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Abstract

Recommender systems are crucial for addressing information overload by providing users of on-

line platforms, applications, or services with relevant item suggestions. Visually-aware systems

enhance recommendations using images in various domains, e.g., fashion and entertainment.

However, most visually-aware recommender systems lack explainability due to their reliance on

black-box approaches such as deep-learning techniques. This thesis addresses the need for ac-

curate and explainable visually-aware recommender systems by integrating visual information

into Heterogeneous Information Networks (HINs). Three main research questions arise: How

can the effective integration of visual information into HINs be achieved? How can the de-

velopment of explainable visually-aware recommender systems based on HINs be approached?

What methods can be used to enhance the explainability of HIN-based recommender systems?

To achieve these, this thesis proposes a three-part solution. Firstly, visually-augmented

HINs are constructed by introducing visual factor nodes and relations, generated from various

image features. A user representation learning method is introduced to combine semantic and

visual preferences. Secondly, a Scalable and Explainable Visually-aware Recommender System

(SEV-RS) framework is presented. SEV-RS utilizes meta-paths for explainability, enhancing

recommendations using scalable feature extraction from visually-augmented HINs. Lastly, a

meta-path translation model is introduced to improve the explainability of meta-path based

systems, enhancing the performance of the proposed framework.

Extensive experiments with real-world datasets in movies and clothing domains assessed

the effectiveness of visually-augmented HINs. These augmented HINs, along with the pro-

posed user representation learning method, were employed in a recommendation model using

Collaborative Filtering with K-Nearest Neighbors (CF-KNN). This model was compared with

other CF-KNN models based on regular HINs. The findings indicate the efficacy of visually-

augmented HINs and the representation learning approach in enhancing CF-KNN. They also

exhibit the practicality of using visually-augmented HINs in state-of-the-art recommender sys-

tems. The evaluation of SEV-RS involved comparisons with state-of-the-art models using
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real-world and synthetic datasets. The results reveal that SEV-RS yields recommendations

with high accuracy and explainability while requiring notably less computational time compared

to other deep-learning models. The proposed meta-path translation approach was evaluated

on two newly generated datasets derived from real-world recommendation data. It was com-

pared with various sequence-to-sequence models in the task of translating a given meta-path

to a group of meta-paths with higher explainability. The experiments validate its capability

to generate more comprehensible alternative explanations for complex meta-paths. These

approaches create pathways for developing recommender systems that address users’ visual

preferences and offer explanations based on understandable meta-paths. Implementing these

methods could enhance user experiences, leading to more engaging and personalized recom-

mender systems, with potential adaptability for improving other graph-utilizing explainable

artificial intelligence applications.

Keywords: Recommender System, Visually-Aware Recommender System, Explainability, Het-

erogeneous Information Network, Meta-Path
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Chapter 1

Introduction

1.1 Background

The massive increase in available online information has resulted in an abundance of options

for users. As a result, users have been facing challenges in identifying certain pieces of infor-

mation that are both personalized and pertinent to their preferences. Recommender systems

have emerged as an essential tool in resolving this problem by suggesting information that

potentially matches users’ interests [6]. They have been extensively employed in several indus-

tries and online platforms such as e-commerce, e-health, and e-learning to enhance the user

experience by facilitating content discovery [7]. In e-commerce, for example, recommender

systems can help users discover new products that they may be interested in. In the field of

e-health, recommender systems have the potential to elevate the quality of care and streamline

healthcare delivery by offering patients personalized information and services. In e-learning,

recommender systems can suggest relevant courses or resources to learners, improving their

learning outcomes.

Figure 1.1 illustrates examples of recommender systems implemented on three platforms

across different domains including e-commerce, e-health, and e-learning. Figure 1.1a depicts

a case from the renowned Amazon website [1], recognized as one of the world’s largest online

retailers. In this figure, Amazon’s recommendation engine suggests products based on users’

browsing and purchase history. It recommends jackets similar to the ones previously interacted

with by the user. Figure 1.1b shows a snapshot from the healthcare website called Patient [2],

offering diverse content and resources to aid users in managing their health. In this figure,

the Patient’s recommendation feature offers a health-related topic that potentially matches

the user’s interests and needs and recommends relevant articles that are popular in that topic.
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(a) e-commerce (b) e-health

(c) e-learning

Figure 1.1: Examples of recommender systems in (a) e-commerce [1], (b) e-

health [2], and (c) e-learning websites [3]. These examples illustrate lists of rec-

ommendations showing to a user on their websites.

Lastly, Figure 1.1c showcases a screenshot from the Udacity website [3], a well-known e-

learning platform that provides a variety of courses and programs in various subjects. Similarly,

this figure presents Udacity’s recommendation capabilities, which assist users in discovering

suitable courses and programs aligned with their learning preferences.

Recommender systems are also valuable for businesses. By understanding the preferences

and behavior of their customers, businesses can tailor their offerings to meet their customers’

needs, leading to increased loyalty and customer retention [8]. Furthermore, recommender

systems can enhance the user experience by reducing the time and effort required to find

relevant information [6]. Overall, recommender systems offer a range of advantages that

span various domains. By tailoring recommendations to individual preferences, they create

personalized experiences, promote engagement and exploration of content or products, and

narrow down choices, thus saving users’ time and guiding their decisions. These advantages

highlight the significant role of recommender systems in online communities. Therefore,

ongoing advancements are necessary to ensure user satisfaction and maintain relevance in

diverse online contexts [9, 10, 11].

Many existing recommender systems depend largely on user-item interactions to gain in-

sights into users’ preferences [12, 13]. For instance, a collaborative filtering model based on
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K-nearest neighbors makes accurate recommendations by leveraging similarities between users

and uncovering intricate preferences hidden among like-minded users [14]. This approach has

been widely applied in various applications due to its simplicity in terms of implementation and

serves as a foundation for more advanced recommender systems [12]. However, this approach

can prove to be highly inadequate in scenarios where the interactions are sparse or not avail-

able at all [12, 13]. For instance, when a new user is added to the system, his/her previous

interaction data may not be sufficient to generate accurate recommendations. This problem is

commonly referred to as the cold-start problem [14] and can significantly reduce the effective-

ness of recommender systems. To address such an issue, additional information such as user

and item metadata has been incorporated into the recommendation process to compensate

for the lack of user historical data [13]. By leveraging this auxiliary information, the connec-

tivity between users and items can be enriched, and the accuracy of recommendations can be

significantly improved. This approach has been shown to be highly effective in overcoming the

sparsity of interaction data and cold-start problems. As a result, the use of side information

has become an essential technique for enhancing the performance of recommender systems in

diverse applications [13, 15, 16].

Besides semantic information derived from user and item metadata, visual information

from images also provides useful knowledge inferring users’ individual preferences [16]. Since

an image can provide numerous information compared to a single word, it is intuitively capable

of providing rich information about users’ preferences [17]. Visual information can be retrieved

from an image in the form of visual features, encompassing distinct characteristics that de-

fine an image [18]. These features can be broadly categorized into various types including

color features, texture features, and shape features [19]. Color features involve the identifi-

cation and quantification of different hues, e.g., color co-occurrence matrix, color histogram,

and color moments [20]. Texture features describe patterns and variations in pixel inten-

sities. Examples of texture features include features extracted from Gabor filtering [21] and

wavelet transform [22]. Shape features refer to quantitative measures or descriptors that char-

acterize the geometric properties of an object’s outline or boundary within an image. These

include roundness, eccentricity, centroid, minimum bounding rectangle, moments, orientation,

etc [23]. Apart from these basic features, more advanced feature extraction algorithms have

been developed to extract more comprehensive features [24] such as SIFT (Scale-Invariant Fea-

ture Transform) [25], SURF (Speeded-Up Robust Features) [26], and ORB (Oriented FAST

and Rotated BRIEF) [27]. These algorithms specialize in capturing detailed information from

3
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specific regions, known as key points, within an image. The key points identified by these

algorithms not only describe the local textures and shapes but also contain spatial coordinates,

indicating the position of distinctive features within the image.

The advancement of deep learning has further significantly improved the extraction of

visual features. Deep learning techniques such as convolutional neural networks (CNNs) [28]

and recurrent neural networks (RNNs) [29] excel at learning more complex and abstract visual

features by capturing patterns and structures within an image. CNNs, with their hierar-

chical layers, automatically extract and combine different features, enabling the network to

learn intricate patterns and representations in an image [30]. On the other hand, RNNs are

well-suited for capturing temporal dependencies and dynamic aspects of visual features [31].

However, deep learning models that learn such complex visual features may operate as black-

box systems, posing a challenge in interpreting their decision-making processes and what

these extracted features exactly represent [32]. These learned features are typically described

as latent visual features, meaning that they are not readily apparent or observable in the raw

input images but captured through complex relationships, structures, or patterns [33, 34]. For

instance, a neural network trained on images of faces might extract latent visual features rep-

resenting facial characteristics, even if these features are not obvious or explicitly defined [35].

These latent visual features play a pivotal role in enhancing the performance of computer

vision models [34]. By capturing nuanced and abstract information, they contribute to the

model’s capacity to generalize effectively and make accurate predictions across a diverse range

of data [34]. However, the inherent lack of interpretability in these latent visual features can

be a drawback, particularly in applications where transparency and explainability are impor-

tant [32]. Striking a balance between the powerful predictive capabilities facilitated by latent

visual features and the need for interpretability remains a crucial consideration in the usage

of visual features [32, 36].

Similarly to computer vision models, numerous modern recommender systems utilize vi-

sual features to improve their capability [37, 38, 39, 40, 41, 42, 43]. Recommender sys-

tems that leverage such information can be referred to as visually-aware recommender sys-

tems [38, 44, 45, 46]. These systems are designed to provide more accurate and personalized

recommendations by considering not only users’ previous interactions with items but also the

visual information of these items. Visually-aware recommender systems are particularly useful

in scenarios where users’ preferences are strongly influenced by the visual characteristics of the

items. For example, in the context of fashion e-commerce, users may be interested in items
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Figure 1.2: Example of visually-aware recommendations on a clothing retailer

website [4] which involves a situation where a user expresses interest in purchasing

a blue shirt depicted in an image. The recommender system then suggests two

items to the user—black trousers and black leather shoes—that appear compatible

and visually complement the shirt.

with a particular style, color, or pattern. Figure 1.2 shows an example of a visually-aware

recommendation on an e-commerce fashion website. In this example, the user is interested in

a blue shirt. The recommender system then recommends two items which are black trousers

and black leather shoes since their styles are compatible/complementary to the blue shirt.

One of the key challenges in developing visually-aware recommender systems is how to effec-

tively extract visual features from items and integrate them into the recommendation process.

Most visually-aware recommender systems adopt pre-trained computer vision models to ex-

tract latent visual features from item images [37, 38, 40]. Then, they integrate them into

their recommendation learning process as additional information along with user-item inter-

actions to learn users’ preferences more effectively. For example, VBPR [37] uses latent visual

features extracted from a pre-trained CNN model to effectively factorize users and items for

learning recommendations. DVBPR [38] enhances the performance of VBPR by simultane-

ously training a recommendation model and a CNN model, facilitating the extraction of more

effective visual latent features. aVBPR [41] combines the original VBPR model, which models

users’ visual preferences, with models for users’ sequential behaviors and non-visual features.

This extension enhances the capability of the original VBPR model. These previous studies

demonstrate the successful utilization of visual features to enhance recommendation accuracy,

surpassing reliance solely on user-item interactions. However, since they are latent features and
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are commonly high-dimensional, it can be difficult to understand what these visual features

really represent [40, 45]. This lack of clarity in understanding what these features truly signify

contributes to the low explainability of visually-aware recommender systems. Consequently,

users may encounter difficulty in comprehending the rationale behind the recommendations

generated by these systems [40, 45].

Recent studies have highlighted potential issues that can arise from using artificial in-

telligence (AI) models, including recommender systems, without proper comprehension [47].

These issues include biases, ethical violations, and other serious consequences [48]. To address

these concerns, regulations such as the General Data Protection Regulation (GDPR) [49] have

been established in various countries. These regulations are employed to ensure fairness and

users’ trust in AI systems. In response to the explainability regulations, research in explainable

AI has emerged and has been continuously receiving a large amount of attention. In general,

explainable AI can provide explanations or allow humans to understand the logic behind its

decision-making process. During the past decade, there have been efforts to develop inter-

pretable machine learning models in which their internal mechanisms are comprehensible for

humans. These models include linear/logistic regression models, decision trees, and Bayesian

networks. Apart from these interpretable models, ad-hoc explanation generation methods

have been proposed to explain predictions from black-box models. Some methods aim at

generating a local explanation that explains the decision reason of a specific input such as

LIME [50], Anchors [51], and SHAP [52]. Some ad-hoc methods aim to generate a global

explanation that explains the overall logic of the model such as the Global Sensitivity Analysis

method [53] and ASTRID [54].

Compared to machine learning models, it is more challenging to explain deep learning

models due to their more complex architectures. In [55], Concept Activation Vectors (CAVs)

were introduced to globally explain the internal mechanism of a neural network with human-

friendly concepts. Automatic Concept-based Explanations (ACE) [56] was proposed to explain

a neural network without manually defining concepts. Neural Additive Models (NAMs) [57]

were proposed to train multiple neural networks where each neural network focuses on a single

input feature. Some explaining methods have been developed specifically for CNNs such as

a gradient-based method for generating saliency maps [58] and DeConvNet [59]. Despite the

numerous prior efforts, explaining black box models is still challenging in many aspects. One

of these aspects is that explaining methods used in a classification task may not be suitable

for a recommendation task since a recommendation task is a user-personalized task. It could
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be more complex to explain than a classification task [60].

In the past, recommender systems were developed solely with the aim of improving their

accuracy, without much consideration for how they worked. These systems were typically

designed as black-box models, which means that their decision-making mechanisms were not

transparent or understandable to either the developers or end-users [48]. Furthermore, with

the advancement of deep learning, many modern recommender systems have been utilizing

deep learning models to effectively learn recommendations. Despite the evident superiority

in performance, the complexity of deep learning model architectures has led to significant

challenges regarding their interpretability. These challenges ultimately obstruct the ability to

understand the underlying rationale behind the recommendations. In response to these issues,

researchers have turned their attention to developing explainable recommender systems that

are transparent and can be understood. These recommender systems aim to provide explana-

tions for their recommendations or encourage explainable recommendations to be predicted

rather than non-explainable ones. They allow users to better understand the decision-making

process, leading to increased trust and confidence in the systems. Another benefit of ex-

plainable recommender systems is that they can help mitigate biases and ethical concerns

that may arise from the use of black-box models. By providing clear explanations for their

recommendations, any biases that may be present in the data or algorithms can be identified

and addressed accordingly. This ensures that the recommendations are fair, unbiased, and

ethically sound. Moreover, explainable recommender systems also provide greater control and

flexibility to users, as they can adjust their preferences and settings based on the explanations

provided. This can help to improve the accuracy and relevance of the recommendations, as

users can provide feedback and adjust their preferences as needed. Due to these advantages,

the development of explainable recommender systems has become a major area of research

in recent years [10] and is expected to play an increasingly important role in ensuring that AI

models are used ethically and responsibly in the future.

Several resources have been utilized to achieve explainability in recommendations. One

of the ubiquitous resources is heterogeneous information networks [5, 13, 15, 61, 62]. A het-

erogeneous information network (HIN) [63] is a specialized type of graph structure designed

to model complex relationships between entities. In contrast to traditional homogeneous net-

works, which primarily involve nodes of the same type and a single type of relationship, HINs

accommodate diverse entities with varying types and multiple types of relationships between

them. In HINs, nodes serve as representations of entities, and these entities can exhibit diver-
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sity in terms of type. For example, in a recommendation scenario, nodes could represent users,

items, genres, or any other relevant entity [5, 61, 62]. Edges (or relations) represent relation-

ships between these entities and can denote different types of connections, such as user-item

interactions, user-demographic associations, or item-metadata relationships [5, 61, 62]. One

key strength of HINs lies in their ability to capture the rich and intricate relationships present

in real-world systems [13]. By allowing for nodes of different types and diverse relationships,

HINs offer a more nuanced and accurate representation of the underlying complexity in various

domains [15]. This makes them particularly valuable in scenarios where entities have multiple

facets and interact through diverse relationships.

HINs play a pivotal role in advancing the explainability of recommender systems by in-

corporating diverse sources of information [11, 62, 64, 65, 66]. Unlike traditional recom-

mender systems that predominantly rely on user-item interactions, HIN-based recommender

systems leverage a variety of interconnected entities and relationships via multi-hop rela-

tions [5, 65, 67, 68]. A multi-hop relation represents a high-order connection between two

nodes that are not adjacent. They have been extensively used to facilitate recommendation

generation and improve the explainability of recommendations [65, 67, 68, 69]. For instance,

Figure 1.3 shows an example of a HIN consisting of four node types, i.e., user, item, category,

and brand node types, and three relation types, i.e., user-item, item-category, and item-brand

relation types (all relation types are bidirectional). There is a multi-hop relation between “User

1” and “T-shirt D” through a path “User1” - “T-shirt C” - “Category: T-shirt” - “T-shirt

D”. Based on this path, it is possible to recommend “T-shirt D” to “User 1” since they are

linked through a high-order connection. Also, the meta-path that connects them can serve as

an explanation. This explanation can be interpreted as “T-shirt D” is recommended to “User

1” because it is in the same category as one of “User 1”’s previously bought items. As in

this example, multi-hop relations provide insights that other types of resources (e.g., texts or

images) cannot provide. Although texts and images provide valuable information, multi-hop

relations in HINs offer a distinct advantage due to their ability to unravel complex connec-

tions within the networks [70]. Specifically, in contrast to images, which typically provide only

isolated visual information, HINs offer interrelatedness information of diverse entities [13].

Due to this unique advantage, HINs have therefore been widely leveraged to develop modern

explainable recommender systems during the past decade.

To effectively utilize multi-hop relations, meta-paths have been proposed to extract se-

mantically meaningful multi-hop relations in a HIN under certain assumptions [13]. A meta-
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Figure 1.3: Example of a HIN in a clothing recommendation scenario consisting

of four node types, i.e., user, item, category, and brand node types, and three

relation types, i.e., user-item, item-category, and item-brand relation types (all

relation types are bidirectional)

path [71] is defined as a sequence of node types and relation types. It is used to discover

semantic node connectivity based on a sequence of multi-typed factors in a HIN. When extract-

ing multi-hop relations based on a meta-path, it is essential to traverse a path in accordance

with the defined meta-path to establish a connection between two distinct entities. This ap-

proach facilitates the capture of specific and intricate high-order interactions that span multiple

node and relation types. For example, given a HIN in Figure 1.3, let U , P , C and B denote

user, item, category, and brand node types respectively. A meta-path UPCP represents a

multi-hop relation between U and P . It involves a sequence of relationships: from users to

items, then from items to categories, and finally from categories back to items. As can be

seen in this example, by using meta-paths, multi-hop relations under specific assumptions are

extracted while disregarding other multi-hop relations with different semantic meanings. This

approach enables the incorporation of more specific high-order information in the process of

learning users’ preferences. As such information employed for learning users’ preferences is

explicit, it becomes possible to generate recommendations and provide explanations based on

the meanings associated with the meta-paths utilized [72, 73]. Due to this unique advantage,

HIN-based recommender systems using meta-paths have become ubiquitous.

To summarize, several existing visually-aware recommender systems have excelled at lever-

aging visual features extracted from images to enhance recommendation accuracy [16]. Never-

theless, current research on recommender systems has been focusing on not only accuracy but
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also the explainability aspect of the systems [10]. This additional aspect has been considered

to increase users’ trust and confidence, ensure fairness and ethics, and provide greater con-

trol and flexibility in recommender systems [10, 47]. Consequently, enhancing explainability

in visually-aware recommender systems is undoubtedly necessary and requires further explo-

ration [16]. As HINs can offer explainability in recommendations, using them in visually-aware

recommender systems can intuitively lead to better explainability of their recommendations.

Despite the achievements of current HIN-based recommender systems, particularly those uti-

lizing meta-paths, they predominantly focus on leveraging semantic information such as user

and item metadata within HINs. They typically overlook the potential of visual informa-

tion [74]. This omission results in a significant gap in integrating visual information within

HINs to enhance the recommendation learning process. By bridging this gap, HINs can play

a pivotal role in facilitating visually-aware recommendations. Simultaneously, they can intro-

duce explainability to these recommendations by leveraging complex network structures and

relationships. This approach provides users with a deeper understanding of the reasoning

behind the recommendations, thereby enhancing their confidence in the systems and aiding

better-informed decisions.

1.2 Research Questions

Most visually-aware recommender systems utilize extracted latent image features in a black-

box style. As a result, they typically suffer from explainability issues. Since explainability

has become another focal point in developing modern recommender systems, how to develop

visually-aware recommender systems that can achieve both high accuracy and high explainabil-

ity is necessary. Inspired by the omnipresence of HIN-based explainable recommender systems,

using HINs is one possible solution to facilitate the task of visually-aware recommendations

with explainability. However, many existing HIN-based recommender systems typically ignore

visual information. Integrating visual information into a HIN can be complicated and may

not be as straightforward as semantic information such as user and item metadata [75]. The

heterogeneity of image features compared to other data types, such as numerical or categori-

cal data, can be an obstacle when combining and comparing image features with other types

of features in a HIN. Furthermore, there may be semantic gaps between image features and

other features in HINs. These gaps can cause difficulty in effectively modeling relationships

between entities in a HIN. All of these challenges lead to the following research problems:
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• How to effectively integrate visual information into a HIN so that visual information and

multi-hop relations in the network can be simultaneously leveraged in visually-aware

recommender systems?

• How to build recommender systems that can produce accurate and explainable visually-

aware recommendations by using HINs?

• How to further improve the explainability of HIN-based recommender systems?

1.3 Objectives and Outcomes

In accordance with the research questions stated in Section 1.2, the objectives of this thesis

are as follows:

• To develop a method that integrates visual features into a HIN so that both visual

information and multi-hop relations can be leveraged simultaneously for learning recom-

mendations and to validate this method using real-world data.

• To build an explainable visually-aware recommendation framework based on the HIN in

which visual information is integrated and to evaluate the effectiveness of the proposed

framework using real-world data.

• To develop a method that enhances the explainability of visually-aware recommender

systems based on HINs and to validate its performance for potential real-world applica-

tions.

To achieve these objectives, this thesis delivers the following outcomes:

• Integration of visual information into HINs: A novel concept of visually-augmented HINs

is proposed, integrating image features as visual factor nodes connected through visual

relations. Various image feature extraction methods are explored, and these augmented

networks are leveraged to enhance recommendation accuracy. Extensive experiments are

conducted on real-world datasets, showing that visually-augmented HINs can improve

recommendation accuracy.

• Development of explainable visually-aware recommender systems using HINs: A novel

framework is proposed, using multi-hop relations in visually-augmented HINs for scalable

and explainable recommendations. This framework integrates meta-path based features

11



Chapter 1 – Introduction

and explainability for improved recommendation quality. The proposed framework is

evaluated and proves its ability to produce accurate, explainable recommendations while

maintaining scalability.

• Enhancing explainability of HIN-based recommender systems: A method to enhance

the explainability of HIN-based recommender systems, utilizing meta-path based ap-

proaches, is introduced. This method can offer alternative explanations that are more

comprehensible for meta-path based recommendations.

• Practical implications: The outcomes of this thesis contribute to the development

of more user-engaging and personalized experiences in various domains including e-

commerce and entertainment. The transparency and enhanced explanations provided

by these methods can enhance user trust and comprehension of recommendations. More-

over, the proposed approaches offer the potential for adaptation and generalization to

enhance other explainable AI applications, especially those that utilize graphs.

1.4 Thesis Outline

The rest of this thesis is structured as follows:

• Chapter 2 provides a comprehensive literature review that covers traditional recom-

mender systems, visually-aware recommender systems, explainable recommender sys-

tems, and HIN-based explainable recommender systems. The review explores state-of-

the-art approaches in each of these topics, highlighting their strengths and limitations,

and identifying gaps in the existing research. This part of the thesis has been submitted

and is currently under review for potential publication as a review paper.

• Chapter 3 focuses on the first research question and objective. It discusses the construc-

tion of visually-augmented HINs, where visual information is integrated into the network

to facilitate the task of visually-aware recommendations. Furthermore, a visually-aware

recommendation framework that leverages visually-augmented HINs is presented. This

chapter describes the experiments conducted to evaluate this framework, including the

methodology, results, and subsequent discussions. The results gained from the experi-

ments contribute to the understanding of the effectiveness of visually-augmented HINs

and the proposed visually-aware recommendation approach based on visually-augmented

HINs.
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• Chapter 4 centers around the second research question and objective of this thesis.

It introduces the proposed explainable visually-aware recommendation framework based

on visually-augmented HINs discussed in the previous chapter. This chapter begins by

presenting the proposed framework and proceeds to explain its components in detail.

First, a meta-path based feature extraction method used in this framework is described.

After that, this chapter delves further into the concept of meta-path based explainability

and explains how the explainability scores of user-item pairs are computed. Based on the

meta-path features and meta-path explainability, this chapter then describes the pro-

posed approach for generating explainable recommendations. Finally, the experiments

conducted to evaluate the proposed framework are discussed, including a comparison

between the proposed framework and state-of-the-art recommendation models in terms

of accuracy, explainability, and scalability. All of these provide valuable insights into the

performance and effectiveness of the proposed framework in generating accurate and

explainable recommendations.

• Chapter 5 is dedicated to addressing the third research question and objective of this

thesis. It focuses on enhancing the explainability of explainable visually-aware rec-

ommender systems using HINs. This chapter begins by introducing the concept of

the meta-path translation task, which aims to improve the explainability of HIN-based

recommendations, specifically meta-path based recommendations. A meta-path gram-

mar is proposed to facilitate the process of translating meta-paths. Subsequently, this

chapter describes the meta-path translation model proposed to accomplish this task.

Furthermore, the construction of a meta-path translation dataset is explained, followed

by a detailed account of the experiments conducted on two novel meta-path translation

datasets generated in this thesis. Finally, this chapter presents and discusses the results

obtained from comparing the proposed meta-path translation model with other state-

of-the-art models. These results offer insights into the effectiveness and performance of

the proposed approach for enhancing the explainability of visually-aware recommender

systems based on HINs.

• Chapter 6 serves as the conclusion of this thesis, where all the contributions of the

work are summarized. Additionally, the limitations of the research are addressed, and

potential areas for future work are discussed.
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Chapter 2

Literature Review

This chapter presents a comprehensive literature review that includes a wide range of key topics

in the field of recommender systems, including general recommender systems, visually-aware

recommender systems, and explainable recommender systems. Commencing with general

recommender systems, the discussion begins with traditional recommendation approaches.

Subsequently, more advanced recommender systems including those utilizing deep learning

techniques and HINs are discussed. The subsequent section introduces visually-aware recom-

mender systems, along with an overview of their current state-of-the-art. It also addresses an

issue pertaining to the explainability of visually-aware recommender systems. The last section

focuses on explainable recommender systems. It first introduces the concepts of explainabil-

ity in AI and examples of explainability in recommendations. It then explores the domain

of explainable HIN-based recommender systems, particularly focusing on the methodologies

used by state-of-the-art approaches to generate explainable recommendations. Furthermore,

this section provides a summary of benchmark datasets commonly used in explainable HIN-

based recommender systems, alongside evaluation methods to assess explainability. Figure 2.1

presents an overview of the technical development of various recommender systems in this

literature review. Table 2.1 shows the timeline depicting the technical development of key

traditional recommender systems, visually-aware recommender systems, explainable visually-

aware recommender systems, and explainable heterogeneous information network (HIN)-based

recommender systems. Further details on different types of recommender systems are provided

in the following sections. By meticulously assessing the existing research approaches, this lit-

erature review ultimately identifies gaps in explainable visually-aware recommender systems,

which subsequently leads to the goal of this thesis.
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Figure 2.1: Overview of the technical development of various types of recommender systems in the literature review of this thesis
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Table 2.1: Timeline depicting the technical development of key traditional recommender systems, visually-aware recommender systems,

explainable visually-aware recommender systems, and explainable heterogeneous information network (HIN)-based recommender systems

• Traditional recommender

system

• Visually-aware recommender

system

• Explainable visually-aware

recommender system

• Explainable HIN-based recommender

system

1994 • One of the earliest

collaborative filtering (CF)

models [76]

• • •

1997 • One of the earliest

content-based filtering

models [77]

• • •

2009 • MF [78], BPR-MF [79] • • •

• 2016 • VBPR [37] • •

• 2017 • DVBPR [38], DeepStyle [80],

VPOI [81], CNN-PerMLP [82],

Gasper’s [83], JRL [84]

• 2017 • Metapath2vec [85]

• • • 2018 • RippleNet [61], Knowledge-Aware

Autoencoders [86], SEP [87], Ai et

al.’s [70]

• 2019 • aVBPR [41], Yu et.al.’s [88] 2019 • VECF [40], SEAR [45],

Ante-RNN [89], MMalfM [43]

2019 • KGAT [5], PGPR [65], LDSDMF [90],

KPRN [64], EIUM [91], RuleRec [69]

• 2020 • CER [92] • 2020 • HAGERec [62], MP4Rec [72],

PRINCE [93], FairKG4Rec [94], CAFE [95],

ADAC [67], MSRE [96]

• • • 2021 • GEAPR [97], KGIN [98], TMER [73],

LOGER [99], UCPR [100], MKRLN [101]

• • • 2022 • KGAT+ [102], PLM-Rec [103],

TPRec [104], ReMR [68]
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2.1 Recommender Systems

Recommender systems are a type of artificial intelligence (AI) system used to suggest items,

products, or services to users based on their preferences and behaviors. These systems are

commonly used in online platforms such as e-commerce websites, social media networks, and

content streaming services to help users discover new products or content that they may be

interested in. Recommender systems can be generally categorized into three major approaches,

i.e., a collaborative filtering approach that uses the behavior and preferences of similar users to

make recommendations, a content-based filtering approach that recommends items based on

the characteristics of the items themselves, and a hybrid approach that combines collaborative

and content-based filtering approaches.

Collaborative filtering A collaborative filtering (CF) approach [76] predicts recommenda-

tions based on user-item historical information no matter it is explicit feedback (e.g. ratings)

or implicit feedback (e.g. buy, tag, or watch). The main idea of this approach is that users

who have interacted with the same items are likely to have similar preferences. A CF ap-

proach then identifies similar users with similar interests and makes recommendations on this

basis. For example, if a user has rated several movies highly in the action genre, the system

identifies other users who have also rated these movies highly and recommends other action

movies watched by these like-minded users to the user. Figure 2.2 illustrates an example of

how a collaborative filtering approach predicts a recommendation. In this figure, “User 1” is

considered to be similar to “User 2” because they both like “Skyfall”. Since “User 2” also likes

“Inception”, this movie can then be recommended to “User 1”. Despite the effectiveness of a

CF approach, the performance of this approach becomes poor when user-item interactions are

insufficient. This is commonly known as the sparsity problem [14]. Generally, the number of

items is much larger than the number of users, and users only interact with a small subset of

the available items. This results in sparse user-item interaction data, where most of the data

is missing or unknown. Another issue is the cold-start problem [13]. When there is a new user

introduced to the system, it can be difficult to personalize his/her recommendations effectively

since there is not enough information about his preferences. To address such problems, several

techniques have been developed. One common technique is to use matrix factorization (MF)

methods. These methods can handle sparse data by learning a low-dimensional representation

of the data that captures the underlying structure of the user-item preferences. The main idea

is to decompose a large and sparse user-item interaction matrix into two lower-dimensional
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Figure 2.2: Example of how a collaborative filtering approach and a content-based

filtering approach predict a recommendation. In this scenario, using a collaborative

filtering approach, “User 1” is recommended “Inception” since “User 2” likes

it and “User 1” and “User 2” share similar tastes stemming from their mutual

appreciation for “Skyfall”. On the other hand, using a content-based filtering

approach, “Tinker Tailor Soldier Spy” is recommended to “User 1” due to its

thematic similarity to “Skyfall”.

matrices that capture the latent features of users and items, i.e., a user-latent-factor matrix

and an item-latent-factor matrix. The number of latent factors of each user/item is typically

much smaller than the original dimension of the user-item interaction matrix. Therefore, this

method allows for higher computational efficiency and reduces the impact of sparsity. Once

the user-latent-factor and item-latent-factor matrices have been computed, the predicted rat-

ing for a user-item pair can be obtained by computing the dot product of the corresponding

row of the user-latent-factor matrix and the column of the item-latent-factor matrix. This

predicted rating can then be used to generate personalized recommendations for each user by

recommending items with the highest predicted ratings that the user has not yet interacted

with.

MF methods use various techniques to learn the latent factors of users and items. The

most commonly used algorithms are Singular Value Decomposition (SVD) [105], Non-negative

Matrix Factorization (NMF) [106], and Alternating Least Squares (ALS) [107]. Bayesian

inference can also be used to learn user and item latent factors. Bayesian Personalized Ranking

19



Chapter 2 – Literature Review

Matrix Factorization (BPR-MF) [79] is a method that combines MF and Bayesian inference

to predict the likelihood of a user preferring one item over another. In BPR-MF, the user-item

interaction matrix is decomposed by training the model to optimize a ranking objective instead

of a prediction objective. The goal is to learn a ranking function that maximizes the probability

of a user preferring an item over another, given their past interactions. To optimize the

model’s parameters, BPR-MF assumes a prior distribution over the parameters and computes

the posterior distribution over the parameters given the observed data by using Bayesian

inference. This allows the model to incorporate uncertainty and make probabilistic predictions.

Moreover, BPR-MF is particularly useful for situations where explicit feedback (such as ratings

or reviews) is not available and only implicit feedback (such as clicks, purchases, or views) can

be used to learn about user preferences. Due to this advantage, it has been used in a variety

of recommender systems.

Content-based filtering A content-based filtering approach [77] is based on comparisons

of item metadata and user personal profiles. Given a user and his/her historical data, content-

based filtering aims to recommend items that are similar to those that have been interacted

with by this user before. In other words, when a user interacts with an item, the system uses

its attributes to find other items with similar attributes and recommends them to the user. For

example, in Figure 2.2, “User 1” likes “Skyfall”. Since “Skyfall” and “Tinker Tailor Soldier

Spy” share similar genres, “Tinker Tailor Soldier Spy” can then be recommended to “User 1”.

Since this approach does not rely on user-item interactions of other users, it is suitable when

user-item interactions are sparse. However, this approach is limited to recommending items of

similar characteristics as the ones the user has already interacted with. Other users’ interests

cannot be fully explored in order to make accurate and more diverse recommendations.

Typically, content-based filtering recommender systems use feature extraction techniques

to generate item representations and calculate the similarity between items. Different types

of data can be leveraged to generate representation vectors that capture the characteristics

of the items. Metadata is one of the common data types that have been extensively used to

produce recommendations [6]. Metadata refers to the data that describes an item, such as

actors, directors, or released dates for movies. In some cases, this information can be used

to generate item representations and calculate similarity scores between items. Textual data

is also widely used in recommender systems. For instance, in movie recommender systems,

the title, synopsis, and reviews of the movie can be used to extract keywords, themes, and
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genres. Content-based filtering models can also extract visual features from images of items

to model item visual profiles. For example, in a fashion recommender system, the color,

pattern, and style of clothing items can be considered when generating feature vectors that

capture the visual characteristics of the items [37, 38, 40]. Several techniques can be used to

generate item representations using any of these types of data. One of the common techniques

is Vector Space Models (VSM) [108] which is a technique that represents items as vectors

of their feature values. Each feature represents an attribute of the item such as keywords,

topics, tags, categories, etc. VSM models weight each feature by its importance to the item

and calculate the similarity between items using cosine similarity or Euclidean distance. Term

Frequency-Inverse Document Frequency (TF-IDF) is popularly used to weight the importance

of item features in the VSM. Originally, TF-IDF was proposed for Natural Language Processing

(NLP) tasks. It is used to measure the importance of a term in a document and is ubiquitously

applied in information retrieval systems and text mining. This method can be adapted to

assign higher weights to features that are unique to an item and lower weights to features

that are common across many items. Latent Semantic Analysis (LSA) is another common

technique used in content-based recommender systems. This method aims to identify latent

relationships between features in the item vectors. Specifically, it reduces the dimensionality of

the item vectors and identifies the underlying semantic meaning of the features. This results in

latent feature vectors with much lower dimensionality than the original feature vectors. Then,

the similarity of their latent feature vectors is computed to finally produce recommendations.

Rule-based systems generate recommendations by considering a pre-defined set of rules based

on item attributes. These rules can be derived by using heuristic methods or prior domain

knowledge to identify the most suitable items for a particular user. Deep learning models,

such as neural networks, can also be used to generate item representations. These models can

be trained on large amounts of data to extract significant features, learn relationships among

features, and model effective item profiles for producing recommendations.

There are several advantages of a content-based filtering approach. First, it can provide

recommendations for new users or items that have not yet been rated or interacted with,

since it only relies on the features of the items rather than user behavior. Additionally, it

can suggest niche or specialized items that may not have been interacted with by many

users. However, one limitation of content-based filtering models is that they rely on the

accuracy and completeness of the feature representation of items. In the case that these

features do not capture the relevant characteristics of the item, the recommendations may
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be inaccurate. Furthermore, content-based filtering models may not account for changes in a

user’s preferences over time, which can affect the quality of recommendations.

Hybrid of CF and content-based filtering To overcome the disadvantages of CF and

content-based filtering approaches, modern recommender systems have been using a hybrid

approach that combines the strengths of both approaches. A collaborative filtering approach

uses behaviors and preferences of similar users to recommend items to a target user, while

a content-based filtering approach recommends items based on the features of the items

themselves. By combining these two approaches, both users’ behavior data, and item features

can be simultaneously utilized. Hybrid recommender systems can be particularly useful when

user-item interaction data is sparse or noisy, or when there is a high degree of item or user

diversity. By leveraging multiple recommendation techniques, a hybrid system can generate

more accurate and relevant recommendations for users. Nevertheless, as data becomes more

complex and users’ preferences show higher diversity, there is an increasing requirement for

more proficient recommendation models. This is where deep learning models are involved in

order to enhance the capabilities of hybrid recommender systems.

2.1.1 Deep-Learning Based Recommender Systems

Advancements in deep learning have created new opportunities for enhancing hybrid rec-

ommender systems. With advanced neural network architectures, deep-learning based recom-

mender systems can effectively capture intricate patterns and relationships within high-volume

and entangled data [9]. There are numerous neural network architectures that have been

utilized to develop deep-learning based recommender systems. Examples of these architec-

tures include autoencoders [109], Recurrent Neural Networks (RNNs) [110], Convolutional

Neural Networks (CNNs) [28], and Deep Reinforcement Learning [111]. Autoencoders, for

instance, are designed to learn efficient representations of input data by encoding it into a

lower-dimensional space and then decoding it back to its original form. Within the con-

text of recommender systems, autoencoders can be used to learn compact representations

of users and items, which are subsequently leveraged for making personalized recommenda-

tions [86, 112, 113]. RNNs have been effectively utilized to capture the temporal dynamics of

interactions and sequential patterns in user behaviors [114, 115]. Apart from this, RNNs have

also proven to be valuable in utilizing textual reviews to enhance recommendations [116, 117].

