation sequence {A.[t]} has a zero mean and
independent of transmitted actuating signal sequence {,[t]} and true posterior estimates of
the system state sequence {Z[t|}, and substituting the system dynamics Z[t] = az[t — 1] +
biig[t — 1] 4+ kz[t] and (21) into the following, we have

T-1
— 1m L 2 A
= Tlgréo T Z;(Az[t] + 20, [t]2]t]).
T 1 t—1 t—1 '
a= lim — tz(; Zz;k:a ALt —i))?+ 2(;; ka' AL [t — i) (aZ[t — 1] 4 biig[t — 1] + kz[t]))
t—1 ' t—1 4
Tlgréo T Z Z ka'A[t —i])* + 2(; ka'AL[t — z})(ZO ka'z[t —i])). (22)
We can expand the above two items,
t—1 A t—1 ' t—1 o
O kaAcft—i))? =D KAt —i]+ Y 2k%aCTIA At - j]; (23)
i=0 i=0 i=0,j=0,i<j
t—1 ' t—1 ‘ t—1 ‘ t—1 o
O ka' ALt —i))() ka'zlt —i]) = > KaPALt—ileft—i+ > kKaTTIA— st — j].
i=0 i=0 i=0 i=0,j=0,i#j

(24)

Given that the distortion of the innovation sequence {A.[t]} has a zero mean, and each
distortion of the innovation A,[t] is independent of both the true innovation z[k] and any
other distortion in the innovation sequence A, [k] for k # t, it follows that

TIEF:OTZA (25)
lim % ; A.i]2[j] = 0. (26)
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Table 4: Experiment setting.

Parameter/Component Value/Model

Sampling frequency 100Hz

Input signal a 1-Hz sinusoidal signal with 50 amplitude and 54° phase

Controller a PI controller with proportional coefficient of 0.25 and integral coefficient of 0.48
Actuator a 20-amplitude limiting module with a time step delay and actuating noise: ¢,, = 0.03
Physical process a=08b=1¢c=1.2d=0.3, process noise: o, = 0.08, measurement noise: o, = 0.02

Window size Ta = Ts = 50
Acceptable FAR 5% (for the x? test)
Self-adaptive scale parameter K = 8.57, shift parameter S = 0.25

Substituting (23), (24), (25), (26) and (20) into (22), we have

T—1t-1
4 2,2 (A2]f — O PR
a—TIEI;OTtZ;;k (AZ[t —i] + 20t — i]=[t —1])

Therefore, we have

TIEEJZ

The proof is completed.

5. Experiments

This section demonstrates the experimental setup and findings.

Detailed descriptions of

the experiment settings are provided in subsection 5.1. The superior performance of isomor-
phic analysis compared to baseline methods is established in subsection 5.2. The case study
section, found in subsection 5.3, illustrates the operational mechanics of our method and
its effectiveness in maintaining stable system states under attack scenarios, thereby ensuring

continued normal operation to a significant extent.

5.1. Setting

Table 4 details the technical specifications and parameters utilized in our experimental
setup. We adopt a standard Kalman filter to estimate the system state and obtain the inno-
vation sequence. In our work, we utilize the y? test as the statistical method for detector II
and detector III. The window sizes of the x? test for actuating signals and sensor readings are

T, and 74, respectively.
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Table 5: Comparative experiment result. In the ‘Attack Type’ column, ‘Add’ and ‘Multi’ denote additive and
multiplicative attacks, respectively. The evaluation metrics include detection rate (DR), root mean square
error (RMSE), time delay (TD), and false alarm rate (FAR).

Method — Attack Type —p5 giggﬂ Sig%lgls FAR DR Agtﬁgt};ing STi%lals FAR DR ifll\llsgg Reagglgs FAR
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5.2. Comparative Experiment

We compare the detection performance of our isomorphic analysis method not only with
the representative white-box detection method, dynamic watermarking, but also with black-
box detection methods, namely One-Class SVM (OCSVM) and IF. These compared methods
are selected for their ability to be trained exclusively on normal data and subsequently utilized
to differentiate between normal and anomalous data, aligning with the operational context of
our approach. The comparison results, as presented in Table 5, highlight the superior detection
and fault tolerance capabilities of our approach.

5.2.1. Attack Implementation

There are two kinds of FDI attacks that result in the distortion of transmitted signals in
the system: one is additive and the other is multiplicative [26]. We implement both additive
and multiplicative attacks on control signals, actuating signals, and sensor readings to test the
comprehensive protection provided by detection methods.

Additive Attacks. Additive attacks involve the attacker distorting the signal by adding a
fixed value each time. We conduct different additive attacks 100 times to evaluate detection
performance. The additive attacks can be represented by

signal[t] = signal[t] + add, add € (0: 0.2 : 20],

where signal[t] denotes the benign signal that has not been tampered with at time ¢, signallt],
signallt] € {u.[t], u.[t], y[t]}, add denotes the value added to distort the signal, and (0 : 0.2 : 20]
indicates a sequence starting at 0 (not included), incrementing by 0.2, up to (and including)
20.

