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A B S T R A C T

Industrial Control Systems (ICS) are intelligent control systems that integrate computing, physical processes,
and communication to manage critical infrastructures such as power grids, oil and gas processing facilities,
and water treatment plants. In recent years, ICS have been increasingly targeted by malicious attacks, causing
severe consequences. Anomaly detection systems utilized in ICS are crucial in safeguarding ICS from potential
threats by sending out an alert upon detecting any network attacks. However, existing methods for ICS
anomaly detection often suffer from limitations. Supervised machine learning methods encounter the issue
of imbalanced positive and negative samples, while residual-based anomaly detection methods face challenges
in detecting stealthy attacks. This paper presents an unsupervised anomaly detection method for ICS using
association rule mining techniques. Utilizing the proposed variation-driven predicate generation strategy,
the method incorporates temporal features of sensor readings into the generated predicates, achieving the
mining of invariant rules that take into account the temporal dependencies among physical variables. This
approach allows for a more comprehensive exploration of the invariant patterns maintained in the dynamic
processes of systems. Through experiments conducted on two public datasets, the method demonstrates high
detection efficiency, meeting the real-time demands of online detection. Experimental results showcase its
notable efficacy in anomaly detection, with a substantial enhancement in the recall rate. Furthermore, the
method’s capability to promptly issue warnings enables it to detect multiple attacks with low latency.
1. Introduction

ICS are integrated systems that comprise multiple automation con-
trol components and process control components designed to collect,
process, and analyze real-time data to ensure the automatic operation
of various industrial infrastructures. ICS typically consist of distributed
components that interact with physical processes through sensors and
actuators. These components are interconnected via the network, which
renders the system vulnerable to cyberattacks. Any attack on ICS
could severely damage critical infrastructures and have far-reaching
negative impacts. In recent years, frequent ICS attack incidents have
posed significant threats to the economic development and public
safety. In 2009, the Stuxnet attack on Iran’s nuclear facilities caused
widespread concern (Falliere, Murchu, & Chien, 2011); the 2015 attack
on Ukraine’s power grid resulted in massive blackouts (Case, 2016);
and the 2018 virus attack on TSMC led to the shutdown of crucial
production facilities across multiple important bases (Kumar, 2018).

Anomaly detection systems monitor activities by analyzing data
logs or network traffic to identify potential or ongoing cyberattacks.

∗ Corresponding author at: Department of Computer Science, University of Reading, Reading, RG6 6UR, UK.
E-mail address: shuang-hua.yang@reading.ac.uk (S.-H. Yang).

However, the conventional anomaly detection methods that have been
extensively studied and applied in traditional Information Technol-
ogy (IT) systems may not be entirely applicable to ICS. ICS security
requires a holistic approach that considers both information systems
and physical processes. Furthermore, the uninterrupted nature of ICS
operations is crucial, making software patches and frequent updates
unsuitable for ICS. Therefore, ICS security solutions should incorporate
self-awareness, adaptive decision-making, and real-time response capa-
bilities. Anomaly detection holds significant importance in ensuring the
security of ICS (Wang, Zhou, Chen, & Wang, 2020). The effectiveness
of anomaly detection algorithms is directly correlated with the security
and efficiency of ICS operations (Zhou et al., 2015).

Anomaly detection based on physical processes is an effective de-
fense mechanism against attacks on ICS, as such attacks often cause
changes to the physical states of the system (Zheng, Julien, Kim, &
Khurshid, 2015). Available anomaly detection methods based on physi-
cal processes mostly rely on traditional machine learning techniques or
https://doi.org/10.1016/j.conengprac.2024.106164
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deep neural networks. Supervised methods necessitate sufficient normal
nd abnormal data to train a classifier. However, anomalous data is
carce in practice, and the positive and negative samples exhibit a
onsiderable imbalance (Yuan, Yu, Yang, Duan, & Li, 2023). Many un-

supervised methods (Chen et al., 2021; Li et al., 2019; Zeng et al., 2023)
ely on residuals to detect anomalies by comparing the current state of
he system with a predicted normal range or reconstructed value (Tian

& Zhao, 2023). However, these methods are limited by unclear control
boundaries and may fail to detect indirect and stealthy attacks (Feng,
i, Zhu, & Chana, 2017). Since ICS physical process data typically
onsist of continuous and categorical variables, some methods propose

mixed modeling methods for concurrent analysis of continuous and
categorical data (Chen, Zhao, & Ding, 2023; Eiras-Franco, Martinez-

ego, Guijarro-Berdinas, Alonso-Betanzos, & Bahamonde, 2019; Wang,
Sheng, Zhou, & Chen, 2022; Wang, Zhou, & Chen, 2023; Wang et al.,
2020). Since these methods rely on probabilistic modeling, they often
equire assumptions and priors, making the design of effective anomaly
etection methods challenging.

ICS exhibit inherent deterministic characteristics, characterized by
 relatively fixed network topology, a small and static set of application
unctions, and regular and predictable communication patterns (Zhou
t al., 2015). As a result, some methods rely on invariant rules to collect
nformation about the relationships among sensors and actuators in

the system under normal operating conditions (Feng, Palleti, Mathur,
 Chana, 2019). In the event of an attack, the physical processes of

the system may be affected, causing associated sensors and actuators
to exhibit structural changes in their normal behavior. These changes
iolate the invariant rules that the system maintains, making it possible
o detect attacks by identifying such structural changes. Traditionally,

these invariant rules were manually derived by system experts using
their prior knowledge, which was a time-consuming, costly, error-
prone, and non-portable process. In the literature, researchers have
tried to utilize data-driven techniques for mining invariant rules, mak-
ng the widespread application of such methods possible (Feng et al.,

2019; Momtazpour, Zhang, Rahman, Sharma, & Ramakrishnan, 2015).
This paper proposes an anomaly detection method based on invari-

ant rules generated from the physical process data of ICS. The method
captures the normal behaviors of the system by mining the invariant
rules that must always be fulfilled during its regular operations and
flags non-compliant data as anomalous. By focusing on situations where
the trend of sensor reading segments changes, the method incorporates
temporal features of sensor readings into the generated predicates. The
mined invariant rules capture the temporal dependencies among system
physical variables, enabling a more comprehensive exploration of the
typical normal patterns maintained in the dynamic processes of ICS.

Specifically, our method employs a data-driven association rule
mining algorithm (Agrawal, Imieliński, & Swami, 1993) to generate
invariant rules automatically. During the predicate generation phase,
he sensor readings collected at discrete time steps are divided into
maller segments. These segments are then analyzed to generate mean-
ngful predicates. The predicate for each data segment is expressed as

a collection of data attributes from the previous and current segments,
where each attribute is defined as the slope trend or mean level of
each segment and highlights the changing processes as sensor reading
evolves.

To evaluate our method, we conduct experiments on the publicly
available Secure Water Treatment (SWaT) (Goh, Adepu, Junejo, &
Mathur, 2017) dataset and the Water Distribution System (WADI)
(Ahmed, Palleti, & Mathur, 2017) dataset. The experimental results
demonstrate that our method achieves high detection efficiency and

eets the real-time requirements of online detection. It can detect
 wide range of attacks with low latency in attack identification.
ompared to the existing anomaly detection method (Feng et al., 2019)
ased on invariant rules in ICS, our method improves the detection
erformance and effectively enhances the detection recall rate. The
ontributions of our method can be summarized as follows:
2 
• It introduces an innovative variation-driven predicate generation
strategy that utilizes (𝑎, 𝑏) tuples to connect different chang-
ing trends between segments, extending the predicate generation
perspective from current readings to historical processes.

• It focuses on trend changes in sensor reading segments and in-
corporates temporal features into predicate generation, enhancing
the detection of anomalies by considering temporal dependencies
among physical variables.

• It can detect stealthy attacks (attacks that make slight modifica-
tions to the sensor readings at each time step) since accumulated
sensor deviation has a tendency to violate certain invariant rules
at specific time points.

• It generates invariant rules that reflect certain underlying mech-
anisms of the system. This offers insights into the relationships
among critical factors of ICS and possesses interpretability.

• It is unsupervised and utilizes data-driven techniques to mine
meaningful invariant rules without relying on system models, pro-
viding high portability and applicability to similar IoT scenarios.

The remainder of this paper is structured as follows. Section 2
presents related works on ICS anomaly detection. In Section 3, the back-
ground and notations are provided. Section 4 presents the proposed
nomaly detection method in this paper. In Section 5, the experimental

settings and results are presented. Section 6 analyzes and discusses the
experimental results. Finally, Section 7 presents the conclusions of this
tudy.

2. Related works

Much research has utilized the physical process information of the
ystem to develop anomaly detection methods, as cyberattacks on ICS
ften alter system physical states (Zheng et al., 2015).