Several recommender systems employ CNNs to extract features from images, which are then
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incorporated into learning users’ preferences [37, 38, 81]. While CNNs are primarily associ-

ated with image data, they can be adapted and extended to handle different modalities in

recommender systems including texts [118, 119], user-item interaction matrices [120], and

sequences [121]. Deep Reinforcement Learning combines the ability of deep learning to model

complex patterns in data and the principles of reinforcement learning to optimize decision-

making processes. In recommender systems based on Deep Reinforcement Learning, the

recommendation process is treated as an interaction between an agent (the recommender

system) and an environment (the user or item space) [65, 122, 123, 124]. The agent learns

to provide recommendations by selecting actions that maximize a predefined reward signal.

As evident from these prior studies, deep-learning based recommender systems can capture

more intricate user preferences and item characteristics. They allow for the incorporation of

auxiliary information from images, texts, and other types of data to better model users’

preferences and capture item characteristics. This enhances the quality and accuracy of

recommendations, as it considers a broader range of user behaviors and item attributes.

2.1.2 HIN-Based Recommender Systems

Deep learning has also brought another significant breakthrough by incorporating HINs into

recommender systems and given rise to another recommendation approach known as HIN-

based recommender systems. These systems utilize high-order connectivity in HINs to learn

users’ preferences and the potential connections between users and items that they have not yet

interacted with. This connectivity information is not only beneficial for modeling users’ profiles

and predicting recommendations but also for providing explanations of recommendations. Due

to this advantage, recommender systems using HINs have become ubiquitous during the past

decade [10, 60]. Based on different methods of extracting high-order connectivity information,

HIN-based recommender systems can be divided into three approaches: embedding-based,

path-based, and hybrid approaches.

Embedding-Based Approach An embedding-based approach uses node embeddings gen-

erated from network/graph embedding methods [125] to produce recommendations. For

example, Bellini et al. [86] proposed a recommender system based on Semantics-Aware Au-

toencoders (SemAuto) that involve structural information in a network in an Autoencoder

Neural Network. Each neuron in SemAuto represents a node in the HIN, and the weights on

all neurons are learned to build user profile representations. By identifying the importance
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of each node towards a specific user, the node with the highest importance can be used as

an explanation. Besides Autoencoder Neural Networks, translation-based methods, such as

TransE [126] and TransR [127], are also utilized in some embedding-based models to create

node embeddings. Given a network triplet (h, r, t), where h represents a head node, r repre-

sents a relation, and t represents a tail node, these methods assume that the combination of

information from h and r should be equal to the information from t. This can be expressed

as the equation h + r = t. Based on this assumption, the generated node embeddings can

capture the network structure and can be effectively used to learn recommendations [70, 99].

Some embedding-based models use reinforcement learning (RL) to navigate paths that

connect a user to his/her recommended item [68, 101, 104]. These models typically build

a policy network to find the optimal path, maximizing the cumulative reward at the end of

navigation. An agent starts from a given user and navigates through the network, moving

from one node to the next adjacent node until it reaches the recommended item. However,

navigating through the nodes and relations in a network can be computationally expensive.

This may cause serious scalability issues for RL-based models. In [65], a user-conditional

action pruning strategy was proposed to decrease the size of the action space and reduce the

computational cost of their RL-based model. In [101], an attention mechanism was employed

to weigh the importance of each neighbor, allowing the agent to focus on the most relevant

actions. These attention weights guide the agent in reducing the number of possible action

spaces. Another potential problem with RL-based models is that the agent guided by the

policy network may repeatedly search the same path with the largest cumulative rewards,

leading to recommendations that lack diversity.

Another line of embedding-based models utilizes Graph Neural Networks (GNNs) to prop-

agate multi-hop information recursively. These GNN models update each node embedding by

considering the embeddings of its neighbors, allowing them to capture high-order connectivity.

One of the state-of-the-art models is the Knowledge Graph Attention Network (KGAT) [5]

which combines a Graph Convolution Network (GCN) and a Graph Attention Network [128].

In this model, TransR was first used to generate node embeddings. These embeddings were

then refined by recursively propagating their neighbors’ embeddings. A knowledge-aware at-

tention mechanism was employed during propagation to identify important neighborhoods.

Despite being effective, KGAT can be computationally expensive when the number of nodes

and relations is large. An improved framework called KGAT+ [102] was proposed to address

the issue of scalability in GNN-based models. Multiple one-to-many relations were compressed
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by using a latent class model. Specifically, a set of target relations r was first defined. Next,

for any triplet (h, r, t), a latent class between h and t was assumed. The relation between h

and t was decomposed into two relations: h and the latent class and t and the latent class with

specific probabilities. These probabilities were then taken into consideration when computing

attention weights and loss for learning recommendations. To better profile users and capture

their interests, some GNN-based models incorporate higher-level concepts beyond nodes and

relations in HINs. For instance, the Knowledge HIN-based Intent Network (KGIN) [98] was

proposed to model users’ underlying intents which are higher-level information. Each intent

was formed by attentively combining relation embeddings in a network. In [129], a modi-

fication to the traditional GCN model was proposed to factorize user and item embeddings

based on multiple concepts. To achieve this, the aggregation at the last layer was adjusted to

distinguish information from the lower layers based on concepts. Specifically, all embeddings

from the lower layer were classified into different concepts and then propagated separately. To

categorize the embeddings into different concepts, the factor affiliation degrees were estimated

from the learnable parameters of each factor.

Path-Based Approach Given a user and his/her item, paths connecting them in a HIN pro-

vide valuable information to learn about his/her preferences. A path-based approach extracts

these paths from a HIN and feeds them to a recommendation learning framework. Depending

on the techniques used for path extraction, a path-based approach can be categorized into

two groups. The first group is random-walk based models, which extract or sample paths

randomly to learn recommendations. Additional biases or conditions, such as relation weights

and restarting strategy, may be added to ensure the quality of the sampled paths. The second

category is meta-path based models, which use paths extracted via predefined meta-paths to

feed the recommendation framework. These extracted paths are more controllable and seman-

tically meaningful compared to randomly sampled paths. They can also provide explainable

connectivity information between users and items.

Random-walk based models utilize random walk [130] to extract paths from a HIN. This

method starts from a given node and randomly selects an adjacent node to form a path until a

predetermined length is reached or certain conditions are satisfied. In [64], an LSTM network

was applied to capture the sequential dependencies of nodes and relations within the randomly

sampled paths. Since different paths may have different impacts on the user-item connectivity,

a weighted pooling method was adopted to combine all path representations. Then, based
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on the aggregated paths representation, the recommendation score for the user-item pair

was calculated using fully-connected layers. Inspired by a concept of an auto-regressive path

language model [131], randomly sampled paths were used to build a path language model for

recommendations in [103]. After building the model, a set of candidate path instances that

connect a user node to a recommended item node were generated using a Transformer-based

decoder. The recommendation scores were determined by calculating the joint probabilities

of these candidate path instances. One potential issue with using random walks is a lack of

diversity in extracted paths. When using random walks to extract paths, nodes with higher

degrees are more likely to appear in the paths than nodes with lower degrees. This can result

in a lack of diversity in the extracted paths and biased recommendations.

The connectivity information obtained from random-walk based models is typically implicit

and unpredictable since the paths are randomly extracted. To obtain meaningful connectivity

information, meta-path based random walk was introduced [71]. Instead of randomly selecting

the next node from the neighborhood, meta-path based random walk selects the next node in

accordance with the node type specified in a meta-path at each step. This approach allows for

obtaining high-order connectivity under specific assumptions and can be utilized for learning

recommendations. In [73], item-to-item meta-paths were also used to extract path instances.

These path instances were then used in Word2Vec [132] method to generate path embedding.

To enrich item embedding with reasoning information from the path instances, a self-attention

mechanism was employed to combine the path embedding with item embedding. This process

was repeated for all consecutive item pairs. The obtained item embeddings, user embeddings,

and path embeddings were utilized in the final step to predict recommendation scores. In [96],

two structural relations, i.e., affiliation relation (one-centered-by-another structure) and inter-

action relation (peer-to-peer structure) were leveraged by using different types of meta-paths.

For affiliation relation, the meta-paths following these two patterns namely user-item-features

and item-user-attributes were used. For interaction relation, meta-paths starting with a user

node type and ending with an item node type were used. Since there could be a number

of possible meta-paths following these formats, a set of meta-paths was sampled based on

the computed association degrees. Once the meta-paths were selected, meta-path embed-

dings were computed and attentively aggregated using an attention mechanism. Meta-paths

can also be used to generate user/item features that capture multi-hop information in HINs.

In [69], given a user’s item and an item of interest, item-to-item meta-paths were selected

based on predefined criteria. Based on these chosen meta-paths, the probabilities of finding
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path instances between the item pair following these meta-paths were then computed. These

probabilities were used to generate feature vectors of item pairs. Such feature vectors were

subsequently used to learn recommendations in the BPR-MF model and NCF model. In [72],

PathSim [133] and metapath2vec [85] were utilized to construct user-user and item-item sim-

ilarity matrices based on various meta-paths. For each meta-path, a Multi-Layer Perceptron

(MLP) model was trained on the corresponding similarity matrix to learn user and item latent

factors. An attention mechanism was then applied to combine all latent factors from each

meta-path to obtain the final user/item latent factors.

In general, the path-based approach leverages multi-hop relations to model users’ pref-

erences by using paths extracted from HINs. Accordingly, the performance of this approach

depends highly on the quality of these extracted paths. Extracted paths with noise may re-

duce the effectiveness of learning users’ preferences. To mitigate this problem, extracting

paths at a certain length while ignoring remote connections allows for learning recommen-

dations effectively [133, 134]. Moreover, the process of extracting paths from a HIN can be

time-consuming since the number of possible paths connecting two nodes grows exponentially

when the number of nodes and relations increases [122]. Developing a path-based model that

is scalable remains a challenge in this research field.

Hybrid Approach The embedding-based approach uses node embedding techniques, which

offer high flexibility and efficiency compared to the path-based approach. The path-based

approach, on the other hand, utilizes multi-hop relations from HINs in an explicit and intuitive

manner. The hybrid approach combines the strengths of both the embedding-based and path-

based approaches to leverage the overall HIN structure and extracted paths. RippleNet [61], an

end-to-end hybrid model, uses the concept of ripple sets to extract multi-hop relations. A ripple

set is a set of triplets within n hops from an item node of a given user. In their work, ripple

sets of different n for a user and one of their previously interacted items were first generated.

Starting from the 1-hop ripple set, information from each triplet in the set was propagated

based on relevance probability. This probability was computed from the similarity between

the item embedding and the head node embedding of each triplet. The user embedding

was computed by the weighted sum of the tail node embeddings in the ripple set, based on

these relevance probabilities. This process was repeated until reaching the n-hop ripple sets,

resulting in the final user embedding enriched with multi-hop information. The user and item

embeddings were then used to predict the recommendation score. In [91], textual information
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from user reviews, and visual information from item images were jointly utilized with multi-

hop relations. To incorporate these different modal features, additional constraints based

on these features were added to TransE. Based on the learned node embeddings from this

constrained TransE, each user-item interaction representation was computed by attentively

combining path instances connecting them. All user-item interaction representations were

aggregated to predict recommendations. A multi-modal hybrid model was also proposed

in [97]. Structural context and neighbor impact from HINs, user attributes, and geolocation

influence were jointly considered in their work. To aggregate the multi-modal factors, a triple

attention mechanism was adopted. To leverage the structural context of a user, random walk

with restart (RWR) and a multi-layer neural network were adopted to learn the structural

context latent factors. For the user’s neighbor impact, an attention-based HIN neural network

was used to aggregate information from their neighbors and identify the most significant

neighbor based on the attention weights. Latent factors of user attributes, categorical and

numerical features, were generated using an attention-based latent factorization machine. All

these multi-modal features were finally combined using an attention mechanism strategy.

In [95], a hybrid model for generating paths connecting users to their recommended items

was proposed. In their model, user profiles were considered as coarse sketches of user behav-

iors, using user-centric patterns that reflect the user’s interests. To find these patterns, an

off-the-shelf random-walk based algorithm was adopted to identify a set of candidate user-

centric patterns for each user. Then, the prominence scores of selected user-centric patterns

were computed to indicate their likelihood of generating paths from the user to potentially

recommended items. Based on the obtained user profile, a Profile-guided Path-Reasoning

algorithm (PPR) was introduced to find a collection of paths using selective neural symbolic

reasoning modules. Compared to RL-based models, their model is more efficient since it can

collectively find multiple paths instead of finding each path separately. In [135], a GCN was

adopted to learn node representations by applying a weighted sum aggregator to capture the

features of each node and its neighbors. Apart from this, a heuristic path search algorithm

was also used to extract path instances that represent a user’s potential interests. The se-

lected paths along with the node representations were then fed into an LSTM model with a

self-attention mechanism to encode the sequential dependencies of the nodes and produce an

encoded vector. Finally, multiple MLP layers with an activation function were applied to the

encoded vector to predict the recommendation score.

As can be seen in these previous studies, HINs have become highly beneficial for learning
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accurate recommendations. Apart from accuracy, HIN-based recommender systems yield an-

other pivotal advantage which is offering explainability in recommendations. Unlike traditional

recommendation systems or other deep-learning based recommender systems that frequently

function in a black-box manner, HIN-based recommender systems can provide the rationale

behind each recommendation. They leverage the structure and relationships present in HINs

to provide transparent and interpretable recommendations. These systems enable users to

comprehend the rationale behind the recommended items. This increased transparency not

only enhances user trust but also allows for better fine-tuning of recommendations based on

individual preferences.

Despite the success of existing HIN-based recommender systems in terms of both accuracy

and explainability, they only consider and leverage semantic information such as user item

metadata in HINs. Visual information from images is also another type of information that

can be valuable in recommendations. Including such information could highly improve the

accuracy of recommender systems. In spite of that, most existing studies typically ignore

visual information. As a result, there is still a gap in augmenting visual information in HINs

for learning recommendations. By filling this gap, HINs can be used to facilitate the task of

visually-aware recommendations as well as introduce explainability in these recommendations

using high-order relationships within these networks.

2.2 Visually-Aware Recommender Systems

Traditional recommender systems use various techniques to identify user preferences and rec-

ommend relevant items. However, traditional recommender systems may not be effective for

products with visual features, such as clothing or furniture, where users are often interested in

specific styles, colors, or shapes. Visually-aware recommender systems are a class of recom-

mender systems that take into account visual information in addition to user-item interaction

data. These systems leverage visual features such as colors or shapes of items extracted from

images, videos, or other types of visual content. They analyze both user-item interactions and

these visual features to recommend items that are visually appealing to users. For example,

a visually-aware recommender system for clothing may recommend items based on the user’s

preferences for specific styles, patterns, or colors. Owing to advances in computer vision and

image processing, visual features can be extracted by using several feature extraction meth-

ods [25, 26, 27] or deep learning models such as convolutional neural networks (CNNs) [136].
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These features have been proven to be highly useful for representing visual information of item

images. They can be integrated into recommender systems as additional information along

with user-item interactions to learn users’ preferences more effectively.

One of the firstly proposed visually-aware recommender systems is the Visual Bayesian

Personalized Ranking model (VBPR) [37], a modified BPR-MF model that incorporates visual

information into learning user/item latent factors. Novel user/item latent factors subject to

visual preferences were introduced and learned by projecting image features to the visual latent

space using an embedding kernel. This embedding kernel is a learnable weight matrix that

linearly transforms a high-dimensional item image feature to a lower-dimensional space, i.e.,

the visual latent space. The image features were extracted by using the Caffe reference model

pre-trained on 1.2 million ImageNet (ILSVRC2010) images [136]. The output of the second

fully-connected layer was chosen as an image feature vector representing the whole visual

appearance of each image. Their work has also shown that, in their proposed visual space,

visual preferences can be recognized as clusters of latent vectors in the space. To better model

users’ visual preferences, the modified version of VBPR called DVBPR was proposed in [38].

Instead of using a pre-trained model to extract visual feature vectors with an embedding kernel,

visual features were learned by a CNN module simultaneously with learning recommendations.

Specifically, the learnable weight matrix in VBPR was replaced by a deep learning module

to jointly learn recommendations and visual features simultaneously. This module allowed

DVBPR to model more complex visual preferences compared to VBPR. Moreover, DVBPR

can also be combined with Generative Adversarial Networks (GANs) to synthesize item images

depending on the user’s preferences. Given a user and an item category, this system can

generate new images of clothing items that potentially match with user’s preferences. In [41],

three additional models were integrated into VBPR to build an advanced Visual Bayesian

Personalized Ranking (aVBPR) model. The first model is the Factorized Personalized Markov

Chains (FPMC) model, used to simulate users’ sequential behaviors. The second model is the

intelligent Field-aware Factorization Machine (iFFM) model which was modified to predict

users’ preferences based on non-visual features. The third model is the VBPR model which

was used for modeling users’ visual preferences.

Apart from fashion items, visual information was also used to enhance other types of rec-

ommendations such as point-of-interest (POI) recommendations and tag recommendations.

In [81], a POI recommendation framework using visual information called Visual Content

Enhanced POI recommendation (VPOI) was proposed. In their work, visual features were ex-
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tracted by using VGG16 [137], a CNN model pre-trained on ImageNet for image classification.

They were used to guide the learning process of both user and item latent vectors. Given a

user, a location, and an image of this location posted by this user, it was assumed that the

user and item latent vectors should be able to differentiate if the image is associated with the

user and the location subject to the extracted visual features. Based on this assumption, ad-

ditional constraints were then integrated into Probabilistic Matrix Factorization (PMF) [138]

to force user latent vectors and item latent vectors to be similar to the corresponding visual

features. In [82], CNN-PerMLP was proposed to consider visual information in personalized

tag recommendations. In this model, the visual features of each item image were extracted

from multiple small patches within this image by using a pre-trained CNN model. Then, these

visual features were personalized to each user by combining them with his/her personal infor-

mation. After combining, latent features of an item image according to a specific user were

obtained and used in a BPR framework to learn recommendations. In [83], visual features ex-

tracted from movie posters were compared with semantic features (metadata) for generating

movie recommendations. Two types of visual features were considered, i.e., low-level features

(e.g., based on the color characteristics) and high-level features (e.g., based on the content

of the image). As for low-level features, image color features in the Hue-Saturation-Value

(HSV) color space were considered. It has been shown that this color space represents an

image in a similar way to human visual perception [139, 140]. For each of these color dimen-

sions (i.e., hue, saturation, value), three features were computed, i.e., the mean value of all

pixels, the standard deviation of all pixels, and the mean value of pixels on both diagonals.

The Pleasure-Arousal-Dominance model [141] was also adopted to estimate the impact of six

basic colors (i.e., red, green, blue, orange, yellow, and violet) on user emotions based on a

combination of pleasure, arousal, and dominance. High-level visual features were extracted

using Inception-v3 [142] which is the pre-trained CNN model by Google trained on the Im-

ageNet dataset. These features were applied in a content-based recommendation approach.

First, the Okapi BM25 ranking function [143] was used to generate a list of candidate items.

These candidate items were then re-ranked based on the visual features extracted. In [80],

the style features were introduced and used in the model called DeepStyle. According to their

observation, items with similar styles may be not similar in the visual space of VBPR. One

reason is that categorical information is more dominant in this common visual space than

style information. Thus, categorical information was eliminated in their work by subtracting

items’ latent categorical representations from the visual features generated by a pre-trained
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CNN model. Assume that a visual feature extracted from a pre-trained CNN model is a com-

bination of style and category features (i.e., item = style + category). To consider only the

style of each item, the style feature of each item was computed by subtracting its categorical

feature from its visual feature (i.e., style = item − category). To learn recommendations,

these style features were used similarly to the visual features in VBPR. These studies have

shown the possibilities of using visual features extracted via several techniques to enhance rec-

ommendation performance. However, in some cases, using visual features extracted directly

may not be sufficiently effective to capture users’ preferences.

To further improve recommendation accuracy, images can also be simultaneously leveraged

along with other types of data. Many researchers have been exploring techniques such as

multi-modal learning, where deep neural networks are designed to jointly model visual features

and metadata. These techniques aim to capture the interactions and dependencies between

different modalities, enabling a more comprehensive understanding of user preferences.

In [84], review texts, item images, and user ratings were adopted to learn user and item

representations. In their framework, information existing in each modality was embedded

by using different deep learning models. For textual reviews, the PV-DBOW model [144]

was adopted to learn review representations. For item images, the pre-trined CNN model

as in [37] was adopted to extract initial image features from item images. These extracted

features were then fed to a deep learning module to generate final image representations

for learning recommendations. Representations from different modalities were subsequently

integrated to obtain joint representations for both users and items. Finally, these integrated

representations were used to train the recommender system in a unified pair-wise learning-to-

rank framework. In [92], multimodal features, including audio, image, and motion features,

were incorporated with user-video interactions to learn video recommendations. Two types of

visual features were considered in their work, i.e., SIFT and the features extracted from the

pre-trained CNN model from the VGG group [137]. For SIFT, OSIFT (opponent SIFT) [145]

and MoSIFT (motion SIFT) [146], two variants of SIFT, were adopted to capture the scene

and motion information in the videos respectively. OSIFT considers the light color change

and shifting on the RGB color space to capture more robust scene contents. Meanwhile,

MoSIFT uses the optical flow between frames to capture the motion contents in the video

frames. As for CNN features, the pre-trained CNN model [137] was adopted to extract

features from the 5th pooling layer with spatial pooling [147]. Both SIFT features and CNN

features were applied in a collaborative embedding regression (CER) model which incorporates
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collaborative filtering with content features. Traditionally, this model can only consider single

content features. To incorporate multiple content features from different resources, three

feature fusion methods were used. The first method is to concatenate multiple content

features forming single combined context features. The second method is using content latent

vectors as in CKE [148]. However, since constructing a shared latent space among multimodal

features typically leads to significant information loss, they proposed the third method which is

aggregating prediction scores from multiple content features to form more accurate final scores.

In [88], an interactive recommender system that adjusts the list of recommendations according

to natural language feedback on the visual appearances was proposed. This system consists

of two components: the visual dialog encoder and the visual dialog augmented cascading

bandit. The visual dialog encoder was used to encode an input image by using the ResNet101

model pre-trained on ImageNet [149] and user textual feedback as in [150]. The encoded

image and words were further concatenated and used as input of GRU followed by a linear

mapping to generate a final encoding of an image-feedback pair. To learn recommendations,

the traditional cascading bandit algorithm [151] was modified to incorporate textual input and

visual features from the encoder along with user-item interactions. In [43], both visual features

from item images and textual features from users’ reviews were utilized to model aspect-aware

users’ preferences and items’ properties. They made an assumption that different users have

interests in particular aspects of items. Also, even for the same aspect, different users have

different preferences based on that aspect. As a result, a predicted rating of any user-item

pair should depend on the user satisfaction with each aspect of that item and the importance

of that aspect to the user. Based on this assumption, a multi-modal aspect-aware topic model

(MATM) was proposed to model the latent factors of each user’s preferences on a specific

aspect and the characteristics of an item on that aspect. In their work, each aspect was

represented as a distribution of the same set of latent topics. For each user and each item,

the corresponding aspect was computed based on the weighted sum of these latent topics. An

importance score of each latent topic was determined by two factors, i.e., the textual reviews

of this user towards this item and the visual features of this item image. To extract visual

features, each image was divided into patches regarded as “visual words”. To determine visual

words, the visual features of each pattern were first extracted by using ResNet-152. Then, the

K-means method was adopted to find K clusters of these features. Each cluster center was

then treated as a visual term. Finally, for each patch of a given image, its nearest center was

identified and then this patch was regarded as the corresponding visual term of this center.
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Thus, an image can be represented by visual words which are a collection of visual terms.

These studies have demonstrated the benefits of incorporating visual information in rec-

ommender systems. Visual information provides a richer representation of items, capturing

their visual aesthetics, style, and context. By considering visual features, recommendation

algorithms can account for the visual preferences of users, leading to more personalized and

visually appealing recommendations. However, as the majority of visually-aware recommender

systems depend on the extraction of latent visual features, they frequently lack transparency

and explainability. This insufficiency has the potential to reduce users’ confidence and increase

their skepticism concerning the reliability of these systems. Hence, enhancing the transparency

of visually-aware recommender systems is unquestionably vital [16].

2.3 Explainable Recommender Systems

Most AI systems use machine learning or deep learning models to mimic the way a human brain

works to make decisions on a given task. Such a process of mimicking is generally complicated

and tends to be hidden underneath the model algorithms. As a result, these models are often

referred to as black-box models [48] in which their decision-making mechanisms are concealed.

During the early era of AI, due to the high performances of these black-box models, the

problem of understanding how they work was not a concern for both developers and end

users. However, recent research has shed some light on potential issues that might be caused

by using such models without comprehension of how they generate outputs [47]. These issues

include biases in making decisions or ethical violations which can cause serious consequences,

especially in high-stake domains such as financial or medical domains [48]. To address such

issues, some recent regulations such as the General Data Protection Regulation (GDPR) of

the European Union and other countries [49] have been established. This emphasizes the

importance of developing explainable AI for ensuring fairness and trust for both users and

developers of AI systems.

Explainable AI can provide explanations or allow a human to understand the logic behind

its decision-making process. In response to the explainability regulations, research in explain-

able AI has emerged and has been continuously receiving a large amount of attention. In

this research area, there are two terms that are usually mentioned, i.e., “explainability” and

“interpretability”. According to the previous work [47, 152], the term explainability refers

to the ability to provide an explanation of why a decision is made. Meanwhile, the term
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interpretability refers to the characteristic of an AI system in which its internal mechanism

is comprehensible for a human. In the case of interpretable models, developers or users may

take advantage of their interpretability to extract some explanations. Thus, whether an AI

system has explainability or interpretability, it is possible to obtain an explanation from it.

Due to the recent requirements of explainable AI, explainability in recommendations is

also required for modern recommender systems. Explainable recommender systems are ca-

pable of recommending items along with providing explanations of how or why those items

are recommended. They provide not only transparency and trustworthiness of recommender

systems but also persuasiveness to end users. With explanations, the recommendations can be

more convincing to the users [10]. Besides end users, explanations also benefit developers or

designers of recommender systems. They allow ease of diagnosing, maintaining, and refining

recommender systems. These explanations can be in various formats depending on the types

of resources or information used in recommender systems. For CF-based recommendation

models, since these models use only user-item interactions, user-based and item-based expla-

nations are two common types of explanations. These explanations are typically in the form

of similar users or similar items [10]. However, in case user-item interactions are sparse, it

can be difficult to obtain such explanations. As additional information has been leveraged to

improve recommendation performances, it can also be used to provide explanations. Textual

explanations are common in those recommendation models that use texts as additional in-

formation. These explanations are often in the form of text segments extracted from users’

reviews [40, 43] or item descriptions [70]. Although textual explanations are easy to under-

stand, there is a limitation when users’ reviews or item descriptions are unavailable or not

thorough enough to cover users’ preferences. Also, users’ reviews are typically noisy [10]. Not

all of the sentences in a review are justifications for the users’ decisions. Item images are

another type of side information used for improving recommendation accuracy and explain-

ability [40, 45, 89]. Typically, an image comprises various features, e.g., shapes, textures, and

colors, which can be used for capturing users’ preferences. Recent image-based recommender

systems are capable of providing explanations in various formats such as highlighted regions in

item images [40, 45] and highlighted regions with corresponding keywords derived from item

images [89].
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2.3.1 Explainable HIN-Based Recommender Systems

HINs offer a unique advantage to enhance recommendation accuracy and explainability. Un-

like traditional recommender systems that often provide recommendations based on straight-

forward associations between items and user preferences, HINs capture intricate multi-hop

relations between diverse entities. These high-order relationships can span multiple types of

nodes and relations. They represent complex patterns of interactions and offer a transparent

narrative explaining why a particular recommendation is made. With this advantage, ex-

plainable HIN-based recommender systems have become ubiquitous. Such systems provide a

structured framework for extracting or harnessing multi-hop relations that connect users and

items through intermediate entities. Generally, there are different levels or types of explain-

ability that can be obtained from explainable HIN-based recommender systems. These levels

include:

• node level, e.g., predictive/significant nodes, counterfactual nodes, or node neighbor-

hoods

• path level, e.g., selected paths connecting users and recommended items

• meta-path level, e.g., predictive/significant meta-paths

• implicit level which means that explicit explanations are not generated along with the

recommendations but the recommendations with higher explainability are encouraged

to be produced rather than those with lower explainability

Node Level Node-level explanations include explanations that are in the form of nodes or

1-hop relations. These explanations are the simplest explanation type for explainable HIN-

based recommendation models. Some models aim to identify certain nodes/relations that are

influential or important for the recommendations of a given user. For example, SemAuto [86]

treats the neuron weights in Autoencoder Neural Network as the importance weights of nodes

in a corresponding network. Then, it identifies the most important node connected to a given

user and uses it as an explanation. GEAPR [97] uses a GNN model with an attention mech-

anism to aggregate information among each user’s neighborhood. Thus, the most important

neighbor node for each user can be specified based on the attention weights. LDSDMF [90]

identifies a node in a HIN that potentially matches a given user’s preferences based on the

likability degree computed. KGIN [98] models user-item interaction intents based on the re-

lations connecting them in a HIN. Such relations are combined via an attention mechanism
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to form an intent representation. The relation with the highest attention weight is treated as

an explanation in this model. Apart from important nodes/relations, node-level explanations

can also be nodes/relations that are counterfactual conditions. For instance, PRINCE [93]

provides explanations in the form of relations that, if they are removed from the network, will

change the recommendation results.

Path Level Given a user node and an item node in a HIN, a sequence of nodes and relations

that interlink them forms a path, offering comprehensive high-order insights into their con-

nectivity. This connectivity can encompass user-user, item-item, or user-item relationships,

among others. These paths are particularly suitable for serving as explanations of the reason-

ing behind recommendations—clarifying how a user is linked with their recommended item.

As paths containing high-order connectivity information are often extracted or considered to

model user profiles and facilitate recommendation learning within HIN-based recommender

systems, using them as explanations becomes an intuitive and direct approach. As a result,

numerous explainable HIN-based recommender systems have been focusing on providing path-

level explanations. SEP [87] and FairKG4Rec [94] extract candidate paths connecting a given

user and his/her recommended item in a HIN and rank them based on certain metrics and

conditions. Path-level explanations can also be modified or rewritten to obtain more user-

friendly explanations than sequences of nodes and relations. In the model proposed by Ai et

al. [70], candidate paths are ranked by their probabilities based on the distribution of node

embeddings learned by TransE. Then, the path with the highest probability is selected and

applied on a pre-defined template in natural languages. Besides defining criteria or metrics

to measure the significance of candidate paths, some models such as KPRN [64], EIUM [91]

and TMER [73] use attention mechanisms to attentively combine multiple paths and identify

the most significant one from the attention weights. This identified path is then used as

an explanation path for the recommendation. KGAT [5], KGAT+ [102], HAGERec [62] use

attention mechanisms to determine the importance of each node. For a given user and his/her

recommended item, an explanation path connecting them can be formed by considering the

attention weights in a cascading manner. RippleNet [61] similarly leverages the relevance

probabilities to form an explanation path connecting a user and his/her recommended items.

Explanation paths can also be generated based on the distribution of nodes in a HIN as in an

auto-regressive path language model in which sentences are formed based on the distribution

of words in a corpus. LOGER [99] uses an LSTM-based model to generate explanation paths.
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PLM-Rec [103] generates explanation paths by using a Transformer-based decoder. CAFE [95]

uses multiple neural symbolic modules to first generate a tree where the root node is a user

node and the leaf nodes are the recommended item nodes. Based on this tree, multiple ex-

planation paths can be extracted by tree traversal and ranked to find the most suitable one.

PGPR [65], ADAC [67], UCPR [100], MKRLN [101], TPRec [104] and ReMR [68] formulate a

recommendation task as deterministic MDP of path reasoning. The task is to navigate from a

user node to his/her recommended item node in a HIN. Each and every navigation decision at

each step altogether forms a leading path from this user to his/her recommended item which

can be treated as an explanation for this recommendation. One advantage of these models

is that paths discovered by a path reasoning process definitely exist in a HIN since they are

generated by navigating through an actual HIN. This is different from those paths generated

from node distribution where their explanation paths are formed based on the probabilities of

node connectivity. Thus, there is no guarantee whether these paths exist in a HIN or not.

Meta-Path Level Path-level explanations provide explainability at an instance-level view. In

other words, they particularly provide explanations in the forms of actual nodes and relations.

On the other hand, meta-path level explanations provide explanations from a higher point of

view, i.e., meta-level view. These explanations are in the form of node types or relation types in

HINs. They can be used to explain recommendations based on the semantic meanings of these

meta-paths. MSRE [96] leverages several meta-paths with different types to extract multi-hop

relations. A meta-path embedding method aggregates information from these meta-paths by

using an attention mechanism. The most important meta-path then can be identified based on

the attention weights and used for explaining the recommendations. Similarly, MP4Rec [72]

models user and item latent factors based on multiple meta-paths. For each meta-path, the

initial user/item latent factors are learned based on the user-user/item-item similarity matrices

based on each meta-path. Then, these user/item latent factors based on each meta-path are

attentively combined. The most significant meta-path can be identified from the attention

weights. Ma et al. [69] proposed RuleRec which is an explainable recommendation model based

on the meta-paths derived from item association in a HIN. Given a user’s item and an item

of interest, this model finds the item-to-item meta-paths that reflect the association of these

items. To find such meta-paths, hard-selection and soft-selection methods were proposed.

Hard-selection method uses pre-defined hyper-parameters to validate meta-paths while the

soft-selection method learns to select meta-paths with the additional objective function along
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with the recommendation objective function. After selecting the meta-paths, the probabilities

of finding path instances between the item pair following these meta-paths were computed.

These probabilities were used to create feature vectors of item pairs where each entry of this

vector is the probability of each meta-path. Then, such feature vectors were used to learn

recommendations in the BPR-MF model and NCF model.

Implicit Explanations that are at the node level, path level, or meta-path level are consid-

ered explicit explainability of recommender systems. However, instead of producing explicit

explanations, some models provide explainability implicitly by selectively recommending items

that are explainable rather than non-explainable ones. In [72], the objective function of a BPR

framework was modified to increase the chance of generating more explainable items rather

than those non-explainable ones. Specifically, an additional term was included in the classic

BPR loss function. This term constrains the distance of the user and item latent factors in

the latent space to be close to each other (i.e., their difference is close to zero) if the item is

explainable to the user. The more they are explainable, the closer their latent factors are in

the latent space.

2.3.2 Benchmark Datasets

Explainable HIN-based recommender systems have been applied to various kinds of datasets

ranging from a movie domain to a retail domain. Some benchmark datasets that have been

commonly used in the previous work are shown in Table 2.2. The details of these datasets are

as follows:

• MovieLens [153] This dataset is a widely used benchmark dataset in movie recommen-

dations. It contains user records of both explicit feedback (rating) and implicit feedback

(watching and tagging). Regarding items, this dataset contains metadata of movies

such as genres, directors, actors, tags, etc. There are multiple versions of this dataset

with different scales including MovieLens-HetRec-2011, Movielens-100K, Movielens-1M,

and Movielens-20M. To incorporate more rich information about movies, the combina-

tion of Movielens-1M and IMDb datasets linked by the tiles and release dates was used

in KPRN [64]. In [90], the MovieLens-100K dataset was combined with SPARQL, a

semantic web query language. In [91], the Freebase data dumps [154] was used to

construct the HIN. The mapping relationship between movies of MovieLens-20M and

entities of Freebase was adopted from [155, 156]. In [100], Microsoft Satori [157], a
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Table 2.2: Benchmark datasets used in state-of-the-art explainable HIN-based

recommender systems

Dataset Variation Model

Movielens

Movielens-100K [72, 87, 90]

Movielens-1M [61, 62, 87, 100]

Movielens-20M [62, 86, 91]

Amazon

All categories [93]

Automotive [73, 99, 103]

Beauty [65, 67, 68, 70, 94, 95, 100, 104]

Book [5, 98, 100, 135]

CDs and Vinyl [65, 70, 94, 95]

Cell Phones and Accessories [65, 67, 68, 69, 70, 94, 95, 99, 100, 103, 104]

Clothing Shoes and Jewelry [65, 67, 68, 70, 94, 95, 100, 104]

Electronics [69, 72]

Grocery [99, 103]

Musical Instruments [73]

Toys and Games [73]

Last.fm [5, 62, 98, 129, 135]

Yelp [5, 72, 96, 97, 129, 135]

Book-Crossing [61, 62, 101]

KKBOX [64, 101]

40



Chapter 2 – Literature Review

knowledge base developed by Microsoft, was adopted. This base uses the Resource De-

scription Framework and the SPARQL query language and consists of billions of entities.

It was used to build the HIN where the confidence level was set to greater than 0.9.

• Amazon [158] This dataset contains product reviews and metadata from Amazon which

include 142.8 million reviews spanning May 1996 to July 2014 from around 20 million

users. This dataset includes reviews (containing ratings, textual reviews, and helpfulness

votes) and item metadata (descriptions, category information, price, brand, items that

were bought/viewed together, and image features). In [93], the whole dataset with

items from multiple categories was used in order to examine the effect of cross-category

information on generating explanations. However, the whole dataset can be divided

into smaller datasets of different product categories. Each dataset can be used as an

individual benchmark which means that the results obtained from these divided datasets

are not necessarily comparable to each other [95]. Some examples of these datasets of

various categories along with the papers in which they were adopted can be found in

Table 2.2. Similar to the MovieLens datasets, side information from publicly available

knowledge bases can be incorporated to construct HINs for recommender systems. In [5]

and [135], the HIN was constructed by mapping the book titles in the Amazon-Book

dataset to the corresponding entities in Freebase [159]. However, the Amazon dataset

can be highly sparse, several studies adopted the k-core setting where those users who

have interacted with at least k items and items that have been interacted by at least k

users were retained in the dataset.

• Last.fm [160] Last.fm is a music recommendation dataset extracted from Last.fm online

music systems. It contains binary implicit feedback (tagging data) between users and

music as well as social networking and music artist listening information. Also, similar to

the Movielens and Amazon datasets, side information from Freebase can be incorporated

to construct HINs as in [135].

• Yelp [161] This dataset offers comprehensive information about businesses and users on

the Yelp website where users can rate local businesses or post photos and reviews about

them. It provides user data consisting of information about each user’s account, such

as the account creation date, the number of reviews posted, the average rating given by

the user, and the social network and friendship data among users. As for businesses, this

dataset provides information about the business category, location, hours of operation,
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average rating, number of reviews, and the count of user check-in by date. In total, there

are 1,017 categories of businesses (e.g., “Restaurants”, “Bars”, etc.) and 6,990,280

reviews over 150,346 businesses.