Multiplicative Attacks. Multiplicative attacks involve the attacker distorting the signal by
multiplying it by a fixed value each time. We conduct different multiplicative attacks 100
times to evaluate the detection performance. The multiplicative attacks can be represented
by

signallt] = signallt] * multi, multi € (1:0.01:2],

where multi denotes the multiplier for distorting the signal, and (1 : 0.01 : 2| indicates a
sequence starting at 1 (not included), incrementing by 0.01, up to (and including) 2.
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Figure 4: Comparative analysis of RMSE and detection time delay across attack amplitudes.

5.2.2. FEvaluation Metrics and Performance Analysis

The comparative experiments evaluate the detection performance of control signals, ac-
tuating signals, and sensor readings under both additive and multiplicative attacks. The
simulation time is 10s and all the attacks are launched at the start of 4s. Given that both our
method and the watermarking technique are founded on statistical principles, we standardized
the acceptable FAR threshold for the y? test at 5% to ensure fairness.

False Alarm Rate (FAR). During the system’s normal operation, the FAR serves as a
critical metric, reflecting the reliability of the detection method. We assess the FAR by
examining the likelihood of the detector falsely identifying an attack under normal operation
of the system. Specifically, it is calculated as the percentage of total simulation samples in
which the detector inaccurately signals an intrusion during our 10s simulation without any
attack.

Our isomorphic analysis method employs three isomorphic detectors, enabling us to calcu-
late separate FARs for control signals, actuating signals, and sensor readings. Similarly, the
machine learning methods, OCSVM and IF, also employ separate detectors for each signal
type. Conversely, the watermarking method utilizes only a single detector for sensor readings,
yielding a corresponding FAR solely for this category, leading to its limited FAR representa-
tion.

For the detectors II and III utilizing the y? statistical test, we set an acceptable FAR
threshold of 5%. For these two detectors, the FARs in the experiment are close to 5%, under-
scoring the validity and theoretical consistency of our experimental outcomes. Notably, under
additive attacks on sensor readings, our method presents a low FAR of 4.99%. Conversely,
the watermarking method shows a higher FAR of 9.09% for the same scenario, indicating the
superior robustness and the reduced susceptibility of our methodology to false alarms.

Machine learning methods like OCSVM and IF might demonstrate lower FARs due to
their adaptive nature based on the training data. However, this adaptability may come at
the expense of generalizability and could potentially overlook attack patterns that are not
well-represented in the training set.

Detection Rate. In our experiments, we use the ‘detection rate’ to quantify the detection
method’s ability to identify attacks. Consider additive attacks as an example: the detection
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rate is calculated as the proportion of attacks successfully detected out of 100 additive attack
implementations. For every implementation of the attack, we launch it at the start of 4s of the
simulation time. Given that detectors can produce false alarms even during normal operation,
we only recognize an attack as successfully detected if the count of alarms triggered by the
detector during the attack exceeds the count of false alarms recorded over the same period
when no attack is present. The same definition of detection rate applies to multiplicative
attacks.

In assessing comparative performance, our isomorphic analysis method obviously excels
with exceptional detection rates under both additive and multiplicative attacks on control
signals, actuating signals, and sensor readings, consistently achieving over a 98% detection
rate.

In contrast, the watermarking method fails to detect attacks on control and actuating
signals altogether. Such shortcomings reveal design vulnerabilities, particularly an oversight
of the cyber vulnerabilities present within each networked component of open 1CSs.

Machine learning methods, OCSVM and IF, perform comparably to our isomorphic method
for multiplicative attacks but show weaknesses for additive attacks, especially with sensor
readings. This suggests that the subtle nature of changes introduced by additive attacks may
present challenges for black-box models that are trained without an understanding of the
control system’s operational logic.

Therefore, our isomorphic analysis method provides comprehensive detection across all
signal types and attack forms, underscoring its suitability for robust FDI attack detection in
open 1CSs.

Root Mean Square Error (RMSE). RMSE assesses the degree of distortion in the system
state when subjected to an attack. For evaluation, we use the true system state during normal
operation as the reference. The RMSE is then computed by comparing the state under attack
with this normal state, providing a measure of the system’s deviation from its expected state
due to the attack.

As illustrated in Table 5, our method demonstrates superior performance by consistently
presenting lower RMSE values compared to both the watermarking and machine learning
methods for all types of attacks and signals. This superior mitigation of system state distor-
tions is attributed to our method’s post-attack corrective actions. Our approach proactively
corrects malicious signals, thus enhancing the system’s fault tolerance and resilience. This
ability to correct and adapt in real time ensures that our system maintains operational nor-
mality, even under adverse conditions. In comparison, though sometimes effective, baseline
methods lack this dynamic corrective capability, which is reflected in their generally higher
RMSE values, especially under more sophisticated attack scenarios.