Methods that utilize system physical process information for
anomaly detection typically include residual discrimination methods
and invariant rule-based methods. Aoudi, Iturbe, and Almgren (2018)
and Maurya, Agarwal, Kumar, and Shukla (2022) propose residual
discrimination anomaly detection methods that project measured raw
physical process data onto a low-dimensional signal subspace using
Singular Spectrum Analysis (SSA). They then create spherical (Aoudi
et al., 2018) or ellipsoidal (Maurya et al., 2022) decision boundaries
to partition the normal mode region. Using SSA for denoising enables
the methods to detect subtle structural changes hidden within the noise
range of the physical process variables. Neural network-based residual
discrimination methods typically consider time-series features to detect
anomalies. Let 𝑟(𝑡) denote the difference between the predicted or
reconstructed values and the actual values of sensor readings at time
𝑡, and let 𝐽t h represent the constant threshold for anomaly detection.
Assuming a false data injection (FDI) attack (injecting attack data into
the original reading/signal) is initiated at time 𝑡0. The detection of an
ttack is determined using the evaluation function 𝐽 (𝑡) = ‖𝑟(𝑡)‖RMS,
here ‖𝑟(𝑡)‖RMS represents the Root Mean Square (RMS) of the variable
(𝑡). An attack is confirmed if, at a certain time 𝑡𝑑 > 𝑡0, the evaluation
unction 𝐽 (𝑡) surpasses the predefined threshold 𝐽t h, denoted as:

𝐽
(

𝑡𝑑
)

> 𝐽t h. (1)

Chen et al. (2021), Li et al. (2019) and Zeng et al. (2023) consider
ensor readings as multivariate time series and use adversarial learning
or high-precision prediction of the target value, fully utilizing the
emporal correlations between physical process variables, achieving
utstanding anomaly detection performance. However, residual deter-
ination methods are almost incapable of detecting stealthy attacks,
here attackers can hide their operations within the range of noise,
ventually leading to system control failure by accumulating injected
iny biases that induce cascading effects (Dán & Sandberg, 2010; Feng

et al., 2017; Liu, Ning, & Reiter, 2011).
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An attack is stealthy when it can inject false data without being
detected with respect to Eq. (1). More precisely, let 𝑟𝑛 denote the sensor
eading residual in normal conditions, and 𝑟𝑎 represent the deviation
f 𝑟 due to an attack, i.e., 𝑟𝑎 = 𝑟 − 𝑟𝑛. An FDI attack is stealthy for the
nomaly detector if both the following conditions are satisfied (Zhang,
eliris, Parisini, & Polycarpou, 2021):
‖

‖

𝑟𝑎(𝑡)‖‖ → 0 as 𝑡 → +∞,

𝑟(𝑡)‖RMS ≤ 𝐽t h − 𝛿 for 𝑡 ≥ 𝑡0,
(2)

where 𝛿 > 0 is a predefined scalar such that 𝐽t h − 𝛿 > 0. Conse-
uently, a stealthy attack is considered undetectable for this residual-
ased anomaly detector, wherein the detection probability equals the

probability of false alarms rate (Ghaderi, Gheitasi, & Lucia, 2020).
Mixed modeling methods make full use of the complementary in-

ormation between continuous and categorical variables to model the
data distribution that should be satisfied during normal system opera-
tion. Chen et al. (2023) proposes a mixed anomaly detection model that
can handle both non-Gaussian and non-Bernoulli variables simultane-
ously. They introduce a finite mixed model to describe data for each
class. Each component includes a multivariate Gaussian distribution
and several categorical distributions, relying on the assumption of con-
ditional independence to simplify parameter estimation. To estimate
the parameters, they employ Variational Inference (VI) to determine the
appropriate number of components for each class automatically. Eiras-
ranco et al. (2019) presents an anomaly detection model that can

handle large-scale and high-dimensional data. They split the mixed
probability distribution into two components: the continuous variables’
marginal density and the categorical variables’ conditional probability
based on the feature vector’s continuous portion. However, the ac-
curacy of anomaly detection with such methods heavily depends on
robust and accurate probabilistic models, and even in simple industrial
control processes, it is not easy to determine the model distribution.

The invariant rule-based methods aim to discover the unchanging
relationships between physical process variables that must be main-
tained during normal operations. Traditionally, these invariant rules
are often manually derived by experts who have a deep understanding
of the system.

Adepu and Mathur (2016) utilizes the Process and Instrumentation
Diagram (P&ID), which describes various equipment and control de-
vices, to deduce plant design (for instance, when analyzing the SWaT
testbed described in Section 5.1, factors such as valve opening or
losing times, flow rates along pipelines, and chemical dosing rates can

be considered), thereby uncovering system invariants. Yoong, Palleti,
Maiti, Silva, and Poskitt (2021) generates invariant rules necessary
for the normal operation of the system by iteratively decomposing
the design logic of the ICS based on the principles of axiomatic de-
sign. Mishra, Palleti, and Mathur (2019) proposes a framework that
llows for modeling the entire critical infrastructures and the inter-
onnections within or among them. It leverages system architecture
nowledge to model each subsystem individually, thereby uncovering

the invariant relationships among these systems. Mehmood, Baig, and
yed (2024) uses association rule mining techniques to generate attack

rules and invariant rules that must be maintained during the system’s
normal operation, dividing sensor readings into two intervals: ‘‘high’’
and ‘‘low’’.

However, such methods have a high transplantation cost and are
difficult to mine a complete set of rules. In contrast, data-driven in-
variant rule mining methods, which do not rely on expert knowledge,
ave received extensive research attention. Das, Adepu, and Zhou

(2020) propose a supervised classification method based on a partially
defined Boolean function and Logical Analysis of Data to mine invariant
rules from historical sensor readings. This method can detect abnormal
behaviors in near real-time using laptop-class computing power. Com-
pared to unsupervised methods, supervised methods have relatively
poor performance detecting zero-day attacks and face challenges due
to extremely imbalanced data caused by the lack of abnormal sam-
les. Momtazpour et al. (2015) quantify the relationships between time
 A

3 
series using the AutoRegressive models with eXogenous inputs (Ljung,
1998), and if any relationship does not change over time, it is consid-
ered invariant. The authors use latent variables obtained from factor
analysis to supplement the indirect relationships among time series in
physical process data and represent all direct or indirect relationships
of variables as an invariant graph of the system. However, this method
has a high computational complexity and is not suitable for real-time
online detection in ICS.

When applying invariant rule-based methods for anomaly detection
n ICS, we face several fundamental challenges: How can continu-
us real-valued data be incorporated into invariant rules, considering
hat industrial control processes often involve both continuous and
ategorical variables? How can we discretize continuous data to en-
ure the discrete representation effectively captures its characteristics?
ow can we use data-driven methods to discover meaningful invariant

ules without relying on prior knowledge? These challenges point to
a critical and effective solution strategy: discretize continuous data
into a finite set of representative predicates and use association rule
mining techniques (Agrawal et al., 1993) to automatically discover
the invariant relationships among system physical process variables.
uch methods have the advantages of being data-driven, unsupervised,
nd real-time responsive, and they generally involve three main steps:
redicate generation based on physical process data, closed frequent
temset mining, and invariant rule generation.

Predicate generation is the crucial and challenging step. It defines
a set of mapping relationships that primarily map continuous sensor
readings into finite and discrete descriptions that can reflect the states
of the sensors. For example, a common approach is to divide the range
of sensor readings into multiple intervals and use the interval index to
which the reading belongs as the predicate for that reading. However,
since predicate generation involves discretizing continuous variables,
using simple interval partitioning to generate predicates could result
in significant information loss (e.g., we might completely fail to dis-
tinguish between overlapping intervals of two different distributions).
Nonetheless, some level of discretization helps to mitigate the impact
of noise and sensitivity to changes in the data distribution, thereby
assisting in identifying the main dependencies among system variables.
Therefore, it is necessary to design a predicate generation strategy
that effectively captures the primary characteristics of the sensors.
Following predicate generation, the next steps are closed frequent
itemset mining and invariant rule generation, which can be achieved
using mature association rule mining techniques to generate 𝑖𝑓 -𝑡ℎ𝑒𝑛
tatements composed of predicates.

Feng et al. (2019) propose two predicate generation strategies con-
sistent with ICS’s control dynamics: the distribution-driven strategy
nd the event-driven strategy. This paper refers to their method as

DDEA (Distribution-Driven and Event-Driven). The distribution-driven
strategy exploits the influence of the ICS’s control states on the updates
of sensor readings. For any given sensor, this strategy classifies the
updates in sensor readings at different time steps into multiple Gaussian
distributions, where each distribution corresponds to a predicate.

The event-driven strategy leverages the observation that sensor
eadings reaching critical values generally prompt changes in actua-
or states. Therefore, this strategy aims to identify the critical values
hat sensor readings must satisfy when each actuator state alters. The
trategy then classifies the readings of each sensor at any other time
teps into two discrete predicates: ‘‘not yet reached the critical values’’
r ‘‘already exceeded the critical values’’.