• Book-Crossing [162] his is a book dataset consisting of approximately 1,149,780 ratings

(ranging from 0 to 10) from users in the Book-Crossing community. In [61] and [62],

these ratings were converted to implicit feedback. However, due to the sparsity of this

dataset, no rating threshold was set, i.e., each user-book interaction was marked with

1 if the user has rated the book regardless of its rating score.

• KKBOX [163] This music recommendation dataset was provided by a music streaming

platform KKBOX. The KKBOX dataset consists of user-song interaction recorded within

a specific time duration. For users, the metadata includes user ID, city, age, gender,

registration method, registration date, and expiration date. For items (songs), the

metadata includes song ID, song length, genre, artist, composer, lyricist, and language.

In [101], the entities in the KKBox dataset were mapped to the CN-DBpedia [164]

knowledge base [165] to construct the HIN.

However, benchmark datasets for evaluating explainability are not ubiquitous. There have

been some efforts to generate test sets used for evaluating explainable recommendations or

recommendation explanations obtained from HIN-based recommender systems. These test

sets may provide guidance on how to construct benchmark datasets for explainable HIN-based

recommender systems. In [67], test sets generated from users’ reviews were used for evaluating

the explanation paths obtained from their model ADAC. The idea is that an explanation

path achieves high explainability if it contains many entities mentioned in the ground-truth

review. To generate the ground-truth reviews, each user’s review of his/her positive item was

considered. For each review, certain words were filtered out if their frequencies were more

than 5,000 or their TF-IDF scores were less than 1. The remaining words were treated as the

ground-truth review for a comparison with the generated explanation path.

2.3.3 Explainability Evaluation

Evaluating explanations or explainable recommendations can be done in both qualitative and

quantitative ways. A qualitative way usually involves data visualization or case studies to

illustrate or examine how suitable explanations are. As for quantitative evaluation, several

metrics have been proposed. However, since explainability in recommendations is relatively
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Table 2.3: Qualitative methods adopted in state-of-the-art explainable HIN-based

recommender systems

Qualitative method Models

Visualisation [97], [96], [129], [135]

Case study [90], [129], [96], [98], [91], [103], [61], [95], [62], [5], [102], [73], [65],

[101], [104], [68], [70], [64], [69], [94]

User survey [86], [90], [100], [99], [135], [93]

a new area, there are not many common metrics for evaluating explanations or explainable

recommendations.

2.3.3.1 Qualitative Evaluation

Most of the existing explainable HIN-based recommender systems evaluate the effectiveness

of their explainability via qualitative evaluation. It can be a visualization of explanations or

an analysis of case studies to decide whether their explanations are practical or not. More-

over, since generating explanations for users can be considered a human-computer interaction

task, a user study can also be conducted to examine the quality of explanations generated by

explainable HIN-based recommender systems. Table 2.3 summarizes the qualitative evalua-

tion techniques that were used in some state-of-the-art explainable HIN-based recommender

systems.

Visualization In [97], the authors demonstrated the interpretability of their model GEAPR

by using heat maps of the attention weights showing the importance of features. These heat

maps allowed them to know which features were informative for each input and indicated the

lack of informative features in their experiments. Heat maps of attention weights on features

were also used in [96] to evaluate the explanations generated for three randomly selected users.

In [129], the item embeddings were visualized in scatter plots. In these plots, the color of each

point indicated the closest affiliated factor of the item. They allowed the authors to observe

the clusters of items based on the embeddings and investigate how the model discovered the

factors and learned the embeddings correspondingly leading to high explainability. In [135],

given a randomly selected user and his/her recommended item, the explanation paths with

high attention scores were extracted to form reasoning sub-graphs. These sub-graphs were

displayed to illustrate the explainability performance of their model. It can be seen that
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visualizing model structures (e.g., attention weights) or generated explanations allows users

as well as model developers to understand the logic behind the decision-making processes. It

provides a big picture of how the models work and whether the explanations generated are

useful or not. Nevertheless, evaluation based on visualization can be subjective depending on

observers. Thus, visualization might be suitable for an initial evaluation in which the overall

performance of an evaluated model is generally examined. Then, it should be followed by

further investigation using other evaluation techniques. Also, in the previous studies, some

visualization may require sampling of users or items. This may not be sufficient to evaluate

the actual explainability performance of those explainable HIN-based models.

Case Study A case study is one of the common ways to demonstrate the effectiveness

or suitability of explanations obtained from explainable recommender systems. It typically

involves choosing at least one user and showing his/her recommendation obtained from the

model along with its explanation. By comparing them with the user’s personal profile or other

evidence of the user’s interests, it is possible to evaluate whether this explanation makes sense

or is suitable for being used in real-world situations or not. For example, in [90], a sampled user

along with his/her recommendations and their explanations were shown in order to investigate

how the model captures this user’s semantic attribute preferences. In [129], some entities in

a HIN with their important scores towards the selected users were presented. In [96], apart

from using heat maps, the authors also showed the most important neighbors and the most

important multi-style meta-paths of the selected users. In [98], the proposed model KGIN

learned intents that represent users’ preferences by attentively aggregating information from

multiple relations. To demonstrate the explainability of this model, examples of these intents

were presented. For each intent, the relations in a HIN that formed this intent along with their

weights were extracted and shown as a case study. This allowed the authors to identify which

relations were important for a given user and gain some knowledge of how KGIN modeled the

users’ preferences.

As for those models that produce path-level explanations, the explanation paths of ran-

domly sampled users can be illustrated for evaluation. For instance, in [91], the authors

randomly selected a user and generated his/her top-3 recommendations along with their ex-

planation paths. These explanations were presented and their suitability was discussed. Sim-

ilarly, for PLM-Rec [103], case studies based on the randomly selected users were conducted

for evaluation. These case studies allowed the authors to demonstrate the performance of
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PLM-Rec in terms of solving recall bias. As for RippleNet [61], the explanation paths of a

randomly sampled user were compared among its variations. The relevance probabilities of

these paths were also discussed. The decentralization of these probabilities was shown in

their results. For CAFE [95], two case studies of two chosen users were shown in the paper.

For each user, his/her layout tree obtained from his/her profile and the subset of generated

explanation paths based on his/her layout tree were presented. In HAGERec [62], KGAT [5]

and KGAT+ [102], paths connecting between the randomly chosen user-item pair were ex-

tracted with the help of attention mechanisms. These explanation paths revealed the user’s

preferences from different perspectives and were examined for evaluation. For TMER [73],

the authors randomly selected a user and retrieved his/her previously interacted items. Then

item-item path instances connecting each pair of items were extracted based on the attention

weights learned by their proposed model. These paths formed the explanation paths of this

user and were analyzed based on their suitability and practicality. For those models using

RL-based path reasoning methods to provide explanations, i.e., PGPR [65], MKRLN [101],

TPRec [104] and ReMR [68], explanation paths discovered via path navigation using the RL

agents were extracted and presented to exhibit the performance of their explanation gener-

ating methods. Apart from presenting explanation paths individually for evaluation, there

are some papers that combined such paths to form a sub-graph and used it to examine the

explainability of their models. For example, in [70] and [64], the authors extracted all the

explanation paths connecting the selected user-item pair and presented them in the form of a

sub-graph showing different high-order connections between them.

For those models that derive rules as explanations such as RuleRec, a case study was

also conducted in order to give some examples of rules and how they can be applied. As for

RuleRec [69], two positive rules learned from this model were first derived to examine the

explainability. These rules indicated that if there is a path connecting a user’s unobserved

item and one of the user’s items, then this unobserved item is more likely to be recommended.

To verify the practicality of these rules, they first examine whether item pairs connected with

these rules correspond with common sense or not. Then, these rules were labeled by three

experts to check whether users would agree with these rules.

Apart from the practicality of explanations, case studies were conducted to evaluate the

fairness/diversity of explanation paths as well. The explanation paths obtained from the

fairness-aware algorithm FairKG4Rec [94] were extracted and compared with other baselines

in terms of path diversity. The variety of nodes and relations within these extracted paths
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were examined in order to evaluate their diversity. This exemplifies the uses of case stud-

ies to evaluate the explainability of HIN-based recommender systems in different aspects not

only accuracy or practicality. Similarly to visualization, case studies are also subjective. They

require human interpretation which can be highly varied depending on prior knowledge and ex-

perience. Thus, using case studies may not be sufficient to explicitly evaluate the performance

of explanations generated by the models.

User Survey Conducting a user survey is another straightforward way to evaluate explain-

ability since it can provide users’ opinions towards generated explanations or explainable rec-

ommendations. This evaluation approach involves recruiting a group of people (which could be

stakeholders or potential users of the systems) and using questionnaires/tests to gain knowl-

edge from these users regarding the explainability of recommender systems. For instance,

in [86], the persuasiveness of explanations generated by SemAuto was evaluated through on-

line A/B testing. In the first step, the user had to select at least 15 movies that they have

watched from the list provided and rate each movie on a five-star rating scale. These movies

were treated as input data for their model. After that, the user was given a list of recommen-

dations based on their selected movies without any explanations. The user then was asked to

rate the recommended items. Next, the explanations were presented to the user and the user

was asked to re-rate the top-2 recommended items. The results before and after providing

the explanations were then compared to examine the impact of the explanation in terms of

persuasiveness.

In [90], a user study was conducted to answer whether the number of semantic attributes

in the explanation impacts user satisfaction or not. The authors assumed that user satisfaction

can be achieved by recommending an item with an explanation that contains a higher number

of semantic attributes. With this hypothesis, 34 participants were assigned to either the low,

medium, or high group where the number of semantic attributes used in the explanations

is up to one, up to three, and up to five, respectively. Some demographic information of

each participant was collected including age, gender, major of study, weekly hours watching

movies, and his/her favorite movie semantic attributes. Each participant was asked to rate,

on a 1-to-5 scale, at least 10 movies they have previously watched from a selection of movies.

Then, a recommendation with an explanation, containing different numbers of attributes based

on the participant’s assigned group, was provided to the participant. The participant was

asked to fill out a Likert Scale questionnaire regarding the explanation provided, for example,
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“This explanation helps me understand why this movie was recommended” and “Based on

the share of semantic attributes between the recommended movie and my interest in these

semantic attributes, I will watch this movie”. The results of this survey were presented along

with analytical testing including an Analysis of Variance (ANOVA) and a Tukey’s Honestly

Significant Difference (HSD) to determine the significance of the results.

In [100], two human evaluations were conducted to answer two questions: (1) whether the

generated explanation paths from UCPR are relevant to the corresponding highlighted entities

and (2) whether the highlighted entities in the user’s portfolio are sufficient for anticipating

the positive item of the user. For the first question, the participants were asked to rate the

relevance between the explanation paths and the highlighted nodes learned from the model

at each step. The rating criteria were proposed to determine the relevance. For the second

question, the participants had to choose the next nodes based on the highlighted entities

and the previously chosen nodes until they reached the final item node. In [99], the authors

conducted a user survey to evaluate the explanation paths. The authors sampled 50 paths

connecting a user to one of his/her previously interacted items in the training set to represent

examples of users’ historical behaviors. The participants were asked to rank three models

based on the consistency between their generated explanation paths and the users’ historical

behaviors. In [135], 100 user-item pairs were randomly chosen and the explanation paths for

these pairs were generated. Then, 10 participants were asked to evaluate the Relevance and

Diversity scores of these explanation paths. Relevance indicates how likely the explanations

are related to the recommended items. Diversity shows whether the explanations consist

of various types of nodes and relations or not. Also, to avoid inconsistency in the results

from different participants, the explanation paths were divided into 5 groups in which each

group contains 100 paths corresponding to certain 20 user-item pairs. For each group, two

participants were assigned and the final scores were obtained from the average scores among

these two participants.

To evaluate the counterfactual explanations generated by PRINCE [93], three recommen-

dation items were shown to 500 participants on Amazon Mechanical Turk (AMT). For each

recommendation, two explanations, i.e., a counterfactual explanation and an explanation path

connecting the user to the item were presented. The participants were requested to answer

three questions, “Which method do you find more useful?”, “How do you feel about being

exposed through explanations to others?” and “Personally, which type of explanation matters

to you more”. This is to examine whether the counterfactual explanations were more useful
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Table 2.4: Quantitative methods adopted in state-of-the-art explainable HIN-

based recommender systems

Quantitative method Models

Mean Explainability Precision (MEP) SEP [87], LDSDMF [90]

Mean Explainability Recall (MER) SEP [87], LDSDMF [90]

Mean Explainability F-Score (xF-SCORE) LDSDMF [90]

Performance shift SEP [87], Liu et al.’s [129]

Simpson’s Index of Diversity (SID) FairKG4Rec [94], UCPR [100]

Review matching ADAC [67], UCPR [100]

Jensen–Shannon (JS) divergence LOGER [99]

Levenshtein distance KR-GCN [135]

and preferred than the path-based explanations given the same recommendations. The partic-

ipants were also asked to rate different explanations on a scale from 1 to 3 being “Not useful

at all”, “Partially useful”, and “Completely useful” respectively. Despite the valuable insights

into human behaviors, conducting a user survey typically requires a lot of human experts and

numerous afford and resources. This is a challenge of using a user survey to evaluate the

explainability of recommender systems.

2.3.3.2 Quantitative Evaluation

Quantitative methods are evaluation methods that involve using quantitative metrics to mea-

sure and compare the explainability or suitability of the generated explanations or explainable

recommendations. Compared to qualitative methods, quantitative methods are more con-

crete and definite since they are not varied by human deliberation. In this section, we discuss

the quantitative evaluation metrics that have been proposed in state-of-the-art explainable

HIN-based recommender systems. They are summarized in Table 2.4. More details of these

metrics are described in the following paragraphs.

Mean Explainability Precision (MEP), Mean Explainability Recall (MER) and Mean

Explainability F-Score (xF-SCORE) In [87], the applicability of the models in terms of

predicting explainable items was evaluated by two metrics, i.e., Mean Explainability Precision

(MEP) and Mean Explainability Recall (MER) [166, 167]. MEP and MER were defined
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similarly to regular Precision and Recall to measure the accuracy of predicting those items that

are explainable to the users. Compared to regular Precision and Recall, instead of considering

a set of recommended items and a set of positive items for each user, MEP and MER consider

a set of recommended items and a set of explainable items for each user. To obtain a set of

explainable items for each user, different strategies can be used. For instance, it can be a set

of items with at least one explanation generated by a post-hoc explaining method [87] or a

set of items whose explainability values are higher than a pre-defined threshold [72]. In [90],

in addition to MEP and MER, Mean Explainability F-Score (xF-SCORE) was also used. This

xF-SCORE can be computed by MEP and MER similar to the regular F-SCORE computed by

Mean Average Precision (MAP) and Mean Average Recall (MAR).

Performance shift In [87], the shift in their model performance was considered to examine

whether the nodes and relations in the generated explanation paths are significant or not.

Specifically, given a user-item pair and its explanation path, the nodes and relations in this

path were removed from the training data. Then, the recommendation model was re-trained

based on this altered training data. This re-trained model was used to evaluate the expla-

nation path based on the assumption that if the rating score of this user-item pair decreases

significantly after re-training, then the removed nodes and relations are significant for this

score prediction. In that case, explanation paths contain significant information that reflects

how the recommendation model works. In [129], the generated explanation in the forms of

significant concepts (or attributes) was evaluated by adversarial perturbation [168] similarly

to [87]. The idea is that an attribute can serve as a good explanation if the removal of this

attribute notably changes the model prediction. In other words, it has a high influence on

the model prediction. For evaluation, 200 users were first sampled from the test set. The

recommendations for these users were predicted and the important item nodes or other at-

tribute nodes were identified for each pair of a user and his/her recommended item. After

removing these important item/attribute nodes, the new recommendations were generated

and compared with the original recommendations. The Recall shift (the difference in Recall

values) between the new and the original recommendations was computed. A higher value of

this shift means that the explanations are accurate and can highly reflect users’ preferences.

Simpson’s Index of Diversity (SID) In [94] the group-level unfairness of the explanation

path diversity was defined based on Simpson’s Index of Diversity (SID). It indicates the diversity
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of a given user’s historical interactions with explanation paths. Ranging from 0 to 1, the higher

the SID is, the more diverse the explanation paths. Based on SID, FairKG4Rec was compared

with the other baselines in terms of diversity and fairness in recommendations and explanation

paths. SID was also adopted in [100] to quantify the diversity of explanation paths obtained

from UCPR.

Review matching In [67], the ground-truth reviews were used to evaluate the explainability

of the explanation paths. They assumed that the explainability of an explanation path can be

achieved if it contains several nodes that appear in the ground-truth review. First, the review

words were filtered by considering their frequencies and TF-IDF values. The remaining words

in the reviews were treated as ground-truth reviews. Then, the explanation paths generated by

their model ADAC were matched with these ground-truth reviews. After matching, Precision

and Recall based on the top-5 matched nodes were used for comparison. Similarly, UCPR [100]

also evaluated the explanation paths discovered by the RL agent by conducting a review

matching. The Recall and NDCG metrics were applied based on the top-10 matched entities

to justify the effectiveness.

Jensen–Shannon (JS) divergence In [99], apart from the user study, the authors also

conducted a quantitative evaluation of the faithfulness of the explanation paths. Inspired

by [169, 170, 171], the Jensen–Shannon (JS) divergence of rule-related distributions from

training and test sets were adopted to measure this quality. First, 50 users from the training

set were randomly selected. For each user, around 1, 000 paths connecting this user to his/her

item were sampled. Based on these paths, the JS score was computed. For the test set, the

explanation paths connecting each user in the test set and his/her item were first generated.

Then, the JS score over these paths was calculated. Faithfulness was assessed by considering

these two scores. The smaller the values of these two JS scores, the better the faithfulness of

the generated explanation paths.

Levenshtein distance In [135], the sub-graphs containing the explanation paths were used

to examine the explainability performance. Given a user-item pair, the top-3 explanation

paths were extracted. These explanation paths together formed a sub-graph showing various

reasoning paths from a given user to his/her recommended item. Similar sub-graphs generated

from their proposed model KR-GCN and the other baselines were compared in terms of their

topological similarity by using Levenshtein distance [172]. This indicated reasoning sub-graphs
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obtained from KR-GCN have some overlap with those obtained from the baselines. In other

words, their model KR-GCN was capable of generating reasoning sub-graphs as the baselines.

Since most visually-aware recommender systems rely on extracted latent visual features,

they often lack transparency and explainability. This deficiency can give rise to a lack of

confidence and doubt among users regarding these systems. Therefore, the task of improving

the explainability of visually-aware recommender systems is undoubtedly necessary, yet remains

challenging [16]. As evident in various explainable HIN-based recommender systems, HINs are

valuable resources highly suitable for providing explainability in recommendations. Developing

HIN-based recommender systems capable of incorporating visual information from images

offers a solution for generating explainable visually-aware recommendations. However, as

mentioned earlier, existing HIN-based recommender systems often overlook visual information.

This gap highlights the need to bridge visual information integration into HINs to develop

explainable visually-aware recommender systems based on HINs.

2.4 Summary

Previous studies have exhibited the possibilities of using side information apart from user-

item interactions to build hybrid recommender systems [12]. These recommender systems can

leverage both collaborative filtering and content-based filtering techniques to enhance their

performances. One common type of side information that has been used is visual information

from item images [16]. Visual information can be used to discover users’ visual preferences,

which is highly advantageous, especially in certain domains such as clothing items. Due to

this benefit, many visually-aware recommender systems that consider visual information were

proposed. Since most visually-aware recommender systems leverage latent image features,

they typically lack transparency and explainability [16]. It can lead to distrust and skepticism

from users towards these systems. Therefore, improving the explainability of visually-aware

recommender systems is undoubtedly necessary and still challenging.

HIN-based recommender systems offer an additional advantage beyond accuracy: the

ability to provide explanations for recommendations. Unlike conventional and deep-learning

recommender systems that often lack transparency, HIN-based systems can offer clear reason-

ing behind each recommendation. They achieve this by utilizing the structure and connections

within HINs, ensuring recommendations are interpretable. This transparency not only builds

user trust but also allows for personalized recommendations based on user preferences. Al-
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though existing HIN-based recommender systems have succeeded in accuracy and explainabil-

ity, they mainly focus on semantic information such as user-item metadata within HINs. They

typically disregard visual information, creating a gap in leveraging it. By addressing this gap,

HINs could efficiently enable visually-aware recommendations while maintaining explainability.

The following chapters will focus on bridging this gap by proposing a novel approach that

integrates visual information into HINs and a novel explainable visually-aware recommender

system framework. This approach aims to leverage the strengths of both visual information and

HINs, enhancing the accuracy and explainability of visually-aware recommendations. Through

a comprehensive exploration of this approach, this thesis aims to contribute to the advance-

ment of transparent and accurate recommendations, thereby enriching the user experience

and confidence in the recommendations provided by these systems.
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Visually-Augmented Heterogeneous

Information Networks and

Visually-Aware Recommendations

As mentioned in Chapter 1, HINs have been ubiquitous in recommendation research due

to their capability of providing contextual information that can overcome the sparsity problem

as well as explainability in recommendations [5, 64, 148, 174, 175]. However, most HIN-based

recommender systems mainly focus on semantic information and ignore visual information.

Therefore, in accordance with the first research question in Section 1.2, this chapter introduces

a novel method that integrates visual features into a HIN, allowing the simultaneous utilization

of visual information and multi-hop relations for visually-aware recommendations.

In this chapter, a method for constructing a new type of HINs called visually-augmented

HINs is presented. These augmented HINs incorporate both semantic information from user

and item metadata and visual information from visual factor nodes and visual relations. These

nodes and relations are generated based on image features extracted using various image

feature extraction methods. Visually-augmented HINs are valuable for learning latent rep-

resentations of users and items, profiling users’ preferences from both semantic and visual

perspectives. However, it is noteworthy that the majority of existing approaches [85, 133]

only consider semantic information. To address this limitation, an approach for learning user

latent representations from a hybrid context that encompasses both semantic and visual infor-

This chapter has been published in [173] available at https://doi.org/10.1145/3397481.3450686
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mation is proposed in this chapter. To create this hybrid context, a novel type of meta-path

called probabilistic meta-paths is introduced. These meta-paths are utilized to create a hybrid

context for learning representations that can be employed in recommender systems. Finally,

this chapter outlines a visually-aware recommendation approach based on visually-augmented

HINs and the proposed user latent representation learning method. This integrated approach

holds the potential to significantly improve the accuracy and interpretability of visually-aware

recommendations. The contributions in this chapter are summarized as follows:

• A novel method is proposed for constructing visually-augmented HINs containing both

semantic information from user and item metadata and visual information in the forms

of visual factor nodes and visual relations.

• A new type of meta-path called probabilistic meta-paths is introduced to create a hybrid

context for learning representations suitable for visually-aware recommender systems.

• A method for learning user latent representations from the hybrid context of semantic

and visual information is proposed.

• A visually-aware recommendation approach based on visually-augmented HINs and uti-

lizing probabilistic meta-paths is proposed.

The rest of this chapter is organized as follows: Section 3.1 provides preliminaries as a

foundation for comprehending the proposed visually-augmented HINs. Section 3.2 introduces

the definition of visually-augmented HIN and the proposed method to construct a visually-

augmented HIN. Section 3.3 discusses probabilistic meta-paths used for forming users’ hybrid

contexts. Section 3.4 explains an approach used for learning user latent representations from

a hybrid context. Also, in this section, a visually-aware recommendation model using these

representations is discussed. Section 3.5 provides details on the experiments conducted to

evaluate the performance of this model as well as the proposed visually-augmented HINs and

probabilistic meta-paths. Finally, the experimental results and discussions are provided in

Section 3.6.

3.1 Preliminaries

As previously mentioned, constructing a visually-augmented HIN involves integrating visual

information (i.e., image features) extracted from item images into a regular HIN. To establish
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a comprehensive foundation for discussing the proposed augmentation method, this section

initially introduces the definitions of HIN and meta-path, explains a meta-path based node

embedding method called metapath2vec, and provides detailed explanations of some existing

image feature extraction methods that can be adopted for constructing visually-augmented

HINs.

3.1.1 Heterogeneous Information Network

A HIN is a type of network that models diverse types of entities and their relationships in

a network/graph. In other words, a HIN is a network that incorporates different types of

nodes and relations, representing various objects and their attributes. For example, in a movie

domain, nodes can represent actors, directors, movies, and genres, while edges can represent

relationships such as ”acted in,” ”directed,” and ”belong to”. HINs are becoming increasingly

important in various fields, including recommendation systems, due to their ability to represent

complex and diverse relationships among entities. They have been shown to be effective in

improving recommendation systems. By utilizing relationships among different entities, the

recommendations can be more personalized and accurate. HIN schema and HIN can be

defined as follows:

Definition 3.1. (HIN schema) [63] Let G = (N,R,W) denote a HIN schema consists of a

set of node types N, a set of relation types R and a non-negative weight function W : R→ R

that maps each relation type to a non-negative real value in R. Let Ni, Nj ∈ N be any

two node types, RNi,Nj ∈ R denotes the relation type connecting from Ni to Nj . For any

RNi,Nj ∈ R, let R−1
Ni,Nj

denote an inverse relation type from Nj to Ni.

Example 3.1. (HIN Schema) Figure 3.1 shows an example of a HIN schema in two different

domains: clothing and movie domains. In this example, there are four node types in the

clothing domain schema: user node type (U), item node type (P ), category node type (C),

and brand node type (B). Among these node types, there are six relation types: user-item

relation type (RUP ) and its inverse (R−1
UP ), item-category relation type (RPC) and its inverse

(R−1
PC), item-brand relation type (RPB) and its inverse (R−1

PB). Note that R−1
UP , R−1

CP and

R−1
PB are equivalent to item-user relation type RPU , item-category relation type RPC and

item-brand relation type RBP respectively. In the movie domain schema, there are six node

types: user node type (U), item node type (P ), genre node type (G), actor node type (A),

director node type (D), and tag node type (T ). Similar to the clothing domain schema, the
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(a) Clothing (b) Movie

Figure 3.1: Example of HIN schemas in two item domains: (a) clothing items

and (b) movie items. These schemas illustrate all node and relation types within

the HIN, with circles representing node types and arrows denoting relation types

between the connected node pairs.

movie domain schema consists of ten relation types: RUP , R−1
UP , RPG, R−1

PG, RPA, R−1
PA,

RPD, R−1
PD, RPT , and R−1

PT .

Definition 3.2. (HIN) [63] Given a HIN schema G = (N,R,W), a HIN is defined as a

weighted and directed graph G = (N ,R) where N is a set of nodes and R is a set of

relations. Each node and relation is associated with their type mapping function: φ : N → N

and ψ : R → R respectively. Given nodes x, y ∈ N , rx,y denotes a relation from x to y and

its weight is denoted by w(x, y) = W(ψ(rx,y)).

3.1.2 Meta-Path

In a HIN, a meta-path is a high-level abstraction of the structural relationship between different

types of nodes in the network. It is defined as a sequence of node types and the corresponding

relation types that connect them. In other words, a meta-path is a pattern that specifies a

type of relationship between different types of nodes in a HIN. For example, a meta-path in a

movie database could be actor-director-movie, which represents the sequence of nodes (actor,

director, movie) and the relations (acted-in, directed) that connect them. Mathematically, a

meta-path can be defined as follows:

Definition 3.3. (Meta-Path) [71] Given a HIN G, a meta-path m is defined as

N1

RN1,N2−−−−−→ N2 · · ·Nl

RNl,Nl+1−−−−−−→ Nl+1 (3.1)
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(abbreviated as N1N2 · · ·Nl+1), describes a composite relation RN1,N2◦· · ·◦RNl,Nl+1
between

N1 and Nl+1 where ◦ denotes the composition operator on relations. l is the length of m,

Nm = {N1, N2, ..., Nl+1} is the set of node types in m and Rm = {RN1,N2 , · · · , RNl,Nl+1
} is

the set of relation types in m. A path z = (n1n2 · · ·nl+1) in G is called a path instance of

m, if each ni belongs to type Ni in m for all i = 1, 2, ..., l + 1.

Meta-paths are used to capture the similarity between different nodes in the HIN, and

they can be used for a variety of tasks, such as entity recommendation, clustering, and link

prediction. They provide a way to focus on specific types of relationships in the network and

can be used to discover meaningful patterns and relationships that are not readily apparent

from the raw data. In recommender systems, meta-paths can be used to identify related items

that are not directly connected in a HIN. For example, if a user has expressed interest in a

particular actor, the system can use a meta-path that includes the actor, director, and movie

nodes to recommend other movies that the user may be interested in. This allows meta-paths

to be a powerful tool for analyzing and understanding complex relationships in HINs to model

users’ personal preferences. Due to this unique advantage of meta-paths, numerous methods

for node embedding based on meta-paths have been proposed [176]. The following section

discusses one of the ubiquitous meta-path based node embedding methods.

3.1.3 Metapath2vec

Metapath2vec is a node embedding method that is designed to learn representations of nodes

in HINs using meta-paths. Unlike homogeneous networks, which contain only one type of node

and one type of edge, HINs consist of multiple types of nodes and relations. Metapath2vec is

particularly effective for learning embeddings of nodes in such networks because it takes into

account the different types of nodes and relations and their relationships. To accomplish this,

metapath2vec utilizes the concept of meta-paths, which are sequences of node types and edge

types that describe the desired semantic relationship between nodes in the network.

The metapath2vec algorithm is based on the skip-gram model, which is a popular method

for learning word embeddings in natural language processing. The objective of the skip-gram

model is to predict the context words given a target word, or vice versa. To learn node

embeddings in metapath2vec, the same idea is applied to predict the context nodes given a

target node. Specifically, given a HIN G = (N ,R,W) with a schema (N,R,W), for each

Ni ∈ N, let Ni be the set of nodes in N with the type Ni. For each node n ∈ N , let N n
i

denote the set of neighbor nodes with the type Ni of n. Node embeddings are computed by
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maximizing the probability of having the neighborhood context N n
i , Ni ∈ N, given a node

n ∈ N as follows:

argmax
Θm

∑
n∈N

∑
Ni∈N

∑
ni∈Nni

log p(ni|n; Θm) (3.2)

where p(ni|n; Θm) is a softmax function defined as:

p(ni|n; Θm) =
exp(eni · en)∑

n′∈N exp(en′ · en)
(3.3)

where Θm represents the parameters and eni , en and en′ are the embedding vectors of node

ni, node n and node n′ respectively. To efficiently optimize this probability, the negative

sampling strategy proposed in [177] is adopted. This strategy uses a relatively small set of

nodes sampled from the HIN instead of the set of all nodes in the HIN. Given a negative

sample size Km, the objective of metapath2vec is finally defined as follows:

O(Θm) = log σ(eni · en) +

Km∑
k=1

Enk∼X [log σ(−enk · en)] (3.4)

where

σ(x) =
1

1 + exp(−x)
(3.5)

and X is the pre-defined distribution from which a negative node nk is drawn for Km times.

To determine the neighborhood context of node n, N n
i , meta-path based random walks

are performed. Given a meta-path m, N n
i is defined as a set of nodes that can be reached

by meta-path based random walks based on m starting from node n. Figure 3.5 shows an

example of how the neighborhood context of the “User 1” node is formed based on meta-path

random walks with meta-path UPCP . By following this meta-path, two item nodes, “T-shirt

C” and “T-shirt B”, can be put into the same context as “User 1” since they can be reached

by the meta-path based random walks starting from “User 1”, i.e., (“User 1”, “T-shirt A”,

“Category: T-shirt”, “T-shirt C”) and (“User 1”, “T-shirt A”, “Category: T-shirt”, “T-shirt

B”).

From Eq. 3.3 and 3.4, metapath2vec considers different types of nodes homogeneously

and draws negative sample nodes regardless of their types. To consider node type information,

the improved version of metapath2vec called metapath2vec++ was also proposed in [85]. In

metapath2vec++, the softmax function in Eq. 3.3 is normalized with respect to the node

type of the context ni, i.e.,

p(ni|n; Θm) =
exp(eni · en)∑

nj∈Nj exp
(
enj · en

) (3.6)
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where Nj denotes the set of nodes with the type Nj . The sampling distribution is also

specified by the node type of the neighborhood context ni. Thus, from Eq. 3.4, the objective

of metapath2vec++ is defined as

O(Θm) = log σ(eni · en) +

Km∑
k=1

Enkj∼Xj [log σ(−enkj · en)], (3.7)

where Xj is the pre-defined distribution from which a negative node nkj with the type Nj is

drawn for Km times. The parameters eni , en, and enkj
are updated by using the stochastic

gradient descent algorithm whose gradients are computed as follows:

∂

∂enkj
O(Θm) = (σ(enkj

· en − Ini [n
k
j ]))en (3.8)

∂

∂en
O(Θm) =

Km∑
k=0

(σ(enkj
· en − Ini [n

k
j ]))enkj

(3.9)

where Ini [nkj ] is an indicator function indicating whether nkj is the neighborhood context node

ni and when k = 0, n0
j = ni.

3.1.4 Image Feature Extraction Methods

In this subsection, several popular image (visual) feature extraction methods are discussed.

This thesis considers five methods: SIFT (Scale-Invariant Feature Transform)[25], SURF

(Speeded Up Robust Features)[26], ORB (Oriented FAST and Rotated BRIEF)[27], Color

Histogram[178], and latent feature extraction using a pre-trained CNN model [179]. Widely

applied in various computer vision tasks such as image classification [180, 181], image re-

trieval [179, 182, 183], and object recognition [184, 185], these methods are chosen in this

thesis for extracting visual features to understand users’ visual preferences. The following

paragraphs describe each method, covering their algorithms, advantages, and disadvantages.

SIFT (Scale-Invariant Feature Transform) SIFT [25] is an image processing technique

used for feature detection and extraction in gray-scale images. It has been widely used in

various computer vision applications. SIFT features are detected by identifying extrema in

the Difference of Gaussians (DoG) scale space, and then their descriptors are generated by

calculating gradient orientations and magnitudes in local regions around these keypoints.

Histograms of these gradient orientations are then combined to create a descriptor vector that

encapsulates the characteristics of keypoints. SIFT is invariant to scale and rotation. This

means that it can detect the same feature no matter whether the object is scaled or rotated.

59



Chapter 3 – Visually-Augmented HINs and Visually-Aware Recommendations

Also, SIFT is robust to changes in illumination. It can detect features in different lighting

conditions. However, SIFT is sensitive to noise in the image, which can lead to false detections

or inaccurate feature matching. Using it can also be computationally expensive and requires

a significant amount of memory to store the extracted features.

SURF (Speeded Up Robust Features) SURF [26] is an image processing technique that

is used to detect and describe keypoints in gray-scale images similar to SIFT. The key idea of

SURF is to efficiently compute keypoint features by using a series of approximations that are

less computationally expensive than other similar techniques. The SURF algorithm is based

on the same principles and steps as SIFT with slight differences. As opposed to SIFT, SURF

uses an approximation method that allows for faster and more robust computation, at the

cost of slightly lower accuracy in some cases. Additionally, SURF uses a different descriptor

computation method that is based on the responses of Haar wavelet filters, while SIFT uses

a Gaussian-weighted histogram of gradients. However, one disadvantage is that SURF is not

as invariant to affine transformations as SIFT. It may not perform well in highly textured or

cluttered images.

ORB (Oriented FAST and Rotated BRIEF) ORB [27] is another feature extraction

method applied to gray-scale images. It was developed as an alternative to SIFT and SURF

feature extraction methods in computation cost, matching performance, and license fees since

SIFT and SURF are patented. Therefore, ORB is widely adopted in both academic and com-

mercial areas. ORB is based on the FAST (Features from Accelerated Segment Test) [186]

keypoint detector and a modified version of the visual descriptor BRIEF (Binary Robust In-

dependent Elementary Features) [187]. The ORB method is computationally less expensive

than the SIFT method because it only requires one Gaussian filter per scale level, while SIFT

requires multiple filters per scale level. Additionally, ORB uses a faster feature descriptor

compared to SIFT, making it suitable for real-time applications. However, SIFT and SURF

are generally more robust and accurate than ORB because of their more complex scale space

construction and feature descriptors.

Color Histogram A color histogram is a histogram of the distribution of colors in an image,

indicating the number of pixels with a specified color in each of a fixed list of color ranges.

This list of colors depends on the color space of the images. For example, in an RGB color

space, there are three colors in the list: red, green, and blue. A color histogram ignores spatial
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locations of colors and instead focuses solely on the proportion of different colors present in an

image. It is ideal for recognizing objects, distinguishable by colors, even if their position and

rotation are unknown. In this work, the HSV (Hue-Saturation-Value) color space is considered

for generating color histograms of item images. The HSV color space is designed to be more

perceptually uniform than other color spaces such as RGB. Changes in the values of hue,

saturation, and value are more closely related to human perception of color than other color

spaces. Therefore, it is easier to understand, manipulate, and leverage color information in

this color space. Another significant advantage of the HSV color space is that it separates

color information from brightness information. It can be helpful in particular image processing

tasks where accurate processing of color information is required such as color thresholding

or object recognition. In this work, to effectively capture color information, both hue and

saturation dimensions are considered when generating color histograms. The range of hue is

[0, 179] and the range of saturation is [0, 255]. The size of each bin is 1; thus the total number

of bins is 46, 080 which is the total number of possible hue degrees (180) multiplied by the

total number of possible saturation values (256). Therefore, a color histogram generated from

each item image is 46, 080-dimensional.

Latent features Convolutional Neural Networks (CNNs) are a type of deep neural network

that has revolutionized the field of computer vision. These networks can automatically learn a

hierarchy of visual features from raw pixel data. Pre-trained CNN models are typically trained

on large datasets such as ImageNet [149] to extract high-level image features. These pre-

trained models can be used for feature extraction for many downstream computer vision tasks

such as image recognition and classification tasks. There are several ways to extract image

features from pre-trained CNN models. One common approach is to use the output of the last

convolutional layer of the model as the features. This layer extracts the most abstract and high-

level features of an image. These features can then be flattened and fed into a classifier or other

downstream models. One commonly used pre-trained CNN model is CaffeNet [136]. CaffeNet

is a CNN implemented in the Caffe (Convolutional Architecture for Fast Feature Embedding)

deep learning framework. Its architecture is based on the AlexNet [188] architecture. CaffeNet

consists of 8 layers, including 5 convolutional layers and 3 fully-connected layers. It was trained

on the ImageNet dataset and has been extensively used to extract visual features for many

downstream tasks including recommendation [37]. Typically, the output of the second fully-

connected layer, namely “FC7”, is extracted to obtain a 4096-dimensional visual feature vector
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for each image.

3.2 Construction of Visually-Augmented Heterogeneous Infor-

mation Network

A HIN typically contains only semantic factors which are attributes, characteristics, or features

of users and items that are derived from user and item metadata. Each individual factor has a

different influence on the recommendation made for users. Some examples of semantic factors

are category and brand for a clothing item domain and genre, actor, and director for a movie

domain. Multi-hop relations extracted from such a HIN can represent only users’ preferences

based on these semantic factors. However, one of the key features of HINs is that various

types of information, such as text, images, and other metadata, can be integrated into a single

network. This enables the representation of complex relationships among different entities.