Time Delay. Time delay indicates the detector’s responsiveness to attacks. Specifically,
during the attack phase, it represents the interval between the onset of the attack and the
detector’s first alarm.

Our isomorphic analysis method exhibits a balanced performance, showing a slightly better
time delay in multiplicative attacks when compared to the watermarking method, indicating
a prompt detection capability that is crucial for immediate response and system recovery.
Particularly for control and actuating signals, where the watermarking method fails to detect
anomalies, our method ensures no gaps in security coverage.

19



)
- - >\2Value

threshold | |

'4\1, .uw

V
101 R IS
,_M_u LY WL Fu_qﬂg H \| HTF mmmn ?\_M ¥

y S, |l‘,[ 1
”‘ V ‘ ;\ |\1 t(\rUV\ e ,.J

0 1 2 3 5 6
Time

Figure 5: The threshold and x? value under attack (1 = 0).

While OCSVM and IF demonstrate quicker detection in certain scenarios, such as mul-
tiplicative attacks on sensor readings, their performance is not uniformly superior across all
types of signals and attacks. This highlights an advantage of our isomorphic method: it
provides a robust defense across various signal types without sacrificing much timeliness of
detection.

Comparative Analysis of RMSE and Time Delay across Attack Amplitudes. To
better demonstrate the performance of our isomorphic detection method relative to benchmark
approaches, we present a detailed comparative analysis in Figure 4. This analysis depicts
RMSE and detection time delay trends in response to varying amplitudes of both additive
and multiplicative attacks.

As attack intensity increases, an expected rise in RMSE is observed across all methods,
reflecting greater distortions in the system state caused by the more potent attacks. Con-
versely, detection time delay generally decreases with increasing attack strength, indicating
faster detection as the attacks become less covert.

Our isomorphic analysis method not only achieves superior detection results but also excels
in proactively correcting malicious signals, significantly mitigating system state distortions and
minimizing the impact of attacks. While machine learning methods such as OCSVM and IF
may exhibit rapid response in certain scenarios, they lack fault tolerance capabilities. Our
method, in contrast, provides high fault tolerance and consistently maintains system integrity,
even under adverse conditions.

The comparative experiment results clearly demonstrate our method’s outstanding per-
formance in FDI attack detection within ICSs, notably excelling in detection capabilities and
fault tolerance. It outperforms both the dynamic watermarking method and machine learning
benchmarks, ensuring comprehensive and reliable detection across a variety of attack types
and providing robust system protection.

5.3. Case Study

In this section, we provide a case study of FDI attacks on sensor readings to demonstrate
the effectiveness of our detection method. Additionally, we discuss the role of the parameter
1 in resisting the adverse effects of attacks, namely the distortion of the system state.
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Consider a scenario in which an attacker starts manipulation of the sensor readings at the
moment 3s and gradually increases the intensity of the attack over time:

Y Os <t < 3s,
1.15y  3s <t < 4s,
14y  4s <t < bs,
2y Hs <t < 6s.

glt] =

Figure 5 plots x? value and the corresponding threshold during the experiment. Obviously,
the x? value surpasses the threshold consistently after 3s, denoting the onset of an attack.
Notably, peaks in x? arise each time the attack pattern shifts, highlighting our method’s
sensitivity to the initial stage of the attack.

In (18), the coefficient u is self-adaptive according to the condition of transmitted signals
over time. Setting u as a constant allows us to calibrate detectors to achieve different fault
tolerance and FARs. In this context, (18) will be active only when the flags is 1.

Figure 6 demonstrates the detector’s resistance to distortion under different y configura-
tions, with our designed self-adaptive p showing the best fault tolerance. Due to the recursive
nature of the control system, the statistical detector cannot always achieve its theoretical per-
formance, meaning it might not completely prevent distortions. Specifically, if the detector
does not raise an alarm immediately after an attack, the system state can become distorted in
the subsequent time step. Therefore, timely human intervention remains crucial upon attack
detection.

6. Discussion

In this section, we first explore the minimal resource impact of our isomorphic detection
method for supporting a cost-effective implementation in industrial settings. Following this,
we address the scope and limitations of our detection capabilities regarding non-FDI attacks.