Our proposed method is an invariant rule-based anomaly detection
ethod that utilizes association rule mining techniques. The main
ifference from DDEA lies in predicate generation. While DDEA only
onsiders the impact of the current control state on the system, it
acks perception of historical processes and thus cannot capture the
emporal correlations of sensor readings. Consequently, it cannot ade-
uately consider the most crucial temporal features of time-series data.

dditionally, in industrial control processes, noises inevitably affect
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Fig. 1. Proposed framework for anomaly detection in ICS.
sensor readings, leading to tiny local fluctuations. Thus, considering
only the current moment makes it prone to misjudging the overall
changing trend of readings.

Existing invariant rule-based anomaly detection methods generally
emphasize predicate generation based on the current moment for con-
tinuous real-valued data, overlooking the critical temporal features of
sensor readings. Many methods directly divide the range of sensor
readings into several non-overlapping intervals, with the predicate at
each moment determined by the interval the reading falls into. For
example, they generate predicates such as ‘‘in the low range’’ or ‘‘in
the high range’’ (Maiti, Yoong, Palleti, Silva, & Poskitt, 2023; Mehmood
et al., 2024; Mishra et al., 2019).

Due to the stable overall variation patterns of industrial processes
and the general periodic characteristics of the dynamic processes, it
is essential to fully utilize the temporal correlations. To this end,
we use the variation-driven strategy for predicate generation. Sensor
readings within a sliding time window are divided into segments, and
the temporal features are incorporated into the generated predicates
based on the changes in the slope trend or mean level of each segment.
This method allows for the discovery of invariant relationships among
physical variables in ICS dynamic processes.

3. Background and notations

ICS acquire process information through sensors and control pro-
cesses with actuators. For an ICS equipped with 𝑚 sensors and 𝑛 actu-
ators, let 𝐷{1 ∶ 𝑇 } = {{𝑆1{1 ∶ 𝑚}, 𝐴1{1 ∶ 𝑛}

}

,
{

𝑆2{1 ∶ 𝑚}, 𝐴2{1 ∶ 𝑛}
}

,
… ,

{

𝑆𝑇 {1 ∶ 𝑚}, 𝐴𝑇 {1 ∶ 𝑛}
}

} be the time-series data log collected under
𝑇 discrete time steps in the normal working state of the ICS, where
𝑆𝑡{1 ∶ 𝑚} represents the values of 𝑚 sensors at time step 𝑡, while
𝐴𝑡{1 ∶ 𝑛} represents the states of 𝑛 actuators.

Predicates represent discrete entities possessing statistical signifi-
cance, serving as indicators of sensor values and actuator states at
each time step. The main work of the predicate generation step is
to discretize and limit the continuous sensor readings into finite and
well-defined predicates. As an illustration, let us consider a liquid
temperature sensor denoted as 𝑘, monitoring temperature values within
the range [10, 60]. Let 𝑘𝑣𝑎𝑙 represent the temperature value measured
by sensor 𝑘. In this context, predicates for sensor 𝑘 could potentially
be formulated as {10 ⩽ 𝑘𝑣𝑎𝑙 < 30, 30 ⩽ 𝑘𝑣𝑎𝑙 ⩽ 60}, among other
possible formulations. Subsequently, each item

{

𝑆𝑡{1 ∶ 𝑚}, 𝐴𝑡{1 ∶ 𝑛}
}

in the time series data log 𝐷{1 ∶ 𝑇 } can be represented as a predicate
set 𝑃𝑡 =

{

𝑝1, 𝑝2,… , 𝑝ℎ
}

, where each term 𝑝𝑖, 𝑖 ∈ (1, 2,… , ℎ), represents
a predicate. For instance, consider a predicate set 𝑃 = {P502 = 1, 10 ⩽
1

4 
𝑘𝑣𝑎𝑙 < 30}, which conveys that at time 𝑡=1, actuator P502 is in state 1,
and sensor 𝑘 records temperature value within the interval [10, 30).

The predicate set 𝑃𝑡 that represents the system’s states at any given
time 𝑡 is referred to as a transaction, and the transactions collected
under 𝑇 times are called a transaction set 𝐷𝑡𝑟𝑎𝑛𝑠. Association rule
mining aims to identify rules of the form 𝐴 ⟶ 𝐵 in the transaction
set generated by 𝐷{1 ∶ 𝑇 }, where 𝐴 and 𝐵 are two disjoint sets of
predicates. These rules indicate that whenever a transaction contains
the predicate set 𝐴, it should also contain the set 𝐵. Such rules describe
the invariant relationships that must be maintained among different
physical variables of ICS. To illustrate, consider the following invari-
ant rule: {P502=1, P601=1} ⟶ {P102=1, P401=1, P403=1} which
implicates that if the pump actuators P502 and P601 are in state 1
at any given time 𝑡, then the actuators P102, P401 and P403 must
also be in state 1 at the same time 𝑡. Association rule mining involves
closed frequent itemset mining and invariant rule generation. In this
context, we solely present the definition of closed frequent itemsets and
provide a concise overview of the approach employed for generating
invariant rules based on these closed frequent itemsets. More details
will be elaborated in the next section.

An itemset is a set of items. In ICS, an item is typically interpreted
as a predicate, and an itemset can be viewed as a predicate set. The
occurrence frequency of an itemset is equal to the frequency of all
transactions that contain the itemset, also referred to as the support.
Itemset 𝑍 is considered a frequent itemset if its support is greater than
or equal to a pre-defined minimum support threshold. A closed itemset
is defined as an itemset 𝑍 for which the support of any of its direct
supersets (if itemset 𝑍1 is a direct superset of itemset 𝑍2, then 𝑍2 is
a proper subset of 𝑍1, denoted as 𝑍2 ⊊ 𝑍1) is strictly less than the
support of itemset 𝑍 itself. A closed frequent itemset 𝑍′ is a frequent
itemset that is also closed.

The generation of invariant rules is based on closed frequent item-
sets. Each closed frequent itemset 𝑍′ is partitioned into two disjoint
subsets, 𝐴 and 𝑍′ − 𝐴. The generation of invariant rules aims to
identify relationships 𝐴 → 𝐵 ( where 𝐵 = 𝑍′ − 𝐴

)

that are consistently
maintained in the training set.

To detect a sample, we first generate the predicate set for this
sample. This predicate set is then compared to the invariant rules
generated from the training data 𝐷{1 ∶ 𝑇 }. Any test sample with a
predicate set that fails to conform to any invariant rule is considered
anomalous. Regarding the invariant rule mentioned in the example
above, if a given test sample satisfies the conditions of both actuators
P502 and P601 being in state 1 while actuator P102 is in state 0 at the
same time, then it is classified as anomalous.
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4. Proposed framework

The proposed framework for anomaly detection in ICS is presented
in Fig. 1. This framework includes preprocessing the training data,
predicate generation, closed frequent itemset mining, and invariant
rule generation. When processing the test data, the retained parameters
from the training data preprocessing stage are used for preprocessing.
Then, the predicate generation step is performed, and the generated
predicate set is compared to the invariant rules generated from the
training data. Data samples that conform to all the invariant rules are
classified as normal, while those that fail to satisfy any invariant rule
are identified as anomalous.

4.1. Data preprocessing

The data preprocessing module consists of two steps: selecting
sensor readings using the Fast Fourier Transform (FFT) and normalizing
the selected readings using Min-Max normalization.

The sensor readings collected at discrete and equidistant time steps
constitute multiple time series. Discrete Fourier Transform (DFT) con-
verts discrete signals from the time domain to the frequency domain,
making it suitable for analyzing sensor readings. FFT is a fast algorithm
that computes the DFT by reducing repeated calculations, making it
practical for large datasets (Brigham, 1988; Cooley & Tukey, 1965).

For the time series collected by any sensor, after applying FFT, we
can identify the three sine waves with the highest amplitudes that
contribute the most to the sensor series and determine their corre-
sponding periods. The amplitude of each component in the spectrogram
illustrates its contribution to the time series. Thus, a larger amplitude
of a component indicates that the corresponding sine wave period
is a better representation of the overall period of the time series. If
the minimum period among these three dominant periods exceeds a
predefined threshold 𝐿, it indicates that the periodicity of the sensor
time series is not significant. This could impede the mining of mean-
ingful invariant rules. Therefore, this sensor time series is removed from
further analysis.

After selecting the sensors to be used, the next step is normalizing
the relevant sensor readings. We use Min-Max normalization to normal-
ize the time series of each sensor. Min-Max normalization performs a
linear transformation on the original data, scaling the data to the range
of [0, 1]. The equation is presented below:

𝑋nom =
𝑋 −𝑋min

𝑋max −𝑋min
, (3)

where 𝑋 is the original time series, 𝑋max and 𝑋min are the maximum
and minimum values of 𝑋, respectively, and 𝑋nom is the normalized
series.