Therefore, in this work, images are integrated into HINs in order to facilitate visually-aware

recommendation learning. Specifically, this work proposes a visually-augmented HIN that

contains pivotal visual factors from item images defined as follows:

Definition 3.4. (Visually-augmented HIN schema) Given a HIN schema G, a visually-

augmented HIN schema is defined as G′ = (N′,R′,W′) where N′ = N ∪ {V }, R′ = R ∪

{RUV , RPV }, W′ : R′ → R where V is a visual factor node type and RUV and RPV are

visual relation types connecting a user node to a visual factor node and an item node to a

visual factor node respectively.

Example 3.2. (Visually-Augmented HIN Schema) Figure 3.2 shows an example of a

visually-augmented HIN schema in a clothing domain and a movie domain. In this figure, all

nodes and edges shown in solid lines are all semantic types. In the clothing domain schema,

there are four semantic node types: user node type (U), item node type (P ), category node

type (C), and brand node type (B). In the movie domain schema, there are six semantic

node types: user node type (U), item node type (P ), genre node type (G), actor node type

(A), director node type (D), and tag node type (T ). They belong to the original HIN schema

shown in Figure 3.1. A visual factor node type (V ) is added to the original schema along with

two new relation types, i.e., user-visual factor relation (RUV and R−1
UV ) and item-visual factor

relation (RPV and R−1
PV ). These additional nodes and edges are presented with dash lines in

this figure.
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(a) Clothing (b) Movie

Figure 3.2: Example of visually-augmented HIN schemas in two item domains: (a)

clothing items and (b) movie items. The semantic node and relation types in the

original HIN are depicted with circles and arrows featuring solid line borders, while

the additional visual factor node type (blue circles) and visual relation types (green

and blue arrows) are depicted with circles and arrows featuring dashed borders.)

Figure 3.3: Example of visually-augmented HIN schema and visually-augmented

HIN. In the visually-augmented HIN, the upper plane represents the original HIN

consisting solely of semantic factor nodes, while the lower plane depicts the aug-

mented part of the visually-augmented HIN containing visual factor nodes.
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Definition 3.5. (Visually-Augmented HIN) Let V denote a set of visual factor nodes

and RV denote a set of relations connecting semantic and visual factor nodes. A visually-

augmented HIN G′ = (N ′,R′,W ′) is a HIN with a schema G′ where N ′ = N ∪ V, R′ =

R ∪ RV and W′ : R′ → R denotes a non-negative weight function that maps each relation

type to a real value in R.

Example 3.3. (Visually-Augmented HIN) Figure 3.3 shows a visually-augmented HIN with

the schema defined in Example 3.2. The above plane presents a regular HIN with only

semantic factors, i.e., category and brand. On the below plane, there are two visual factor

nodes connected to user and item nodes via user-visual factor relations and item-visual factor

relations.

Figure 3.4 illustrates the overall framework of how to construct a visually-augmented HIN.

There are three steps to construct a visually-augmented HIN given an original HIN containing

only semantic factors:

Step 1: Image feature extraction: Given item images, an image feature extraction method

is adopted to extract features in these images. These features are considered as visual

information to be integrated into a HIN in the next step. Various feature extraction

methods can be utilized depending on the specific types of image features preferred. In

this work, five methods are considered.

Step 2: Visual factor nodes generation: After obtaining image features of item images,

visual factor nodes are generated. These nodes are defined as representatives of significant

image features extracted from item images and obtained by using clustering the extracted

features.

Step 3: Visual relations integration: The last step is to integrate visual relations connecting

between user/item and visual factor nodes in the original HIN. In this work, two types of

visual relations are considered, i.e., user-visual factor relation type and item-visual factor

relation type.

More details of these steps are discussed in the following section.
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Figure 3.4: Overall framework of how to construct a visually-augmented HIN consisting of three steps: (1) image feature extraction, where

visual features are extracted from item images using a selected method, (2) visual factor node generation, where features from the previous

step are clustered using K-means clustering method to identify visual factor nodes, and (3) visual relations integration, where visual factor

nodes previously generated are connected with user and item nodes in the original HIN via visual factor relations.
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3.2.1 Image Feature Extraction

To construct a visually-augmented HIN, image features are first extracted from item images.

Five image feature extraction methods are considered in this thesis, i.e., SIFT, SURF, ORB,

Color Histogram, and a pre-trained CaffeNet model. Overall, SIFT, SURF, and ORB primarily

focus on capturing information related to the texture, shape, and structure of visual elements

within an image. They excel at detecting and describing distinctive features that exhibit spe-

cific patterns. These patterns include textures, corners, edges, and blobs. In contrast, color

histograms capture the color information present in an image. Indeed, textures, shapes, and

colors collectively cover a majority of the factors associated with users’ visual preferences.

However, considering that users’ visual preferences can be intricate and extend beyond the

capabilities of these individual feature extraction techniques, latent features extracted from

CaffeNet are adopted. The rest of this thesis will refer to the latent features extracted from

CaffeNet as “CNN features”. This differentiation is intended to clearly highlight the differ-

ence between the latent features of images and the latent features of users/items obtained

from recommendation models. The incorporation of CNN features serves to bridge the gap

between the complexities of users’ visual preferences and the limitations of the aforementioned

feature extraction methods. By using all of these feature types, a broad range of visual in-

formation that likely corresponds to users’ preferences is covered. Note that there are other

more advanced image feature extraction methods, such as ResNet [189], GradCAM [190], and

EfficientNet [191], that can be used for constructing visually-augmented HINs. However, this

thesis focuses on these five feature extraction methods due to their simplicity in implementa-

tion and their usage in previous work on visually-aware recommender systems [37, 81, 92, 192].

3.2.2 Visual Factor Nodes Generation

In order to construct a visually-augmented HIN, visual factor nodes must be first generated.

Visual factor nodes are representatives of significant image features extracted from item im-

ages. These image features can be of any type such as local keypoint descriptors from SIFT

[25], SURF [26] or ORB [27], color histograms or hidden layer outputs from pre-trained deep

learning models previously described. In this work, each feature extraction method is consid-

ered individually to generate visual factor nodes, without fusion of different types of visual

features.

Given a dataset containing item images, the image features of all images are extracted
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using a selected feature extraction method. For SIFT, SURF, and ORB, multiple image feature

vectors can be obtained per image. In the case of the color histogram and CNN features,

one image feature vector is generated per image. These extracted feature vectors are then

clustered into kV clusters by using the K-means clustering method. Note that other clustering

methods can also be applied. The K-means clustering method is selected due to its popularity

and simplicity. After clustering, visual factors are defined as cluster centers of the extracted

image features. Therefore, kV cluster centers namely v1,v2, ...,vkV are obtained. Each of

them is a vector that is a representative of image features (which are also vectors) within its

cluster. Based on these visual factors, a set of visual factor nodes

V = {v1, v2, v3, ..., vkV } (3.10)

is formed and added to N ′ where vi is a visual factor node of visual factor vi for every

i = 1, 2, 3, ..., kV .

3.2.3 Visual Relations Integration

After visual factors are generated, each item node is then connected to visual factor nodes

depending on its image features. Specifically, for each image feature vector f extracted from

an image of item p, its cluster is identified. Suppose that f belongs to cluster vi. Then,

the item node of p is connected to the visual factor node vi in the visually-augmented HIN.

In other words, rp,vi where ψ(rp,vi) = RPV and rvi,p where ψ(rvi,p) = R−1
PV are added to

RV . Note that this process is repeated for every image feature vector extracted from the

image. Therefore, in the case that there are multiple image feature vectors extracted from the

image, the item node corresponding to this image can be connected to multiple visual factors.

For example, by using SIFT as a feature extraction method, multiple feature vectors can be

obtained from an image of a given item p. Each of them may belong to a different cluster,

i.e., it corresponds to a different visual factor. In this case, the item p node is connected to

multiple visual factor nodes in the visually-augmented HIN.

Visual factors nodes are also connected to user nodes in order to facilitate users’ visual

preferences modeling. Given a user u, to connect the node of u to visual factor nodes, the

user visual preference profile vu must be computed first. Let Pu be the set of all u’s items.

vu is computed by applying mean pooling [193] on all visual factors of his/her items in Pu.

Specifically, vu is defined as:

vu =
∑
p∈Pu

∑
vi∈Vp

vi (3.11)
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where Vp is the set of visual factor nodes connected to item node p and vi is the visual factor

(which is a vector) corresponding to visual factor node vi in Vp.

Then, vu is compared with every visual factor. The cosine similarity is used as a metric

in this case. The set of top-ks visual factors that are similar to user u is constructed. The

relations with the types RUV and R−1
UV between u and each of the selected visual factors

are added to R′ where R′ denotes the set of relations in a visually-augmented HIN. In other

words, ru,vi where ψ(ru,vi) = RUV denoting a relation type connecting a user node to a visual

factor node and rvi,u where ψ(rvi,u) = R−1
UV denoting an inverse of RUV are added to RV

for each visual factor vi in the set of top-ks most similar visual factors of user u.

3.3 Probabilistic Meta-Path

Regular meta-paths can represent only multi-hop relations that are static. For example, let U ,

P , and C denote the user, item, and category node types. A meta-path UPCP suggests that

a user may like an item only because it is in the same category as a user’s previously interacted

item. In some cases, users’ preferences may depend on a mixture of factors. For instance, a

user may prefer an item in the same category or an item that has a similar appearance as one

of his/her items. Such combinations of multiple factors are called hybrid factors. To capture

such preferences based on hybrid factors, this work uses a meta-path called probabilistic meta-

path in which hybrid factors are considered based on pre-defined probabilities. It is defined as

follows:

Definition 3.6. (Probabilistic Meta-Path) Given a visually-augmented HIN G′, a proba-

bilistic meta-path

m′ = N1N2 · · ·Ni−1{δ ∗Ni ⊕ (1− δ) ∗Nj}Ni+1 · · ·Nl (3.12)

is defined as a sequence of node types, relation types, and their transition probability in schema

G′ of G′ where ⊕ is a symbol that represents the “or” relation of the semantic node type Ni

and the visual factor node type Nj and δ is a probability 0 ≤ δ ≤ 1. It contains at least one

visual factor node type and one visual relation type. Starting from node type Ni−1, the next

node type will go to semantic node type Ni with the probability δ and go to visual factor node

type Nj with the probability 1− δ. For simplicity, the probability is ignored in the annotation.

Therefore, m′ can be denoted as N1N2 · · ·Ni−1{Ni⊕Nj}Ni+2 · · ·Nl. The probability δ can

be freely adjusted. When δ = 1, visual factor node types will not be considered. They then
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become regular meta-paths without hybrid factors involved. In other words, regular meta-

paths can be considered as special cases of probabilistic meta-paths where the probability

δ = 1.

Example 3.4. (Probabilistic Meta-Path) Figure 3.5 shows an example of using the regular

meta-path UPCP and the probabilistic meta-path UP{C ⊕ V }P with the probabilities of

going to category node type (C) δ and visual factor node type (V ) 1− δ. The numbers and

symbols on the edges indicate the probabilities assigned on those edges. By following the

regular meta-path UPCP , a path instance (“User 1”,“T-shirt A”,“Category: T-shirt”,“T-

shirt B”) can be found. This suggests that “User 1” may like “T-shirt B” because it is in the

same category as “T-shirt A”. On the other hand, by following UP{C ⊕ V }P , another path

instance, (“User 1”,“T-shirt A”,“v1”,“T-shirt B”) can be found. It shows that “User 1” may

also like “T-shirt B” because it has the same visual factor (v1) as “T-shirt A”. It can be seen

that UP{C ⊕ V }P can reveal “User 1”’s preference in a more complex way compared to the

regular meta-path UPCP .
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Figure 3.5: Example of visually-augmented HIN schema, visually-augmented HIN and the comparison of using the regular meta-path UPCP

and the probabilistic meta-path UP{C⊕V }P where U , P , C, and V denote the user, item, category, and visual factor node types, respectively.

The probabilistic meta-path enables the discovery of more diverse multi-hop relations and reveals “User 1”’s preference in a more complex

way compared to the regular meta-path.
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3.4 The Proposed Recommendation Method Based on a Visually-

Augmented HIN

Based on visually-augmented HINs, any graph-based recommendation models such as KGAT

[5] can be applied to learn recommendations directly. However, learning latent representations

or embedding of nodes has recently been proven to be effective for recommender systems and

other applications [148, 174]. Therefore, this work proposes a visually-aware recommendation

approach that uses embeddings of nodes in a visually-augmented HIN. This approach is based

on a user-based CF-KNN model which is a simple yet effective recommendation model. Unlike

the traditional CF-KNN model, the proposed approach uses node embeddings generated from

a visually-augmented HIN to profile users instead of a user-item interaction matrix. To obtain

node embeddings, the metapath2vec node embedding method is adopted. This method is

applied with a visually-augmented HIN and a probabilistic meta-path to generate node em-

beddings comprising of visual information. This section provides a detailed description of the

proposed approach.

The proposed recommender system is based on a user-based CF-KNN model and the

metapath2vec method. The idea is to use the metapath2vec method to generate user repre-

sentations based on a given visually-augmented HIN. Then, these user representations are used

to predict recommendations using the CF-KNN method. For each user, to capture his/her

personal preferences, his/her user representation is defined as a combination of the embed-

dings of his/her items in a visually-augmented HIN. Therefore, the first step is to generate

item node embeddings in a given visually-augmented HIN. Node embedding methods using

meta-paths including metapath2vec have been popularly used to generate node embeddings

[133]. However, these approaches only consider semantic factors to form a neighborhood

context. To consider both semantic and visual factors, a hybrid neighborhood context based

on a probabilistic meta-path (defined in Section 3.6) is used instead. Given a probabilistic

meta-path m′ = UN1N2 · · ·Ni−1{δ ∗ Ni ⊕ (1 − δ) ∗ Nj}Ni+1 · · ·NlP where U denotes a

user node type, P denotes an item node type, Ni denotes a semantic node type, and Nj

denotes a visual factor node type, a hybrid neighborhood context is defined as a set of item

nodes that can be reached by meta-path based random walks based on m′ starting from a

given user node u. For example, Figure 3.6 illustrates an example of a visually-augmented

HIN and a neighborhood context formed based on a regular meta-path UPCP and a hybrid

neighborhood context formed based on a probabilistic meta-path UP{C ⊕ V }P . Suppose
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Figure 3.6: Example of a visually-augmented HIN and a neighborhood context

formed based on a regular meta-path UPCP and a hybrid neighborhood context

formed based on a probabilistic meta-path UP{C ⊕ V }P where U , P , C, and V

denote the user, item, category, and visual factor node types, respectively. This

example illustrates how the hybrid context enables the inclusion of a broader range

of items within the same context.

that each relation between any two nodes with the same relation type is equally important. A

probabilistic meta-path UP{C⊕V }P forms a hybrid neighborhood context where those items

that either have the same visual factor value or have the same category are considered similar.

For item p1, following this meta-path, item p5 that has the same visual factor value as p1 has

the probability 1 − δ of being put in the same context with p1, while item p2 that has the

same category as p1 has the probability δ of being put in the same context with p1. Different

from other previous work that only considers symmetric meta-paths, meta-paths used in the

proposed framework are not restricted to only symmetric meta-paths, as the connectivity of

different types of nodes is important in recommender systems [175].

After obtaining a hybrid neighborhood context based on a probabilistic meta-path, meta-

path2vec is applied to this context to generate item node embeddings of all items that appear

in this context. Item node embeddings generated from metapath2vec are treated as item

representations. These item representations capture similarities among items that belong

in the same hybrid neighborhoods. They can be used as item features in content-based

filtering recommender systems or used in an item-based CF-KNN model to predict recom-

mendations. However, to leverage both information from the item side and user side, in this

work, these item representations are used to compute user representations for a user-based

CF-KNN model. Similarly to [193], each user representation is computed by using the mean of

item node embeddings of this user’s items. All user representations are then used to produce

recommendations. The recommendation process is the same as the traditional user-based
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CF-KNN model except the input is the generated user representations rather than a user-item

interaction matrix.

After obtaining all user representations, the next step is to calculate similarity scores

between users based on their representations. Several similarity metrics can be used, such

as cosine similarity or Pearson correlation. In a CF-KNN model, the K-Nearest Neighbors

algorithm is used to identify the K most similar users to the target user.

After that, the K-nearest neighbors are selected based on their similarity scores and con-

sider only neighbors that have interacted with the same items the target user has not yet

interacted with. Then, recommendations are generated for the target user based on the pref-

erences of the selected neighbors. The system can either recommend items that the neighbors

have rated highly or predict the recommendation scores of items towards the user. Specifi-

cally, given a user u and unobserved candidate item p, the recommendation score x̂up can be

determined by

x̂up =
∑

uk∈N pu

sim (u, uk) (3.13)

whereN p
u is the set of u’s K-nearest neighbors who have interacted with item p and sim(u, uk)

denotes the similarity between user u and user uk. Finally, the candidate items are ranked

based on the computed scores and recommended to the target user.

3.5 Experimental Setup

The main objective of the experiments is to show the effectiveness of the proposed approach

and how it performs when different visual features and different probabilistic meta-paths

are applied in a top-N recommendation task. Also, since visually-augmented HINs are also

applicable to many HIN-based recommender systems, the experiments were conducted to

show the possibility and effectiveness of using visually-augmented HINs in a state-of-the-art

HIN-based recommender system.

3.5.1 Datasets

The experiments were conducted on two datasets:

• MovieLens dataset [194, 195, 196, 197], an extension of the MovieLens dataset called

HetRec2011-MovieLens-2K. It contains user tagging data, movie genres, actors, direc-

tors, and tags. As for visual information, movie posters were used as image data in this
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work. These movie posters were scraped from the OMDB [198] website and matched

with the movie titles in the dataset. In these experiments, 5 node types and 10 rela-

tion types (inverse relation types included) were considered. These selected node and

relation types are listed in Table 3.1.

• Amazon dataset [158, 199], consisting of users’ reviews and item metadata in the

”Clothing, Shoes and Jewelry” category. Only 5-rated reviews were retained in the

dataset to ensure the users’ satisfaction when learning their preferences. User ratings

were converted to implicit feedback, i.e., 1 indicating that the user has rated the item

and 0 indicating otherwise. For each item, its image link is provided in the dataset.

These item images were downloaded via these links and used in the proposed approach.

In these experiments, 4 node types and 8 relation types (inverse relation types included)

were considered. The list of node and relation types used in the experiments is provided

in Table 3.1.

Table 3.1: The statistics of MovieLens and Amazon datasets

Dataset Node type #nodes Relation type #relations

MovieLens

user (U) 152 RUP 3,870

item (P ) 301 RUV 152

genre (G) 18 RPG 871

tag (T ) 3,031 RPT 11,289

visual factor (V ) 100 RPV (SIFT) 3,009

RPV (SURF) 3,009

RPV (ORB) 3,007

RPV (CH) 301

RPV (CNN) 301

Amazon

user (U) 12,491 RUP 207,281

item (P ) 1,019 RUV 12,491

category (C) 604 RPC 5,775

visual factor (V ) 100 RPV (SIFT) 11,116

RPV (SURF) 1,979

RPV (ORB) 45,536

RPV (CH) 964

RPV (CNN) 964
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For both datasets, to avoid the sparsity problem, 10-core data in which users and items

have at least ten reviews or tagging records each were selected.

3.5.2 Parameterization and Experiment Environment

Visually-augmented HINs of both datasets were constructed based on five different visual

feature types previously mentioned in Section 3.2. SIFT, SURF, and ORB features and Color

Histograms were extracted by using OpenCV (Open Source Computer Vision Library) [200]

which is an open-source computer vision and machine learning software library. It provides

a comprehensive set of functions for image feature extraction written in C++ and supports

multiple programming languages, including Python. For SIFT, there was no maximum number

of keypoints set for each image. The initial value for the Gaussian blur that was applied to

the image was set to 1.6. The number of layers per octave in the Gaussian pyramid was set

to 3. The contrast threshold for keypoint detection was set to 0.04. The edge threshold for

detecting poorly localized keypoints was set to 10. For SURF, the threshold value for the

Hessian matrix response was set to 100. The number of octaves was set to 4. The number

of layers per octave was set to 3. The size of descriptors was set to 64 dimensions. For ORB,

the maximum number of keypoints was set to 500. The pyramid scale factor was set to 1.2.

The number of pyramid levels in the image pyramid was set to 8. The threshold for the FAST

corner detector was set to 20. The edge threshold was set to 31. The size of the patch used

for computing the BRIEF descriptor was set to 31. CNN features were extracted from the

second fully-connected layer, namely “FC7”, of the pre-trained CaffeNet [201]. Each CNN

feature is 4096-dimensional. It is worth noting that for SIFT, SURF, and ORB, there were

multiple image features for each image depending on the number of its keypoints. Figures 3.7

and 3.8 display examples of keypoints detected by SIFT, SURF, and ORB on a movie poster

image and a clothing item image, respectively. In these figures, each keypoint is marked by a

circle. As shown in these examples, these feature extraction methods yield varying numbers of

keypoints, consequently leading to different numbers of extracted image features. Meanwhile,

there was only one Color Histogram and CNN feature extracted for each image.

For each feature type, the number of visual factors (kV ) was set to 100 (i.e., K = 100

in K-means clustering algorithm). The number of representative visual factors per user was

set to 1 (i.e., k∗ = 1). This parameter was chosen after comparing with k∗ = 3, 5 and 10.

They had similar accuracy but the selected setting required less computational time. The

basic statistics of these HINs are shown in Table 3.1. To ensure that the hybrid contexts can
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(a) SIFT (b) SURF (c) ORB

Figure 3.7: Examples of keypoints detected by (a) SIFT, (b) SURF, and (c) ORB

on a movie poster image, with each keypoint indicated by a circle. These examples

illustrate the varying numbers of keypoints detected by each method.

(a) SIFT (b) SURF (c) ORB

Figure 3.8: Examples of keypoints detected by (a) SIFT, (b) SURF, and (c) ORB

on a clothing item image, with each keypoint indicated by a circle. These examples

illustrate the varying numbers of keypoints detected by each method.

cover sufficient information, the number of generated paths for every starting node was set

to 20. Some popularly used semantic meta-paths in literature [122] were selected to conduct

experiments. The selected semantic meta-paths m1,1, m1,2, m1,3 and m1,4 are presented in

Table 3.2. These meta-paths were used with regular HINs without visual factor nodes and

visual relations. Meta-paths involving a visual factor node type V and probabilistic meta-

paths were created based on these meta-paths. They are presented in Table 3.3. Note that

meta-path m2,1 is a regular meta-path that involves a visual factor node type. There is no

probability involved in this meta-path. The purpose of using this meta-path is to compare

with m1,1 which is a similar semantic meta-path that does not consist of any visual factor
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Table 3.2: The regular meta-paths selected for experiments

Meta-path MovieLens dataset Amazon dataset

m1,1 UP UP

m1,2 UPUPUP UPUPUP

m1,3 UPGPUP UPCPUP

m1,4 UPTPTP -

Table 3.3: The probabilistic meta-paths selected for experiments

Meta-path MovieLens dataset Amazon dataset

m2,1 UV P UV P

m2,2 U{P ⊕ V }UP{U ⊕ V }P U{P ⊕ V }UP{U ⊕ V }P

m2,3 UP{G⊕ V }P{U ⊕ V }P UP{C ⊕ V }P{U ⊕ V }P

m2,4 UP{T ⊕ V }P{T ⊕ V }P -

node type. Meanwhile, m2,2, m2,3 and m2,4 are probabilistic meta-paths. The first and the

second probabilities in these probabilistic meta-paths were varied among {0, 0.25, 0.5, 0.75, 1}

to optimize the results. As for node embedding, the skip-gram method was applied with the

size of embeddings set to 128 while the other settings were set as in [85]. For the user-

based CF models, the number of user neighbors was set to 10 for all experiments. Regarding

hardware settings and computing resources, a machine with a dual-core Intel(R) 1.80GHz

CPU, an NVIDIA 16GB GPU, and 128GB RAM was employed.

3.5.3 Evaluation Metrics

The top-N recommendation performance was evaluated by three commonly used metrics,

i.e., Mean Precision@N (Precision@N), Mean Recall@N (Recall@N), and Mean F1 Score@N

(F1@N) with N = 1, 5, 10, 50, 100. These metrics are defined as follows:

Precision@N =
1

|U|
∑
u∈U

|Pu ∩ PNu |
N

, (3.14)

Recall@N =
1

|U|
∑
u∈U

|Pu ∩ PNu |
|Pu|

, (3.15)

and

F1@N = 2 · Precision@N ·Recall@N
Precision@N +Recall@N

(3.16)
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where U is a set of users, Pu is the set of user u’s items and PNu is the set of top-N

recommended items of user u.

3.6 Results and Discussions

3.6.1 Comparison of the proposed approach and the baseline

In this section, the goal is to validate whether the proposed approach using visually-augmented

HINs and probabilistic meta-paths is more effective than the approach using regular HINs and

meta-paths in a top-N recommendation task. Therefore, the baseline model selected for

comparison is a similar recommendation model using regular HINs and meta-paths. The

proposed approach and the baseline chosen for this experiment are as follows:

• MR: a user-based CF-KNN model using metapath2vec++ [85] with regular meta-paths.

This approach is similar to the proposed approach but visual factors are ignored. It is

used to evaluate how effectively the proposed approach leverages visual information

in visually-augmented HINs and produces recommendations based on this information.

Similar to the proposed approach, metapath2vec++ was adopted to generate node em-

beddings of HINs without considering visual factor nodes and visual relations. Based

on these embeddings, user representations were generated as in the proposed approach.

Then, a CF-KNN model was used to produce recommendations based on these repre-

sentations. The meta-paths used in this approach are in Table 3.2. Each meta-path

was used to build a recommendation model. Other parameters including those in the

metapath2vec++ method and a CF-KNN model were set as same as in the proposed

approach.

• VR: the proposed approach using visually-augmented HINs and probabilistic meta-paths.

This approach utilizes visual information integrated into visually-augmented HINs via

probabilistic meta-paths and metapath2vec++ node embedding method. The meta-

paths used in this approach are presented in Table 3.3. Similar to MR, each meta-path

was used to build an individual recommendation model. For each model based on

each meta-path, the parameters were fine-tuned, and the best result was selected for

comparison.

First, MR and VR were compared when each pair of semantic meta-path (m1,i) and its

corresponding meta-path/probabilistic meta-path with a visual factor node type (m2,i) was
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Table 3.4: The selected parameters of VR-m2,1, VR-m2,2, VR-m2,3, and VR-

m2,4 on MovieLens and Amazon datasets for comparisons. All probabilistic

meta-paths (m2,1, m2,2, m2,3, and m2,4) are presented in Tables 3.3 (second

column for MovieLens dataset and third column for Amazon dataset).

Dataset Model Meta-path probabilities Visual feature type

MovieLens

VR-m2,1 - SURF

VR-m2,2 (0.75, 0.75) ORB

VR-m2,3 (0.75, 0.25) ORB

VR-m2,4 (0.25, 0.75) CNN

Amazon

VR-m2,1 - SIFT

VR-m2,2 (0.0, 0.5) ORB

VR-m2,3 (1.0, 1.0) SURF

applied (for each i = 1, 2, 3 and 4). The parameters of VR-m2,1, VR-m2,2, VR-m2,3, and VR-

m2,4 selected for comparison on this dataset are shown in Table 3.4. These parameters include

probabilities in probabilistic meta-paths (denoted as a tuple where the first and the second

elements are the first and the second probabilities where they are applicable respectively) and

the visual feature type used for constructing the visually-augmented HIN. The parameters that

gave the best result were selected for comparison.

Table 3.5 presents the F1@N results for both the baseline MR and the proposed approach

VR on MovieLens and Amazon datasets, with the highest F1@N values in each column

highlighted in bold. The results from this table suggest that the proposed approach VR

outperformed the baseline approach MR, with VR models consistently achieving the highest

F1@N values across various probabilistic meta-paths. Specifically, on MovieLens dataset,

VR-m2,2 performed best when N = 1 and 5, VR-m2,4 performed best when N = 10, and

VR-m2,3 performed best when N = 50 and 100. Meanwhile, on Amazon dataset, VR-m2,1

consistently demonstrated superior performance across all values of N .

For a more in-depth analysis of the proposed approach’s performance and comparisons with

the baseline approach, the results of precision and recall are discussed next. Figure 3.9a, Figure

3.9b, Figure 3.9c, and Figure 3.9d show comparisons of MR-m1,1 and VR-m2,1, MR-m1,2

and VR-m2,2, MR-m1,3 and VR-m2,3, and MR-m1,4 and VR-m2,4 on MovieLens dataset

respectively. From Figure 3.9a, VR-m2,1 outperformed MR-m1,1 in terms of both Precision@N
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Table 3.5: F1@N results of the baseline MR and the proposed approach VR on

MovieLens and Amazon datasets

Dataset Model F1@1 F1@5 F1@10 F1@50 F1@100

MovieLens

MR-m1,1 0.0182 0.0595 0.0703 0.0671 0.0595

MR-m1,2 0.0239 0.0575 0.0600 0.0645 0.0581

MR-m1,3 0.0249 0.0516 0.0662 0.0657 0.0585

MR-m1,4 0.0228 0.0524 0.0656 0.0656 0.0592

VR-m2,1 0.0267 0.0583 0.0627 0.0669 0.0586

VR-m2,2 0.0438 0.0641 0.0662 0.0660 0.0609

VR-m2,3 0.0378 0.0640 0.0650 0.0737 0.0615

VR-m2,4 0.0345 0.0608 0.0710 0.0714 0.0601

Amazon

MR-m1,1 0.0383 0.0388 0.0283 0.0089 0.0072

MR-m1,2 0.0369 0.0383 0.0291 0.0138 0.0077

MR-m1,3 0.0364 0.0372 0.0259 0.0074 0.0053

VR-m2,1 0.1024 0.0989 0.0670 0.0194 0.0126

VR-m2,2 0.0618 0.0548 0.0389 0.0160 0.0089

VR-m2,3 0.0596 0.0556 0.0368 0.0104 0.0058

and Recall@N when N = 1. This indicates that, top-1 recommendations obtained from VR-

m2,1 are more accurate than those obtained from MR-m1,1. VR-m2,1 also outperformed

MR-m1,1 in terms of Precision@N when N = 2. For N = 10, 50 and 100, the proposed

approach performed either slightly worse than MR-m1,1 or equally as well as this baseline.

One reason could be that, for this movie domain, relying on only visual factors by using meta-

path UV P may not be as effective as using meta-path UP . However, the results of top-1

recommendations depict the potential of leveraging visual factors in the proposed approach

by using meta-path UV P . Figure 3.9b shows that VR-m2,2 performed better than MR-M1,2

model in terms of Precision@N for every N . In terms of Recall@N, VR-m2,2 performed better

than MR-M1,2 when N = 1. When N increases, their performance becomes similar. This

result is similar to the result of MR-m1,3 and VR-m2,3 and MR-m1,4 and VR-m2,4. They

both outperformed their corresponding baseline models in terms of Precision@N for every N

and Recall@1 as can be seen in Figure 3.9c and Figure 3.9d. Considering all the results of the

proposed models, it can be seen that VR-m2,2, VR-m2,3, and VR-m2,4 performed similarly
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well in terms of both Precision@N and Recall@N. However, for further analysis, VR-m2,2 was

selected as the best model for this dataset as it achieved the highest Precision@N among the

others. These results suggest that using probabilistic meta-paths to consider both semantic

and visual factors is more effective than using regular meta-paths without considering visual

factors.

On Amazon dataset, comparisons of MR-m1,1 and VR-m2,1, MR-m1,2 and VR-m2,2,

and MR-m1,3 and VR-m2,3 are shown in Figure 3.9a, Figure 3.9b, and Figure 3.9c respectively.

Similar to MovieLens dataset, the parameters of VR-m2,1, VR-m2,2, and VR-m2,3 selected

for comparison on Amazon dataset are shown in Table 3.4. On Amazon dataset, VR-m2,1

outperformed the baseline model MR-m1,1 in terms of both Precision@N and Recall@N for

every N as shown in Figure 3.9a. Compared to MovieLens dataset, VR-m2,1 performed

better on Amazon dataset. This means that relying on only visual factors by using meta-

path m2,1 = UV P is more effective on Amazon dataset than MovieLens dataset. This

emphasizes that visual factors are more influential in the clothing domain than the movie

domain. Considering probabilistic meta-paths involving hybrid factors, in Figure 3.9b, VR-

m2,2 outperformed the baseline model MR-m1,2 in terms of both Precision@N and Recall@N

for every N as well. In Figure 3.9c, VR-m2,3 performed better than MR-m1,3 in terms of

Precision@N for every N and outperformed MR-m1,3 in terms of Recall@N for N = 1, 5, 10

and 50. Comparing three VR models, i.e., VR-m2,1, VR-m2,2, and VR-m2,3, on Amazon

dataset, VR-m2,1 performed best among these models. This suggests that using meta-path

UV P is more effective than using U{P ⊕ V }UP{U ⊕ V }P and UP{C ⊕ V }P{U ⊕ V }P

on this dataset. However, compared to those semantic meta-paths, using meta-paths that

involve a visual factor node type is more effective. This indicates the effectiveness of the

proposed approach using the visually-augmented HIN and the probabilities meta-paths on

Amazon dataset.
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(a) MR-m1,1 and VR-m2,1

(b) MR-m1,2 and VR-m2,2

(c) MR-m1,3 and VR-m2,3

(d) MR-m1,4 and VR-m2,4

Figure 3.9: Comparisons of MR and VR when each pair of semantic meta-

path (m1,i) and its corresponding probabilistic meta-path (m2,i) was applied (for

i = 1, 2, 3, 4) on MovieLens dataset. All semantic meta-paths are presented in

Table 3.2 (second column), and probabilistic meta-paths are presented in Table 3.3

(second column). These comparisons indicate that the proposed model VR, using

a probabilistic meta-path, performed better than the baseline MR, using a similar

meta-path without considering visual factors.
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(a) MR-m1,1 and VR-m2,1

(b) MR-m1,2 and VR-m2,2

(c) MR-m1,3 and VR-m2,3

Figure 3.10: Comparisons of MR and VR when each pair of semantic meta-

path (m1,i) and its corresponding probabilistic meta-path (m2,i) was applied (for

i = 1, 2, 3, 4) on Amazon dataset. All semantic meta-paths are presented in

Table 3.2 (third column), and probabilistic meta-paths are presented in Table 3.3

(third column). These comparisons indicate that the proposed model VR, using

a probabilistic meta-path, performed better than the baseline MR, using a similar

meta-path without considering visual factors.
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3.6.2 Comparison of different visual features

To discuss the effects of visual factor types, VR models using different types of visual factors,

i.e., SIFT, SURF, ORB, Color Histogram, and CNN, were compared. For each dataset, the

best meta-path was selected based on the results from the previous section. For MovieLens,

the best meta-path is m2,4. For Amazon dataset, the best meta-path is VR-m2,1. Then,

the VR approach with the selected meta-path was applied with each visual factor type for

comparison. Figure 3.11 shows the results of VR models using different types of visual factors

on MovieLens and Amazon datasets where VR-mi-S, VR-mi-F, VR-mi-O, VR-mi-H and

VR-mi-C denote the VR models using SIFT, SURF, ORB, Color Histogram and CNN visual

factors with the meta-path mi respectively.

On MovieLens dataset, the results are in Figure 3.11a. From this figure, VR-m5-H

and VR-m5-C outperformed the other models in terms of Precision@N. Comparing these two

models in terms of Precision@N, when N = 1 and 5, they both performed equally well. When

N = 10, VR-m5-H performed slightly better than VR-m5-C. Meanwhile, when N = 50 and

100, VR-m5-C performed better than VR-m5-H. Despite the difference in Precision@N, in

terms of Recall@N, all models performed similarly. Based on the results of Precision@N, it can

be seen that Color Histogram and CNN features are more effective in capturing users’ visual

preferences on the movie posters compared to the other features. On Amazon dataset, VR-

m2,1-S performed better than the other models in terms of both Precision@N and Recall@N.

The second-best model is VR-m2,1-C using the CNN features extracted from item images.

This model also performed similarly to VR-m2,1-O using the ORB features. On the other

hand, VR-m2,1-H performed worse compared to the others. This suggests that texture and

shape features are more effective in recognizing users’ preferences compared to the color

feature of items in this dataset.
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(a) MovieLens

(b) Amazon

Figure 3.11: Accuracy results of the proposed approach VR with different visual

factor types on (a) MovieLens dataset and (b) Amazon dataset where VR-mi-

S, VR-mi-F, VR-mi-O, VR-mi-H and VR-mi-C denote the VR models using

SIFT, SURF, ORB, Color Histogram and CNN visual factors with the meta-path

mi respectively.

85



Chapter 3 – Visually-Augmented HINs and Visually-Aware Recommendations

3.6.3 Effectiveness of visually-augmented HINs on a state-of-the-art HIN-

based recommendation model

As previously mentioned, visually-augmented HINs can be applied with any HIN-based rec-

ommender system to leverage visual information within the networks for producing recom-

mendations. To examine the potential of applying visually-augmented HINs with a HIN-based

recommender system, a state-of-the-art HIN-based recommender system was applied with the

constructed visually-augmented HINs of MovieLens and Amazon dataset. The state-of-the-

art adopted in this experiment is the Knowledge Graph Attention Network (KGAT) [5] which

combines a Graph Convolution Network (GCN) and a Graph Attention Network [128] to learn

recommendations. For each dataset, KGAT was applied with the regular HIN without visual

factor nodes and visual relations and six visually-augmented HINs based on different types of

visual factors including SIFT, SURF, ORB, Color Histogram, and CNN visual factor types.

The KGAT model applied with the regular HIN of each dataset is denoted as GA. Mean-

while, GA-S, GA-F, GA-O, GA-H and GA-C denote the KGAT models that were applied

with the visually-augmented HINs containing SIFT, SURF, ORB, CH, and CNN visual factors

respectively.

On MovieLens dataset, comparisons of GA and GA-S, GA and GA-F, GA and GA-O,

GA and GA-H, and GA and GA-C are presented in Figure 3.12a, Figure 3.12b, Figure 3.12c,

Figure 3.12d and Figure 3.12e respectively. From these figures, GA-F, GA-O GA-H, and GA-

C performed better than GA in terms of both Precision@N and Recall@N when N = 0. When

N increased, they all performed similarly to GA in terms of both metrics. This demonstrates

that augmenting the original HIN with visual factor nodes and visual relations based on SURF,

ORB, Color Histogram, and CNN features improved the accuracy of top-1 recommendations

on this dataset. On Amazon dataset, comparisons of GA and GA-S, GA and GA-F, GA and

GA-O, GA and GA-H, and GA and GA-C are shown in Figure 3.13a, Figure 3.13b, Figure

3.13c, Figure 3.13d, and Figure 3.13e respectively. It can be seen from these figures that

most of the KGAT models applied with the visually-augmented HINs performed worse than

the KGAT model applied with the original HIN. Especially for GA-S, GA-F, GA-O, and GA-

H, these models underperformed GA in terms of both Precision@N and Recall@N. Only GA-C

achieved a similar performance in terms of Precision@N with GA, but it still underperformed in

terms of Recall@N. This suggests that, compared to MovieLens dataset, applying the KGAT

model with the visually-augmented HINs of Amazon dataset is less effective. One reason is
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that, on Amazon dataset, there are already a large number of nodes and relations in the HIN.

