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The generative adversarial network (GAN) has advantage to fit data distribution, so it can achieve data augmentation by fitting the
real distribution and synthesizing additional training data. In this way, the deep convolution model can also be well trained in the
case of using a small sample medical image data set. However, some certain gaps still exist between synthetic images and real
images. In order to further narrow those gaps, this paper proposed a method that applies SimGAN on cardiac magnetic resonance
synthetic image optimization task. Meanwhile, the improved residual structure is used to deepen the network structure to improve
the performance of the optimizer. Lastly, the experiments will show the good result of our data augmentation method based

on GAN.

1. Introduction

The deep convolutional network model [1] has a large
number of parameters and needs a large number of labelled
data sets to train for some computer vision tasks such as
image classification [2, 3] and image segmentation [4].
Insufficient data sets or unbalanced data sets will lead to
overfitting of the deep convolutional model [5]. Therefore,
the practical application of the deep convolution model is
not wide, which requires a large medical data set to fully
train the auxiliary diagnostic model. Insufficient data not
only fails to have the effect of auxiliary diagnosis but also
causes interference to the doctor’s diagnosis [6].

The requirement of medical data needs expensive
equipment and experienced doctors to annotate the data,
which is extremely time-consuming. In addition, the privacy
of patients in the process of collecting medical image data is
quite sensitive, and most of patients are reluctant to con-
tribute their own data. Such factors make it difficult to obtain
large-scale labelled medical image data sets. Although there
are many public medical data sets available on the Internet,

most of medical data sets are of limited size and are only
applicable for specific medical problems. Deep convolution
model cannot be fully trained with insufficient data sets and
cannot be truly used in clinical diagnostic tasks due to the
safety of medical diagnosis.

Data augmentation is an implicit regularization method
for data, which solves the scarcity of data by manually
extending the training set. Recently, a method proposed by
Krizhevsky [7] to flip and rotate images in the training set is
widely used in data augmentation. Therefore, the perfor-
mance of deep convolution model is improved because that
enables the model to recognize the image invariance that is
too small to be seen by the naked eyes.

However, conventional data augmentation methods can
only produce transform data with limited features based on
raw data and do not essentially add new data to the original
data set, so many scholars have proposed data augmentation
methods based on GAN [8]. GAN-based data augmentation
method has been successfully applied in the field of medical
imaging. Ali et al. [9] proposed a method to augment skin
injury image data based on progressive GAN (PGGAN) and
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improved the large-scale feature dependence of PGGAN by
using self-attention mechanism, which also effectively im-
proved the classification accuracy of skin injury data. Frid-
Adar et al. [10] applied DCGAN [11] and ACGAN [12] to
liver injury data, and the experimental results showed that
DCGAN had a stronger data augmentation effect than
ACGAN in the case of fewer data sets.

2. Data Augmentation Method Based on E-GAN

GAN is a generative model proposed by Ian Goodfellow
et al. [8], which is composed of the generator G and the
discriminator D. The generator G uses the noise z sampled in
the uniform or normal distribution as input synthetic image
G(2). The discriminator D tries to discriminate the synthetic
image G(z) as false and the real image x as true. The pa-
rameters of each model are adjusted by successive adver-
sarial training. Finally, the generator obtains the real sample
distribution model and obtains the performance to generate
near-real images.

The training process of GAN aims to find the balance
between the generator and the discriminator, which can be
expressed in the following equation:

mingmaxpV (D, G) = E,p (1 [log D (x)]

+E, p (»[log(1 - D(G(2)))],
(1)

where P, represents the real sample distribution, P, repre-
sents the generated sample distribution, D (x) is the dis-
criminator determining whether the real image of the input
comes from the real data distribution or the probability of the
synthetic distribution, and D(G(z)) represents that the
discriminator thinks the synthetic image comes from the
synthetic distribution or the real distribution.

The generator synthesizes new samples by fitting the
original sample distribution. The new samples are synthetic
from the distribution learned from the generative model,
which makes them have new features different from the
original sample. This property makes it possible to use the
synthetic sample as a new training sample to achieve data
augmentation. Considering the improvement of the diver-
sity performance of the generator by evolutionary GAN (E-
GAN) [13], we apply it to the augmentation of cardiac
magnetic resonance synthetic image.

Firstly, to ensure the consistency of the training data, all
samples are normalized in this experiment. Secondly, the
GAN training set is enhanced by horizontal flip, vertical flip,
and vertical and horizontal axis 0-2% random magnification
translation before training to avoid the loss of image in-
formation. Thirdly, the new images are synthetic when the
GAN training is completed. Lastly, the synthetic and original
images as the training set are used for the classification
network.