6.1. Resource Consumption

Enhancing a system’s security usually necessitates increased resource consumption. The
challenge lies in achieving an optimal balance between improved security and efficient re-
source utilization. Our isomorphic detectors exemplify this balance, merging enhanced pro-
tection with efficiency. All three proposed isomorphic detectors can be implemented as virtual
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models, utilizing existing industry resources and functioning on smart devices without the in-
troduction of additional hardware. Upon deployment, these virtual models consume minimal
computational costs due to their lightweight design and reliance on simple statistical tests.
Additionally, the computation across these detectors can be parallelized to enhance efficiency.
In contrast to the more resource-intensive, complex data-driven algorithms typical of machine
learning or deep learning, this method offers significant cost savings.

For scenarios where controller failure could result in substantial risks or where high system
availability is imperative, our system design allows for the use of redundant hardware. This
adaptability enables the system configuration to be closely aligned with specific risk tolerances
and resource capacities under different industrial environments.

Consequently, our isomorphic detectors provide an effective yet resource-conscious solution
for enhancing the security of ICSs.

6.2. Limitations

Our methodology demonstrates robust effectiveness against FDI attacks, yet it is crucial to
recognize that the cybersecurity threat landscape is vast, encompassing sophisticated tactics
like Byzantine [27] and composite attacks [28]. Our detection design adeptly identifies signal
alterations. However, it might not have the sensitivity required to detect activities that com-
promise privacy without altering data, such as passive eavesdropping. Additionally, scenarios
where devices report signals that do not accurately represent their operational state, such as
in replay attacks where previously captured legitimate signals are resent, pose a challenge to
our detection methodology.

Moreover, it is important to note that the theoretical proof of our method’s efficacy is
based on an infinite time interval assumption. In practice, however, we are constrained to
a finite sliding window for detection. This limitation creates a potential exploit for covert
attacks [29], which could leverage the finite window to remain undetected by operating below
our system’s detection threshold.

7. Conclusion

In this paper, we introduce an innovative isomorphic analysis detection method for open
ICSs, offering robust protection against FDI attacks. By fully utilizing system information, we
construct three isomorphic detectors that together cover all critical components of the phys-
ical control system, addressing vulnerabilities that are often overlooked by methods focusing
solely on sensor-based attacks. The proposed three isomorphic detectors not only identify FDI
attacks but also undertake corrective measures to ensure the transmission of more dependable
signals to downstream components, thereby mitigating the impact of attacks. The effective-
ness of our method is supported by theoretical validation and empirical evidence. Through
experimental evaluations, our technique outperforms baselines such as the dynamic water-
marking method, SVM, and IF models across crucial metrics, including detection accuracy,
fault tolerance, FAR, and detection time delay. While our method excels in the context of
FDI attacks, we acknowledge its limitations in detecting more sophisticated cyber threats that
may not involve direct signal manipulation. In the future, we plan to extend our isomorphic
analysis detection method to multiple output-multiple input (MIMO) and nonlinear systems
for wider applicability.
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Appendix A. An Alternative Proof Strategy for Theorem 1

An alternative proof approach for Theorem 1 exists, which primarily aims to validate (7).
While this way is more complex, it serves as the basic proof idea for Theorem 2.

Since calculated actuating noise equals true actuating noise plus the distortion, denoted
by n[t] = n[t] + A,[t], and from test III. for the actuating signal, shown in (6), we have

1 T—-1 1 T—1
Jim t;(n[t] + Anlt])? = Jim = ;(n%ﬁ] + AZ[t] + 27, [t]n[t])
= 0'2

ne

Since the variance of actuating noise sequence {n[t]} is 02, denoted by limy_,, S n?t] =

o2, we have
1 T-1 )
dim g(Anm +2A,[t]n[t]) = 0. (A1)
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Since transmitted actuating signal is equal to true actuating signal plus the distortion, denoted
by U [t] = ua[t] + Au[t] = ugt] + AL[t], we have

1 T—-1 1 T-1
. < ~2 _ T - 2
dim = ag(t] = Jim Y (ualt] + Anft])
t=0 t=0
1 T-1
= lim — 2 A2 2A :
Jm ;(%[t] + AL [t] + 285 [tualt])

The mean of both true and calculated actuating noise sequences, denoted by {n[t|} and {n|[t]},
is 0. Therefore, we have
E{An[t]} = E{n[t]} — E{n[t]} = 0.

Hence, invoking the fact that the distortion of the actuating noise sequence {A,[t]} is of 0
mean and independent of {h(u.[t])}, we have

lim = 57 Au[th(al) =o. (A.2)

Noting that true actuating signal u,[t] = @,[t] + n[t] and (A.1), we have

Jim LS (A2 28 ) = Jim L S (A2 + 2,001 + nlt)
L
= lim > (A2t + 24, [nt)
t=0
=0.

Therefore, we have

T-1 T-1

B R T | )
7 2 Talll = fan, 77 3 (ald + Aal)
T-1 1T—l
N = 2 = 2
= lim tz:; uglt] + Jim = ;(An[t] + 245 [tua[t])
T-1

The proof is completed.
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