Including more nodes and relations may affect the effectiveness of the KGAT model. Further

fine-tuning of parameters may be necessary to achieve higher accuracy. On the other hand,

augmenting nodes and relations in the HINs of MovieLens dataset is more effective than

Amazon dataset since it increases the chance to discover more relationships beyond those in

the original HINs. It suggests that the augmentation may not work well in the KGAT model

when the original HINs already contain a substantial number of nodes and relations.
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(a) GA and GA-S

(b) GA and GA-F

(c) GA and GA-O

(d) GA and GA-H

(e) GA and GA-C

Figure 3.12: Comparisons of Knowledge Graph Attention Network (KGAT) [5],

which is a state-of-the-art deep-learning based model, applied with the original

HINs (GA) and KGAT applied with the visually-augmented HINs based on (a)

SIFT (GA-S), (b) SURF (GA-F), (c) ORB (GA-O), (d) Color Histogram (GA-

H), and (e) CNN features (GA-C) on MovieLens dataset
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(a) GA and GA-S

(b) GA and GA-F

(c) GA and GA-O

(d) GA and GA-H

(e) GA and GA-C

Figure 3.13: Comparisons of Knowledge Graph Attention Network (KGAT) [5],

which is a state-of-the-art deep-learning based model, applied with the original

HINs (GA) and KGAT applied with the visually-augmented HINs based on (a)

SIFT (GA-S), (b) SURF (GA-F), (c) ORB (GA-O), (d) Color Histogram (GA-

H), and (e) CNN features (GA-C) on Amazon dataset
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3.7 Summary

In conclusion, this chapter addressed the first research question, which revolves around the

simultaneous utilization of visual features and a HIN to develop visually-aware recommender

systems. Specifically, it presented a method for integrating visual features into a HIN to

enable visually-aware recommendations. At the beginning, this chapter introduced a visually-

augmented HIN, which combines semantic information from user and item metadata with

visual information from visual factor nodes and visual relations. This augmented HIN allowed

for the learning of user latent representations that capture users’ preferences from both seman-

tic and visual perspectives. After that, a visually-aware recommendation approach based on

visually-augmented HINs was proposed. The proposed approach addressed the gap in existing

approaches by leveraging both semantic and visual information simultaneously in HIN-based

recommendations. This was achieved by utilizing a hybrid context formed using probabilistic

meta-paths, a novel type of meta-paths. These meta-paths facilitated the learning of user

latent representations that captured both users’ semantic and visual preferences. Finally, to

generate visually-aware recommendations, the representations were applied with a user-based

CF-KNN model, a simple and popularly used recommendation model.

Extensive experiments were conducted to evaluate the effectiveness of visually-augmented

HINs and the recommendation approach based on them. The results demonstrated that,

by leveraging visually-augmented HINs and the hybrid context, the proposed approach out-

performed a similar approach that utilized only semantic information. This indicated the

effectiveness of using visually-augmented HINs in accurately generating visually-aware recom-

mendations.

Overall, this chapter contributes to the advancement of visually-aware recommendation

systems by utilizing visually-augmented HINs and probabilistic meta-paths. The proposed

approach offers the potential to leverage HINs in facilitating visually-aware recommendations,

aligning with the first research question. However, the aspect of explainability has not been

covered yet in this chapter. The following chapter will address the second research question

regarding the explainability of recommender systems. It will provide a detailed description of

how to build visually-aware recommender systems capable of generating accurate and explain-

able recommendations based on HINs.
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Explainable Visually-Aware

Recommender Systems Using

Meta-Paths

This chapter focuses on addressing the second research question (refer to Section 1.2),

which pertains to the explainability of visually-aware recommendations using visually-augmented

HINs. During the past decade, many studies have explored how to constrain recommender

systems to produce explainable recommendations rather than non-explainable ones. Some

approaches modified the traditional shallow recommendation models such as the MF model

[203, 204] and the BPR-MF model [72]. In these approaches, the explainability scores of user-

item pairs were considered as an additional soft constraint. These scores were often defined by

using user/item neighborhoods [203] or association rules [72, 204]. Such definitions focus on

only hop-1 relations (e.g., user-item interactions) and ignore rich information from multi-hop

relations. Some attempts on using multi-hop relations to improve the explainability have been

made [5, 61, 205, 206]. However, using multi-hop relations to improve the explainability may

result in a scalability issue. These requirements in real-world situations have emphasized the

importance of developing recommender systems capable of more than accurately predicting

recommendations. Thus, how to design visually-aware recommender systems based on HINs

with high accuracy, scalability, and explainability still needs to be explored.

Both scalability and explainability have been individually considered in developing visually-

This chapter has been published in [202] available at https://doi.org/10.1016/j.knosys.2023.110258
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aware recommender systems. Some attempts have been made to tackle a large-scale visually-

aware recommendation problem [39, 207]. In terms of explainability, most existing work was

proposed to enable image-based explainable recommendations [40, 45, 89]. However, visually-

aware recommender systems that consider both scalability and explainability have still been

rather overlooked. To bridge the gap of profiling users’ individual visual preferences effec-

tively and meet the performance requirements of Accuracy, Scalability, and Explainability, this

chapter proposes a Scalable and Explainable Visually-aware Recommender System (SEV-RS)

framework. Inspired by the omnipresence of heterogeneous information networks (HINs) [63]

in explainable recommender systems, this work uses such networks to facilitate the task of

visually-aware recommendation with explainability. However, many existing HIN-based recom-

mendation frameworks typically ignored visual information and also suffered from scalability

issues [122, 208]. Thus, unlike existing approaches, the proposed approach integrates visual

elements into a HIN, extracts information from this HIN in a scalable way, and eventually uses

this information to produce explainable visually-aware recommendations.

This proposed framework consists of three components. The first component is a visually-

augmented HIN. This framework adopts a visually-augmented HIN and probabilistic meta-

paths, previously introduced in the last chapter (see Chapter 3.2), as input for learning

recommendations. It is worth noting that the first component does not constitute a unique

contribution of this chapter. The major contribution of this chapter lies in the SEV-RS

framework, particularly within its second and third components.

The second component is a scalable meta-path feature extraction method. Based

on visually-augmented HIN and probabilistic meta-paths, meta-path features are extracted

to profile users and items. Meta-path based approaches are popularly used to make HIN-

based recommendations due to their capability of extracting semantically meaningful multi-hop

relations [13]. However, it is challenging to develop effective and efficient methods for such

approaches [5, 13, 85, 208]. For a length l meta-path, let n be the average number of adjacent

nodes of every node in a HIN, the time cost for obtaining multi-hop relation is approximately

nl for each given starting node. Thus, leveraging such multi-hop relations of HINs may

severely cause exponential time complexity and scalability issues [208, 209]. To alleviate such

inefficiency, a scalable way to extract meta-path based features is proposed to profile each

user and item. Depending on the meta-paths used in this method, different types of meta-

path features can be extracted. By using meta-paths involving a visual factor node type,

the extracted meta-path features can be used to facilitate visually-aware recommendations
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subsequently.

The third component is an explainable recommendation generation method. Meta-

paths are capable of extracting meaningful multi-hop relations [13]. Due to this strength,

they have been tremendously used to improve the explainability of recommendations [10].

This chapter introduces the concept of meta-path based explainability stemming from the

proposed meta-path features. It allows us to quantify the “explainability” scores between

user-item pairs based on a set of meta-paths. These scores can be leveraged in various rec-

ommender systems to provide explainability to these systems. However, since deep-learning

based recommender systems usually suffer from scalability and also interpretability/explainabil-

ity issues [6], this work proposes a shallow recommendation model that jointly considers the

proposed meta-path features and the explainability factor to produce explainable visually-aware

recommendations. Moreover, compared with deep-learning based recommender systems, the

proposed model requires less computational time and is more scalable. In summary, this

chapter provides the following contributions:

• A novel and scalable method for extracting meta-path features.

• A unique approach to quantifying explainability scores based on meta-paths between

user-item pairs.

• A shallow recommendation model that combines the newly introduced meta-path fea-

tures with the meta-path based explainability scores for learning explainable visually-

aware recommendations.

The rest of this chapter is organized as follows: Section 4.1 explains how to efficiently

generate user and item meta-path features based on visually-augmented HIN and probabilistic

meta-paths. Section 4.2 revolves around the concept of meta-path based explainability and

the computation of explainability scores for user-item pairs based on user and item meta-path

features. Section 4.3 introduces the proposed approach for generating explainable visually-

aware recommendations. Moving forward, Section 4.4 provides details of the experimental

setup including datasets, parameterization, experiment environment, and evaluation metrics.

Section 4.5 discusses the experimental results in the aspects of accuracy, explainability, and

scalability. Finally, Section 4.6 concludes the chapter and summarizes the contributions.
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4.1 Scalable Meta-Path Feature Extraction

Meta-paths have been used to determine the similarity (connectivity strength) between nodes

in a HIN. Let u be a user, p be an item, m be a meta-path, and Zm be a set of path instances

of m connecting u and p. Let s(u, p,m) denote the meta-path based connectivity strength

of u and p following m. It can be calculated as the sum of the probabilities of path instances

z ∈ Zm [71]:

s(u, p,m) =
∑
z∈Zm

Pr(z) (4.1)

The higher the sum of the probabilities, the higher the connectivity strength. To achieve

accurate recommendations, it is critical to find the most informative or predictive meta-paths.

For user u, if the predictive meta-paths that lead to his/her observed items can be found, then

it is more likely that these meta-paths will help find those unobserved items that he/she will

be interested in. Intuitively, if the total connectivity strength between u and his/her observed

items following m is high, then meta-path m is predictive/important for u. To measure the

importance of a meta-path for a user, this work introduces the concept of User-MetaPath

association.

Definition 4.1. (User-MetaPath association) User-MetaPath association is the aggregated

meta-path based connectivity strengths between u and his/her observed items following m.

It is defined as au,m =
∑

p∈Pu s(u, p,m) where Pu is the set of observed items of u and

s(u, p,m) is the meta-path based connectivity strength between user u and item p following

meta-path m.

Similarly, the importance of a meta-path for an item can be measured. For an item p,

if the total connectivity strength between p and its observed users denoted as Up following

meta-path m is high, then m is important to p. The concept of Item-MetaPath association

is defined as follows.

Definition 4.2. (Item-MetaPath association) Item-MetaPath association is the aggregated

meta-path based connectivity strengths between p and its observed users following meta-path

m. It is defined as ap,m =
∑

u∈Up s(u, p,m) where Up is the set of users interacted with p and

s(u, p,m) is the meta-path based connectivity strength between user u and item p following

meta-path m.

Both User-MetaPath and Item-MetaPath associations can be computed from any meta-

paths including probabilistic meta-paths. However, the connectivity strength is normally com-
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puted from a regular meta-path. Thus, this work proposes a novel method to compute the

connectivity strength between user and item nodes based on a probabilistic meta-path. In

this way, the most informative or predictive probabilistic meta-path for each user/item can be

determined.

Given a probabilistic meta-path m′ = N1N2 · · ·Ni−1{Ni ⊕ Nj}Ni+2 · · ·Nl, a path in-

stance can follow either m′S = N1N2 · · ·Ni−1NiNi+2 · · ·Nl with the probability δ, or m′V =

N1N2 · · ·Ni−1NjNi+2 · · ·Nl with the probability 1 − δ. Thus, the connectivity strength be-

tween user u and item p following m′ is defined as the weighted sum of connectivity strength

following m′S and m′V as follows:

s(u, p,m′) = δ ·
∑

z∈Zm′
S

Pr(z) + (1− δ) ·
∑

z∈Zm′
V

Pr(z) (4.2)

where Zm′S and Zm′V are sets of path instances of m′S and m′V respectively.

Computing Eq. (4.2) requires all path instances in Zm′S and Zm′V which is not scalable.

To address this issue, this work proposes a novel scalable approach to compute s(u, p,m′).

Inspired by the processing of a sentence (i.e., a sequence of words) in Natural Language

Processing, the first-order Markov assumption is applied to calculate Pr(z). For any z, it is

assumed that the probability of each node in z depends only on its previous nodes. Thus,

Pr(z) can be computed by

Pr(z) = Pr(u, n1, n2, · · · , nl, p) = Pr(u)Pr(n1|u)Pr(n2|n1) · · ·Pr(p|nl) (4.3)

where Pr(u) = cu
|N | is the probability of node u in a HIN where cu is the total number of user u

nodes in a HIN and |N | is the total number of nodes in a HIN, and Pr(y|x) is the probability

of node y given x as a previous node in z for any x, y ∈ {u, n1, n2, ..., nl, p} computed by

Pr(y|x) =
w(x, y)∑
n∈N w(x, n)

(4.4)

Note that, for every user u, Pr(u) is constant since every user has only one node in a HIN

(i.e., cu = 1 for every user u) and the total number of nodes in a HIN is constant. Thus, this

term is ignored in the connectivity computation.

Considering
∑

z∈Zm′
S

and
∑

z∈Zm′
V

in Eq. (4.2), they are equivalent to the summations

over all possible combinations of node sequences following m′S and m′V respectively. Thus,

these two summations can be replaced by the series of summations that consider all combi-

nations of node sequences following m′S and m′V instead as follows:∑
z∈Zm′

S

Pr(z) =
∑
n1∈N1

∑
n2∈N2

· · ·
∑
ni∈Ni

· · ·
∑
nl∈Nl

Pr(n1|u)Pr(n2|n1) · · ·Pr(p|nl)

95



Chapter 4 – Explainable Visually-Aware Recommender Systems Using Meta-Paths

=
∑
n1∈N1

∑
nl∈Nl

Pr(n1|u)
∑
n2∈N2

· · ·
∑

nl−1∈Nl−1

Pr(n2|n1) · · ·Pr(nl|nl−1)Pr(p|nl) (4.5)

and

∑
z∈Zm′

V

Pr(z) =
∑
n1∈N1

∑
n2∈N2

· · ·
∑
nj∈Nj

· · ·
∑
nl∈Nl

Pr(n1|u)Pr(n2|n1) · · ·Pr(p|nl)

=
∑
n1∈N1

∑
nl∈Nl

Pr(n1|u)
∑
n2∈N2

· · ·
∑

nl−1∈Nl−1

Pr(n2|n1) · · ·Pr(nl|nl−1)Pr(p|nl) (4.6)

where Nk is the set of nodes of Nk type (k = 1, 2, ..., l). Both Eq. (4.5) and (4.6) can be

computed similarly. Therefore, for simplicity,
∑

z∈Zm′
S

Pr(z) in Eq. (4.5) is first considered.

Let n be the average number of adjacent nodes per node, computing Eq. (4.5) requires time

complexity of O(nl), which is computationally expensive. Therefore, an alternative way is

proposed to reduce the computational time by estimating the following term:

∑
n2∈N2

· · ·
∑

nl−1∈Nl−1

Pr(n2|n1) · · ·Pr(nl|nl−1).

This term represents the connectivity from n1 to nl. This can be considered as local connec-

tivity since it considers the relations between some particular nodes at the path-instance level.

For example, given a visually-augmented HIN in Figure 4.1, the purple curved dashed box in

Figure 4.2 represents the local connectivity between “T-shirt B” and “Category: T-shirt”.

Computing the local connectivity from n1 to nl in each path instance is time-consuming.

Instead of considering the connectivity between nodes at the path-instance level, the connec-

tivity between node types at the meta-path level can bed used to measure the importance

of a meta-path. This connectivity is called global connectivity of a meta-path m denoted as

g(m). It is computed by

g(m) =

l−1∏
k=1

C(k, k + 1), (4.7)

where C(k, k+ 1) denotes the probability of Nk+1 type nodes given Nk type nodes computed

by

C(k, k + 1) =

∑
n′∈Nk

∑
n′′∈Nk+1

w(n′, n′′)∑
n′∈Nk

∑
n∈N w(n′, n)

(4.8)

where w(n′, n′′) and w(n′, n) denote the weights of the relations from n′ to n′′ and from

n′ to n respectively. Each C(k, k + 1) indicates the connectivity between one node type to

another node type. Considering them all, g(m) therefore indicates the connectivity between

general N1 type nodes to Nl type nodes through N2, ..., Nl−1. Without actual path instances,
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Figure 4.1: Example of a visually-augmented HIN. In this augmented HIN, there

are five node types, i.e., user, item, category, brand, and visual factor node types.

Figure 4.2: Example of local connectivity and global connectivity. The local con-

nectivity, in a purple rounded rectangle, signifies the connectivity between “T-shirt

B” and “Category: T-shirt” at the path-instance level. The global connectivity, in

a green rounded rectangle, indicates the connectivity between item and category

node types at the meta-path level.
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g(m) is used to find how likely user u links to item p following meta-path m. This global

connectivity is shown as the green curved dashed box in Figure 4.2. From this figure, it can

be seen that the global connectivity measures the general connectivity between overall item

nodes and overall category nodes, rather than the specific connectivity between one/some

item nodes and one/some category nodes. After substituting the local connectivity with the

global connectivity in Eq. (4.5), Eq. (4.5) can be rewritten as:

∑
z∈Zm′

S

Pr(z) = g(u,m′S)g(m′S)g(m′S , p) (4.9)

where

g(u,m′S) =
∑
n1∈N1

Pr(n1|u) (4.10)

and

g(m′S , p) =
∑
nl∈Nl

Pr(p|nl) (4.11)

Similarly,
∑

z∈Zm′
V

Pr(z) in Eq. (4.6) is computed as follows:

∑
z∈Zm′

V

Pr(z) = g(u,m′V )g(m′V )g(m′V , p) (4.12)

Hence, s(u, p,m′) is computed as follows:

s(u, p,m′) = δ · g(u,m′S)g(m′S)g(m′S , p) + (1− δ) · g(u,m′V )g(m′V )g(m′V , p) (4.13)

Figure 4.3 illustrates an example of how to compute the meta-path based connectivity

strength of “User 1” and “T-shirt A” following a probabilistic meta-path m′ = UP{C⊕V }P

given a visually-augmented HIN shown in Figure 4.1. This connectivity strength is used to

compute User-MetaPath association au,m′ and Item-MetaPath association ap,m′ .
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Figure 4.3: Example computation of the meta-path based connectivity strength of

“User 1” and “T-shirt A” following a probabilistic meta-path m′ = UP{C⊕V }P ,

User-MetaPath association, and Item-MetaPath association. The probabilistic

meta-path is split into two meta-paths. The global connectivity values based

on each meta-path are calculated and combined to compute the User-MetaPath

association and Item-MetaPath association. These associations, in turn, form user

and item meta-path features.
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Example 4.1. (User-MetaPath Association) Given the visually-augmented HIN in Figure

4.1, let all relations have the same weight w(x, y) = w(y, x) = 1. Let P denote the set of

item nodes, C denote the set of category nodes and B denote the set of brand nodes. Given

a probabilistic meta-path m′1 = UP{C ⊕ V }P and δ = 0.4, u1’s User-MetaPath association

is computed by

au1,m′1 =
∑
p∈Pu1

s(u1, p,m
′
1) = s(u1, p1,m

′
1) + s(u1, p2,m

′
1) (4.14)

where

s(u1, p1,m
′
1) = δ · g(u1,m

′
1S)g(m′1S)g(m′1S , p1) + (1− δ) · g(u1,m

′
1V )g(m′1V )g(m′1V , p1)

and

s(u1, p2,m
′
1) = δ · g(u1,m

′
1S)g(m′1S)g(m′1S , p2) + (1− δ) · g(u1,m

′
1V )g(m′1V )g(m′1V , p2)

where

g(u1,m
′
1S) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(u1,m
′
1V ) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(m′1S , p1) =
∑
n2∈C

Pr(p1|n2) = Pr(p1|c1) = 1/3,

g(m′1V , p1) =
∑
n2∈V

Pr(p1|n2) = Pr(p1|v1) + Pr(p1|v2) = 1/3 + 0/3 = 1/3,

g(m′1S , p2) =
∑
n2∈C

Pr(p2|n2) = Pr(p2|c1) = 13,
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g(m′1V , p2) =
∑
n2∈V

Pr(p2|n2) = Pr(p2|v1) + Pr(p2|v2) = 1/3 + 0/3 = 1/3,

g(m′1S) = C(P,C) = 3/14

g(m′1V ) = C(P, V ) = 4/14,

where 3 is the total number of relations from P to C, 4 is the total number of relation from

P to V and 14 is the total number of relations from P to any type including the additional

visual relation type. Thus

s(u1, p1,m
′
1) = 0.4 · (2/3)(3/14)(1/3) + (0.6) · (2/3)(4/14)(1/3) ≈ 0.06

and

s(u1, p2,m
′
1) = 0.4 · (2/3)(3/14)(1/3) + (0.6) · (2/3)(4/14)(1/3) ≈ 0.06

Hence,

au1,m′1 = s(u1, p1,m
′
1) + s(u1, p2,m

′
1) ≈ 0.12. (4.15)

Similarly, for m′2 = UP{B ⊕ V }P , au1,m′2 is calculated as follows:

au1,m′2 =
∑
p∈Pu1

s(u1, p,m
′
2) = s(u1, p1,m

′
2) + s(u1, p2,m

′
2)

where

s(u1, p1,m
′
2) = δ · g(u1,m

′
2S)g(m′2S)g(m′2S , p1) + (1− δ) · g(u1,m

′
2V )g(m′2V )g(m′2V , p1)

and

s(u1, p2,m
′
2) = δ · g(u1,m

′
2S)g(m′2S)g(m′2S , p2) + (1− δ) · g(u1,m

′
2V )g(m′2V )g(m′2V , p2)

where

g(u1,m
′
2S) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,
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g(u1,m
′
2V ) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(m′2S , p1) =
∑
n2∈B

Pr(p1|n2) = Pr(p1|b1) = 0,

g(m′2V , p1) =
∑
n2∈V

Pr(p1|n2) = Pr(p1|v1) + Pr(p1|v2) = 1/3 + 0/3 = 1/3,

g(m′2S , p2) =
∑
n2∈B

Pr(p2|n2) = Pr(p2|b1) = 0,

g(m′2V , p2) =
∑
n2∈V

Pr(p2|n2) = Pr(p2|v1) + Pr(p2|v2) = 1/3 + 0/3 = 1/3,

g(m′2S) = C(P,B) = 2/14,

g(m′2V ) = C(P, V ) = 4/14.

Thus,

s(u1, p1,m
′
2) = 0.4 · (2/3)(2/14)(0) + 0.6 · (2/3)(4/14)(1/3) ≈ 0.04

and

s(u1, p2,m
′
2) = 0.4 · (2/3)(2/14)(0) + 0.6 · (2/3)(4/14)(1/3) ≈ 0.04

Hence,

au1,m′2 = s(u1, p1,m
′
2) + s(u1, p2,m

′
2) ≈ 0.08. (4.16)

Since m′1 has more weight than m′2, thus, m′1 (i.e., items with the same category or the same

visual factor) is more important for “User 1” compared to m′2 (i.e., items with the same brand

or the same visual factor).
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Example 4.2. (Item-MetaPath Association) Given the same HIN shown in Figure 4.1

and the same probabilistic meta-path m′1 = UP{C ⊕ V }P with δ = 0.4, Item-MetaPath

association between p1 and m′1, ap1,m′1 , is computed as follows:

ap1,m′1 =
∑
u∈Up1

s(u, p1,m
′
1) = s(u1, p1,m

′
1) + s(u2, p1,m

′
1) (4.17)

where

s(u1, p1,m
′
1) = δ · g(u1,m

′
1S)g(m′1S)g(m′1S , p1) + (1− δ) · g(u1,m

′
1V )g(m′1V )g(m′1V , p1)

and

s(u2, p1,m
′
1) = δ · g(u2,m

′
1S)g(m′1S)g(m′1S , p1) + (1− δ) · g(u2,m

′
1V )g(m′1V )g(m′1V , p1)

where

g(u1,m
′
1S) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(u1,m
′
1V ) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(u2,m
′
1S) =

∑
n1∈P

Pr(n1|u2)

= Pr(p1|u2) + Pr(p2|u2) + Pr(p3|u2) + Pr(p4|u2) + Pr(p5|u2)

= 0/4 + 0/4 + 1/4 + 1/4 + 0/4 = 1/2,

g(u2,m
′
1V ) =

∑
n1∈P

Pr(n1|u2)

= Pr(p1|u2) + Pr(p2|u2) + Pr(p3|u2) + Pr(p4|u2) + Pr(p5|u2)

= 0/4 + 0/4 + 1/4 + 1/4 + 0/4 = 1/2,
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g(m′1S , p1) =
∑
n2∈C

Pr(p1|n2) = Pr(p1|c1) = 1/3

g(m′1V , p1) =
∑
n2∈V

Pr(p1|n2) = Pr(p1|v1) + Pr(p1|v2) = 1/3 + 0/3 = 1/3,

g(m′1S) = C(P,C) = 3/14

g(m′1V ) = C(P, V ) = 4/14,

Thus

s(u1, p1,m
′
1) = 0.4 · (2/3)(3/14)(1/3) + 0.6 · (2/3)(4/14)(1/3) ≈ 0.06

and

s(u2, p1,m
′
1) = 0.4 · (1/2)(3/14)(1/3) + 0.6 · (1/2)(4/14)(1/3) ≈ 0.04

Hence,

ap1,m′1 = s(u1, p1,m
′
1) + s(u2, p1,m

′
1) ≈ 0.1. (4.18)

Similarly, for m′2 = UP{B ⊕ V }P , ap1,m′2 is calculated as follows:

ap1,m′2 =
∑
u∈Up1

s(u, p1,m
′
2) = s(u1, p1,m

′
2) + s(u2, p1,m

′
2)

where

s(u1, p1,m
′
2) = δ · g(u1,m

′
2S)g(m′2S)g(m′2S , p1) + (1− δ) · g(u1,m

′
2V )g(m′2V )g(m′2V , p1)

and

s(u2, p1,m
′
2) = δ · g(u2,m

′
2S)g(m′2S)g(m′2S , p1) + (1− δ) · g(u2,m

′
2V )g(m′2V )g(m′2V , p1)

where

g(u1,m
′
2S) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,
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g(u1,m
′
2V ) =

∑
n1∈P

Pr(n1|u1)

= Pr(p1|u1) + Pr(p2|u1) + Pr(p3|u1) + Pr(p4|u1) + Pr(p5|u1)

= 1/3 + 1/3 + 0/3 + 0/3 + 0/3 = 2/3,

g(u2,m
′
2S) =

∑
n1∈P

Pr(n1|u2)

= Pr(p1|u2) + Pr(p2|u2) + Pr(p3|u2) + Pr(p4|u2) + Pr(p5|u2)

= 0/4 + 0/4 + 1/4 + 1/4 + 0/4 = 1/2,

g(u2,m
′
2V ) =

∑
n1∈P

Pr(n1|u2)

= Pr(p1|u2) + Pr(p2|u2) + Pr(p3|u2) + Pr(p4|u2) + Pr(p5|u2)

= 0/4 + 0/4 + 1/4 + 1/4 + 0/4 = 1/2,

g(m′2S , p1) =
∑
n2∈B

Pr(p1|n2) = Pr(p1|b1) = 0,

g(m′2V , p1) =
∑
n2∈V

Pr(p1|n2) = Pr(p1|v1) + Pr(p1|v2) = 1/3 + 0/3 = 1/3,

g(m′2S) = C(P,B) = 2/14,

g(m′2V ) = C(P, V ) = 4/14.

Thus,

s(u1, p1,m
′
2) = 0.4 · (2/3)(2/14)(0) + 0.6 · (2/3)(4/14)(1/3) ≈ 0.04

and

s(u2, p1,m
′
2) = 0.4 · (1/2)(2/14)(0) + 0.6 · (1/2)(4/14)(1/3) ≈ 0.03

Hence,

ap1,m′2 = s(u1, p1,m
′
2) + s(u2, p1,m

′
2) ≈ 0.07. (4.19)
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Since m′1 has more weight than m′2, thus, m′1 (i.e., items with the same category or the same

visual factor) is more important for “T-shirt A” compared to m′2 (i.e., items with the same

brand or the same visual factor).

Usually, a group of meta-paths can better explain why a user is interested in an item

than a single meta-path. This work uses a group of meta-paths to generate user and item

meta-path features. Given a set of meta-paths, multiple User-MetaPath and Item-MetaPath

associations can be computed. Such associations of the same user/item can be used to form

feature vectors of that user/item. Let M = {m1,m2, ...,mn} be a set of meta-paths where

m1,m2, ...,mn are n pre-defined meta-paths. The user meta-path feature of u and the item

meta-path feature of p are defined as

fu = [au,m1 , au,m2 , ..., au,mn ] (4.20)

and

fp = [ap,m1 , ap,m2 , ..., ap,mn ] (4.21)

respectively. Both fu and fp enclose User-MetaPath and Item-MetaPath associations to rep-

resent a given user u and item p. Each dimension in fu and fp indicates how each meta-path

in M is associated with user u and item p. This can be seen as profiling users/items based

on their associations with different meta-paths.

4.2 Meta-Path Based Explainability

In terms of explainability, since each dimension in fu and fp is meaningful, it can be used to

provide explainability in recommendations. For any given user u, item p, and meta-path m,

a high value of au,m indicates that meta-path m potentially connects user u to a substantial

number of his/her items. In such instances, it can be inferred that user u expresses a preference

for many of their items due to their interconnectedness through meta-path m. Similarly, when

ap,m is high, it signifies that meta-path m potentially links item p to a considerable number

of its associated users. Consequently, it can be inferred that item p has received interaction

from a significant portion of its users, all connected through meta-path m. Therefore, if a

recommender system suggests item p to user u, an explanation could be “Because you have

shown a preference for numerous items connected to you via m, we recommend item p, which

is similarly linked to other users through meta-path m.” From this assumption, if both au,m

and ap,m are high, then it can be assumed that m is mutually important for both u and p.
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In that case, m is potentially an explanation of why u prefers p, i.e., p is explainable for u

based on m. Mathematically, the dot product of au,m and ap,m can be used to reflect this

assumption. Based on this assumption, this work introduces the concept of meta-path based

explainability for quantifying the explainability between users and items based on multi-hop

relations in a HIN.

Definition 4.3. (Meta-Path Based Explainability) Given a user u, an item p, and a meta-

path m, the meta-path based explainability between u and p is measured by the dot product

of u’s User-MetaPath association and p’s Item-MetaPath association.

From this definition, the higher u and p are associated with the same meta-path m,

the higher the explainability between them. The same with existing approaches [72, 203],

a threshold value τ can be set. If the computed product is greater than τ , then item p is

explainable for user u following meta-path m. Otherwise, item p is not explainable for user u

following meta-path m.

Example 4.3. (Meta-Path Based Explainability)

Given the same HIN shown in Figure 4.1 and the same probabilistic meta-paths m′1 =

UP{C ⊕ V }P and m′2 = UP{B ⊕ V }P , ap1,m′2 with δ = 0.4, from Examples 4.1 and 4.2,

au1,m′1 ≈ 0.12, au1,m′2 ≈ 0.08, ap1,m′1 ≈ 0.1, and ap1,m′2 ≈ 0.07.

Following a similar calculation process, the Item-MetaPath association between p3 and m′1

and the Item-MetaPath association between p3 and m′2 are ap3,m′1 ≈ 0.03 and ap3,m′2 ≈ 0.04,

respectively.

Thus, the user meta-path feature of u1 is

fu1 = [au1,m′1 , au1,m′2 ] = [0.12, 0.08] (4.22)

Meanwhile, the item meta-path feature of p1 is

fp1 = [ap1,m′1 , ap1,m′2 ] = [0.1, 0.07] (4.23)

Similarly,, the item meta-path feature of p4 is

fp4 = [ap4,m′1 , ap4,m′2 ] = [0.03, 0.04] (4.24)

By computing the dot product of fu1 and fp1 , the meta-path based explainability between

u1 and p1 is

fu1 · fp1 = [0.12, 0.08] · [0.1, 0.07] = 0.0176 (4.25)
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Similarly, the meta-path based explainability between u1 and p4 is

fu1 · fp4 = [0.12, 0.08] · [0.03, 0.04] = 0.0068 (4.26)

Since fu1 · fp1 > fu1 · fp4 , p1 is more explainable to u1 than p4.

4.3 The Proposed Explainable Recommendation Method

In this section, how to generate explainable recommendations based on the meta-path features

is described. The proposed framework is based on a Bayesian Personalized Ranking Matrix

Factorization (BPR-MF) framework. It is modified to integrate the meta-path based explain-

ability into the learning framework. The traditional BPR-MF model ranks the candidate items

based on the user-personalized recommendation scores. The recommendation score of a user

u towards an item p denoted as x̂up is computed by

x̂up = α+ βu + βp + γu
Tγp (4.27)

where α is a global offset, βu and βp are user and item bias terms, γu and γp are K1-

dimensional vectors of user u and item p latent factors respectively. The system is learned

by using positive and negative items in a dataset. For any user u ∈ U , let P+
u be a set of

positive items of user u. A training sample set is defined as

DS = {(u, p, q)|u ∈ U ∧ p ∈ P+
u ∧ q ∈ P \ P+

u } (4.28)

where p is a user’s positive item and q is a user’s negative item which is an unobserved item

of a user u. A stochastic gradient-descent algorithm is adopted for training with a generic

optimization criterion defined as follows:∑
(u,p,q)∈DS

−ln σ(x̂up − x̂uq) + λΘ||Θ||2 (4.29)

where x̂up and x̂uq are the recommendation scores of user u towards p and q respectively, σ is

the sigmoid function and ||Θ||2 is an L2 norm regularization term where λΘ is a regularization

hyper-parameter and Θ denotes model parameters. The purpose is to differentiate a pair of

user’s positive and user’s negative items by minimizing the loss in Eq. (4.29).

The traditional BPR-MF model involves only user-item interaction data for learning. In

[37], the BPR-MF model was extended to incorporate visual information from item images.

User and item latent visual factors were introduced to the traditional model. For each item,
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item latent visual factors are computed by projecting its image feature onto the visual latent

space. This projection is done by using a projection matrix. This matrix is learned during

model training along with the traditional user/item latent factors. Meanwhile, since there are

no images of users, user latent visual factors in visual rating space are directly learned without

projecting as item latent visual factors. Following this idea, the meta-path based features of

both u and p can be integrated into the personalized recommendation score as follows:

x̂up = α+ βu + βp + γu
Tγp + θu

Tθp + βTP fp + βTU fu (4.30)

where θu and θp are additional K2-dimensional latent factors apart from the traditional

latent factors γu and γp, βP is an item feature bias vector, and βU is a user feature bias

vector. These additional latent factors are called meta-path based latent factors since they are

factorized based on the proposed user/item meta-path based features. They are computed by

θu = EU fu (4.31)

and

θp = EP fp (4.32)

where EU and EP are matrices projecting fu and fp into K2-dimensional latent spaces respec-

tively. Both EU and EP are additional parameters in this model. Overall, x̂up is calculated

from two parts, the traditional latent factors γu and γp (including their biases α, βu and βp)

and the meta-path based latent factors θu and θp (including their biases βTP fp and βTU fu).

Unlike VBPR, the proposed model also considers the feature from the user side to learn the

additional latent factors of a user. Compared to most HIN-based models, it is also worth not-

ing that the proposed model can be used to incorporate multi-hop information from a set of

meta-paths. In other words, instead of relying on a single meta-path, multiple meta-paths can

be leveraged altogether simultaneously. Also, any combination of meta-paths can be applied

in this approach. This includes a combination of regular meta-paths, probabilistic meta-paths,

and both.

Next, how to utilize the meta-path based features to increase the explainability of the

proposed model is described. In [203], an explainable MF model which is a modification of

the traditional MF model was proposed. This model jointly considers user-item interactions

as in the traditional MF model and the explainability scores of user-item pairs as an additional

soft constraint in the loss function. To measure the explainability between u and p based on a

set of meta-paths M, the explainability score Eup can be computed by the dot product of fu
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and fp. Since fu and fp are two vectors and can have significantly different vector magnitudes,

the cosine similarity which is the normalized dot product of two vectors is used to compute

Eup as:

Eup = h(fu, fp) (4.33)

where h(fu, fp) denotes the cosine similarity between fu and fp. Note that, alternative similarity

functions can be considered. Cosine similarity was chosen for its computational simplicity

and widespread use in measuring vector similarity. Based on Definition (4.3), if p (or q) is

explainable for u, then they should be close to each other in the latent space. Based on this

assumption, the explainability scores are integrated into the loss function to constrain the

distance between the user and item latent factors. The higher the explainability score, the

closer both latent factors are. Thus, the original loss function in Eq. (4.29) is changed to

∑
(u,p,q)∈DS

−ln σ(x̂up − x̂uq) +
λΘ

2
||Θ||2 +

λE
2

(
||u− p||2Eup + ||u− q||2Euq

)
(4.34)

where u = [γu;θu], p = [γp;θp] and q = [γq;θq] denote the final combined latent factors

of u, p and q respectively, Eup and Euq are the explainability scores and λE is a regularization

hyper-parameter. If Eup is high, it will constrain ||u − p|| to be lower to minimize the loss.

Thus, u and p will be closer in the latent space. The same process applies for Euq and

the distance between u and q. In this way, the meta-path features are used to constrain

the recommender system to make recommendations with high meta-path based explainability

instead of any recommendations. Thus, given a set of meta-paths used for feature extraction,

the recommendations made based on the extracted features can be explained by the meanings

of these meta-paths. The proposed framework utilizing the meta-path features and the meta-

path based explainability scores is illustrated in Figure 4.4. It is worth noting that the proposed

framework uses a set of pre-defined meta-paths to constrain the explainability of recommen-

dations. This is different from the previous work attempting to extract explanations along

with predictions. For instance, in [205], meta-paths were not used during the learning process

but were extracted as explanations along with the outputs. Also, compared to existing studies

on using pre-defined meta-paths to improve explainability, the proposed framework addresses

the issue of scalability and is more flexible. For example, compared to [206], meta-paths used

in the proposed framework are not limited to only symmetric meta-paths of length 3.