The architecture of the GAN model based on E-GAN is
shown in Figure 1. The model consists of two parts: mutation
and adaptive score evaluation. After these two processes, the
scores are sorted and then the generator with the highest
current scores will be selected.
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In E-GAN, the father generators are derived by using
different mutational methods. These mutational operators
are actually different training goals to reduce the distance
between the synthetic distribution and the real data distri-
bution through different angles. Meanwhile, the best dis-
criminator should be trained before every mutation
operation D*. Then the optimal generator is selected in
E-GAN in the current environment through three mutation
methods and adaptive score scores.

Different from the original E-GAN model, the input of
our discriminator is mixed up [14] from two original
samples interpolated into one sample, and the actual label of
this sample is also converted to label by interpolation
method. Therefore, the minimization goal of the model
becomes the cross-entropy loss between the predicted labels
and the interpolated samples of the discriminator. The
training process can be broadly described as the following
two repetitive processes:

(1) The generator stops training until the current op-
timal generator is found in the way of evolutionary
algorithms, so the sample is synthetic with this
generator. Meanwhile, the synthetic sample is in-
terpolated linearly with the real sample to produce
new sample and corresponding interpolation label.
The interpolation sample and the interpolation label
are used as the input of the discriminator.

(2) The discriminator is trained with interpolated
sample and interpolated label, and the discriminator
parameter value is fixed after the parameter is
updated. This discriminator with stronger discrim-
inative ability becomes the competitive environment
of the next-round generator survival of the fittest;
thus the generator parameters are updated more
effectively.

However, the peak signal-to-noise ratio (PSNR) [15] and
structural similarity (SSIM) [16] indexes commonly used in
medical image restoration cannot be applied to the per-
formance evaluation of data augmentation methods because
they are hard to be used to evaluate the diversity of synthetic
samples. Therefore, in this paper, binary classification of
benign and malignant medical image as the downstream task
is chosen to verify the effectiveness of our method. In this
paper, two different classifiers are used in the downstream
classification task, ResNet-50 [17] as classifier 1 and Xcep-
tion [18] as classifier 2, which are often used in medical
image classification tasks.

2.1. Synthetic Images Optimization Method Based on
SimGAN. However, there is still a large gap between the
synthetic distribution from GAN and the real distribution.
To narrow this gap, Ashish et al. proposed a simulated
generation adversarial network (simulated GAN, SimGAN)
[19].

Different from the conventional GAN model, SimGAN
sets an image optimizer (refiner) between the generator and
the discriminator, which replaces the role of the generator in
the GAN and is the ultimate training object of the SimGAN.
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FIGURE 1: E-GAN Architecture with mixup.

The input of the optimizer is a synthetic image rather than a
noise variable to generate optimized image, which will be
input into the discriminator. Simultaneous and adversarial
training for discriminator and optimizer can achieve opti-
mized performance. The specific structure of SImGAN is
shown in Figure 2.

On one hand, the optimizer needs to reduce the distance
between the synthetic image distribution and the real image
distribution. On the other hand, the discriminator needs to
classify the real and optimized image correctly as far as
possible. The discriminator network updates the parameters
by minimizing the loss function shown in the following
equation:

Lp(¢) =- Zlog(D¢ (%)) - Zlog(l = Dy(y))), (2)

where X; represents the optimized image of the ith synthetic
image, y; represents the yth truth image of the first sheet, D,
represents the discriminator, and ¢ is the parameter of the
discriminator network. The formula can be equal-price
discriminator D,, for the cross-entropy loss of the dichot-
omous problem, slightly different from the original GAN.
The final output of the discriminator D, is the probability
value of the optimized image. When training SimGAN, each
small batch training data is composed of optimized image
and real image randomly. The goal of training is to judge the
real image y; as far as possible as 0 and the optimized image
X; as far as possible as 1. Finally, the parameters ¢ are
updated by random gradient descent method.

Notably, SImGAN is used to prevent the synthetic
image from getting too close to the real image and thus

completely losing the image features of the synthetic image
itself; L1 regular term [20] is set as a self-regular term to
retain some important semantic information in the syn-
thetic image. The loss function that needs to be minimized
during the training of the optimizer is shown in the fol-
lowing equation:

Lp(0) = - Zlog(l - Dy (Rg (xz))) + A“V’(Re (x;)) - W(xi)|

(3)

where ¥ represents the identity mapping method, Ry rep-
resents the optimizer, 6 represents the internal parameters of
the optimizer, and ||. ||; represents the L1 regular term.