The time series of each sensor in the test set is normalized based
on the maximum and minimum values observed in the corresponding
sensor data from the training set. This offers a reliable way of capturing
the overall deviation of the test set data from the training set data and
facilitates online detection.

4.2. Predicate generation

In order to represent the discrete and limited states of an actuator,
we can assign a predicate to each possible state. Assume that an actua-
tor denoted by 𝑢 has a set of possible states

{

𝑣1, 𝑣2,… , 𝑣𝑧
}

as observed
in the data log. Then, we can generate the following predicate set to
represent the possible states:

{

𝑢 = 𝑣1, 𝑢 = 𝑣2,… , 𝑢 = 𝑣𝑧
}

. However, for
sensors, since the readings obtained are continuous variables that span
an infinite range, it is necessary to partition the continuous range into
discrete and finite predicates.

We propose the variation-driven strategy for generating sensor read-
ing predicates, which considers the dynamic processes of the physical
variables of the system and complements the temporal correlations
among these variables, as compared to DDEA.
5 
Fig. 2. Trend chart of sensor readings for sensor LIT101 under 15,000 time steps.

4.2.1. The variation-driven strategy

The variation-driven strategy focuses on scenarios where the trend
of sensor reading segments changes, with a particular emphasis on the
slope trend or mean level of the sensor reading before and after the
change. The variation-driven strategy is based on the experience that
the state of a system in the current moment is influenced by its previous
state, which is consistent with the control dynamics of general ICS. The
strategy aims to identify invariant rules that can uncover consistent
patterns within the dynamic processes of the system when it is in the
normal state.

The variation-driven strategy initially partitions each sensor time
series into continuous segments that exhibit the same changing trend.
We employ the Bottom-Up (BU) time series segmentation algorithm
proposed by Keogh, Chu, Hart, and Pazzani (2001). This algorithm
approximates the univariate time series 𝑋, composed of sensor readings
collected at 𝑇 successive time steps (𝑋 =

{

𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑇−1
}

, with
each 𝑥𝑡 representing the sensor reading at time step 𝑡), through utilizing
multiple linear lines. The BU algorithm initially partitions time series
𝑋 into segments composed of adjacent pairs of points, resulting in
𝑇 ∕2 segments overall. Subsequently, neighboring segments are paired
together and collectively treated as a unit. The Least Squares Method
(LSM) is then employed to fit a straight line through all the data
points within each pair of segments, and the fitting error is calculated.
Afterward, the two segments exhibiting the minimum fitting error
while satisfying an error threshold are merged into a new segment. This
process is iteratively repeated until no adjacent segments can be further
merged. The detailed algorithm is presented in Algorithm 1.

After segmentation, attributes are assigned to each segment based
on its characteristics. Each segment is classified as either a flat or
changing segment, depending on whether the slope exceeds a prede-
fined threshold 𝐾. Flat segments are represented by their mean values,
representing the overall level maintained by them. Changing segments
are quantified by their slopes, reflecting the overall changing trend
within each segment. To generate more representative and statistically
significant predicates, we perform coarse-grained processing on both
the mean value of each flat segment and the slope of each changing
segment.

The coarse-grained process involves categorizing the mean values of
the flat segments into several ranges, such as ‘‘low’’ (⩽ 0.4), ‘‘medium’’
( > 0.4 and < 0.6), and ‘‘high’’ (⩾ 0.6).
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Algorithm 1 Bottom-Up Time Series Segmentation
Input: time series 𝑋, error threshold 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟
utput: time series segments 𝑆 𝑒𝑔

1: for 𝑖 = 0, 2, 4,… do
2: Initialize 𝑆 𝑒𝑔(𝑖) as a segment consisting of adjacent points

{𝑥𝑖, 𝑥𝑖+1} in 𝑋.
3: end for
4: for 𝑖 = 0, 1, 2,… do
5: Employ LSM to determine a linear fit containing all the data

points of the segments 𝑆 𝑒𝑔(𝑖) and 𝑆 𝑒𝑔(𝑖 + 1).
𝑥 = 𝛽0 + 𝛽1𝑡

𝛽0 =
∑𝑖

𝑣=𝑖−𝑛+1 𝑡
2
𝑣
∑𝑖

𝑣=𝑖−𝑛+1 𝑥𝑣 −
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣𝑥𝑣

𝑛
∑𝑖

𝑣=𝑖−𝑛+1 𝑡2𝑣 −
(

∑𝑖
𝑣=𝑖−𝑛+1 𝑡𝑣

)2

𝛽1 =
𝑛
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣𝑥𝑣 −
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣
∑𝑖

𝑣=𝑖−𝑛+1 𝑥𝑣

𝑛
∑𝑖

𝑣=𝑖−𝑛+1 𝑡2𝑣 −
(

∑𝑖
𝑣=𝑖−𝑛+1 𝑡𝑣

)2

Assuming that these two segments contain 𝑛 data points in total,
𝑡𝑖 represents the time, and 𝑥𝑖 represents the sensor value at that
time.

6: Let 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑖) be the Sum of Squared Errors (SSE) between
the observed values and the corresponding estimated values of
the 𝑛 data points from the linear fit.

𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑖) =
𝑖

∑

𝑣=𝑖−𝑛+1

(

𝑥𝑣 −
(

𝛽0 + 𝛽1𝑡𝑣
))2

7: end for
8: while the minimum value of 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡 < 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 do
9: Identify the two segments referred to by the minimum value in

𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡:
ar gminj 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑗)

10: Merge 𝑆 𝑒𝑔(𝑗) and 𝑆 𝑒𝑔(𝑗 + 1) to generate a new 𝑆 𝑒𝑔(𝑗).
11: Update the indices of all segments after 𝑆 𝑒𝑔(𝑗 + 1).
12: Recalculate 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑗 − 1) and 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑗).
13: Update the indices of all 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡 after 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑐 𝑜𝑠𝑡(𝑗 + 1).
14: end while

Moreover, the slopes of the changing segments are clustered using
ariational Bayesian Gaussian Mixture Models (VBGMM) to group sim-

ilar slopes. VBGMM differs from Gaussian Mixture Models based on the
Expectation Maximization algorithm, as it can automatically determine
the optimal number of clusters. The attribute of each segment is then
represented by the range of the mean value or the slope category.

The final stage is to generate predicates. For each segment, we
define a predicate in the format of (𝑎, 𝑏), where 𝑎 represents the pre-
ceding attribute that differs from the attribute of the current segment,
and 𝑏 represents the current attribute. Attributes reflect the overall
changing trend or overall numerical level of each segment, and the
combination of a distinct attribute from the preceding segment, along
with the current attribute, can depict the historical trend changes of
the present data. Under normal operating conditions, ICS typically
exhibit recurrent sensor reading patterns. Consequently, it is possible to
effectively depict the consistent evolving patterns in normal conditions
by using predicates expressed in the format of (𝑎, 𝑏).

The application of the variation-driven strategy in generating pred-
icates can be exemplified as follows:

Fig. 2 illustrates the sensor readings over a period of 15,000 discrete
time steps collected from the liquid level sensor LIT101 in the SWaT
dataset described in Section 5.1. The variation-driven strategy classifies
the sensor readings depicted in Fig. 2 into four distinct changing trend
ategories: slow rising, sharp rising, flat, and sharp falling. Suppos-

ing that the mean level of the flat segment is ‘‘high’’, the resultant
omplete attributes generated contain ‘‘slow rising’’, ‘‘sharp rising’’,
‘high’’, ‘‘sharp falling’’. Consequently, the corresponding predicate set
an be formulated as follows: {LIT101=(‘‘slow rising’’, ‘‘sharp rising’’),
6 
LIT101=(‘‘sharp rising’’, ‘‘high’’), LIT101=(‘‘high’’, ‘‘sharp falling’’),
LIT101=(‘‘sharp falling’’, ‘‘slow rising’’)}

4.2.2. Online predicate generation
The BU algorithm requires one segmentation operation for each

ensor time series in the training set. However, for the test data,
ultiple segmentation operations are needed for every sensor time

eries 𝑋 since the measurements arrive successively. To avoid exces-
ive computational overhead, we employed sliding window for online
redicate generation.

We use the sub-time series 𝑊𝑡 as the input for the BU algorithm,
erived by applying a sliding window approach. Specifically, 𝑊𝑡 com-
rises a sequence of data points of length 𝑆 that terminates with the
urrent values 𝑥𝑡 at time step 𝑡. Formally, 𝑊𝑡 can be represented as
𝑡 =

{

𝑥𝑡−𝑆+1, 𝑥𝑡−𝑆+2,… , 𝑥𝑡
}

. For example, if the window size 𝑆 is 128
and the current time step is 𝑡 = 128, then the sliding window will
include the data points

{

𝑥1, 𝑥2,… , 𝑥128
}

. Similarly, at time step 𝑡 = 129,
the sliding window will shift to include

{

𝑥2, 𝑥3,… , 𝑥129
}

. Subsequently,
each sub-time series 𝑊𝑡 is fed into the BU algorithm for segmentation.