Complexity Analysis In the proposed approach, the meta-path features fu and fp are com-

puted as part of pre-processing. Given a meta-path m = UN1N2 · · ·NlP , let n be the
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Figure 4.4: The overall framework of SEV-RS which consists of three parts: (1) a

visually-augmented HIN, containing visual information extracted from item images

(see Chapter 3), (2) scalable meta-path feature extraction, extracting user and

item meta-path features for learning recommendations and computing meta-path

based explainability scores of user-item pairs., and (3) explainable recommendation

method, a modified BPR-MF model considering the extracted user and item meta-

path features along with meta-path based explainability scores for making visually-

aware recommendations.

average number of adjacent nodes per node. Computing s(u, p,m) by considering all possible

path instances requires O(nl). This is more computationally expensive than the proposed

method. From Eq. (4.7), computing g(m) needs O((l − 1)n2). Meanwhile, computing∑
n1∈N1

Pr(n1|u) and
∑

nl∈Nl Pr(p|nl) requires O(n). In total, for any pair of a user/item

and a meta-path, computing s(u, p,m) requires O((l − 1)n2) + O(n). Furthermore, g(m)

only depends on a meta-path. It can be pre-calculated once and used for all users/items. As

a result, the proposed method is more scalable compared to the method that uses actual path

instances.

As for explainable recommendation generation, the modified BPR-MF framework consists

of the traditional part and the additional part as previously discussed. The first part requires

O(K1) to update the user and item latent factors for each iteration. For the additional part,
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updating EU and EP needs O(K2|M|). Updating βU and βP needs O(K2). Therefore, the

proposed learning framework requires O(K2|M|) +O(K2), in addition to the traditional part

of the BPR-MF model. This is scalable since the size of meta-path set |M| and the sizes of

latent factors K1 and K2 are usually small.

4.4 Experimental Setup

In this section, the details of the experiments are provided. The experiments were conducted

aiming to answer the following questions: How does the proposed approach using the meta-

path features perform compared with the baselines?, How does the proposed approach perform

when it is applied to a visually-augmented HIN compared with the baselines?, How does the

proposed approach perform when the meta-path based explainability is included compared

with the baselines?, and Is the proposed approach scalable compared with the baselines?

4.4.1 Datasets

The experiments were conducted on two real-world datasets, i.e., MovieLens dataset and

Amazon dataset, which were also used in the previous chapter (See Section 3.5.1). In these

experiments, more types of nodes and relations were considered. For MovieLens dataset,

7 node types and 14 relation types (inverse relation types included) were considered. For

Amazon dataset, 6 node types and 12 relation types (inverse relation types included) were

considered. The lists of node and relations types in both datasets are shown in Table 4.1.

For both datasets, those users who have less than two items and those items that have

been interacted with by less than two users were filtered out. The visually-augmented HINs

were constructed as described in Section 3.2. Only one visual factor type was considered which

is CNN visual factors. It was selected based on its general performance from the results of

the experiments in Chapter 3. It should be noted that more types of nodes and relations were

considered in the experiments in this chapter compared to the experiments in Chapter 3. For

MovieLens, there are 7 node types and 12 relation types (inverse relation types included).

For Amazon dataset, there are 6 node types and 10 relation types (inverse relation types

included). These node and relation types as well as basic statistics of the visually-augmented

HINs of both datasets are shown in Table 4.1.
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Table 4.1: The statistics of MovieLens and Amazon datasets

Dataset Node type #nodes Relation type #relations

MovieLens

user (U) 1,132 RUP 20,255

item (P ) 3,767 RPG 8,861

genre (G) 19 RPA 97,791

actor (A) 53,472 RPD 3,756

director (D) 1,672 RPT 43,265

tag (T ) 5,209 RUV 1,126

visual factor (V ) 100 RPV 3,121

Amazon

user (U) 39,387 RUP 214,696

item (P ) 23,030 RPC 154,833

category (C) 1,193 RPB 3,942

brand (B) 1,181 RPH 65,514

bought together (H) 25,207 RUV 39,387

visual factor (V ) 100 RPV 23,033

4.4.2 Parameterization and Experiment Environment

The number of visual factors kV is 100 (i.e., k = 100 in the k-means clustering method).

The number of representative visual factors per user is 1 (ks = 1). The meta-paths used

for generating the meta-path based features for both datasets are selected from the literature

[122, 173]. They are shown in Table 4.2 where the second column lists the regular meta-paths

while the third column lists the probabilistic meta-paths. The sizes of user/item latent factors,

K1 and K2, were set to 150. Therefore, the final latent factors, u and p, are 300-dimensional.

λΘ = 5× 10−5 was applied for both datasets. All experiments were conducted on a machine

with dual-core Intel(R) 1.80GHz CPU, NVIDIA 16GB GPU, and 128GB RAM.

4.4.3 Evaluation Metrics

The proposed approach was evaluated in the Top-N recommendation task. Three evaluation

aspects, i.e., Accuracy, Explainability, and Scalability were considered. As for Accuracy, it was

evaluated by three commonly used metrics: Mean Average Precision@N (MAP@N), Mean

Recall@N (Recall@N), and Mean F1 Score@N (F1@N) with N = 1, 5, 10, 50, 100. MAP@N is
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Table 4.2: The meta-paths used in the experiments on MovieLens and Amazon

datasets

Dataset Meta-paths Probabilistic meta-paths

MovieLens

UPUP , UPUPUP , UP{U ⊕ V }P , UP{U ⊕ V }P{U ⊕ V },

UPGP , UPGPUP , UP{G⊕ V }P , UP{G⊕ V }P{U ⊕ V },

UPAP , UPAPUP , UP{A⊕ V }P , UP{A⊕ V }P{U ⊕ V },

UPDP , UPDPUP , UP{D ⊕ V }P , UP{D ⊕ V }P{U ⊕ V },

UPTP , UPTPTP UP{T ⊕ V }P , UP{T ⊕ V }P{T ⊕ V }

Amazon

UPUP , UPUPUP , UP{U ⊕ V }P , UP{U ⊕ V }P{U ⊕ V },

UPCP , UPCPUP , UP{C ⊕ V }P , UP{C ⊕ V }P{U ⊕ V },

UPBP , UPBPUP , UP{B ⊕ V }P , UP{B ⊕ V }P{U ⊕ V },

UPHP , UPHPHP UP{H ⊕ V }P , UP{H ⊕ V }P{H ⊕ V }

computed as follows:

MAP@N =
1

|U|
∑
u∈U

(AP@N)u (4.35)

where (AP@N)u is the average precision@N of user u computed by

(AP@N)u =
1

min(|Pu|, N)

N∑
k=1

|Pu ∩ Pku |
k

· relu(k) (4.36)

where U is a set of users, Pu is the set of user u’s items, Pku is the set of top-k recommended

items of user u, and relu(k) is an indicator function indicating whether the kth item in the

top-N recommendation list of user u was relevant (i.e., relu(k) = 1 if this kth item is correct;

otherwise, relu(k) = 0).

To evaluate Explainability, three metrics were adopted, i.e., Mean Explainability Preci-

sion@N (EP@N) [203], Mean Explainability Recall@N (ER@N) [203], and Mean Explainability

F1 Score@N (EF@N) [90] defined as follows:

EP@N =
1

|U|
∑
u∈U

|Eu
⋂
Yu|

|Yu|
, (4.37)

ER@N =
1

|U|
∑
u∈U

|Eu
⋂
Yu|

|Eu|
, (4.38)

and

EF@N = 2 · EP@N · ER@N

EP@N + ER@N
(4.39)
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Figure 4.5: The average ratio of the explainable items per user with different

threshold value τ to validate the explainable items of each user

where U denotes the users set, Eu denotes the set of explainable items of user u and Yu

denotes the set of Top-N recommended items of user u. For each user, the explainable

items of that user are determined as in Definition 4.3, given the set of meta-paths defined

in Table 4.2. Similarly to [72, 203], one can set up a threshold value τ to validate the

explainable items of each user. Specifically, p is explainable for u if h(fu, fp) ≥ τ where τ is

a pre-defined threshold. Figure 4.5 shows the average ratio of the explainable items to the

user’s items of each user in both datasets when τ is varied from 0 to 1. The ratio decreases

as τ increases. To include most of the explainable items, τ = 0.55 was applied for both

MovieLens and Amazon datasets for evaluation. EP@5 and ER@5 were selected to evaluate

the explainability performance.

4.5 Results and Discussions

4.5.1 Comparison of the proposed approach and the baseline

To examine the performance of the proposed approach using the meta-path features without

visual information involved, two variations of the proposed approach applied on regular HINs

were compared with the baselines as follows:

• CF: the CF-KNN model [14] that uses only user-item interactions.

• BPR [79]: the traditional BPR-MF model using user-item interactions.
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• VBPR [37]: the modified BPR-MF model that jointly leverages user-item interactions

and visual information. The same CNN features used in the proposed approach were

used as visual information in this model.

• DVBPR [38]: the modified version of VBPR that jointly trains the visual feature ex-

traction model with the recommendation model instead of using the features from the

pre-trained model.

• DeepStyle [80]: the BPR-MF model that incorporates the style features of items com-

puted by subtracting item category representations from the visual features generated

by CNN. The same CNN features were used as in VBPR for computing these style

features.

• MV [173]: an approach using metapath2vec [85] with the CF-KNN model. Multiple

models of this approach were built based on each of the meta-paths in Table 4.2. The

best model was selected for comparison.

• GA [5]: the state-of-the-art HIN-based model using Graph Attention Network. This

model was applied to HINs without visual information.

• GA-v [5]: the GA approach applied to visually-augmented HINs.

• PM: the proposed model that uses regular meta-paths with regular HINs. Visual infor-

mation and the meta-path based explainability were not considered.

• PM-v: the proposed model that uses probabilistic meta-paths with visually-augmented

HINs. The meta-path explainability was not considered. The parameter δ was varied

among {0, 0.1, 0.2, ..., 1} and the result with δ = 0.2 were selected for comparison for

both datasets.

For fair comparisons, the size of the final user/item latent factors or embeddings in BPR,

VBPR, DVBPR, DeepStyle, MV, GA and GA-v were identically set to 300 as in the

proposed models. For CF and MV, the size of neighborhoods was set to 10. Other hyperpa-

rameter settings for the baselines were set as in their papers.

The F1@N results of PM and PM-v, compared with the baselines on both MovieLens

and Amazon datasets, are presented in Table 4.3. In this table, the highest values in each

column are highlighted in bold, and the second-highest values are underlined. According to

the results, on MovieLens dataset, GA outperformed other models. GA-v achieved the
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Table 4.3: F1@N results of the baselines and the variations of the proposed ap-

proach (without the explainability component), PM and PM-v, on MovieLens

and Amazon datasets. The highest values in each column are highlighted in bold,

while the second-highest values are underlined.

Model
MovieLens Amazon

F1@1 F1@5 F1@10 F1@50 F1@100 F1@1 F1@5 F1@10 F1@50 F1@100

CF 0.0006 0.0000 0.0048 0.0017 0.0010 0.00025 0.00023 0.00015 0.00004 0.00002

BPR 0.0045 0.0147 0.0136 0.0059 0.0040 0.00264 0.00411 0.00277 0.00075 0.00040

VBPR 0.0030 0.0092 0.0082 0.0035 0.0024 0.00390 0.00301 0.00189 0.00049 0.00026

DVBPR 0.0000 0.0002 0.0007 0.0004 0.0002 0.00003 0.00002 0.00002 0.00001 0.00001

DeepStyle 0.0020 0.0026 0.0028 0.0012 0.0008 0.00029 0.00031 0.00023 0.00007 0.00004

MV 0.0004 0.0043 0.0049 0.0027 0.0018 0.00055 0.00060 0.00037 0.00009 0.00005

GA 0.0181 0.0252 0.0187 0.0082 0.0053 0.00688 0.00554 0.00351 0.00089 0.00047

GA-v 0.0142 0.0190 0.0153 0.0072 0.0049 0.00702 0.00562 0.00357 0.00091 0.00048

PM 0.0100 0.0184 0.0171 0.0073 0.0045 0.00753 0.00570 0.00360 0.00089 0.00046

PM-v 0.0130 0.0201 0.0176 0.0075 0.0046 0.00736 0.00572 0.00362 0.00090 0.00047

second-best performance when N = 1 and 100, while the proposed model PM-v, utilizing

probabilistic meta-paths with visually-augmented HINs, achieved the second-best performance

for N = 5, 10, and 50. These results suggest that, although the proposed model PM-v

surpassed most baselines, its performance was slightly lower than that of GA and GA-v.

However, Section 4.5.3 will illustrate that the proposed approach is significantly more scalable

than this deep-learning-based approach while achieving comparable performance. On Amazon

dataset, PM and PM-v outperformed the other baselines for N = 1, 5 and 10. Specifically,

PM achieved the best performance when N = 1 while PM-v achieved the best performance

when N = 5 and 10. For N = 50 and 100, GA-v attained the best performance while

PM-v attained the second-best performance. These results indicate the effectiveness of the

proposed models on this dataset, as they consistently outperformed the baselines across various

values of N and demonstrated comparable performances when compared to the top-performing

baselines, GA and GA-v.

Figure 4.6a and Figure 4.6b show the MAP@N and Recall@N results on MovieLens dataset

and the results on Amazon dataset respectively. First, the performance of PM is discussed

in comparison with the other baselines. From these figures, PM outperformed CF in terms of

both MAP@N and Recall@N on both datasets. This can be explained that CF only uses single-

hop relations (user-item interactions) for learning while the multi-hop relations are ignored in
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(a) MovieLens

(b) Amazon

Figure 4.6: Accuracy (MAP@N and Recall@N) comparison between the proposed

approaches (without the explainability component), PM and PM-v, and other

baselines on (a) MovieLens and (b) Amazon datasets.

the model. PM outperformed BPR in terms of MAP@N but performed similarly to BPR in

terms of Recall@N on both datasets. Although BPR uses matrix factorization and negative

sampling to overcome the sparsity problem, it still relies on user-item interactions to learn

users’ preferences. The proposed model PM involves high-order information obtained from

HINs in addition to user-item historical data. From the result, the improvement of MAP@N

indicates the effectiveness of leveraging such information in a BPR-MF model. Compared

with the visually-aware baseline models including VBPR, DVBPR and DeepStyle, PM per-

formed better than all of these models in terms of MAP@N and Recall@N on both datasets.

This suggests that, compared to those models using visual features as side information, the

proposed model using multi-hop relations without visual information is more effective. There-

fore, between using only visual information extracted from item images and using multi-hop
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relations in a HIN without visual information, the latter may allow for better performance in

terms of Accuracy. PM also outperformed MV in terms of both MAP@N and Recall@N on

both datasets. Although MV also utilizes meta-path based multi-hop relations, it can only

consider a single meta-path at a time. On the other hand, the proposed approach can consider

multiple meta-paths simultaneously. This provides an advantage for the proposed model PM.

The deep-learning based model GA outperformed PM on MovieLens dataset but they both

performed similarly on Amazon dataset. This shows that, with only semantic information in

a network, GA can produce more accurate recommendations than the proposed model. This

indicates that the proposed model PM is not as effective as the state-of-the-art deep learning

model when visual information is not considered.

Next, how PM-v performed compared with the other models is discussed. The results

of PM-v are similar to the results of PM when compared to the baselines using only user-

item interaction information, i.e., CF and BPR. As shown in Figure 4.6, similar to PM,

PM-v outperformed CF in terms of both MAP@N and Recall@N on both datasets. This

emphasizes the effectiveness of using multi-hop relations to improve Accuracy. PM-v also

outperformed BPR in terms of MAP@N while performed similarly to it in terms of Recall@N

on both datasets. The reason could be the same as in the case of PM. This demonstrates the

effectiveness of including multi-hop relations to improve Accuracy as evidenced by the higher

MAP@N of PM-v. Compared to those baselines that can utilize visual information, PM-v

performed better than VBPR, DVBPR, and DeepStyle in terms of both Precision and Recall

on both MovieLens and Amazon dataset. This shows that the proposed model leveraged

visual information to produce accurate recommendations more effectively than these visually-

aware BPR-based models. Compared to MV, similar to PM, PM-v also outperformed MV in

terms of both metrics on both datasets. This demonstrates the effectiveness of using multiple

meta-paths including probabilistic meta-paths as opposed to using a single meta-path to

leverage multi-hop relations in HINs. Comparing the two variations of the proposed approach,

PM-v performed better than PM on MovieLens dataset. This suggests that the performance

of the proposed approach increased when using the visually-augmented HIN on this dataset.

In fact, the performance of PM-v was enhanced up to the performance of GA which is a

deep learning model. Also, it should be noted that GA-v performed worse than GA in terms

of both MAP@N and Recall@N on MovieLens dataset. This implies that the performance

of the Graph Attention model dropped when it is applied to the visually-augmented HIN on

this dataset. This result suggests that the Graph Attention model may not work well on the
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augmented HIN unlike the proposed approach PM-v. This demonstrates the effectiveness of

the proposed approach in leveraging visual information from a visually-augmented HIN. On

Amazon dataset, GA, GA-v, PM, and PM-v all performed similarly in terms of MAP@N as

shown in Figure 4.6b. In terms of Recall@N, PM and PM-v performed slightly worse than

GA and GA-v. One possible reason is that Amazon dataset contains numerous cold-start

users which may limit the performances of these models.

4.5.2 Explainability Discussion

In this part, the proposed approach involving the meta-path based explainability is evaluated.

The same baselines as in the previous experiment were compared with two variations of the

proposed approach. These two variations are as follows:

• xPM: the proposed explainable model using regular meta-paths with regular HINs.

This variation is used to examine how the meta-path based explainability increases the

recommendation explainability.

• xPM-v: the proposed explainable model using probabilistic meta-paths with visually-

augmented HINs. This variation is used to examine its effectiveness when both visual

information and explainability are considered.

First, the Accuracy performance of the proposed explainable approaches is discussed.

Table 4.4 shows the F1@N results of xPM and xPM-v, compared with the baselines on

both MovieLens and Amazon datasets. In this table, the highest values in each column are

highlighted in bold, and the second-highest values are underlined. The results on MovieLens

dataset demonstrate that GA achieved the best performance compared to the others. The

proposed model xPM performed as the second-best when N = 5 and 10, xPM-v attained

the second-best performance for N = 1, 10, and 50, and GA-v attained the second-best

performance when N = 100. These results suggest that, on MovieLens dataset, both

proposed models xPM and xPM-v outperformed almost every baseline except GA. However,

similar to the results of PM and PM-v, the scalability performances of xPM and xPM-v are

significantly better than GA, as will be shown in the following section. On the other hand, on

Amazon dataset, the proposed model xPM-v demonstrated the best performance for every

N compared to the other baselines including GA and GA-v. Also, xPM performed as the

second best for every N . These results illustrate the effectiveness of incorporating the visual

information and the meta-path based explainability in the proposed approach.
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Table 4.4: F1@N results of the baselines and the variations of the proposed ap-

proach (with the explainability component), xPM and xPM-v, on MovieLens

and Amazon datasets. The highest values in each column are highlighted in bold,

while the second-highest values are underlined.

Model
MovieLens Amazon

F1@1 F1@5 F1@10 F1@50 F1@100 F1@1 F1@5 F1@10 F1@50 F1@100

CF 0.0006 0.0000 0.0048 0.0017 0.0010 0.00025 0.00023 0.00015 0.00004 0.00002

BPR 0.0045 0.0147 0.0136 0.0059 0.0040 0.00264 0.00411 0.00277 0.00075 0.00040

VBPR 0.0030 0.0092 0.0082 0.0035 0.0024 0.00390 0.00301 0.00189 0.00049 0.00026

DVBPR 0.0000 0.0002 0.0007 0.0004 0.0002 0.00003 0.00002 0.00002 0.00001 0.00001

DeepStyle 0.0020 0.0026 0.0028 0.0012 0.0008 0.00029 0.00031 0.00023 0.00007 0.00004

MV 0.0004 0.0043 0.0049 0.0027 0.0018 0.00055 0.00060 0.00037 0.00009 0.00005

GA 0.0181 0.0252 0.0187 0.0082 0.0053 0.00688 0.00554 0.00351 0.00089 0.00047

GA-V 0.0142 0.0190 0.0153 0.0072 0.0049 0.00702 0.00562 0.00357 0.00091 0.00048

xPM 0.0109 0.0231 0.0185 0.0074 0.0047 0.00831 0.00607 0.00384 0.00096 0.00050

xPM-v 0.0159 0.0230 0.0185 0.0076 0.0047 0.00840 0.00628 0.00395 0.00098 0.00051

Considering the MAP@N and Recall@N results on MovieLens dataset in Figure 4.7a, xPM

outperformed almost every baseline except GA in terms of MAP@N. In terms of Recall@N,

xPM performed similarly to GA and GA-v while outperforming the others. This suggests

that, despite the explainability component included in this model, xPM can still produce

recommendations as effectively as PM. Similar to the case of PM and PM-v, with the

visually-augmented HIN, xPM-v performed better than xPM and even outperformed GA in

terms of MAP@N. This depicts how the proposed explainable approach can effectively utilize

visual information and improve Accuracy in terms of MAP@N. As for Amazon dataset, the

results are in Figure 4.7b. From this figure, both xPM and xPM-v outperformed the other

baselines including GA and GA-v in terms of MAP@N. In terms of Recall@N, they performed

similarly to GA and GA-v while outperforming the others. This suggests that, on Amazon

dataset, both xPM and xPM-v can produce accurate recommendations. Comparing the

proposed models, xPM and xPM-v performed similarly to each other in terms of MAP@N

and Recall@N on this dataset.

Next, the Explainability performance is discussed. Table 4.5 shows the EF@N results for

the proposed models and baselines on both MovieLens and Amazon datasets. Highlighted

in bold are the highest values within each column. On MovieLens dataset, for every N ,

all models exhibited comparable performance, with slight differences for larger values of N ,
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(a) MovieLens

(b) Amazon

Figure 4.7: Accuracy (MAP@N and Recall@N) comparison between the proposed

approaches (with the explainability component), xPM and xPM-v, and other

baselines on (a) MovieLens and (b) Amazon datasets.

i.e., N = 10, 50 and 100. DVBPR and DeepStyle outperformed other models for N =

10, 50 and 100, with DVBPR achieving the highest EF@N values. On Amazon Dataset, the

proposed models, xPM and XPM-v, and BPR consistently outperformed the other models

for N = 5, 10, 50 and 100. DVBPR, DeepStyle, GA, and GA-V also exhibited competitive

performance, with their EF@N values being the same or close to the proposed models and

BPR.

For a more detailed analysis of the Explainability performance, the Explainability Preci-

sion and Explainability Recall results are shown in Figure 4.8. The results on MovieLens

dataset are presented in Figure 4.8a. From this figure, xPM performed similarly to GA

while it outperformed the other non-visually aware baselines including CF, BPR, and MV in

terms of EP@5. This indicates that when visual information was not considered, the proposed
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Table 4.5: EF@N results of the baselines and the variations of the proposed ap-

proach on MovieLens and Amazon datasets. The highest values in each column

are highlighted in bold.

Model
MovieLens Amazon

F1@1 F1@5 F1@10 F1@50 F1@100 F1@1 F1@5 F1@10 F1@50 F1@100

CF 0.00060 0.00260 0.00519 0.02033 0.03058 8.7996E-05 4.3790E-04 8.7562E-04 2.7699E-03 2.7679E-03

BPR 0.00060 0.00260 0.00519 0.02566 0.05084 8.7996E-05 4.3790E-04 8.7761E-04 4.3764E-03 8.7337E-03

VBPR 0.00060 0.00260 0.00519 0.02585 0.05123 8.7996E-05 4.3790E-04 8.7362E-04 4.3544E-03 8.6839E-03

DVBPR 0.00060 0.00260 0.00539 0.02645 0.05201 8.7996E-05 4.3590E-04 8.6762E-04 4.3406E-03 8.6643E-03

DeepStyle 0.00060 0.00260 0.00539 0.02605 0.05162 8.5996E-05 4.3391E-04 8.6962E-04 4.3346E-03 8.6503E-03

MV 0.00060 0.00260 0.00499 0.02487 0.04656 8.7996E-05 4.3790E-04 8.7562E-04 3.9374E-03 5.6671E-03

GA 0.00060 0.00260 0.00519 0.02585 0.05064 8.7996E-05 4.3790E-04 8.7761E-04 4.3764E-03 8.6461E-03

GA-V 0.00060 0.00260 0.00519 0.02585 0.05064 8.7996E-05 4.3790E-04 8.7761E-04 4.3764E-03 8.6461E-03

xPM 0.00060 0.00260 0.00519 0.02585 0.05084 8.7996E-05 4.3790E-04 8.7761E-04 4.3764E-03 8.7337E-03

xPM-v 0.00060 0.00260 0.00519 0.02585 0.05103 8.7996E-05 4.3790E-04 8.7761E-04 4.3764E-03 8.7337E-03

model xPM achieved higher Explainability than the other baselines. xPM also performed

similarly to VBPR in terms of EP@5. However, compared to DVBPR and Deepstyle, xPM

performed clearly worse than both of these models. This suggests that, compared to the

baselines involving visual information, the proposed model without considering visual informa-

tion is less effective in terms of Explainability. xPM-v performed better than most baselines

except DVBPR and DeepStyle in terms of EP@5. This indicates that the proposed ap-

proach can produce more explainable items than almost every baseline. Although DVBPR

and DeepStyle performed well regarding Explainability, they clearly performed worse than the

proposed approaches in terms of Precision and Recall. This suggests that xPM-v maintained

a better trade-off between Accuracy and Explainability compared to DeepStyle. xPM-v out-

performed xPM in terms of EP@5. This suggests that, when visual information is included,

the Explainability performance of the proposed approach can be enhanced. It shows that the

proposed approach can achieve high Explainability especially when utilizing visual information

on this dataset. In terms of ER@5, all models performed similarly. DVBPR and DeepStyle

slightly outperformed the others. However, the differences are almost indistinguishable. This

is because |Eu| is typically large since there are many items that are explainable for each

user. Therefore, ER@N tends to be tremendously small regardless of the number of relevant

explainable items in top-N recommendations (|Eu
⋂
Yu|). On Amazon dataset, the results

are shown in Figure 4.8b. From this figure, all models including variations of the proposed

approach performed similarly as their EP@5 performances are close to each other. One possi-
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(a) MovieLens

(b) Amazon

Figure 4.8: Explainability (EP@N and ER@N) comparison between the proposed

approaches (with the explainability component), xPM and xPM-v, and other

baselines on (a) MovieLens and (b) Amazon datasets.

ble reason is that e-commerce purchase behaviors are easier to explain than movie preference

rating/tagging behaviors. Most recommendations that were predicted in all of these models

are explainable. In terms of ER@5, the results are similar to those on MovieLens dataset.

Specifically, the ER@5 performances are similar for all the compared approaches. The reason

is the same as previously mentioned. Since the number of explainable items for each user is

high, the computed ER@N of each user is then typically low, i.e., |Eu| >> |Eu
⋂
Yu| when

computing ER@N.

4.5.3 Scalability Discussion

In this part, the Scalability performance of the proposed approach xPM-v compared to the

other two baselines that performed well in terms of Accuracy, i.e., BPR and GA, is discussed.
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Table 4.6: The statistics of the synthetic datasets

Synthetic Dataset Scale #nodes #relations

SD1 104 4,356 9,986

SD2 105 30,902 100,000

SD3 106 90,000 1,000,000

SD4 107 90,001 10,000,000

The computational time of these approaches on a synthetic dataset was compared. This

synthetic dataset consists of 4 sub-datasets namely SD1, SD2, SD3, and SD4. Each sub-

dataset contains a different number of relations at a different scale, i.e., 104, 105, 106,

and 107. The statistics of these sub-datasets are shown in Table 4.6. For all models, the

training batch size was set to 16 and they were trained for 10 epochs. The results are

in Figure 4.9. From this figure, the computational time of xPM-v is slightly higher than

BPR because xPM-v requires additional time for computing the meta-path features and the

meta-path based explainability scores and updating the additional parameters in the modified

BPR-MF framework. However, compared to GA, the computational time of xPM-v is much

lower, especially for those large-scaled datasets (106 and 107). These results suggest that

the proposed model xPM-v achieved close or similar performances with the popular shallow

model BPR, from the aspect of Scalability. Also, it has significantly higher Scalability than

the deep learning model GA.

To examine the Scalability of using probabilistic meta-paths and the meta-path based

explainability, the computational time of PM, PM-v, xPM and xPM-v were compared.

The results are shown in Figure 4.9. From this figure, all of these variations have similar

computational time with the differences for the sub-dataset SD4, the largest one. However,

these differences are not as vast as the difference between xPM-v and GA discussed previously.

Thus, using probabilistic meta-paths for computing the meta-path features and incorporating

the meta-path based explainability can be considered scalable in this experiment.

Scalability and Accuracy of using the local connectivity (Eq. (4.5) and (4.6)) and the

global connectivity (Eq. (4.9) and (4.12)) were also compared. Given a set of meta-paths

{UP,UPUP,UPUPUP} based on the user-item interaction node type, the computational

time of each method used for computing the meta-path features on the synthetic dataset

was examined. These meta-paths were chosen because they are basic meta-paths that can be
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Figure 4.9: Scalability comparison between the proposed model variations, includ-

ing PM, xPM-v, PM-v, and xPM-v), against well-performing baselines in terms

of Accuracy, i.e., BPR and GA). It compares the computational time of each

model in seconds.

applied to different datasets. Any dataset generally consists of user and item node types. Some

semantic node types may not be present across various datasets. For example, the actor node

type in a movie-domain dataset is not available in a clothing-domain dataset. The results are

shown in Figure 4.10. This figure shows that the proposed global connectivity method spent

less computational time compared to the local connectivity method. This demonstrates the

scalability of computing meta-path features using the global connectivity. Furthermore, the

Accuracy performance of the proposed approach using the global connectivity and the local

connectivity was also examined. This is to validate whether using the global connectivity in

the proposed approach affects the Accuracy or not. For this experiment, MovieLens dataset

was used with three meta-paths {UP,UPUP,UPUPUP} for meta-path feature extraction.

The Accuracy results of xPM-v based on the local connectivity and the global connectivity

are shown in Figure 4.11. From this figure, both MAP@N and Recall@N of xPM-v using

the local and global connectivity are similar. This suggests that using the proposed global

connectivity in the proposed approach is as accurate as using the local connectivity, but more

scalable.
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Figure 4.10: Scalability comparison between xPM-v using global and xPM-v using

local connectivity. It compared the computational time of each model in seconds.

(a) MovieLens

(b) Amazon

Figure 4.11: Comparison of Accuracy performance (MAP@N and Recall@N) of

xPM-v using the local and xPM-v using the global connectivity. It shows that

using the global connectivity to improve the Scalability performance in xPM-v

does not drastically affect the Accuracy performance.
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4.6 Summary

This chapter focused on the second research question regarding the explainability of visually-

aware recommendations using visually-augmented HINs. To increase the explainability of

visually-aware recommendations, multi-hop relations are valuable information that was typi-

cally ignored in previous studies. However, leveraging multi-hop relations in HINs can pose

scalability challenges. To address these challenges and fill the gap of using multi-hop relations

for generating visually-aware recommendations, this thesis proposed a scalable and explain-

able visually-aware recommender system framework called SEV-RS. The framework addressed

the limitations of existing approaches by incorporating visual factors, considering scalability

issues, and providing explainability in visually-aware recommendations. It consisted of three

components: a visually-augmented HIN, a scalable meta-path feature extraction method, and

an explainable recommendation generation method that utilized meta-paths.

SEV-RS was evaluated in the Top-N recommendation task using three evaluation metrics:

Accuracy, Explainability, and Scalability. The experimental results demonstrated that SEV-RS

outperformed baselines in terms of Accuracy, with higher Precision and Recall values. It also

effectively leveraged visual information in visually-augmented HINs compared to the Graph

Attention Network model. In terms of Explainability, SEV-RS generated more explainable

recommendations as indicated by higher Explainability Precision and Explainability Recall

values. In terms of Scalability, SEV-RS achieved comparable performance to the shallow

BPR-MF model while requiring significantly less computational time compared to the Graph

Attention Network model.

Overall, this chapter contributes to the development of a framework for explainable

visually-aware recommendations. This framework, along with other meta-path based recom-

mendation approaches, generates explainable recommendations by utilizing meta-paths that

convey specific meanings in multi-hop relations. However, the challenge of providing clear

and understandable explanations arises when recommendations rely on long and complicated

meta-paths. Hence, the third research question of this thesis focuses on enhancing the ex-

plainability of meta-path based recommender systems. The following chapter will address this

research question and propose a solution to tackle this challenge. It will provide a solution on

how to enhance the explainability of HIN-based recommender systems, with a specific focus

on meta-path based recommender systems.
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Explainable Recommendations Using

Meta-Path Translation

This chapter focuses on the third research question which is about further explainability

improvement of explainable visually-aware recommender systems based on HINs. In Chapter

4, a scalable and explainable visually-aware recommender system framework was proposed.

This framework uses meta-paths to allow for explainability in visually-aware recommenda-

tions. This framework and other meta-path based frameworks can generate recommendations

based on specific meta-paths. These meta-paths can be used as explanations for the gen-

erated recommendations [69, 72, 96]. As a result, the “explainability” of meta-paths used

for learning recommendations in the framework directly affects the explainability of the rec-

ommendations. This chapter addresses this issue and aims to provide a method to improve

the explainability of not only the proposed framework in the previous chapter but also other

HIN-based recommender systems in general.

5.1 Motivation

Depending on the circumstances, different meta-paths with variations in lengths and complex-

ities can be utilized to achieve intended performances. Some prior studies have shown that

long and complicated meta-paths can be useful. In some cases, long meta-paths are more

informative than shorter meta-paths [205, 211, 212, 213]. Despite the effectiveness of long

and complicated mete-paths, the explainability of these meta-paths is intuitively low. Ex-

This chapter has been published in [210] available at https://doi.org/10.1145/3625828
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Figure 5.1: Example of explaining recommendations obtained from meta-path

based recommender systems using meta-path UPBPCP and meta-path UPCP

where U , P , B, and C denote the user, item, brand, and category node type,

respectively.

plaining recommendations with these meta-paths could be more difficult to understand than

shorter and less complex ones. For example, given a HIN in Figure 5.1, let U , P , C and B

denote user, item, category, and brand node types respectively. In this figure, a meta-path

based recommender system based on meta-path UPBPCP recommends “Item A” to “User

2” based on UPBPCP . It can be interpreted as “Item A is recommended to User 2 because

it is in the same category as an item (Item B) that has the same brand as User 2’s item (Item

C)”. Similarly, a meta-path based recommender system based on UPCP also recommends

“Item A” to “User 2”. The explanation is based on UPCP , i.e., “Item A is recommended

to User 2 because it is in the same category as User 2’s item (Item C)”. Although both

meta-paths can be used to explain this recommendation, the explanation based on UPCP is

more interpretable than UPBPCP . Hence, generating more comprehensible explanations for

those recommendations could lead to better explainability in meta-path based recommender

systems.

To bridge the gap of better explaining meta-path based recommendations, a method to
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find more comprehensible explanations for meta-path based recommendations is proposed.

First, how to quantify meta-path explainability based on three aspects, i.e., readability,

credibility, and diversity is introduced. Then, given any meta-path, comparable explainable

meta-paths are defined as meta-paths that perform recommendation similarly but have higher

explainability compared to the given meta-path. They can be used as more comprehensible

explanations for those recommendations based on the given meta-path.

Depending on the number of candidate meta-paths, identifying comparable explainable

meta-paths manually can be time-consuming. Therefore, a method for generating comparable

explainable meta-paths is proposed. Considering meta-paths as languages, it can be assumed

that they can be constructed based on certain grammar rules. The meta-path grammar

is therefore defined based on the concept of quasi-synchronous context-free grammar [214].

With this grammar, a meta-path translation model is proposed. This model is a probabilistic

model that maps a meta-path to its comparable explainable ones. Since the task of meta-

path translation is similar to a machine translation in natural language processing (NLP), a

sequence-to-sequence (Seq2Seq) approach is adopted to build a meta-path translation model.

The proposed meta-path translation model consists of three parts. The first part is the

parser for generating the parse tree of a source meta-path. The second part is the encoder

which extracts latent features of node types in a source meta-path and hierarchical-structure

information from a source meta-path simultaneously. The last part is the decoder, which is a

modified Seq2Seq model based on latent neural grammar [215]. It maps a source meta-path to

a target meta-path based on the meta-path grammar. Unlike most existing Seq2Seq models,

the proposed model is capable of modeling non-hierarchical and hierarchical dependencies

between node types in a meta-path. Also, it is suitable for the meta-path translation task

which is a one-to-many task compared to other Seq2Seq models. To the best of current

knowledge, this is the first work that considers meta-paths from a linguistic point of view. In

summary, the contributions can be outlined as follows:

• The meta-path translation task for recommender systems is introduced, aiming to iden-

tify the comparable explainable meta-paths of a long and complicated one.

• The quantification of meta-path explainability is proposed, allowing for the identification

of comparable explainable meta-paths for any given meta-path.

• Two meta-path translation datasets were generated based on two real-world recommen-

dation datasets. They are publicly available and represent the first of their kind.
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• A novel view of meta-paths and their formation from a grammatical perspective is

introduced. A meta-path grammar is defined to enable the systematic construction of

explainable meta-paths.

• A meta-path translation model is proposed, leveraging the meta-path grammar defined

in this work. This model considers both non-hierarchical and hierarchical structures of

a meta-path simultaneously to effectively learn the translation.

• Extensive experiments on real-world datasets were conducted to generate more compre-

hensible explanations for meta-path based recommendations.

The organization of the remainder of this chapter is as follows: In Section 5.2, the proposed

definitions of meta-path explainability and explainable meta-path are introduced. Then, the

proposed method to identify comparable explainable meta-paths given a long and complicated

one is explained. In Section 5.3, the formulation of the proposed meta-path translation task

is discussed. Following that, the meta-path grammar and the proposed meta-path translation

model based on this grammar are examined. Subsequently, in Section 5.4, how to construct

a meta-path translation dataset for training and evaluating the proposed model is described.

Section 5.5 discusses the experiments conducted to evaluate the proposed meta-path trans-

lation model. The details of parameterization and evaluation metrics can be found in this

section. In Section 5.6, the results and discussions of the experiments are provided. The

performance comparisons between the proposed meta-path translation model and state-of-

the-art Seq2Seq models are discussed, along with the analysis of hyperparameters, errors,

and computational complexity. Lastly, Section 5.7 provides a summary of contributions and

conclusions for this chapter.

5.2 Explainable Meta-Path

A meta-path provides meaningful high-order connectivity between users and items for learning

recommendations. Due to its semantic meaning, it can be used as an explanation of why

the items are recommended. For example, let U , P , and C denote the user node type, item

node type, and category node type respectively. Any recommendations based on UPCP

can be explained that they are recommended since they have the same categories as the

users’ previously interacted items. Intuitively, some meta-paths are perplexing and hard to

understand, especially those that are long and contain various node types. In spite of that,
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these meta-paths are still useful for capturing diversity in users’ preferences [173]. In this

section, the definition of an explainable meta-path is introduced. Then, how to identify

relatively more explainable meta-paths given a long and complicated one is explained.