In order to make the medical synthetic image closer to
the real image and further improve the classification ac-
curacy, this paper designs an optimization method of
medical synthetic image based on SimGAN. The flow chart
of the medical synthetic image optimization method is
shown in Figure 3.

This method can be divided into three experimental
steps:

R

(1) Firstly, we use the trained E-GAN model to syn-
thesize each kind of image of each medical data set,
add the E-GAN synthetic medical image to the
original training set to expand the training set, and
use the expanded training set as the new training set
to train classifier 1.

(2) Secondly, we use the expanded training set to train
SimGAN, and then we optimize the composite
image. After that, we mix the optimized image and
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FIGURE 3: The flow chart of the medical synthetic image optimization.

the original training set to produce the optimized
augmented training set and use the training set to
train classifier 2.

(3) Finally, the test set is input into classifier 1 and
classifier 2, and the test results are compared to
obtain the experimental results of this method.

Unlike the internal structure of the GAN and its con-
ventional variant models, in order to make the discriminator
extract more information and further increase the depth of
the model, so that the network can retain more feature
information, the SimGAN discriminator uses a full-volume
network instead of a network structure with a full-connected
layer, so that the output of each layer can retain the feature
information of the previous layer as much as possible. The

SimGAN optimizer is very different from the GAN gen-
erator structure. Its output is an optimized image with the
same size as the input synthetic image and does not re-
quire upsampling, so there is no need to use a transposed
convolutional layer with a step size of 2. The optimizer is
designed as a residual network that allows the optimizer to
retain the global structure of the synthetic image rather
than completely changing the content of the synthetic
image.

The computation of the SimGAN is relatively small. In
order to further improve the fitting ability of the model, this
experiment is based on the residual structure, and we use
PReLU to replace the ReLU activation function; besides, the
original residual structure will reenter the added result ReLU
activation function.
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However, the original residual structure [17] has been
improved in some recent experiments. For example, the
article in [21] deleted the final ReLU [22] activation
function of the original residual structure, which makes
the model performance improved to some extent.
Therefore, the ReLU activation function is not added to
the tail of the residual structure in this paper. The residual
structure does not produce additional parameters.
Replacing the original convolution layer with the residual
structure does not augment the computational com-
plexity. The model can still be smoothly back-propagated
to achieve end-to-end training. Combined with the re-
sidual structure shown in PReLU [23], the residual
structure used in this experiment is shown in Figure 4.

In the experiment, five residual structures as shown in
Figure 4 are set for the optimizer as the middle layer,
which improves the depth of the optimizer and makes it
have stronger fitting performance. Similarly, in order to
increase the ability of the discriminator, two residual
structures are added to the discriminator. The internal
construction of the model of the optimizer and dis-
criminator is shown in Table 1.

The structure of the SImGAN is relatively simple and
clear, and, compared with the DCGAN structure, it is not
very different and does not need to debug for a long time,
but in the process of code implementation there are two
noteworthy problems:

(1) With the advance of training, the optimized image
of the optimizer is constantly changing, but the
image that the discriminator can accurately dis-
criminate will also be concentrated in the recent
optimized image range, which will lead to the
model training not converging. Because the dis-
criminator forgets the previously learned features,
the optimizer reintroduces the global image fea-
tures and produces artifacts again. To solve this
problem, a buffer needs to be set to store the
optimized image generated during training. The
buffer area structure adopted in this experiment is
shown in Figure 5.

As shown in Figure 5, in order to introduce global
image features, in the process of training the
discriminator of the SimGAN, whenever the
discriminator needs a small batch of input images,
the discriminator extracts half of the optimized
image from the buffer and then the other half of
the optimized image from the output of the op-
timizer. After this round of training, use the
remaining half of the current optimizer to opti-
mize the image to fill the position of the vacancy in
the buffer.

(2) SImGAN training needs to be divided into two
stages, which are only automatic setting of pa-
rameters from the point of view of code imple-
mentation. The first stage is the pretraining
process. First, it is necessary to fix the parameters
of the discriminator and let the optimizer train 500
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FIGURE 4: The residual structure used in this paper.

TasLE 1: The internal construction of the SimGAN used in this

paper.

Refiner

Discriminator

Input image

Conv ([3x 3], stride=1)
Residual structure ([3 x 3] x2)
Residual structure ([3 x 3] x2)
Residual structure ([3 x 3] x2)
Residual structure ([3 x 3] x2)
Residual structure ([3 x 3] x2)
Conv ([1x1], stride=1)
Output image

Input image

Conv ([3 x 3], stride=2)

Conv ([3 x 3], stride=2)
Max pooling (stride=1, 3 x3)
Residual structure ([3 x 3] x2)
Residual structure ([3 x 3] x2)

Conv ([1x1], stride=1)

Conv ([1x1], stride=1)

Softmax

rounds continuously. Then, it is necessary to fix the
parameters of the optimizer and let the discrimi-
nator train 100 rounds continuously. The second
stage is the formal training process. The optimizer
and discriminator update their own parameters
with a training frequency of 2:1.