Algorithm 2 Online predicate generation method based on the
variation-driven strategy
Input: sensor time series 𝑋, sliding window size 𝑆, flatness determi-

nation slope threshold 𝐾
Output: predicates of sensor readings at each time step
1: for 𝑖 = 𝑆 − 1, 𝑆 , 𝑆 + 1,… do
2: Let the sliding window sub-time series 𝑊𝑖 take the continuous

values
{

𝑥𝑖−𝑆+1, 𝑥𝑖−𝑆+2,… , 𝑥𝑖
}

from 𝑋.
3: Feed 𝑊𝑖 into Algorithm 1 for time series segmentation.
4: Obtain the slope of the linear regression for the last segment after

segmentation:
𝑥 = 𝛽0 + 𝛽1𝑡

𝛽1 =
𝑛
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣𝑥𝑣 −
∑𝑖

𝑣=𝑖−𝑛+1 𝑡𝑣
∑𝑖

𝑣=𝑖−𝑛+1 𝑥𝑣

𝑛
∑𝑖

𝑣=𝑖−𝑛+1 𝑡2𝑣 −
(

∑𝑖
𝑣=𝑖−𝑛+1 𝑡𝑣

)2

Assuming that the last segment contains 𝑛 data points in total, 𝑡𝑖
represents the time, and 𝑥𝑖 represents the sensor reading at that
time.

5: if slope 𝛽1 < threshold 𝐾 then
6: Determine the range of the mean value for this segment.
7: the attribute of 𝑥𝑖 = the slope range (‘‘low", ‘‘medium" or

‘‘high")
8: else
9: Apply the VBGMM to categorize the slope for this segment.
0: the attribute of 𝑥𝑖 = the category index (𝐾1, 𝐾2, 𝐾3 or 𝐾4)

obtained from clustering
1: end if
2: if the attributes of 𝑥𝑖 and 𝑥𝑖−1 are different then
3: the predicate of 𝑥𝑖 = (the attribute of 𝑥𝑖−1, the attribute of 𝑥𝑖)
4: else
5: the predicate of 𝑥𝑖 = the predicate of 𝑥𝑖−1

16: end if
17: Record the predicate of 𝑥𝑖 as the predicate of sensor reading at

time step 𝑖.
18: end for

Once the linear regression slope of the corresponding segment
containing measurements 𝑥𝑡 is determined, the subsequent steps remain
consistent with the previously described processes. Our online predicate
eneration method based on the variation-driven strategy is depicted in
lgorithm 2.

4.3. Closed frequent itemset mining

As defined in Section 3, a closed frequent itemset is an itemset that
is both 𝑓 𝑟𝑒𝑞 𝑢𝑒𝑛𝑡 – having a support that meets or exceeds a specified
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minimum threshold – and 𝑐 𝑙 𝑜𝑠𝑒𝑑, meaning that none of its supersets
has the same support.

The mining of frequent itemsets relies on the support threshold. Our
method utilizes multiple minimum supports to ensure the statistical
ignificance of the generated invariant rules.

4.3.1. Multiple minimum supports
Support refers to the frequency with which an itemset appears in the

transactions. For instance, if we consider a predicate set like {P502=1,
601=1}, the support is determined by how often these conditions are
imultaneously satisfied.

Methods that rely on a uniform minimum support face the rare item-
et problem. Specifically, setting a high threshold risks overlooking rare
ut valuable itemsets, whereas a low threshold may lead to generating a
arge number of frequent itemsets, increasing the rate of false positives
n anomaly detection (Liu, Hsu, & Ma, 1999). To address this issue,

our method uses multiple minimum supports as applied in Feng et al.
(2019), where each itemset can satisfy a different support threshold
epending on the items included.

The support function 𝜎(.) is formally defined by Eq. (4), which
quantifies the frequency of occurrence of an itemset 𝑍 in a given
transaction set. The numerator in the equation represents the num-
ber of transactions containing the itemset 𝑍, while the denominator
represents the total number of transactions in the transaction set.

𝜎(𝑍) =
|

|

𝑃𝑡 ∈ 𝐷𝑡𝑟𝑎𝑛𝑠;𝑍 ∈ 𝑃𝑡
|

|

|𝐷𝑡𝑟𝑎𝑛𝑠|
, (4)

where 𝑃𝑡 denotes the predicate set at time step 𝑡 and is referred to as a
transaction. The collection of these transactions over 𝑇 time steps forms
the transaction set 𝐷trans.

Suppose 𝑍 represents the itemset
{

𝑖1, 𝑖2,… , 𝑖𝑛
}

. Since the occur-
rence of multiple items in transactions is not more probable than
he occurrence of any individual item, for example, the proportion of
502 = 1 (or 𝑃601 = 1) appearing in the transaction dataset is certainly
igher than the proportion of both 𝑃 502 = 1 and 𝑃 601 = 1 appearing
imultaneously in the same dataset. Eq. (5) is always satisfied.

𝜎(𝑍) ≤ min
(

𝜎
(

𝑖1
)

, 𝜎 (

𝑖2
)

,… , 𝜎 (

𝑖𝑛
))

. (5)

Therefore, the support threshold of an invariant rule should exceed
the product of the upper support limit of the itemset 𝑍 that makes
up that rule with a scaling factor 𝛾, where 𝛾 ∈ (0, 1). Additionally,
a global threshold 𝜃, 𝜃 ∈ (0, 𝛾) is used to ensure that any discovered
itemsets have a statistically significant minimum support, preventing
the discovery of coincidental rules. It is crucial that 𝜃 is set to be lower
than 𝛾, otherwise, 𝛾 ⋅ min

(

𝜎
(

𝑖1
)

, 𝜎 (

𝑖2
)

,… , 𝜎 (

𝑖𝑛
))

will fall below 𝜃.
This would lead to a uniform minimum support across all rules, which
is undesirable. To this end, Eq. (6) provides the formula for multiple
minimum supports. An itemset 𝑍 is considered frequent only if it meets
he criteria defined in Eq. (6).

𝜎(𝑍) > max
(

𝛾 min
(

𝜎
(

𝑖1
)

, 𝜎 (

𝑖2
)

,… , 𝜎 (

𝑖𝑛
))

, 𝜃) . (6)

Eq. (6) suggests a method to determine the multiple minimum sup-
ports for frequent itemsets. It imposes stricter statistical requirements
on more common itemsets while assigning uniform minimum support
𝜃 to rare itemsets to prevent a high false positive rate in anomaly
etection.
Parameter Tuning. Selecting optimal values of the parameters 𝛾

nd 𝜃 in multiple minimum supports in Eq. (6) is crucial. Lowering
these thresholds can generate more invariant rules and increase the
possibility of detecting anomalies. However, it can also compromise
he statistical significance of the generated rules, resulting in more false
ositives. As determining the optimal values of 𝛾 and 𝜃 relies solely on
he validation steps, selecting parameters must trade-off between the
umber of rules generated and the false positive rate on the validation
 i

7 
set. We adopt a parameter tuning approach inspired by the method
proposed in Feng et al. (2019). This approach involves splitting the
normal data log into training and validation datasets and selecting
various values for 𝛾 and 𝜃. The selected parameter values are then
used to generate invariant rules on the training dataset. Subsequently,
these rules are evaluated on the validation dataset, and any anomalies
etected are false positives.

Let 𝑁(𝛾 , 𝜃) denote the number of invariant rules generated under
the set parameters, while Acc(𝛾 , 𝜃) denotes the detection accuracy of the
invariant rules when evaluated on the validation dataset, 1 − Acc(𝛾 , 𝜃) re-
flects the false positive rate on the validation set, 𝜏𝑒 be the user-defined
acceptable validation error threshold. In order to obtain a maximum
number of meaningful invariant rules to increase the possibility of
detecting anomalies, the ideal values of 𝛾 and 𝜃 are obtained using
Eq. (7):

(𝛾∗, 𝜃∗) = ar g max𝛾 ,𝜃 𝑁(𝛾 , 𝜃)
subject to Acc(𝛾 , 𝜃) ≥ 1 − 𝜏𝑒.

(7)

4.3.2. Closed frequent itemset mining algorithm
Our method utilizes the Conditional Frequent Pattern-growth (CFP-

rowth) algorithm (Hu & Chen, 2006) for mining frequent itemsets
from the transaction set. Subsequently, we identify all closed itemsets
from the discovered frequent itemsets, ultimately generating the com-
plete closed frequent itemsets. CFP-growth is an algorithm for mining
frequent itemsets with multiple minimum supports. It employs the
Multiple Item Support Tree to store crucial information about frequent
itemsets, requiring just a single scan of the transaction set to ex-
tract complete frequent itemsets. The CFP-growth algorithm primarily
consists of four steps: FP-tree construction, frequent itemset mining,
recursive calls, and merging frequent itemsets. Due to the complexity
of the algorithm, we do not elaborate on it and instead encourage
interested readers to refer to Hu and Chen (2006) for more details.