Three metrics in [87] are customized to quantify the explainability of a meta-path. These

metrics are commonly used to measure sequence (or path) readability, credibility, and diver-

sity. Readability indicates how easily interpretable or understandable a sequence is. Higher

readability indicates a more straightforward and intuitive sequence. Credibility is a metric that

evaluates the reliability or trustworthiness of a sequence. It measures the degree to which the

connections or relationships between the components in a sequence are supported by evidence

or data. A higher credibility score corresponds with stronger empirical or contextual support

for the sequence. Diversity quantifies the variety or distinctiveness of the components in a

sequence. A higher diversity score suggests that the sequence incorporates a broader range of

entities, potentially providing more comprehensive information. These metrics are also appli-

cable in meta-paths and can be used to measure similar qualities. In this work, the definitions

of meta-path readability, meta-path credibility, and meta-path diversity are introduced. Let

m = N1N2 · · ·Nl+1 be a meta-path. l is the length of m. Meta-path readability R(m) is

computed by

R(m) =
1√

l · |Nm|
(5.1)

where Nm = {N1, N2, ..., Nl+1} is a set of node types in meta-path m. It is inversely pro-

portional to the length of m and the number of node types in m. The readability decreases

as the length and the total number of node types increase. Meta-path credibility C(m) is

computed by

C(m) = Πl
i=1W(RNi,Ni+1) (5.2)

where W(RNi,Ni+1) is the weight of relation RNi,Ni+1 in m. It is the accumulated weight

of all relation weights in the meta-path. The higher credibility means that the meta-path is

more accountable based on pre-defined weights in the schema. Meta-path diversity D(m) is

defined as

D(m) = logl+1|Rm| (5.3)

Some studies have shown that relation sequences with diversity are more comprehensive and

persuasive for humans [87, 216]. Thus, the higher the diversity of m is, the more explainable.

Table 5.1 shows an example of various meta-paths consisting only of U and P node types

with different lengths and their corresponding readability and diversity values. Intuitively, the
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Table 5.1: Example of various meta-paths consisting only of U and P node types

with different lengths and their corresponding readability and diversity values

Meta-path Readability Diversity

UPUP 0.35 0.5

UPUPUP 0.29 0.39

UPUPUPUP 0.25 0.33

Table 5.2: Example of various meta-paths, each with the same length but differing

in the number of distinctive nodes and relation types, and their corresponding

readability and diversity values

Meta-path Readability Diversity

UPUPUPUP 0.25 0.33

UPTPGPUP 0.18 0.86

UPTPGPV P 0.16 0.94

longer the meta-path, the less explainable it becomes, as it is more complicated to understand.

From this table, it is evident that as the meta-path length increases, readability and diversity

decrease, consequently leading to lower meta-path explainability. Meanwhile, Table 5.2 shows

an example of various meta-paths, each with the same length but differing in the number of

distinctive nodes and relation types. This table reveals that when a meta-path incorporates

a greater variety of node and relation types, readability tends to decrease while diversity

increases. Considering readability, if a meta-path consists of repetitive nodes and relation

types, users (or readers) can more easily grasp the underlying meaning. This is because users

do not have to understand and distinguish the different meanings of various types of nodes

and relations. However, in such cases, a meta-path will typically have low diversity. As

aforementioned, a sequence containing diverse information also has the potential to enhance

human understanding. Therefore, an explainable meta-path in this thesis should maintain the

tradeoff between readability and diversity.

In terms of credibility, the explainability of a meta-path depends on the weights assigned

to relation types. These weights can be assigned by experts or based on prior knowledge,

indicating how certain relation types are more explainable than others. By assigning high

weights to such relation types, meta-paths containing them will achieve higher explainability
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compared to those without.

Definition 5.1. (Explainable Meta-Path) Given a meta-path m, let δR, δC , and δD denote

the thresholds for readability, credibility, and diversity respectively. If R(m) > δR, C(m) > δC

and D(m) > δD, then m is explainable.

This work proposes the criteria to determine which meta-paths are comparable but more

explainable given a long and complicated meta-path. The key idea is to find a group of

explainable meta-paths that consist of the same node types and perform as well as a given

meta-path. These conditions are summarized in the following definition:

Definition 5.2. (Comparable Explainable Meta-Path) Given a meta-path m, a comparable

explainable meta-path is a meta-path m∗ satisfying these conditions:

• m∗ is an explainable meta-path

• Nm∗ ⊆ Nm

• l′ ≤ κ < l

• |A(m)−A(m∗)| < δ

where Nm∗ is the set of node types of m∗, l′ is the length of m∗, κ is the maximum length

for selecting explainable meta-paths, A(m) and A(m∗) are any performance evaluation values

(e.g., Hit ratio, Precision, or Recall) based on m and m∗ respectively, and δ is the pre-defined

performance evaluation threshold. For any m, there can be multiple meta-paths corresponding

to these conditions.

Based on this definition, it is possible to find more explainable meta-paths (m∗) to explain

recommendations based on a long and complicated meta-path (m). However, the number of

possible explainable meta-paths is directly proportional to the length of m and the number

of unique node types in m. The higher the length and the number of node types are, the

larger the number of explainable meta-paths that could be comparable. Thus, instead of

considering the entire search space, a method to find comparable explainable meta-paths for

recommendations based on long/complicated meta-paths is proposed.
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5.3 Meta-Path Translation

5.3.1 Problem Formulation

LetM be a set of meta-paths andM∗ be a set of explainable meta-paths. Given a meta-path

m ∈ M, the problem is to find a function f : M → P(M∗) that maps m to a subset of

comparable explainable meta-paths of m where P(M∗) denotes the power set of M∗. This

problem can be considered as a one-to-many task in which an input meta-path yields a set of

its comparable explainable meta-paths.

5.3.2 Meta-Path Grammar

To find f , properties of meta-paths in M and M∗ are first assumed. Inspired by the concept

of context-free grammar in NLP, it is assumed that meta-paths in M and M∗ follow certain

grammar. Such a grammar represents certain rules of how meta-paths in bothM andM∗ are

constructed. Based on Definition 5.2, each m∗ ∈M∗ is related to its corresponding m ∈M.

Therefore, the grammar of m∗ should also depend on its corresponding m. To capture this

property, the concept of quasi-synchronous context-free grammar [214] is adopted to define

the grammar of meta-paths in M and M∗.

Definition 5.3. (Meta-Path Quasi-Synchronous Context-Free Grammar) Given a meta-

path m as a source meta-path and m∗ as a target meta-path. Let t and t∗ denote the parse

tree of m and m∗ respectively. A meta-path quasi-synchronous context-free grammar (QCFG)

is represented as

G[t] = (S,N,P,E,R[t], θ) (5.4)

where S is the distinguished start symbol, N is the set of non-terminals that expand to other

non-terminals, P is the set of non-terminals that expand to terminals (i.e. pre-terminals), E

is the set of terminals which is the set of node types, and R[t] is a set of context-free rules

conditioned on the source tree t, where each rule follows one of these following rules:

S→ A[αi], A ∈ N, αi ⊆ t (5.5)

A[αi]→ B[αj ]C[αk], A ∈ N,B,C ∈ N ∪ P, αi, αj , αk ⊆ t (5.6)

D[αi]→ w, D ∈ P, w ∈ E, αi ⊆ t (5.7)

where αi’s are subsets of nodes in the source tree t, and θ is the parameters of the rule

probabilities pθ(r) for each r ∈ R[t]. These subsets of nodes are aligned with certain nodes
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Figure 5.2: Example of meta-path grammar and how the target tree nodes are

aligned with certain nodes in the source tree in order to translate the source

meta-path UPBPCP to the target meta-path UPCP .

in the target tree t∗ when performing the translation. Note that B and C are arbitrary non-

terminals or pre-terminals in N ∪ P. D is an arbitrary pre-terminal in P. If B (or C) is a

pre-terminal in P, it is equivalent to D in Eq. 5.7 and can expands to a terminal w ∈ E

following the grammar rule B[αi]→ w (or C[αi]→ w).

Example 5.1. (Meta-Path Grammar) Figure 5.2 shows an example of meta-path grammar

and how the target tree nodes are aligned with certain nodes in the source tree in order to

translate the source meta-path UPBPCP to the target meta-path UPCP . Let t be the

parse tree of the source meta-path UPBPCP (i.e., the source tree) and t∗ be the parse tree

of the target meta-path UPCP (i.e., the target tree). α0, α1, ..., α10 denote non-terminal

nodes of the source tree while A, B, C, and D denote non-terminals of the target tree. The

node types U , P , B, P , C and P in blue are terminals nodes of t while the node types U ,

P , C, and P in red are terminal nodes of t∗. Each non-terminal node in the target tree t∗

is transduced by certain nodes in the source tree t and is parsed into other non-terminals or

terminals. For instance, A is transduced by α10 in the source tree. Then, A is parsed into B

which is transduced by α9 and D which is transduced by α5. Since both B and D are non-

terminals, they, therefore, have to be parsed again. B is parsed into two non-terminals while D

is parsed into a terminal node P . By running this process from the root node until reaching all

non-terminal nodes, the target tree t∗ which produces the target meta-path UPCP is formed

as an output for this meta-path translation.
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5.3.3 Meta-Path Translation Model

In this section, the proposed model to translate or map a given meta-path to its comparable

explainable meta-paths is discussed. To build a meta-path translation model, a Seq2Seq

model with latent neural grammar from [215] is adopted. This model was originally proposed

for NLP tasks such as machine translation and style transfer. It is capable of capturing the

hierarchical structure of a sequence based on any latent QCFG. However, latent features

extracted from the non-hierarchical structure of a sequence can be beneficial as well. A non-

hierarchical structure is a structure of a sequence that is not in a level-like or tree-like form

based on a specific grammar of the sequence. It represents local and global dependencies

between components in a sequence regardless of the sequence grammar. Relying only on a

hierarchical structure, such dependencies are neglected. Considering both the non-hierarchical

and hierarchical structures of a sequence can lead to a more effective meta-path translation

model. We, therefore, adopt this method and modify it to consider non-hierarchical and

hierarchical structures simultaneously.

The proposed meta-path translation model consists of three parts: (1) parser that finds

the parse tree of a source meta-path, (2) encoder that encodes the dependency of tokens

(node types) in a source meta-path in both non-hierarchical and hierarchical perspectives, and

(3) decoder that uses the source parse tree and the source token embeddings from the encoder

to translate a source meta-path based on the meta-path grammar. Figure 5.3 illustrates the

proposed meta-path translation model given a source meta-path UPBPCP and its target

meta-path UPCP .

Parser Typically, there exists a well-defined parser that can be applied to sentences in natural

languages to extract parse trees of these sentences immediately. However, there is no parser

developed specifically for meta-paths. Therefore, the same approach in [215] is adopted to

jointly train the parser with the encoder and the decoder. Following [215], a monolingual

PCFG with parameters φ is adopted to find the distribution of the source tree t given the

source meta-path m denoted as pφ(t|m). Therefore, given a meta-path m, the source tree t

of m can be sampled from pφ(t|m). This source tree is then used as an input for the encoder

in the next step.

Encoder The encoder consists of latent feature extraction module and hierarchical feature

extraction module. The latent feature extraction module is used to obtain dependency infor-
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Figure 5.3: The proposed meta-path translation model which comprises (1) a

parser parsing a source meta-path and generating the source tree, (2) an encoder

consisting of latent feature extraction module for extracting dependency informa-

tion of node types in a source meta-path regardless of its hierarchical structure

and hierarchical feature extraction module for encoding the hierarchical structure

of a source meta-path given its source tree from the parser, and (3) a decoder

transducing the source tree to the target tree.

mation of node types (tokens) in a source meta-path regardless of its hierarchical structure.

This module can be any type of architecture such as LSTM, CNN, or Transformer. It takes a

source meta-path as an input and outputs the latent feature embeddings of tokens in a source

meta-path. These latent feature embeddings are used as inputs for the hierarchical feature

extraction module. They can be considered prior knowledge for hierarchical feature extraction.

As for the hierarchical feature extraction, following [215], TreeLSTM [217] is used to encode

the hierarchical structure of a source meta-path given its source tree from the parser. In their

work, only the token embeddings were used as inputs of TreeLSTM. However, the same node

types repeatedly appear in a meta-path, for instance, UPBPCP has three P node types in

three different positions. This could lead to confusion in learning the dependency information.

Thus, the positional embeddings are added along with the token embeddings to differentiate

such repeating tokens based on their positions. A positional embedding is added to each
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token to indicate its position in the meta-path. Altogether, the input embeddings of TreeL-

STM are the sum of the token embeddings, the positional embeddings, and the latent feature

embeddings. In this way, TreeLSTM generates final source token embeddings that encode

both non-hierarchical-structure and hierarchical-structure information of a source meta-path.

Given a parse tree, for any node αi in this tree, let N be the total number of child nodes of

αi and hαik and cαik be the hidden state vector and memory cell vector of its kth child in the

tree respectively. The Tree-LSTM transition equations with the sum of the token embeddings,

the positional embeddings, and the latent feature embeddings as input are as follows:

zαi = σ

(
W(z)(xαi + x∗αi + x′αi) +

N∑
n=1

U(z)
n hαin + b(z)

)
(5.8)

fαik = σ

(
W(f)(xαi + x∗αi + x′αi) +

N∑
n=1

U
(f)
knhαin + b(f)

)
(5.9)

oαi = σ

(
W(o)(xαi + x∗αi + x′αi) +

N∑
n=1

U(o)
n hαin + b(o)

)
(5.10)

vαi = tanh

(
W(v)(xαi + x∗αi + x′αi) +

N∑
n=1

U(v)
n hαin + b(v)

)
(5.11)

cαi = zαi � vαi +

N∑
k=1

fαik � cαik (5.12)

hαi = oαi � tanh(cαi) (5.13)

where xαi , x
∗
αi and x′αi denote the token embedding, the positional embedding and the

latent feature embedding of αi respectively, σ denotes the logistic sigmoid function and hαi

is the hidden state vector of αi which is used as the embedding of αi for the decoder in the

next step.

Decoder After obtaining the source tree and the source token embeddings, the next step

is to transduce the source tree t to the target tree t∗ via the decoder based on a QCFG. For

each rule r ∈ R[t], the rule probability pθ(r) is computed by either one of these following

formulas:

pθ(S→ A[αi]) = ς(uTS eA[αi]) (5.14)

pθ(A[αi]→ B[αj ]C[αk]) = ς(f1(eA[αi])
T f2(eB[αj ]) + f3(eC[αk])) (5.15)

pθ(D[αi]→ w) = ς(f4(eD[αi])
Tuw + bw) (5.16)
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where ς denote the softmax function, uS is an embedding of S randomly initialized, f1, f2, f3

and f4 are feedforward neural networks with residual layers, eA[αi] is an embedding of A[αi]

computed by

eA[αi] = uA + hαi (5.17)

where uA is an embedding of A randomly initialized and hαi is the token embedding of αi

obtained from the encoder, uw is a terminal node embedding and bw is a terminal bias. These

probabilities altogether define the probability of the target tree t∗ given the source tree t

denoted as pθ(t
∗|t).

With both pφ(t|m) and pθ(t
∗|t). The log marginal likelihood of a target meta-path m∗

given a source meta-path m with a QCFG G[t] is

log p(m∗|m) = log
( ∑
t∈T (m)

∑
t∗∈T (m∗)

pθ(t
∗|t)pφ(t|m)

)
(5.18)

where T (m) and T (m∗) denote the sets of trees whose yields are m and m∗ respectively.

Since ∑
t∗∈T (m∗)

pθ(t
∗|t) = pθ(m

∗|t), (5.19)

Eq. (5.18) can be rewritten as

log p(m∗|m) = log
( ∑
t∈T (m)

pθ(m
∗|t)pφ(t|m)

)
log p(m∗|m) = log

(
Et∼pφ(t|m)[pθ(m

∗|t)]
)

(5.20)

where

pθ(m
∗|t) =

∏
r∈R[t]

pθ(r) (5.21)

where R[t] denotes a set of rules in the source tree t and pθ(r) is the probability of rule r.

By Jensen’s inequality,

log p(m∗|m) ≥ Et∼pφ(t|m)[log pθ(m
∗|t)] (5.22)

as the lower bound of the log-likelihood. The greatest lower bound of log p(m∗|m) can

be estimated by maximizing this lower bound. Thus, the loss function is defined as an

expected negative log-likelihood, Finally, the loss function is defined as an expected negative

log-likelihood,

L(θ, φ) =− Et∼pφ(t|m)[log pθ(m
∗|t)] (5.23)
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In this work, unlike the original model in [215], the regularization terms are also added in the

loss function to ensure the explainability of meta-paths as follows:

L(θ, φ) = −Et∼pφ(t|m)

[
log pθ(m

∗|t)
]
− λ

(
R(m∗) + C(m∗) + D(m∗)

)
where R(m∗), C(m∗) and D(m∗) denote the readability, credibility, and diversity of the target

meta-path m∗ respectively, and λ is a parameter for tuning these regularization terms.

Figure 5.3 illustrates the whole proposed framework. This figure shows an example of

translating UPBPCP to UPCP based on G[t] and the node alignment between the parse

tree t of UPBPCP and the parse tree t∗ of UPCP . As shown in this figure, nodes in t∗ are

transduced by certain nodes in t. For instance, node A[α10] in t∗ is transduced by α10 in t.

The grammar rule A[α10] → B[α9]D[α5] is learned by the decoder. This means that, in the

target tree t∗, A[α10] is parsed/divided into B[α9] which is transduced by α9 and D[α5] which

is transduced by α5.

Training The model parameters are updated by using the gradient descent algorithm. The

gradient with respect to θ is computed by using an unbiased Monte Carlo method and back-

propagated through the usual inside algorithm [218]. For the gradient with respect to φ, the

score function estimator with a self-critical baseline [219] is applied as follows:

∇φL(θ, φ) ≈ − (g(t̃)− g(t̂))∇φlog pφ(t̃|m) (5.24)

where g(t) = log pθ(m
∗|t), t̃ is a sample from pφ(t|m) and t̂ = argmaxtpφ(t,m) is the MAP

tree of pφ(t|m).

Inference Firstly, t̂ = argmaxtpφ(t,m) is obtained from the parser. Then, Kt target trees

are sampled from pθ(t
∗|t̂). Among these sampled trees, top-N most-common target trees

t∗1, ..., t
∗
N are selected. Finally, meta-paths m∗1, ...,m

∗
N corresponding with t∗1, ..., t

∗
N are treated

as final outputs.

5.4 Meta-Path Translation Dataset Generation

To train the proposed meta-path translation model, a meta-path translation dataset is needed.

There are three requirements for generating such a dataset, i.e., a recommendation dataset,

a meta-path based recommendation model, and a set of meta-paths M for being applied to

the selected recommendation model on the selected dataset. Given these inputs, the process

of generation is summarized as follows:
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Step 1: For each m ∈M, the selected recommendation model is trained based on m on the

selected recommendation dataset. Then, each model based on each meta-path is used to

compute a set of recommendations. This results in multiple sets of recommendations in

which each set contains recommendations based on each meta-path.

Step 2: With all sets of recommendations based on each and every m ∈ M, the set of all

comparable explainable meta-paths of each m, f(m), is identified. This is done by itera-

tively considering all possible pairs of meta-paths and validating them based on Definition

5.2.

Step 3: For each comparable explainable meta-path m∗ of m, (m,m∗) is treated as a sample

and added to the dataset for meta-path translation where m is an input (source meta-path)

and m∗ is an output (target meta-path).

In the experiments, the recommendation model in [173] was adopted to predict recom-

mendations based on each meta-path in Step 1. All the parameter settings were the same

as in the original paper. This approach uses metapath2vec to find user and item node em-

beddings and use these embeddings in a CF-KNN model. Note that any meta-path based

recommendation approaches are applicable. This approach was selected since it is easy to

implement and requires less computational resources than most approaches. Two real-world

recommendation datasets were used. These datasets are the same datasets as in Chapter 4

(See Section 4.4.1). To reduce the sparsity, those users who have less than two items and

those items that have been interacted with by less than two users were removed. The dataset

statistics are summarized in Table 4.1 (in Section 4.4.1). For MovieLens, there are 7 node

types and 14 relation types (inverse relation types included). For Amazon dataset, there are 6

node types and 12 relation types (inverse relation types included). For simplicity, in this work,

all relations have the same weight which is 1, i.e., w(x, y) = 1 for all rx,y ∈ R. Assigning

different weights for different relations will be considered in future work. For each dataset,

meta-paths based on the node and relation types in Table 4.1 (in Section 4.4.1) were selected.

Only meta-paths that start with the user node type U and end with the item node type P were

considered. Based on this condition, the shortest possible meta-path is UP with a length of 1.

However, using meta-path UP is equivalent to using only user-item interactions which ignore

multi-hop relations. Therefore, this meta-path was discarded. The range of meta-path length

then starts at 2. To determine the maximum length, the fact that increasing the maximum

length would result in a significantly larger number of meta-paths was considered. For each
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(a) MovieLens

(b) Amazon

Figure 5.4: The number of meta-paths of each length ranging from 2 to 8 used

in the experiments on (a) MovieLens and (b) Amazon datasets

and every meta-path, the recommendation model based on this meta-path has to be trained

to determine the performance similarities among different meta-paths. A large amount of time

would be needed to train all of these models. Therefore, to maintain the feasibility of the

experiments while considering the exponential growth of possible meta-paths with increasing

length, the maximum length of the selected meta-paths is 8. As a result, the lengths of the

chosen meta-paths are varied within the range of 2 to 8. In total, Movielens dataset consists

of 1, 025 meta-paths, while Amazon dataset consists of 703 meta-paths. For both datasets,

the number of meta-paths of each length can be found in Figure 5.4.

For Step 2, to identify explainable meta-paths, the maximum length of comparable ex-
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plainable meta-paths (κ), the readability threshold (δR), the credibility threshold (δC) and

the diversity threshold (δD) have to be determined. The parameter κ was varied from 2 to

7 and δR, δC , and δD among {0, 0.25, 0.5, 0.75, 1} to examine the number of explainable

meta-paths obtained from each combination. Note that since the relation weights of HINs of

both datasets were set identically to 1, the credibility was then identical for every meta-path.

This means that different values of δC did not affect the number of explainable meta-paths.

Therefore, only outcomes when varying κ, δR, and δD were considered. Figures 5.5 and

5.6 show the number of explainable meta-paths when different κ, δR and δD were used on

MovieLens dataset and Amazon dataset respectively. To ensure explainability, κ should be

as short as possible. However, when κ = 2, there is only one explainable meta-path available

for both datasets. Therefore, κ = 3 was selected, which is the second shortest length for both

datasets. Then, to include as many explainable meta-paths as possible, the highest thresholds

that would allow the highest number of explainable meta-paths when κ = 3 was selected,

i.e., δR = 0.25, and δD = 0.25. As a result, the explainable meta-paths for MovieLens

dataset are UV P , UPUP , UPGP , UPAP , UPDP , UPTP , UPV P and UV UP . For

Amazon dataset, the explainable meta-paths are UV P , UPUP , UPCP , UPBP , UPHP ,

UPV P and UV UP . Comparing these explainable meta-paths with the meta-paths used in

the literature [65, 73, 173, 175, 208, 209, 220, 221, 222, 223, 224], they are corresponding

with the majority of the shortest meta-paths that were commonly used. Intuitively, shorter

meta-paths are easier to comprehend. Since the chosen meta-paths are the shortest meta-

paths commonly used, this observation suggests that they are practical and explainable. From

Definition 5.2, at least one performance evaluation metric is required to identify comparable

explainable meta-paths. In the experiments, Mean Average Precision@100 (MAP@100) and

Mean Recall@100 (Recall@100) were selected to compare performance evaluation values. The

last condition in Definition 5.2 then can be specified as follows: |Ap(m) − Ap(m∗)| < δ1 or

|Ar(m)−Ar(m
∗)| < δ2 where Ap(m) and Ap(m∗) are the MAP@N values of the recommen-

dations based on m and m∗ respectively, δ1 is the pre-defined precision threshold, Ar(m) and

Ar(m
∗) are the Recall@N values of the recommendations based on m and m∗ respectively

and δ2 is the pre-defined recall threshold. To avoid including or excluding too many com-

parable explainable meta-paths, the parameters δ1 and δ2 were determined by the mean of

|Ap(m) − Ap(m∗)| and the mean of |Ar(m) − Ar(m
∗)|. As a result, δ1 and δ2 were set to

0.0001 and 0.01 respectively.
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Figure 5.5: The number of explainable meta-paths when different values of the

maximum length of comparable explainable meta-paths (κ), the readability thresh-

old (δR), and the diversity threshold (δD) were used to determine explainable

meta-paths on MovieLens dataset
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Figure 5.6: The number of explainable meta-paths when different values of the

maximum length of comparable explainable meta-paths (κ), the readability thresh-

old (δR), and the diversity threshold (δD) were used to determine explainable

meta-paths on Amazon dataset
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(a) MovieLens (b) Amazon

Figure 5.7: The number of source meta-paths with n comparable explainable

meta-paths in the meta-path translation datasets based on (a) MovieLens and

(b) Amazon datasets

Lastly, in Step 3, each sample was created as aforementioned. In total, there are 1, 003

source meta-paths in MovieLens dataset and 696 source meta-paths in Amazon dataset. For

clarification, these datasets are meta-path translation datasets, not recommendation datasets.

For both datasets, the length of source meta-paths ranges from 4 to 8 while the length of target

meta-paths ranges from 2 to 3. Each source meta-path corresponds to one or more target

meta-paths. The number of source meta-paths with a different number of target meta-paths is

shown in Figure 5.7. On average, one source meta-path is corresponding to 2.44 target meta-

paths in MovieLens dataset and 4.25 target meta-paths in Amazon dataset. Table 5.3 shows

some examples of source meta-paths (long and complicated meta-paths in this work) and their

corresponding target meta-paths (i.e., their comparable explainable meta-paths). For each

dataset, 70% of the source meta-paths were split for training, and 30% of them were reserved

for testing. The statistics of the generated datasets are summarized in Table 5.4. It should be

noted that there are certain meta-paths for which no comparable explainable meta-path exists

that satisfies the given conditions. Thus, the number of source meta-paths in the meta-path

translation datasets is less than the number of all possible meta-paths used for predicting

recommendations. The datasets and the implementation of the meta-path translation model

can be found in this link https://bit.ly/meta-path-translation-model with an access

request required.
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Table 5.3: Examples of source meta-paths and their corresponding target meta-

paths (i.e., their comparable explainable meta-paths) on each dataset

Dataset Source meta-path Target meta-path(s)

Movielens

UPV PV PAP UV UP

UPDPV PTP UPUP , UPV P

UV UPTPUV P UPV P , UV UP

Amazon

UPUPCPHP UPCP , UPUP

UPHPBPHP UPBP , UPUP

UV PHPBPHP UV P , UV UP , UPBP , UPV P

Table 5.4: The statistics of the meta-path translation datasets generated based

on MovieLens and Amazon datasets

Dataset

Training set Test set

#samples #source #target #samples #source #target

meta-paths meta-paths meta-paths meta-paths

MovieLens 1,738 698 8 709 305 8

Amazon 2,038 487 7 874 209 7

5.5 Experimental Setup

Experiments were conducted on the generated datasets previously described in Chapter 5.4.

The objective of the experiments is to validate the effectiveness of the proposed meta-path

translation model compared with the baselines. An ablation study was conducted to exam-

ine the effect of the number of sampled target trees Kt and the weight decay wd on the

performance of the proposed meta-path translation model. Moreover, an error analysis was

performed to examine incorrect predictions generated by the proposed model.

5.5.1 Parameterization

As for the proposed meta-path translation model, two deep learning architectures, i.e., CNN

[225] and Transformer, [226] were adopted for latent feature extraction. For training, λ

was set to 0.5. The weight decay rate was varied among {10−3, 10−5, 10−7, 10−10}. The

weight decay 10−5 and 10−7 were selected for MT-CNN and MT-TF on MovieLens dataset

respectively. Meanwhile, the weight decay 10−5 and 10−3 were selected for MT-CNN and

MT-TF on Amazon dataset respectively. For sampling the target trees, Kt was varied among

{10, 30, 50, 70, 100}, and Kt = 50 was used for both models on both datasets.
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5.5.2 Evaluation Metrics

Two evaluation metrics, Mean Hit Ratio@N (HR@N) and Mean Recall@N (Recall@N), were

used for the comparison of accuracy. HR@N is computed as follows:

HR@N =
|MS

hit|
|MS |

(5.25)

where |MS
hit| is the number of source meta-paths for which one of the correct target meta-

paths is included in the top-N predictions and |MS | is the total number of source meta-paths.

The higher HR@N means the better the model can predict one of the target meta-paths for

each source meta-path correctly. However, since there can be multiple corresponding target

meta-paths for each source meta-path, Recall@N is used to evaluate the performance of

predicting a group of target meta-paths. It is computed as follows:

Recall@N =
1

|MS |
∑

m∈MS

|Pm ∩ PNm |
|Pm|

, (5.26)

where Pm denotes the set of corresponding target meta-paths of source meta-path m ∈MS

and PNm denotes the set of top-N predicted target meta-paths of m.

Furthermore, the explainability of the translated meta-paths was also evaluated by Mean

Readability@N (RD@N) and Mean Diversity@N (DV@N). These two metrics indicate the av-

erage diversity and readability of the top-N translated meta-paths obtained from the model.

They can be computed as follows:

RD@N =
1

N · |MS |
∑

m∈MS

∑
m∗∈PNm

R(m∗) (5.27)

and

DV@N =
1

N · |MS |
∑

m∈MS

∑
m∗∈PNm

D(m∗) (5.28)

where R(m∗) denotes the readability of meta-path m∗ defined in Eq. 5.1 and D(m∗) de-

notes and diversity of meta-path m∗ defined in Eq. 5.3.
∑

m∈MS

∑
m∗∈PNm R(m∗) is the

sum of readability of all predicted target meta-paths of every source meta-path. Similarly,∑
m∈MS

∑
m∗∈PNm D(m∗) is the sum of the diversity of all predicted target meta-paths of

every source meta-path. They are both divided by the total number of predicted target meta-

paths which is N · |MS | (N predicted target meta-paths for each source meta-path) to find

their mean values. Regarding credibility, since all relation weights are identical, the credibility

of the translated meta-path was not considered in this work. The use of varied relation weights

and the result regarding credibility be investigated further in future work.
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5.6 Results and Discussions

Most state-of-the-art machine translation models heavily relied on pre-training on large corpus

[227, 228]. Since pre-training is not applicable in this case, the proposed meta-path translation

model was compared with some Seq2Seq baselines that do not require pre-training as follows:

• Long Short-Term Memory (LSTM) [229]: a simple Seq2Seq model based on an

LSTM network. Both encoder and decoder embedding sizes were set to 16. The model

was trained for 50 epochs. The other parameters were set as in the original model.

• Reverse Long Short-Term Memory (RLSTM) [230]: a Seq2Seq model based on

an LSTM network using reverse-order tokens as input. Both encoder and decoder

embedding sizes were set to 16. The model was trained for 50 epochs. The other

hyperparameters were set as in the original model.

• Transformer (TF) [226]: a Seq2Seq model based on a standard Transformer model.

Both encoder and decoder embedding sizes were set to 16. The model was trained for

100 epochs. The other hyperparameters were set as in the original model.

• Latent Neural Quasi-Synchronous Context-Free Grammars (NQCFG) [215]: the

original latent neural grammar model based on QCFG without considering the latent

feature embedding and the positional embeddings. The embedding size was set to 16

as the other baselines. The rest of the hyperparameters were the same as in the original

paper. The model was trained for 50 epochs.

• Meta-Path Translation Model using CNN (MT-CNN): the proposed meta-path

translation model using CNN [225] for latent feature extraction. As for the CNN module,

2 convolutional layers were used as hidden layers. The number of input and output

channels were set to 16 and 32 respectively with the kernel size 3 and the dropout rate

0.25. The hidden output from the last convolutional layer was passed through a linear

transformation to obtain a final latent feature embedding. The size of token, positional,

and latent feature embeddings was set to 16. The regularization parameter λ was set

to 0.9. The model was trained for 50 epochs. The number of samples Kt = 50 was

used for inference.

• Meta-Path Translation Model using Transformer (MT-TF): the proposed meta-

path translation model using Transformer [226] for latent feature extraction. Two hidden
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layers with two attention heads were used in the Transformer module. The size of the

hidden layer was 16 with a dropout rate of 0.2. All other hyperparameters were as in

MT-CNN.

During the inference step of LSTM, RLSTM and TF, a beam search strategy [230] was

adopted to generate top-N predictions. In this way, it is possible to compare the performances

of predicting a set of comparable explainable meta-paths.

5.6.1 Comparison of the proposed approach and the baselines

Figures 5.8a and 5.8b show the results on MovieLens dataset and Amazon dataset respec-

tively. To validate the results, a two-tailed paired sample t-test was conducted with α = 0.05.

The HR@N and Recall@N improvements of MT-CNN and MT-TF over the baselines on

MovieLens dataset and Amazon dataset can be found in Table 5.5 and Table 5.6 respec-

tively. On MovieLens dataset, LSTM and RLSTM performed similarly while they both

outperformed TF. The reason could be that LSTM and RLSTM can better capture short

dependency in short sequences compared to TF. TF performed well when N = 1 which

means it effectively predicted a single target meta-path given a source meta-path. It failed to

predict a group of target meta-paths since it performed worse than most baselines including

the proposed models when N increased. NQCFG performed similarly to TF except when

N = 1. Considering the proposed model, MT-CNN generally performed worse than both

LSTM and RLSTM. However, it significantly outperformed TF and NQCFG when N = 4

and 5. This indicates that the latent features extracted by MT-CNN may not be effective

on MovieLens dataset. Meanwhile, MT-TF significantly outperformed LSTM and RLSTM

in terms of both HR@N and Recall@N for every N except when N = 1. MT-TF also sig-

nificantly outperformed TF when N = 3, 4 and 5. This suggests that LSTM, RLSTM,

and TF are effective at predicting correct target meta-paths in top-1 and top-2 predictions

but they failed to predict a group of correct target meta-paths when N increased on this

dataset. MT-TF clearly outperformed NQCFG in terms of both HR@N and Recall@N. This

suggests that adding the positional embeddings and the latent features extracted from CNN

and Transformer improved the performance of meta-path translation. Comparing MT-TF and

MT-CNN, MT-TF performed better than MT-CNN in terms of both HR@N and Recall@N

for every N . This suggests that using Transformer is more effective than CNN for extracting

latent features in the proposed model for MovieLens dataset.
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(a) MovieLens

(b) Amazon

Figure 5.8: Comparison of HR@N, Recall@N, RD@N and DV@N of the proposed

approaches and other baselines
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Table 5.5: HR@N and Recall@N improvements over the baselines on MovieLens

dataset. The improvements that are statistically significant are in bold. The value

indicated with a star (*) is a positive and statistically significant value.

Baseline
MT-CNN

∆ HR@1 ∆ HR@2 ∆ HR@3 ∆ HR@4 ∆ HR@5 ∆ Recall@1 ∆ Recall@2 ∆ Recall@3 ∆ Recall@4 ∆ Recall@5

LSTM -0.2098 -0.1180 -0.0033 0.0262* 0.0164 -0.0825 -0.1943 -0.0810 -0.0332 -0.0157

RLSTM -0.2852 -0.1180 -0.0033 0.0262* 0.0164 -0.1139 -0.1943 -0.0810 -0.0332 -0.0157

TF -0.2689 -0.1967 -0.0295 0.0393* 0.0492* -0.1227 -0.2399 -0.0950 0.0492* 0.1496*

NQCFG 0.0131 -0.0361 0.0361 0.0721* 0.0525* 0.0071 -0.0117 0.0466* 0.1062* 0.1387*

Baseline
MT-TF

∆ HR@1 ∆ HR@2 ∆ HR@3 ∆ HR@4 ∆ HR@5 ∆ Recall@1 ∆ Recall@2 ∆ Recall@3 ∆ Recall@4 ∆ Recall@5

LSTM 0.0689* 0.0787* 0.0656* 0.0361* 0.0197* 0.0377 0.0683* 0.1292* 0.0920* 0.0313*

RLSTM -0.0066 0.0787* 0.0656* 0.0361* 0.0197* 0.0063 0.0683* 0.1292* 0.0920* 0.0313*

TF 0.0098 0.0000 0.0393* 0.0492* 0.0525* -0.0025 0.0226 0.1152* 0.1744* 0.1966*

NQCFG 0.2918* 0.1607* 0.1049* 0.0820* 0.0557* 0.1273* 0.2508* 0.2568* 0.2314* 0.1857*

Table 5.6: HR@N and Recall@N improvements over the baselines on Amazon

dataset. The improvements that are statistically significant are in bold. The value

indicated with a star (*) is a positive and statistically significant value.

Baseline
MT-CNN

∆ HR@1 ∆ HR@2 ∆ HR@3 ∆ HR@4 ∆ HR@5 ∆ Recall@1 ∆ Recall@2 ∆ Recall@3 ∆ Recall@4 ∆ Recall@5

LSTM 0.0096 0.0622* 0.0718* 0.0096 -0.0096 0.0092 0.0172 -0.0025 -0.0651 -0.1006

RLSTM 0.0000 0.0622* 0.0718* 0.0096 -0.0096 0.0060 0.0172 -0.0025 -0.0651 -0.1006

TF -0.1005 -0.0478 -0.0383 -0.0287 -0.0287 -0.0518 -0.0229 0.0890* 0.2128* 0.2546*

NQCFG -0.0383 -0.0383 -0.0383 -0.0287 -0.0287 -0.0187 -0.0439 -0.0830 -0.0802 -0.0678

Baseline
MT-TF

∆ HR@1 ∆ HR@2 ∆ HR@3 ∆ HR@4 ∆ HR@5 ∆ Recall@1 ∆ Recall@2 ∆ Recall@3 ∆ Recall@4 ∆ Recall@5

LSTM 0.1100* 0.1100* 0.1100* 0.0383* 0.0191* 0.0610* 0.0768* 0.0717* 0.0158 -0.0222

RLSTM 0.1005* 0.1100* 0.1100* 0.0383* 0.0191* 0.0578* 0.0768* 0.0717* 0.0158 -0.0222

TF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0367* 0.1632* 0.2937* 0.3330*

NQCFG 0.0622* 0.0096 0.0000 0.0000 0.0000 0.0331* 0.0157* -0.0089 0.0006 0.0106
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On Amazon dataset, LSTM and RLSTM performed similarly to each other. They out-

performed TF which is a state-of-the-art model in terms of Recall@N. However, they performed

worse than all of the baselines in terms of HR@N. On the other hand, TF performed partic-

ularly well in terms of HR@N but it performed worse than the other models including both

of the proposed models in terms of Recall@N. This indicates that TF is highly effective in

predicting one of the correct target meta-paths given a source meta-path but not effective in

predicting a group of target meta-paths. NQCFG performed similarly to MT-TF in terms

of Recall@N. However, in terms of HR@N, MT-TF significantly outperformed NQCFG when

N = 1. This indicates the effectiveness of including positional embeddings and latent em-

beddings to correctly predict the correct target meta-path given a source meta-path on the

first try. MT-CNN did not perform well on this dataset. It performed worse than NQCFG

in terms of both HR@N and Recall@N for every N . It significantly outperformed LSTM and

RLSTM only in terms of HR@2 and HR@3 and outperformed TF only in terms of Recall@N

when N = 3, 4 and 5. On the other hand, MT-TF significantly performed better than both

LSTM and RLSTM in terms of HR@N for every N and Recall@N when N = 1, 2 and 3. This

suggests that, given a source meta-path, MT-TF can predict one of its corresponding target

meta-paths more effectively than these two models. MT-TF also performed better than TF

in terms of Recall@N when N = 2, 3, 4 and 5. This indicates that MT-TF is better than

TF when predicting a group of target meta-paths. Comparing the proposed models, MT-

TF performed better than MT-CNN in terms of both HR@N and Recall@N. This suggests

that using a Transformer model to extract latent features for meta-path translation is more

effective than using a CNN model which corresponds with the results on MovieLens dataset.