The training process of SINMGAN can be described as
follows:

(1) We will first sample a batch-processed composite
image from the E-GAN composite image, get a
batch-processed optimized image from the synthetic
image input optimizer, calculate the average loss in
the optimized image input discriminator, and then
update the parameters of the optimizer using gra-
dient descent method (Stochastic Gradient Descent,
SGD) [24]. After the optimizer updates several pa-
rameters, the parameters of the optimizer are fixed
into the training stage of the discriminator.

(2) In the training stage of the discriminator, we first
need to sample a batch image from the training set of
the synthetic image and the original image and put
the synthetic image into the optimizer to get a batch
optimization image, sample half batch optimization
image from the buffer area, and extract the other half
optimization image from the optimizer output, input
the optimized image with the real image into the
discriminator, calculate the discriminator average
loss, and update its parameters by minimizing the
discriminator loss by gradient descent method.
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(3) After this round of discriminator training process is
completed, the remaining optimized images output
by the current optimizer are used to replace the
vacancy position in the buffer.

3. Results and Discussion

For the purpose of verifying the effectiveness of this study,
two different medical image data sets are used as the
application objects of the data augmentation method.
After k-fold dynamic partition data, four training setsare
used to train two different classifiers after amplifying the
training set. Finally, the average classification results of
the test set corresponding to the four training sets are used
to verify the concrete effect of the proposed data aug-
mentation method.

3.1. Data set. Cardiac magnetic resonance imaging tech-
nology [25] is a noninvasive means of examination. It has a
relatively large field of vision and more parameters. Its
imaging has the characteristics of multisequence and
multiplane.

Because it only needs one imaging to show the whole
structure of the heart and myocardial function, cardiac
magnetic resonance imaging technology is widely used in
clinical diagnosis and evaluation, which is considered to
be the most comprehensive and accurate noninvasive
examination method. The cardiovascular magnetic reso-
nance data from this experiment were from cooperative
hospitals. All samples were 2d short-axis native t1 map-
ping magnetic resonance images. The spatial spacing of
these cardiac magnetic resonance images ranged from

1.172x1.172x1.0 to 1.46 x1.46 x 1.0 mm3. The original
pixel size was 256 x218x1. The image of benign and
malignant marking and segmentation of the region have
senior experts manual marking and drawing. The original
image data is in “.mha” format; 298 images were obtained
by resampling, region of interest selection, normalization,
and other preprocessing processes, 221 myocardial patient
images and 77 nonpatient images, respectively. The pre-
processed image size was 80 x 80 x 1.

3.2. Experimental Environment. The training of E-GAN
requires extremely high experimental equipment, so this
experiment is all deployed in Linux servers equipped with
multiple Tesla M40 graphics cards. In this paper, TensorFlow
[26] is chosen as the deep learning framework to build
E-GAN model. The experiment of SimGAN is basically the
same as the E-GAN experiment environment, because the
SimGAN needs very frequent debugging parameters.
Therefore, Keras [27] is selected as deep learning framework
that can adjust the parameters conveniently and realize the
network quickly.

3.3. Experimental Results and Analysis of E-GAN. After the
training of E-GAN, the comparison results of the real disease
samples, the nonpatient samples, and the disease samples
synthetic by the generator and the nonpatient samples of the
two data sets are shown in Figure 6.

From Figure 6, it can be found that the synthetic image
observed by the human eye is very similar to the real image,
and there is not much difference in the first perception. But it
can be seen from careful observation that the sharpness of
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FIGURE 6: Real and synthetic images of cardiac magnetic resonance images. (a) Real disease images. (b) Synthetic disease images. (c) Real

nonpathological images. (d) Synthetic nonpathogenic images.

TaBLE 2: Average classification results of cardiac images.

Classifier Origin (%) Classic Aug. E-GAN
ResNet-50 77.7 80.9 84.8
Xception 79.5 82.8 86.9

the composite image is slightly worse than that of the real
image, the contour is not sharp in the real image, and the
edge part is also relatively blurred.