4.4. Invariant rule generation

Invariant rules within ICS refer to the unchanging relationships that
must be maintained among physical variables during normal opera-
tions, including but not limited to pressure, water level, valve opening
or closing. Therefore, these rules serve as a certain reflection of the
ystem mechanism, providing insights into the relationships among

critical factors. In the event of an attack, alterations in the physical
states of ICS may occur, leading to changes in the values of sensors
and the states of actuators. These changes can disrupt the dependencies
among physical variables.

In association rule mining, confidence is another main variable
besides support. Confidence is used to measure the trustworthiness of
the rule and is defined as follows:

𝐶(𝐴 → 𝐵) = 𝜎(𝐴 ∪ 𝐵)
𝜎(𝐴)

, (8)

where the function 𝜎(.) represents the itemset support as defined
n Eq. (4).

The generation of invariant rules is based on closed frequent item-
sets to ensure statistical significance and prevent the generation of
redundant rules.

To initiate the mining process, each closed frequent itemset 𝑍′ is
artitioned into two disjoint subsets, 𝐴 and 𝑍′ − 𝐴. The confidence
f the rule 𝐴 → 𝑍′ − 𝐴 is then calculated. If this confidence meets
 predetermined threshold, the rule 𝐴 → 𝐵 ( where 𝐵 = 𝑍′ − 𝐴

)

is
onsidered to be successfully mined. This procedure is repeated for all

closed frequent itemsets derived from the transaction set, resulting in
the identification of complete ICS invariant rules (Feng et al., 2019).

he method for mining complete invariant rules within closed frequent
temsets is detailed in Algorithm 3.
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In ICS, invariant rules generated from association rule mining on
hysical process data can be considered a manifestation of the mech-

anism model. These rules may reflect the fundamental workings of
the system or other inherent mechanisms, possessing a certain inter-
pretability. Therefore, setting the confidence threshold to 1 is necessary
for the rules to effectively capture the invariant relationships within the
system, thereby reflecting some inherent nature of ICS.

As a result, the rule 𝐴 → 𝐵 dictates that whenever predicate set 𝐴
ppears in a transaction, set 𝐵 must also appear in the same transaction.

4.5. Online anomaly detection

To detect anomalies in test samples, we first generate a predicate
et for each sample using the method outlined in Section 4.2.2. The

generated predicate set for each test sample is then compared against
the invariant rules derived from the training set 𝐷{1 ∶ 𝑇 }. An anomaly
s identified when a test sample’s predicate set satisfies the antecedent

(the 𝑖𝑓 part of the 𝑖𝑓 -𝑡ℎ𝑒𝑛 expression) of an invariant rule but fails to
fulfill the consequent (the 𝑡ℎ𝑒𝑛 part), indicating a deviation from the
expected behavior. A test sample is deemed normal only if it adheres
to all the invariant rules.

Algorithm 3 Mining complete invariant rules within closed frequent
itemsets
Input: closed frequent itemsets 𝐶 𝐹 𝐼 , confidence threshold 𝑚𝑖𝑛_𝑐 𝑜𝑛𝑓
Output: invariant rules
1: for 𝑍′ in 𝐶 𝐹 𝐼 do
2: Get the itemset support 𝑆 𝑢𝑝𝑝0 for the closed frequent itemset 𝑍′.

3: length 𝐿𝑒𝑛 = the number of predicates in 𝑍′

4: for 𝑖 = 1, 2,… , 2𝐿𝑒𝑛−1 − 1 do
5: Initialize subsets A and B.
6: for 𝑗 = 0, 1,… , 𝐿𝑒𝑛 − 1 do
7: if the rightmost bit of the binary representation of integer 𝑖

is 1 when right-shifted by 𝑗 positions then
8: Append the 𝑗-th element of 𝑍′ to subset 𝐴.
9: else

10: Append the 𝑗-th element of 𝑍′ to subset 𝐵.
11: end if
12: end for
13: Get the itemset support 𝑆 𝑢𝑝𝑝𝐴 for subset 𝐴.
14: Get the itemset support 𝑆 𝑢𝑝𝑝𝐵 for subset 𝐵.
15: if 𝑆 𝑢𝑝𝑝0∕𝑆 𝑢𝑝𝑝𝐴 ⩾ 𝑚𝑖𝑛_𝑐 𝑜𝑛𝑓 then
16: Generate the invariant rule 𝐴 → 𝐵.
17: end if
18: if 𝑆 𝑢𝑝𝑝0∕𝑆 𝑢𝑝𝑝𝐵 ⩾ 𝑚𝑖𝑛_𝑐 𝑜𝑛𝑓 then
19: Generate the invariant rule 𝐵 → 𝐴.
0: end if
1: end for
2: end for

5. Experiments

The experiments are conducted using Python 3.7.4 on Windows
0 with an Intel(R) Core(TM) i7-8750H CPU, 16 GB, and an NVIDIA
eForce GTX 1060, 6.0 GB.

5.1. Datasets

We conduct our experiments on the SWaT and WADI datasets,
which are widely used for ICS anomaly detection and serve as publicly
vailable benchmark datasets in this area.
SWaT Dataset. The SWaT (Goh et al., 2017) dataset is provided by

he iTrust Laboratory at the Singapore University of Technology and
Design. The dataset is based on an operational water treatment testbed,
a scaled-down version of a modern large-scale plant in major cities.
8 
Table 1
Comparison of the SWaT and WADI datasets and experimental settings.

Parameter SWaT WADI

data collection duration (days) 11 16
sampling frequency (sample/sec) 1 1
normal operation duration (days) 1–7 1–14
dimensions (sensors + actuators) 51 (25+26) 124 (65+59)
training set (days) 1–5 1–12
validation set (days) 6–7 13–14
test set (days) 8–11 15–16
removed training samples initial 16,000 initial 20,000

Table 2
The parameter settings for experiments of our method on the SWaT and WADI datasets

Parameter SWaT WADI

sensor series period threshold 𝐿 1e4 1e4
flatness determination slope threshold 𝐾 2e−5 1e−6
sliding window size 𝑆 128 128
acceptable validation error threshold 𝜏𝑒 1e−6 1e−5
multiple minimum supports threshold 𝛾 0.95 0.75
multiple minimum supports threshold 𝜃 0.08 0.05

The water purification process in the SWaT testbed consists of six sub-
rocesses. The first process is used for the supply and storage of raw

water. The second process conducts a basic assessment of water quality.
Unwanted substances are filtered through an ultrafiltration system in
the third process. In the fourth process, a dechlorination step eliminates
any remaining chlorine. The fifth process uses a reverse osmosis system
to reduce inorganic impurities. Finally, the sixth process stores the
purified water until it is ready for distribution. 36 attacks with varying
purposes and durations were executed on the SWaT testbed, including
ost-steady-state and continuous attack scenarios.
WADI Dataset. The WADI (Ahmed et al., 2017) testbed is equipped

ith chemical dosing systems, booster pumps, valves, meters, and
analyzers, constituting a water treatment, storage, and distribution
network. The testbed consists of three processes: the first process is used
for raw water collection and storage; the second process distributes
water to the storage tank based on the pre-set demand pattern; and the
third process serves as the return network, sending water back to the
first process. A total of 15 attacks were executed on the WADI testbed,
causing disruptions such as water tank leaks and termination of water
supply.

This study utilizes the physical properties of the SWaT and WADI
datasets. Due to the time required for both testbeds to reach a stable
state after operation, the initial samples from the training data are
removed to ensure the reliability of the training sets (Goh et al., 2017).
Table 1 provides a detailed comparison between the SWaT and WADI
atasets, as well as the experimental settings for both datasets in this

study.

5.2. Parameters

The parameters 𝛾 and 𝜃 define multiple minimum supports. To
determine the ideal values of these two parameters of our method,
we conduct a grid search on the validation set using Eq. (7). Specif-
cally, we set the candidate values of 𝛾 to be [0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
.9, 0.95, 0.99], while the candidate values of 𝜃 to be [0.05, 0.06, 0.07,
.08, 0.09, 0.1, 0.2, 0.3, 0.4]. Table 2 displays the final selected ideal re-

sults and other parameters for the experiments on the SWaT and WADI
atasets of our method.

Simultaneously, to validate our description in Section 4 that the
onfidence threshold (Eq. (8)) needs to be 1, Table 3 demonstrates

the overall anomaly detection performance of our method on the
SWaT and WADI datasets when setting the confidence threshold to
other values close to 1. In this table, positive detection corresponds to
the identification of abnormal samples, and negative detection refers
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Table 3
Overall anomaly detection performance on the SWaT and WADI datasets when setting
the confidence threshold to other values.