In summary, on both datasets, the proposed model MT-TF predicted the target meta-

paths more effectively than MT-CNN and the other baselines. MT-TF outperformed TF,

which is a state-of-the-art model. This shows the effectiveness of the proposed model. MT-

TF also outperformed NQCFG. This demonstrates the improved performance of the latent

neural grammar model using the positional embeddings and the latent features from CNN

and Transformer.
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5.6.2 Readability and Diversity Analysis

The results of RD@N and DV@N on MovieLens dataset and Amazon dataset are shown in

Figures 5.8a and 5.8b respectively. A two-tailed paired sample t-test was conducted with α =

0.05. The RD@N and DV@N improvements of MT-CNN and MT-TF over the baselines on

MovieLens dataset and Amazon dataset can be found in Table 5.7 and Table 5.8 respectively.

On MovieLens dataset, LSTM, RLSTM and TF performed similarly. They underperformed

the others in terms of RD@N but outperformed the others in terms of DV@N. On the contrary,

NQCFG performed best in terms of RD@N but it performed worse than the others in terms

of DV@N. Comparing the proposed models with the baselines, Table 5.7 shows the significant

RD@N and DV@N improvements of MT-CNN and MT-TF over the baselines. From this

table, MT-CNN performed similarly to NQCFG with no significant differences in terms of

both RD@N and DV@N. It significantly outperformed the other baselines in terms of RD@N

but performed worse than them in terms of DV@N. This suggests that MT-CNN tends to

predict shorter target meta-paths with high Readability but low Diversity as NQCFG. MT-

TF performed worse than NQCFG while slightly outperformed LSTM, RLSTM, and TF

in terms of RD@N. In terms of DV@N, MT-TF only performed better than NQCFG while

performing slightly worse than LSTM, RLSTM, and TF. Overall, the results indicate that

those models based on LSTM and Transformer networks predicted the target meta-paths with

lower Readability but higher Diversity compared to the others. Meanwhile, NQCFG and MT-

CNN predicted the target meta-paths with higher Readability but lower Diversity than the

others. This suggests that NQCFG and MT-CNN prioritized predicting shorter meta-paths

with less number of node and relation types compared to the others. Comparing the proposed

models, MT-CNN performed better than MT-TF in terms of Readability but the result is

the opposite in terms of Diversity on this dataset.

On Amazon dataset, LSTM and RLSTM performed similarly in terms of both RD@N

and DV@N. They produced target meta-paths with high Diversity but low Readability. Their

results on this dataset are similar to their results on MovieLens dataset. It shows that they

both prioritized Diversity over Readability for meta-path translation. TF, on the other hand,

predicted target meta-paths with higher Readability but lower Diversity compared to LSTM

and RLSTM. This is opposite to the result on MovieLens dataset. One possible reason is

that Amazon dataset contains fewer node and relation types than MovieLens dataset. This

results in less diverse meta-paths in the training set. As a result, this training set may not

be sufficient for TF to learn the diversity of node and relation types in meta-path translation.
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Thus, it failed to predict target meta-paths with high Diversity on Amazon dataset. NQCFG

underperformed both of the proposed models in terms of RD@N but outperformed them in

terms of DV@N. Table 5.8 shows the significant RD@N and DV@N improvements of MT-

CNN and MT-TF over the baselines. From this table, MT-CNN significantly outperformed

LSTM and RLSTM in terms of RD@N for every N except N = 4. It also significantly

outperformed NQCFG in terms of RD@N for every N except N = 1. Similarly, MT-TF

significantly outperformed LSTM and RLSTM in terms of RD@N when N = 1, 2 and 3.

It also significantly outperformed NQCFG in terms of RD@N for every N except N = 5.

This indicates the effectiveness of MT-CNN and MT-TF in predicting target meta-paths

with high Readability compared to LSTM, RLSTM, and NQCFG. However, in terms of

DV@N, both MT-CNN and MT-TF performed worse than most of the baselines except

TF. Comparing the proposed models, MT-CNN performed better than MT-TF in terms of

RD@N. Conversely, MT-TF performed better than MT-CNN in terms of DV@N. This result

corresponds with the result on MovieLens dataset.

Overall, on both datasets, it can be seen that MT-CNN focused on predicting short target

meta-paths with low Diversity to achieve high Readability. Meanwhile, MT-TF focused on

predicting target meta-paths consisting of various relation types resulting in high Diversity.

Considering all HR@N, Recall@N, RD@N, and DV@N results, it can be inferred that MT-TF

exhibits greater accuracy and the ability to predict target meta-paths with higher Diversity

compared to MT-CNN. However, if the priority is Readability, MT-CNN is more suitable than

MT-TF.
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Table 5.7: RD@N and DV@N improvements over the baselines on MovieLens

dataset. The improvements that are statistically significant are in bold. The value

indicated with a star (*) is a positive and statistically significant value.

Baseline
MT-CNN

∆ RD@1 ∆ RD@2 ∆ RD@3 ∆ RD@4 ∆ RD@5 ∆ DV@1 ∆ DV@2 ∆ DV@3 ∆ DV@4 ∆ DV@5

LSTM 0.0321* 0.0255* 0.0191* 0.0141* 0.0112* -0.1445 -0.1168 -0.0881 -0.0701 -0.0600

RLSTM 0.0321* 0.0255* 0.0191* 0.0141* 0.0112* -0.1445 -0.1168 -0.0881 -0.0701 -0.0600

TF 0.0321* 0.0253* 0.0188* 0.0138* 0.0109* -0.1445 -0.1158 -0.0867 -0.0687 -0.0587

NQCFG -0.0036 -0.0012 -0.0016 -0.0005 -0.0002 0.0116 0.0043 0.0078 0.0054 0.0053

Baseline
MT-TF

∆ RD@1 ∆ RD@2 ∆ RD@3 ∆ RD@4 ∆ RD@5 ∆ DV@1 ∆ DV@2 ∆ DV@3 ∆ DV@4 ∆ DV@5

LSTM 0.0009 0.0014* 0.0046* 0.0055* 0.0060* -0.0036 -0.0064 -0.0208 -0.0250 -0.0283

RLSTM 0.0009 0.0014* 0.0046* 0.0055* 0.0060* -0.0036 -0.0064 -0.0208 -0.0250 -0.0283

TF 0.0009 0.0012* 0.0043* 0.0052* 0.0057* -0.0036 -0.0053 -0.0194 -0.0236 -0.0269

NQCFG -0.0348 -0.0253 -0.0160 -0.0090 -0.0054 0.1525* 0.1147* 0.0751* 0.0505* 0.0371*

Table 5.8: RD@N and DV@N improvements over the baselines on Amazon

dataset. The improvements that are statistically significant are in bold. The

value indicated with a star (*) is a positive and statistically significant value.

Baseline
MT-CNN

∆ RD@1 ∆ RD@2 ∆ RD@3 ∆ RD@4 ∆ RD@5 ∆ DV@1 ∆ DV@2 ∆ DV@3 ∆ DV@4 ∆ DV@5

LSTM 0.0256* 0.0296* 0.0172* 0.0013 0.0047* -0.1109 -0.1250 -0.0800 -0.0056 -0.0197

RLSTM 0.0256* 0.0296* 0.0172* 0.0013 0.0047* -0.1109 -0.1250 -0.0800 -0.0056 -0.0197

TF -0.0187 -0.0065 -0.0015 -0.0047 -0.0067 0.0714* 0.0230* 0.0036 0.0175* 0.0261*

NQCFG 0.0031 0.0096* 0.0126* 0.0070* 0.0038* -0.0266 -0.0499 -0.0575 -0.0320 -0.0188

Baseline
MT-TF

∆ RD@1 ∆ RD@2 ∆ RD@3 ∆ RD@4 ∆ RD@5 ∆ DV@1 ∆ DV@2 ∆ DV@3 ∆ DV@4 ∆ DV@5

LSTM 0.0387* 0.0263* 0.0092* -0.0027 0.0025 -0.1415 -0.0990 -0.0403 0.0147* -0.0069

RLSTM 0.0387* 0.0263* 0.0092* -0.0027 0.0025 -0.1415 -0.0990 -0.0403 0.0147* -0.0069

TF -0.0056 -0.0098 -0.0095 -0.0087 -0.0090 0.0408* 0.0490* 0.0433* 0.0379* 0.0389*

NQCFG 0.0162* 0.0062* 0.0046* 0.0030* 0.0016 -0.0572 -0.0238 -0.0177 -0.0117 -0.0060
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5.6.3 Hyperparameter Analysis

5.6.3.1 Effect of the number of sampled target trees (K)

In this section, the effect of the parameter Kt (the number of sampled target trees from the

decoder) is discussed. This parameter was varied among 10, 30, 50, 70, and 100 to examine

the differences in HR@N, Recall@N, RD@N, and DV@N values. The results of MT-CNN

when varying Kt on both datasets are shown in Figure 5.9. From this figure, the higher values

of Kt generally lead to better HR@N and Recall@N on both datasets, as both metrics increase

with an increase in Kt for every value of N . However, when comparing Kt = 50, 70, and

100, the differences in HR@N and Recall@N are almost negligible. This suggests that using

Kt = 50 is sufficient to achieve accurate outcomes. Regarding Readability and Diversity on

MovieLens dataset, RD@N of the predicted target meta-paths by MT-CNN decreases as

Kt increases. Conversely, DV@N of these meta-paths increases with an increase in K. On

Amazon dataset, RD@N generally decreases as Kt increases, following a similar pattern as

observed on MovieLens dataset. However, there is some inconsistency in this pattern for

RD@3. In terms of DV@N, it also tends to increase with an increase in Kt, except for DV@3.

The results obtained from MT-TF on both datasets are presented in Figure 5.10. This

figure illustrates that as the value of Kt increases, MT-TF predicts target meta-paths with

higher HR@N and Recall@N on both datasets. Regarding Readability, on the MovieLens

dataset, RD@N increases with the increment of Kt, whereas DV@N decreases. Conversely,

on the Amazon dataset, the results are opposite to those of the MovieLens dataset. RD@N

decreases with the increase in Kt, while DV@N increases. Overall, for both MT-CNN and

MT-TF, HR@N and Recall@N improve with the increase in Kt. However, using larger values

of Kt is computationally expensive, and therefore, using Kt = 50 is sufficient as it yields

similar results to Kt = 100 in most cases. On the other hand, the trends observed in RD@N

and DV@N vary among different models and datasets. Generally, using Kt = 50 achieves

moderate results balancing between RD@N and DV@N.
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(a) MovieLens

(b) Amazon

Figure 5.9: Comparison of HR@N and Recall@N when using different values of

the number of sampled target trees from the decode (Kt) for sampling the target

trees in the proposed meta-path translation model using CNN for latent feature

extraction (MT-CNN) on (a) MovieLens dataset and (b) Amazon dataset
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(a) MovieLens

(b) Amazon

Figure 5.10: Comparison of HR@N and Recall@N when using different values of

the number of sampled target trees from the decode (Kt) for sampling the target

trees in the proposed meta-path translation model using Transformer for latent

feature extraction (MT-TF) on (a) MovieLens dataset and (b) Amazon dataset
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5.6.3.2 Effect of weight decay (wd)

The influence of weight decay (wd) on training the proposed models was also assessed by

varying it among 10−3, 10−5, 10−7, and 10−10. Figures 5.11a and 5.11b display the results of

weight decay variations in MT-CNN for MovieLens and Amazon datasets, respectively. On

MovieLens dataset, MT-CNN using wd = 10−5 achieved the highest HR@N and Recall@N.

On Amazon dataset, MT-CNN using wd = 10−5 achieved only the highest Recall@N. In

terms of HR@N, MT-CNN using wd = 10−3 generally performed better than the others.

However, the HR@N difference between using wd = 10−3 and using wd = 10−5 is less than

the Recall@N difference between using wd = 10−3 and using wd = 10−5. Thus, wd = 10−5

was selected for comparison with the baselines on Amazon dataset. In terms of RD@N, on

MovieLens dataset, MT-CNN using wd = 10−10 generally performed better than the others.

However, it performed worse than the others in terms of DV@N. On the other hand, MT-

CNN using wd = 10−5 performed better than the others in terms of DV@N but performed

worse than the others in terms of RD@N. On Amazon dataset, MT-CNN using wd = 10−10

gave higher DV@N and lower RD@N than the others. Meanwhile, the model using wd = 10−7

gave the higher RD@N and lower DV@N than the others. The model using wd = 10−5 gave

the second-best DV@N and the second-worst RD@N.

As for MT-TF, the results on MovieLens dataset and Amazon dataset are shown in

Figures 5.12a and 5.12b respectively. On MovieLens dataset, reducing wd resulted in higher

HR@N and Recall@N until they peaked at wd = 10−7. Conversely, on Amazon dataset, reduc-

ing wd resulted in lower HR@N and Recall@N and wd = 10−3 yielded the best performance.

In terms of RD@N, on MovieLens dataset, MT-TF using wd = 10−10 outperformed the

others when N = 1 while the model using wd = 10−3 outperformed the others for N = 2, 3, 4

and 5. The model using wd = 10−7 performed worst compared to the others. On the con-

trary, in terms of DV@N, the model using wd = 10−7 performed best while the models using

wd = 10−3 and wd = 10−10 performed worse than the others. On Amazon dataset, MT-TF

using wd = 10−5 gave the highest DV@N and lowest RD@N compared to the others. On

the contrary, the model using wd = 10−3 gave the highest RD@N and lowest DV@N. In sum-

mary, the results show that extreme weight decay values can lead to decreased accuracy. On

MovieLens dataset, lower weight decay improved performance, while on Amazon dataset,

higher weight decay, especially for MT-TF, enhanced performance. It also can be seen that

the RD@N and DV@N performances of each model are inversely proportional. If the model

performed well in terms of RD@N, it would perform poorly in terms of DV@N, and vice versa.
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(a) MovieLens

(b) Amazon

Figure 5.11: Comparison of HR@N and Recall@N when using different values of

weight decay (wd) for training the proposed meta-path translation model using

CNN for latent feature extraction (MT-CNN) on (a) MovieLens dataset and (b)

Amazon dataset
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(a) MovieLens

(b) Amazon

Figure 5.12: Comparison of HR@N and Recall@N when using differentvalues of

weight decay (wd) for training the proposed meta-path translation model using

Transformer for latent feature extraction (MT-CNN) on (a) MovieLens dataset

and (b) Amazon dataset
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5.6.4 Error Analysis

This section examines the meta-path error predicted by the proposed models and the other

baselines. Besides being comparable explainable meta-paths, predicted target meta-paths

must hold two properties: (1) they must start with the user node type (U) and end with

the item node type (P ), i.e., they should follow UN1N2, ..., NlP and (2) they must consist

of existing relation type(s) defined in the graph, i.e., given a graph schema G = (N,R,W),

for any target meta-path UN1N2, ..., NlP , RUN1 , RN1,N2 , ..., RNl,P ∈ R. A meta-path that

holds these properties is referred to as a proper meta-path. Meanwhile, a meta-path that does

not hold these properties is considered an improper meta-path.

The percentage of improper meta-paths in the top-N predictions obtained from each model

was computed to examine the error of predicting improper target meta-paths. The results are

shown in Figure 5.13. From this figure, there is no improper met-path predicted by LSTM,

RLSTM, and TF on both MovieLens and Amazon datasets for every N . This demonstrates

their effectiveness in modeling dependencies between the first and the last node types and also

two consecutive node types in the target meta-paths. For MovieLens, the proposed models

MT-CNN and MT-TF predicted more improper meta-paths than LSTM, RLSTM, and TF.

However, both MT-CNN and MT-TF predicted substantially fewer improper meta-paths

than NQCFG which is the original latent neural grammar model without using the latent

feature and positional embeddings. This indicates the effectiveness of using the latent feature

embeddings from both CNN and Transformer models and also the positional embeddings. The

latent feature embeddings from both CNN and Transformer models play the role of capturing

linear dependencies between node types in the meta-paths to avoid predicting nonexistent

relation types. Meanwhile, the positional embeddings distinguish the starting and ending

node types from the others which helps the model to predict the first and the last node types

in the target meta-paths. In the case of Amazon dataset, NQCFG and MT-TF performed

similarly. MT-TF predicted slightly more improper meta-paths than NQCFG when N = 1, 2

and 3. However, MT-CNN failed to predict proper target meta-paths. One possible reason

is that the number of training samples in Amazon dataset is less than the number of training

samples in MovieLens dataset. This may not be sufficient for MT-CNN to capture the

dependencies between node types effectively. On both datasets, MT-TF predicted improper

meta-paths less than 5% of the predicted meta-paths for every N which is less than MT-

CNN. This suggests that MT-TF is more effective than MT-CNN in predicting proper target

meta-paths. This corresponds to the accuracy results in Section 5.6.1.

165



Chapter 5 – Explainable Recommendations Using Meta-Path Translation

(a) MovieLens (b) Amazon

Figure 5.13: Comparisons of the percentages of improper meta-paths in the top-

N predictions obtained from the proposed approaches and other baselines. An

improper meta-path refers to a predicted target meta-path that does not start

with the user node type and ends with the item node type or contains invalid

relation types defined in the HIN schema.

The improper meta-paths generated from both MT-CNN and MT-TF were further ex-

amined to identify which type of improper meta-paths were predicted the most. Figures 5.14

and 5.15b depict comparisons of the percentages of improper meta-paths categorized by their

types in the top-N recommendations that were predicted by MT-CNN and MT-TF respec-

tively. These types are (1) improper meta-paths that do not start with the user node type U

and end with the item node type P and (2) improper meta-paths that consist of non-existing

relation type(s) which are referred to as Type 1 and Type 2 respectively. From Figure 5.14, the

improper meta-paths predicted by MT-CNN are only Type 1 on both datasets. Meanwhile,

Figure 5.15 shows that the improper meta-paths predicted by MT-TF are both Type 1 and

Type 2. However, the percentages of Type-2 improper meta-paths are less than 0.5% for every

N on both datasets. The majority of these improper meta-paths obtained MT-TF are there-

fore Type 1. From these results, the proposed models both suffered from predicting Type-1

improper meta-paths especially MT-CNN. One reason that MT-TF predicted fewer Type-1

improper meta-paths could be that all node types from the beginning to the end of a sequence

are attended to when learning latent features at each and every layer of the Transformer. Re-

lationships between all nodes including the first and the last nodes can be learned at every

layer. On the contrary, only relationships between node types within a convolution kernel can
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be captured at each layer in CNN. This allows for a relationship between the first and the last

node types to be captured at the last convolutional layer. Therefore, a relationship between

the first node type and the last node type can be captured more easily in Transformer than

in CNN.

(a) MovieLens (b) Amazon

Figure 5.14: Comparisons of the percentages of improper meta-paths in the top-

N recommendations that were predicted by MT-CNN categorized by types, i.e.,

improper meta-paths that do not start with the user node type U and end with the

item node type P (Type 1) and improper meta-paths that consist of non-existing

relation type(s) (Type 2) on (a) MovieLens dataset and (b) Amazon dataset

(a) MovieLens (b) Amazon

Figure 5.15: Comparisons of the percentages of improper meta-paths in the top-

N recommendations that were predicted by MT-TF categorized by types, i.e.,

improper meta-paths that do not start with the user node type U and end with

the item node type P (Type 1) and improper meta-paths that consist of non-

existing relation type(s) (Type 2) on (a) MovieLens dataset and (b) Amazon

dataset
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5.6.5 Computational Complexity Analysis

Let l and l′ be the length of a source meta-path m and a target meta-path m∗ respectively.

For the parser, sampling the tree t̃ and the argmax tree t̂ requires O(l3) by dynamic pro-

gramming. For the encoder, each CNN layer requires O(l · S · E2) while each self-attention

layer of Transformer requires O(l2 · E) where S is the kernel size of convolutions and E is

the size of the embeddings. TreeLSTM requires O(l) to generate the final token represen-

tations. For the decoder, by dynamic programming, computing log pφ(t̃|m) requires O(l3).

Similarly, computing log pθ(m
∗|t̃) and log pθ(m

∗|t̂) requires O(l3l′3). Thus, the complexity

of both MT-CNN and MT-TF is still dominated by O(l3l′3) as the original latent neural

grammar model NQCFG. This suggests that using the latent feature extraction module and

the positional and latent feature embeddings does not severely affect the overall complexity.

5.7 Summary

Meta-path based recommendations provide an intuitive approach to explain the underlying

rationale behind the recommendations. These explanations are derived from the meanings

of the meta-paths used in generating the recommendations. However, explanations may

become difficult to understand when recommendations rely on lengthy and complex meta-

paths. To address this issue, this chapter places its focus on enhancing the explainability of

meta-path based recommendations. This objective aligns with the third research question,

which aims to further improve the explainability of explainable visually-aware recommender

systems based on HINs. To achieve this goal, the concept of meta-path explainability was

introduced. Then, based on this concept, a method was proposed to identify comparable

explainable meta-paths. These meta-paths were selected based on their ability to deliver

similar recommendation performance while offering higher levels of explainability. They were

used to provide a clearer understanding of the underlying rationale behind the meta-path based

recommendations. To facilitate the identification of comparable explainable meta-paths, the

concept of meta-path grammar was introduced, allowing meta-paths to be constructed in

a manner similar to sentences in human languages. Based on this grammar, a meta-path

translation model was introduced. This model translated a meta-path to its comparable

explainable meta-paths by leveraging both latent features extracted by CNN/Transformer and

hierarchical features from the TreeLSTM model.

Two meta-path translation datasets were generated using real-world datasets. Extensive
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experiments on these datasets demonstrated that the proposed model outperformed the base-

lines in terms of HR@N and Recall@N for both datasets. The approach achieved a good

trade-off between accuracy and readability/diversity, with the CNN model performing better

in readability and the Transformer model excelling in diversity. Furthermore, the inclusion

of latent feature embeddings and positional embeddings resulted in fewer improper target

meta-paths compared to the traditional model without these embeddings.

Overall, the proposed method can successfully improve the explainability of meta-path

based recommendations by providing alternative and more understandable explanations. As

the proposed visually-aware recommender systems and explainable visually-aware recommender

systems presented in previous chapters are meta-path based, their explainability can then be

further enhanced by the proposed meta-path translation method. Thus, the objective of

enhancing the explainability of visually-aware recommender systems is accomplished in this

chapter.
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Conclusions and Future Work

6.1 Conclusions

Recommender systems, ubiquitous in various online platforms, play a pivotal role in helping

users navigate the overwhelming sea of online content. Their significance lies in addressing the

challenge of information overload and assisting users in discovering personalized and relevant

items. However, the effectiveness of traditional recommender systems is constrained by the

sparsity problem, particularly when user-item interactions are limited. To overcome this limi-

tation, a key strategy involves incorporating additional information, with a growing emphasis

on leveraging images to enhance recommendation accuracy. This gives rise to visually-aware

recommender systems, a paradigm shift that considers not only user-item interactions but

also the rich visual features encapsulated in item images. Despite their strides in improving

recommendation accuracy, a critical challenge arises concerning the lack of explainability in

visually-aware recommender systems.

Explainability ensures that users can comprehend the decision-making process of a recom-

mender system, fostering transparency in how recommendations are generated. In scenarios

where users depend on the system’s suggestions, the capability to provide clear and under-

standable explanations becomes a fundamental aspect of ensuring user trust and satisfaction.

To address this concern, explainable recommender systems have emerged. Among various

approaches to developing explainable recommender systems, leveraging HINs in explainable

recommender systems has become a ubiquitous practice. However, a notable gap exists in

current approaches, as they predominantly focus on semantic information within HINs, ne-

glecting the potential integration of visual information. Bridging this gap is crucial for the

development of explainable visually-aware recommender systems, ensuring not only accuracy
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but also transparency in the recommendations provided to users.

This work develops explainable visually-aware recommender systems using HINs that pro-

duce accurate and explainable recommendations personalized to users’ visual preferences. To

do so, visually-augmented HINs in which image features are incorporated as visual fac-

tor nodes connected with other nodes via visual relations was first proposed. Five different

types of image feature extraction methods, i.e., SIFT, SURF, ORB, Colo Histogram, and

the pre-trained CNN model, were adopted to generate these visual factor nodes and visual

relations. Moreover, a user representation learning approach using visually-augmented HINs

was proposed. This approach uses a probabilistic meta-path to form a hybrid context that

considers both semantic and visual factors to profile users. Extensive experiments were con-

ducted to examine the possibility of using these HINs to learn visually-aware recommendations.

The user representations generated from the proposed approach were applied to user-based

CF-KNN recommender systems on two real-world datasets, HetRec2011-MovieLens-2K and

Amazon-Clothing datasets. The proposed approaches were compared with the baseline models

using metapath2vec++ [85]. The results show that visually-augmented HINs and probabilistic

meta-paths can be used to improve recommendation accuracy. The results also depict that,

among different types of image features, Color Histogram and CNN features are more effec-

tive in capturing users’ visual preferences on HetRec2011-MovieLens-2K dataset compared to

the other features. Meanwhile, on Amazon-Clothing dataset, SURF performed better than

the others. This suggests that texture and shape features are more effective in recognizing

users’ preferences for clothing items. Also, the visually-augmented HINs based on these two

datasets were also applied with the state-of-the-art HIN-based recommendation model called

Graph Attention Network [5] to evaluate the effectiveness of these augmented HINs. The

results indicate that using visually-augmented HINs can effectively be applied to the state-

of-the-art HIN-based recommendation model. They can improve the accuracy performance

of the Graph Attention Network model since augmenting HINs with visual factor nodes and

visual relations can increase the chance of discovering more relationships apart from those in

the original HINs. However, in the case that there are already a large number of nodes and

relations in the original HIN, augmenting visual factor nodes and visual relations may affect

the overall effectiveness of the Graph Attention Network model.

Next, a scalable and explainable visually-aware recommender system framework

(SEV-RS) was proposed. This framework utilizes multi-hop relations in visually-augmented

HINs to predict explainable visually-aware recommendations. In this framework, a scalable
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method to extract meta-path based features from visually-augmented HINs was proposed.

This method can efficiently leverage a set of meta-paths for the better use of multi-hop

relations. To achieve explainability, a novel concept of meta-path based explainability was in-

troduced. This meta-path based explainability allows one to quantify the explainability score

of a user-item pair based on a set of meta-paths using extracted meta-path features. Lastly, to

generate explainable recommendations, a shallow BPR-based recommendation model was pro-

posed. This model jointly leverages the proposed meta-path features and the meta-path based

explainability to learn explainable visually-aware recommendations. SEV-RS was evaluated in

the Top-N recommendation task based on three evaluation metrics, i.e., Accuracy, Explain-

ability, and Scalability. Extensive experiments were conducted on HetRec2011-MovieLens-2K

dataset and Amazon-Clothing dataset and one syntactic dataset. The results show that SEV-

RS can produce more accurate recommendations according to the higher Precision and Recall

compared with the baselines. Compared to the Graph Attention Network model, SEV-RS

can leverage visual information in visually-augmented HINs more effectively than the Graph

Attention Network model. Regarding Explainability, the results show that SEV-RS can gener-

ate more explainable recommendations with higher Explainability Precision and Explainability

Recall. This indicates that the proposed approach does not only recommend items of users’

interests but also takes the explainability of items into consideration. As for Scalability, exper-

iments were conducted on a synthetic dataset consisting of four sub-datasets with different

scales. The computational time of each model was compared. The results show that SEV-RS

can achieve similar scalability performances as the BPR-MF model which is a shallow model. It

also required much less computational time compared to the Graph Attention Network model

for large-scale sub-datasets. The results also indicate that the additional computational time

required for executing the explainability part in SEV-RS is trivial and thus this approach is

scalable. Lastly, the proposed scalable meta-path feature extraction method and the straight-

forwarding non-scalable method were compared in terms of performance. The results show

that using the proposed scalable method achieved similar Accuracy but cost significantly less

computational time than using the straight-forwarding method.

The aforementioned results have shown that explainable visually-aware recommendations

can be achieved by using visually-augmented HINs and SEV-RS. The explainability of these

recommendations is based solely on meta-paths adopted in the framework. As a result, if

the adopted meta-paths are complicated and difficult to understand, they will affect the ex-

plainability of the recommendations based on them. To further improve the explainability of
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not only SEV-RS but also any meta-path based recommender systems, this thesis proposed

a method that can translate a complicated meta-path to a group of meta-paths that are

more comprehensible but perform similarly in terms of recommendation accuracy. First, the

definition of meta-path explainability was introduced. This definition is three meta-path

quality measurements, i.e., meta-path readability, meta-path credibility, and meta-path di-

versity. Based on this definition, a method to find comparable explainable meta-paths of

a given meta-path was proposed. These comparable explainable meta-paths represent those

meta-paths that are relatively more explainable than a given one but yield similar recommen-

dation accuracy. To find comparable explainable meta-paths of any meta-path, a meta-path

translation model was proposed. The meta-path grammar inspired by QCFG was first intro-

duced. Based on this grammar, a Seq2Seq model that maps a given meta-path to its compa-

rable explainable ones was proposed. This model leverages both latent features extracted by

CNN and Transformer and hierarchical features extracted by TreeLSTM simultaneously. Two

meta-path translation datasets were generated based on HetRec2011-MovieLens-2K dataset

and Amazon-Clothing dataset. In these generated datasets, each input is a source meta-path

and each output is a group of its comparable explainable meta-paths (target meta-paths).

These datasets were used to learn how to explain recommendations of the real-world datasets

by mapping a source meta-path to target meta-paths. This mapping can be considered as a

one-to-many task where one source meta-path can yield multiple target meta-paths. Exten-

sive experiments were conducted on these two generated datasets. The results show that the

proposed model performed better than other baselines in terms of both HR@N and Recall@N

for both datasets. This indicates the effectiveness of using both latent features extracted from

CNN/Transformer and hierarchical features from the TreeLSTM model. Moreover, compared

to the baselines, the proposed models predicted a group of target meta-paths with higher

HR@N and Recall@N when N > 1. Apart from accuracy, the meta-path readability and di-

versity were also evaluated based on two metrics, Readability@N and Diversity@N. According

to the results, the proposed model using CNN performed better in terms of Readability. On

the other hand, the proposed model using Transformer produced the target meta-paths with

higher Diversity. Both models show a capability of maintaining a better trade-off between

accuracy and readability/diversity in translating meta-paths. Also, by including the latent fea-

ture embeddings and positional embeddings, the proposed models predicted fewer improper

target meta-paths compared to the original latent neural grammar model. This indicates the

effectiveness of the latent features and positional embeddings.
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In summary, this thesis advances the development of explainable visually-aware recom-

mender systems through the utilization of HINs. These recommender systems are designed

to generate recommendations that are both accurate and explainable, personalized to users’

visual preferences. The implications of these advancements extend to practical applications.

The proposed approaches pave the way for developing recommender systems that cater to

users’ visual preferences and provide explanations rooted in interpretable meta-paths. The

application of these approaches can contribute to a more engaging and personalized user

experience in various domains such as e-commerce, and entertainment. Furthermore, the

meta-path translation model, introduced to enhance the explainability of meta-path based

recommender systems, presents an opportunity for refining and enriching the transparency

of recommendations. The capability to translate complex meta-paths into simpler and more

understandable ones offers a strategic approach to increase user trust and comprehension of

recommendations in real-world scenarios. Furthermore, beyond their practical implications,

the proposed approaches hold theoretical potential for broader application. They can be

adapted and generalized to improve other instances of explainable AI applications, especially

those utilizing graphs or networks. Also, as deep-learning methods typically suffer from a lack

of explainability, these approaches can serve as alternatives to these methods. Overall, the

work undertaken in this thesis contributes to the advancement of visually-aware recommender

systems that are accurate, explainable, and scalable.

6.2 Contributions

The contributions of this thesis are summarized as follows:

• This thesis contributes to the advancement of visually-aware recommender systems by

integrating visual information into a HIN, constructing visually-augmented HINs with

various visual feature extraction methods. It introduces probabilistic meta-paths for

forming hybrid contexts, combining semantic and visual information to learn user la-

tent representations. These representations were applied with a user-based CF-KNN

model for building effective visually-aware recommender systems and validated through

extensive experiments on real-world datasets.

• This thesis contributes to the development of an explainable visually-aware recommender

system framework based on HINs. The proposed framework utilizes a visually-augmented
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HIN, a scalable meta-path feature extraction method, and an explainable recommenda-

tion generation method. Extensive experiments were conducted to evaluate the proposed

framework on accuracy, explainability, and scalability, demonstrating its effectiveness in

explainable visually-aware recommendations.

• This thesis contributes to the improvement of the explainability of meta-path based

recommender systems by introducing the novel meta-path translation task. Address-

ing challenges posed by complex meta-paths in recommendations, this task aims to

translate meta-paths into simpler, more interpretable alternatives, providing improved

comprehension. This thesis defines meta-path explainability, proposes a method to

find comparable explainable meta-paths, introduces meta-path grammar, and presents

a meta-path translation model. Experiments conducted on novel datasets demonstrate

the effectiveness of the proposed model.

6.3 Limitations

First, the limitations of visually-augmented HINs and probabilistic meta-paths are discussed.

In visually-augmented HINs, visual information is incorporated through the utilization of visual

factor nodes. These nodes are representatives of significant features derived from clustering

analysis performed on all extracted image features. One noteworthy limitation pertains to

the lack of semantic explicitness exhibited by these representatives. Specifically, it remains

ambiguous which specific characteristics or appearances each visual factor node signifies. For

instance, while one visual factor node may denote a light-color characteristic prevalent in im-

ages, another node might indicate a dark-color characteristic. Identifying the corresponding

characteristics associated with each visual factor node may further enhance the explainability

of visually-aware recommendations using visually-augmented HINs. Considering probabilistic

meta-paths, the assigned probabilities must be pre-defined in order to model hybrid users’ pro-

files. Determining these values to effectively utilize such a meta-path relies solely on experts or

prior knowledge. These pre-defined probabilities are also constant. This means that the same

probabilities are applied to every user. However, in reality, different users may be influenced

by different degrees of visual factors. Therefore, the ratio between semantic factors and visual

factors for modeling hybrid users’ profiles might need to be varied individually. SEV-RS also

has some limitations. One of them is the selection of meta-paths used for extracting meta-

path features. The determination of these meta-paths requires prior knowledge or expertise
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to effectively identify suitable meta-paths. This prerequisite poses a challenge as it relies on

manual human intervention and decision-making.

As for the proposed meta-path translation model, identifying comparable explainable meta-

paths can be computationally expensive since the meta-path based recommender systems

based on multiple meta-paths are required. It is important to recognize that different meta-

path based recommendation approaches have varying computational complexities. In case the

chosen approach is computationally expensive, it will cost the process of identifying comparable

explainable meta-paths to be time-consuming as well. These can be considered as a limitation

of the proposed approach and can be addressed in future work.

6.4 Future work

Future work will involve the exploration of more advanced recommendation models, which

will be applied with visually-augmented HINs. Through the exploration of different models,

a comprehensive understanding of how visually-augmented HINs can enhance various recom-

mendation approaches will be gained. Furthermore, additional analysis of visual factor nodes

will be conducted with the objective of annotating their semantic meanings. This analysis will

facilitate users in comprehending the specific characteristics or appearances associated with

each visual factor node. Additionally, a broader range of visual feature extraction methods,

as well as techniques for feature fusion and dimension reduction, will be explored to cap-

ture diverse types of image features. Such an approach holds the potential to provide more

comprehensive representations of image features and enhance the modeling of users’ visual

preferences. To enhance flexibility, personalized probabilistic meta-paths will be incorporated

to cater to individual user profiles, enabling the capture of hybrid preferences. This adaptive

approach will enable the utilization of more appropriate probabilistic meta-paths tailored to

the specific needs of individual users.

Future research efforts will also focus on adopting alternative recommendation models and

applying them with meta-path features and meta-path based explainability. This extended

study will provide a more comprehensive understanding of how meta-path features can benefit

other recommendation models, as well as how meta-path based explainability can enhance

the interpretability of other recommendation models. Furthermore, since the selection of

appropriate meta-paths for generating accurate and explainable recommendations poses a

significant challenge, future work will concentrate on the systematic selection or validation
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of meta-paths. The incorporation of such a meta-path selection mechanism will not only

facilitate the development of meta-path based recommender systems but also enhance the

overall explainability of these systems. Moreover, considering large-scale real-world datasets to

evaluate the proposed scalable and explainable visually-aware recommender system framework

would be beneficial. Applying it to such datasets will allow for a comprehensive assessment

of its effectiveness in terms of both recommendation accuracy and computational scalability.

Future work will also involve exploring advanced machine learning approaches, such as

contrastive learning and self-supervised learning, to enhance the process of learning meta-

path translation. In the experiments in this thesis, two neural network architectures (i.e.,

CNN and Transformer) were considered when building meta-path translation models. To

further examine the effectiveness of the proposed approach and improve the performance of

meta-path translation models, it is worth exploring other neural network architectures for

extracting latent features from a meta-path. Additionally, considering assigning different

relation weights in HINs to examine the performance of the proposed meta-path translation

approach could be beneficial. With distinct weights assigned to different types of relations,

meta-path credibility can be factored into the translation of meta-paths. This will allow for

further studies on the influence of meta-path credibility on the meta-path translation process.

In terms of experiments, considering other real-world datasets to generate more meta-path

translation datasets for explaining meta-path based recommendations would provide a more

comprehensive study of meta-path translation in different domains. Also, since the task of

meta-path translation is newly introduced, generating more datasets will provide more options

for other researchers interested in exploring this task. As generating datasets for training

meta-path translation models can be highly time-consuming, the future work will address

this concern and improve the process of generating meta-path translation datasets to enable

more scalable applications. Lastly, the potential adoption of Large Language Models (LLMs)

such as BERT or GPT models will be investigated. It will involve harnessing the immense

linguistic knowledge embedded in pre-trained LLMs and combining it with HINs to enhance

the explainability of recommendations. This approach will not only benefit meta-path based

recommendations but also HIN-based recommendations in general.
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