The use of observation method is highly subjective, so
observation method can only be used as a reference eval-
uation standard. The main purpose of this paper is to
augment the data of medical images. Therefore, two ex-
panded training sets are used to train ResNet-50 and
Xception classifiers, respectively, and compared with two
classifiers trained using the original training set, so as to
verify the E-GAN data augmentation effect. In order to
evaluate the effect of the data augmentation method pro-
posed in this paper more objectively, average classification
results of cardiac images using ResNet-50 and Xception are
shown in Table 2.

The results of ResNet-50 classification show that the
accuracy of the test is improved by 2.7% using only the
single-sample space geometric transformation data, and
the average classification accuracy of the E-GAN is 84.8%.
The experimental results in Xception classifier are shown
to be consistent with most of ResNet-50, and the classi-
fication results of Xception classifier are slightly better,
which is related to the fitting performance of the model
itself. The average classification accuracy result is 86.9%.

The training effect of adding more data volume
classifier should be better in theory, but this experiment
found that the more synthetic images added to the original
training set is not the more the better, and the classifi-
cation effect does not rise and fall after adding a certain
number of synthetic images. The above classification re-
sults were obtained when using E-GAN to synthesize 3-
fold cardiac magnetic resonance images and adding the
original training set. During the E-GAN experiment, the
classification accuracy of cardiac magnetic resonance
images changed with the proportion of synthetic images
in the training set as shown in Figure 7.

The horizontal axis marked as nonsynthetic image in-
dicates the experimental results of nonsynthetic image, and
the labelled augmentation and nonaugmentation classifier
indicate whether the single-sample spatial geometric
transformation data augmentation method is used when
training the current classifier, respectively.

The trend of Xception classification results is roughly the
same as that of ResNet-50, and it reaches the best after
adding 3 times synthetic image, reaching 86.9%. This is
because there is still a certain gap between the synthetic
image and the real image, adding too many synthetic images
will make the proportion of the real image too small, and the
classifier overfits the synthetic image.

3.4. Experimental Results and Analysis of SimGAN. After
obtaining the above experimental results, we have carried
out the optimization experiment of synthetic images. During
the SimGAN training process, as the optimization perfor-
mance continues to improve, the changes of the synthetic
images of the cardiac magnetic resonance data set are shown
in Figure 8.

It can be observed from Figure 8 that the synthetic
image of dirty magnetic resonance in the center of the
optimization process will not be very different from the
original synthetic image, with only some minor changes at
a time. However, after continuous training, the optimizer
will make the optimized synthetic image have more
abundant texture information that is closer to the real
image.

After training the SImGAN, this paper uses the optimizer of
E-GAN synthetic cardiac magnetic resonance image input
SimGAN. Each input can obtain the same number of optimized
medical synthetic images. The synthetic images before and after
optimization of the two data sets are shown in Figure 9.

It can be observed that the optimized cardiac magnetic
resonance synthetic image has more details than the original
synthetic image and appears sharper in some marginal parts,
and the overall characteristics change a little, but it can be
observed from the naked eye to become clearer.

The quality change of the image observed from the
naked eye is only a subjective evaluation standard, or it is
necessary to prove the final effect of the method through
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TABLE 3: Average classification results of cardiac images.

Classifier Non (%) Classic Aug. (%) E-GAN (%) SimGAN (%)
ResNet-50 77.7 80.9 84.8 86.1
Xception 79.5 82.8 86.9 88.0

the classification results. During the training of cardiac
magnetic resonance images using 4 times synthetic image,
the average classification accuracy is optimal. Compared
with E-GAN data augmentation experiments, adding a
larger proportion of optimized images can further im-
prove the classification results, which indicates that the
optimized synthetic images are closer to the real images
than the original synthetic images. The final classification
results obtained in this experiment are shown in Table 3.

From Table 3, it can be observed that, in the classi-
fication experiment of cardiac magnetic resonance im-
ages, the average classification accuracy was increased by
1.3% and 1.2% in the two classifiers after adding 4 times of
optimized images, and the final average classification
accuracy reached 86.1% and 88.0%, respectively. The
average accuracy of this method is improved in the
classification experiments of cardiac magnetic resonance
imaging, and the optimized composite image is closer to
the real image, which enables the classifier to be trained
more fully.

4. Conclusions

In order to narrow the gap between synthetic and real
images of cardiac magnetic resonance and further optimize
the details of synthetic images to augment the effect of GAN-
based data augmentation methods, this paper proposes a
medical synthetic image optimization method based on
SimGAN. The modified residual structure is used to rede-
sign, model, and apply it to medical synthetic images output
by E-GAN. The experimental results show that the method
of optimizing cardiac magnetic resonance synthesis image
based on SIMGAN can further improve the classification
accuracy and achieve the expected results.
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