Conf.
threshold

SWaT WADI

F1 Precision Recall FP F1 Precision Recall FP

1 0.886 0.959 0.823 1783 0.696 0.891 0.571 694
0.999 0.827 0.815 0.839 9644 0.629 0.626 0.632 3771
0.998 0.810 0.777 0.845 12 265 0.596 0.547 0.656 5426
0.997 0.797 0.753 0.846 14 071 0.561 0.490 0.656 6816
0.996 0.235 0.134 0.942 308 278 0.550 0.474 0.656 7271
0.995 0.234 0.133 0.943 310 002 0.539 0.455 0.659 7862

to normal samples. FP represents False Positives. It can be observed
hat if the confidence is not 1, the discovered relationships become
ncertain, indicating potential errors in the rules and reducing the
eliability of detection results. We need to ensure that rule 𝐴 → 𝐵
ictates that whenever predicate set 𝐴 appears in a transaction, set 𝐵
ust also appear in the same transaction to try to reflect the inherent

deterministic nature of ICS.

5.3. Baseline methods

• DDEA (Feng et al., 2019). An invariant rule-based anomaly de-
tection method that utilizes system physical process data. The
method proposes two predicate generation strategies: the
distribution-driven strategy and the event-driven strategy.

• LSTM-VAE (Park, Hoshi, & Kemp, 2018). A model that combines
a Variational Autoencoder (VAE) with a Long Short-Term Mem-
ory (LSTM) network. By replacing the feed-forward network of
VAE with LSTM, this model introduces temporal dependence of
sequential data into VAE.

• MAD-GAN (Li et al., 2019). A multivariate time-series anomaly
detection method based on Generative Adversarial Network
(GAN). The model uses Long-Short-Term-Memory Recurrent Neu-
ral Network (LSTM-RNN) as the basic model in the GAN frame-
work to capture the temporal correlation among multiple time
series.

• USAD (Audibert, Michiardi, Guyard, Marti, & Zuluaga, 2020).
An encoder–decoder architecture within the framework of ad-
versarial training, combining the advantages of autoencoder and
adversarial training. The model incorporates one encoder network
and two decoder networks to amplify the reconstruction error of
anomalous input data.

• TNC (Tonekaboni, Eytan, & Goldenberg, 2021). A contrastive
learning method that exploits the local smoothness of time series.
Positive and negative sample pairs are defined through an auto-
mated domain determination process, where samples in the same
domain are similar, to learn the potential state of non-stationary
time series.

For these baseline methods, all experimental settings are based on
maximizing adherence to the original papers or open-source codes
provided by the authors. Regarding data preprocessing, DDEA does not
undergo any processing; LSTM-VAE and USAD use the Min-Max nor-
malization method, while MAD-GAN and TNC employ standardization,
ransforming the data to have a mean of 0 and a standard deviation of
1.

We select the remaining hyperparameters for deep neural network-
based residual discrimination methods based on achieving the optimal
F1-Score on the test set apart from the default and author-specified
parameter settings. For instance, the threshold 𝐽t h for residual discrim-
ination is determined following this principle. Table 4 showcases the
settings for some hyperparameters of these methods.

Regarding the contrastive learning method TNC, a decoder has
een added to the representations learned by the model to reconstruct
he input time series. The newly added decoder architecture aligns
ith the original encoder architecture of TNC, representing an inverse

reconstruction process solely in the data dimension.
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Table 4
The parameter settings for experiments of deep neural network-based methods on the
WaT and WADI datasets.
Parameter LSTM-VAE MAD-GAN USAD TNC

batch size 50 128 200 10
window size 128 5 12 4
training iterations 50 100 100 100
optimizer Adam AdamW Adam Adam
learning rate 1e−3 1e−4 5e−4 1e−3

Table 5
Overall anomaly detection performance comparison results of each baseline method
and our approach on the SWaT and WADI datasets.

Method SWaT WADI

F1-Score Precision Recall F1-Score Precision Recall

DDEA 0.857 0.977 0.763 0.629 0.932 0.474
LSTM-VAE 0.855 0.946 0.780 0.527 0.801 0.393
MAD-GAN 0.814 0.994 0.689 0.320 0.221 0.577
USAD 0.821 0.982 0.705 0.489 0.766 0.359
TNC 0.813 0.985 0.692 0.504 0.602 0.434
Our method 0.886 0.959 0.823 0.696 0.891 0.571

DDEA, as a method also utilizing association rule mining techniques,
the multiple minimum support thresholds (𝛾 and 𝜃) on the SWaT
dataset are 0.9 and 0.32, respectively. While on the WADI dataset,
the values for 𝛾 and 𝜃 are 0.7 and 0.04, respectively. The confidence
thresholds for this method are set to 1 on both datasets.

5.4. Evaluation metrics

Our method is evaluated based on three criteria: overall anomaly
detection performance, attack identification rate, and algorithm effi-
iency.

In assessing the overall anomaly detection performance, Precision,
Recall, and F1-score metrics are used, where positive detection refers
o abnormal samples and negative detection refers to normal samples.

Owing to the unique characteristics inherent to ICS, cyberattacks on ICS
have the potential to result in severe physical damage, emphasizing the
essential importance of the recall metric. In our experimental analysis,
we will place particular emphasis on the recall rate.

To evaluate the performance of detecting various attacks, we define
wo distinct criteria. The first assesses recognition accuracy by setting
 threshold 𝑃 for the recall rate detected by the methods. An attack
s considered detected if the detected recall exceeds 𝑃 . The second
riterion evaluates identification latency, defined as the time between
ttack launch and identification. Here, we set a latency threshold 𝑄,
nd successful detection occurs if the latency is not greater than 𝑄. The
dentification rate of different attacks, denoted as 𝑅(𝑃 ) or 𝑅(𝑄), is the
atio of successfully detected attacks to the total number of attacks in
oth cases. In practice, attacks typically persist, creating a continuous
equence of abnormal data. Therefore, it is acceptable to detect only
 partial subset of the continuous abnormal data series (Chen et al.,

2021), making the set of threshold 𝑃 more permissive.
Achieving real-time response is crucial for anomaly detection in ICS.

pecifically, to meet the system’s real-time performance requirements,
he anomaly detection time for each test sample should be less than the
ata sampling interval of 1 second.

5.5. Experimental results

We derive a total of 137 predicates on the SWaT dataset, leading to
9,006 invariant rules through the mining process. Moreover, the WADI
dataset yields 110 predicates, and 10,490 invariant rules are mined.

Overall Anomaly Detection Performance. Table 5 shows the over-
all results of the baseline methods and the method proposed in this
study for anomaly detection on the SWaT and WADI datasets.

The two methods with the highest F1-Score are based on invariant
rule mining of physical process data. DDEA achieves the best F1-Score
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Fig. 3. Confusion matrix of each baseline method and our approach on the SWaT dataset.
Fig. 4. Confusion matrix of each baseline method and our approach on the WADI dataset.
Table 6
Identification rates of different attacks of each baseline method and our approach on the SWaT and WADI datasets.

Evaluation criteria 𝑅(.) on SWaT 𝑅(.) on WADI

Ours DDEA LSTM MAD USAD TNC Ours DDEA LSTM MAD USAD TNC

Recall rate
threshold 𝑃

0.05 21/36 15/36 9/36 9/36 10/36 9/36 10/15 11/15 6/15 12/15 9/15 8/15
0.1 20/36 15/36 9/36 9/36 10/36 9/36 10/15 10/15 6/15 12/15 9/15 8/15
0.2 19/36 13/36 9/36 9/36 10/36 9/36 9/15 9/15 6/15 12/15 8/15 8/15
0.4 16/36 13/36 9/36 9/36 9/36 9/36 8/15 9/15 5/15 9/15 8/15 6/15
0.6 16/36 12/36 8/36 9/36 9/36 9/36 8/15 7/15 5/15 7/15 6/15 5/15

Recognition delay
threshold 𝑄

0(s) 16/36 8/36 7/36 5/36 4/36 4/36 7/15 3/15 6/15 5/15 6/15 3/15
20(s) 18/36 8/36 7/36 5/36 4/36 4/36 7/15 6/15 6/15 5/15 7/15 5/15
180(s) 20/36 19/36 8/36 8/36 8/36 8/36 9/15 8/15 6/15 9/15 9/15 6/15
among the baseline methods. Our method outperforms it, with the F1-
Score approximately 3% higher on the SWaT dataset and 6.7% higher
on the WADI dataset. Despite our method having a lower precision
rate, the recall rate improves significantly, reaching 0.823 on the SWaT
dataset and 0.571 on the WADI dataset. On the WADI dataset, methods
based on invariant rules exhibit a notable superiority in precision,
with precision reaching 0.932 for DDEA and 0.891 for our method.
In contrast, other baseline methods based on residual discrimination
show relatively lower precision due to the generation of many false pos-
itives. ICS typically manage extensive industrial processes and require
avoiding false alarms that could lead to substantial resource wastage.

In addition to presenting the F1-Score, Precision, and Recall metrics,
the performance of the various methods is further evaluated through
the confusion matrices on the SWaT and WADI datasets, as depicted in
Fig. 3 and Fig. 4. The confusion matrix is comprised of four elements:
True Positives (TP) in the top-left, False Negatives (FN) in the top-right,
False Positives (FP) in the bottom-left, and True Negatives (TN) in the
bottom-right.

On the SWaT dataset, our method demonstrates notable perfor-
mance in TP, identifying 41,705 anomalous samples, indicating ef-
fective anomaly detection. Although the FP count is relatively high
at 1,783, the TN and TP suggest its effectiveness in distinguishing
normal from abnormal samples. For the WADI dataset, our method
identifies 5,673 TP and maintains a low FP count of 694. The TN count
of 162,003 indicates that the method performs well in distinguishing
normal samples.

Attack identification rate. To further analyze the sensitivity for
anomaly detection, Table 6 compares the identification rates of differ-
ent attacks of the baseline methods and our approach on the SWaT and
WADI datasets (note that in this table, LSTM refers to LSTM-VAE, and
MAD refers to MAD-GAN).

A total of 36 attacks were conducted on the SWaT testbed. Methods
based on invariant rules demonstrate a noticeable superiority in attack
identification rate on the SWaT dataset, while other residual-based
machine learning methods show similar performance. When the recall
10 
rate threshold 𝑃 is set at 0.05, the baseline methods based on residuals
essentially identify the same set of attacks. Compared to methods based
on invariant rules, these methods overlook attacks associated with
changes in actuator states. In other words, the residual-based methods
demonstrate relatively lower sensitivity to changes in actuator states.
On the contrary, methods based on invariant rules generate predicates
for each category of actuator states, which are then incorporated into
the mined rules. As a result, methods based on invariant rules are more
prone to detect malicious changes in actuator states.

On the SWaT dataset, when the recall rate threshold 𝑃 is set at
0.05, our method successfully detects 21 attacks. Among the missed 15
attacks, 12 attacks do not achieve their intended goals or make any real
changes to the testbed. The remaining three attacks are related to the
states of the water tanks, such as ‘‘tank overflow’’ or ‘‘tank underflow’’.
Our method centers on situations where the trend of sensor reading
segments changes and focuses on the slopes of the changing segments,
which weakens the perception of the specific flow level of the changing
segments.

Notably, our method demonstrates superiority in identifying anoma-
lies with low latency in various attack scenarios. Specifically, on the
SWaT dataset, our method can detect 16 attacks with zero delay, which
is at least 8 more attacks than what other baseline methods achieve.
Moreover, when the latency threshold 𝑄 is set to 3 minutes, our
method successfully detects a total of 20 attacks. The performance of
our method in identifying attacks with low latency shows its capability
to provide prompt attack warnings, which helps to secure valuable time
for emergency response in ICS.

On the WADI testbed, a total of 15 attacks were launched. Some
attacks are covert, and some do not even achieve the attacking intent
and expected impact, showing no noticeable effects on sensor readings
or actuator states. Consequently, detecting attacks on the WADI dataset
is challenging. Despite no significant differences in the identification
rates of different attacks among all methods, our approach performs
well. Although MAG-GAN shows superiority in the identification recall
rate, its low precision diminishes the advantage.
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Notably, three attacks on the WADI testbed are stealthy. However,
s indicated by Eq. (2), for residual-based anomaly detection methods,

it is challenging to describe stealthy attacks without considering the
residual threshold 𝐽t h. In our conducted experiments, we lack informa-
tion on the error bounds considered for these three stealthy attacks of
the WADI dataset. Consequently, we determine the residual threshold
𝐽t h for these methods solely based on the principle of optimizing the F1-
Score on the test set. Therefore, we only compare the performance of
detection stealthy attacks for methods based on invariant rules. When
the recall rate threshold 𝑃 is set to 0.05, both the method proposed in
this paper and DDEA are able to detect two of the three stealthy at-
tacks. However, our method has a shorter attack identification latency
compared to DDEA by two minutes (nearly 120 time steps).

Algorithm Efficiency. The SWaT and WADI datasets have a sam-
pling interval of 1 second. To meet the real-time response requirements
of the systems, any anomaly detection method must have a detec-
tion time of less than 1 second per sample (Feng et al., 2019). For
invariant rule-based anomaly detection methods, the detection time
is determined by the time required for predicate generation and rule
matching for each sample in the test set. Despite generating a large
number of invariant rules – 9,006 on the SWaT dataset and 10,490
n the WADI dataset – our method performs well, with a detection
ime of 0.002 s per sample. This performance fully meets the real-time
etection requirements of the system.

6. Discussion

Residual-based machine learning methods face challenges in de-
tecting stealthy attacks due to noise interference and unclear control
boundaries in ICS. Despite the relative stability of sensor reading
overall changing patterns, current machine-learning strategies are in-
adequate in addressing these challenges. Methods based on invariant
rules discretize sensor readings and coarse-grain them through the
generation of predicates, which can help minimize the problem and
reduce the likelihood of false positives.

Invariant rules-based methods often depend on expert knowledge
for rule design and extraction. Given the complexity of ICS, even
xperienced experts may not cover all relevant rules comprehensively,

leading to limited coverage. Additionally, many methods discretize sen-
or readings into non-overlapping intervals, which could miss complex

patterns and result in significant information loss.
In contrast, our method uses a novel, data-driven approach that

ncorporates temporal features of sensor readings. Unlike traditional
methods that only consider the current state, our method leverages
historical data, providing a more comprehensive view of the system’s
behavior and improving anomaly detection performance.

The variation-driven strategy takes into account the temporal fea-
ures between previous and current time segments, making it well-
uited for situations where sensor readings in ICS exhibit regular and
redictable patterns. Compared to DDEA, our method can capture

effective relationships that DDEA may miss.
For example, our method mines out the following rule on the SWaT

ataset: {LIT101=(𝐾1, ‘‘high’’), MV301=1, P302=2} ⟶ {P401=1,
V101=1, P403=1} which successfully identifies 638 abnormal sam-

les without causing any false positives. However, DDEA fails to detect
ny of them. The reasons are as follows:

(1) For sensor LIT101, DDEA generates predicates of the form
LIT101=𝐾0 or 𝐾1 or 𝐾2 or 𝐾3, indicating that the clustering category
indices of the sensor reading updates 𝛥𝑥𝑡 of LIT101 at different time
steps are 𝐾0 or 𝐾1 or 𝐾2 or 𝐾3. Since the method cannot capture the
temporal correlations in the dynamic processes of LIT101, DDEA does
ot mine out any similar rules like:

{LIT101=𝐾0, MV301=1, P302=2} ⟶ {P401=1, MV101=1,
P403=1}

(2) Even if DDEA successfully mines out such similar rules, it re-
mains incapable of identifying all these anomalous samples. This stems
11 
from the instabilities in clustering sensor reading updates (𝛥𝑥𝑡) under
successive time steps, reducing the probability of detecting anomalies.
In contrast, the predicates generated by our method exhibit greater
stability. Since DDEA only considers the current control state, it is
susceptible to noise and measurement errors. Conversely, our method
onsiders sensor readings over segments, thereby reducing the impact
f local fluctuations.

However, our method also has shortcomings. The predicates gen-
erated by our method are combinations of attributes from two con-
secutive segments. Consequently, any anomaly in one segment may
affect the next, resulting in the generation of two consecutive predicates
that are influenced by the attribute of the previous segment. This
phenomenon increases the risk of abnormal transmission and leads to
a higher false positive rate. Additionally, our method only focuses on
the slopes of the changing segments, without considering the specific
values within these segments. Including descriptions of the initial and
final values of the changing segments might be beneficial.

Table 5 demonstrates that the anomaly detection performance of
all the methods on the WADI dataset is worse compared to the SWaT
dataset. This result is primarily due to the greater complexity of the

ADI dataset. Compared to SWaT, WADI features a larger and more
complex system architecture, and the attacks are more covert. Many
attack signals accumulate gradually, making their effects less likely
o manifest in the system’s state over a short period, which further

increases the difficulty of detection. Future research could explore tech-
iques for faster detection of attacks in large and complex scenarios. For
nstance, system partitioning could be considered, with independent
nvariant rules generated in each zone to enable quicker detection and

localization of attacks. Additionally, it would be worth exploring how
o hierarchically manage the generated rules by using methods like
nformation gain to prioritize more important rules, aiming to match
ritical rules first.

7. Conclusion

This paper presents a data-driven, unsupervised ICS anomaly detec-
tion method based on invariant rules. Utilizing the proposed variation-
driven strategy for predicate generation, we innovatively incorporate
emporal features of sensor readings into the generated predicates.

Through this approach, we identify invariant rules that take into ac-
count the temporal dependencies among physical variables. Addition-
ally, our invariant rule-based method is effective in detecting stealthy
attacks and is suitable for ICS that require real-time anomaly detection
capabilities. Experimental results on two publicly available datasets
demonstrate that our method improves anomaly detection performance
compared to other methods.
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