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Abstract. Aviation contributes to global emissions of carbon dioxide, aerosol particles, water vapor (WV),
and other compounds. WV promotes the formation of condensation trails (contrails), which are known for their
net warming effect on the climate. Contrail formation is often estimated using the Schmidt—-Appleman crite-
rion (SAc) together with meteorological data from the European Centre for Medium-Range Weather Forecasts
(ECMWEF) ERAS atmospheric reanalysis model. We compare ERAS output of temperature and relative humid-
ity in the upper troposphere and lower stratosphere with 5 years of In-service Aircraft for a Global Observing
System (IAGOS) observations over the North Atlantic. Good agreement was found for the temperature fields,
with a maximum bias of —0.4 K (200 hPa level), while larger biases were found for relative humidity of up to
—5.5% (250 hPa level). Using original ERAS data, conditions prone to contrail formation occurred 50.3 % and
7.9 % of the time for non-persistent and persistent contrails, respectively, while 44.0 % and 12.1 % were flagged
in the IAGOS data. We propose a multivariate quantile mapping (QM) correction to remove systematic biases
by post-processing ERAS temperature and relative humidity fields with respect to contrail formation. The QM
correction was applied to post-process ERAS5 data, reducing the temperature bias to less than 0.1 K and the rel-
ative humidity bias to less than —1.5 %, resulting in 44 % and 10.9 % of the data points now being flagged for
non-persistent and persistent contrail formation, respectively. Our bias correction generalizes well compared to
the TAGOS observations. How it generalizes outside the IAGOS regions remains to be investigated.

more, the combustion of all fuels, regardless of whether they

Aviation contributes to global climate warming (Lee et al.,
2021). The total contribution by aviation is commonly split
into two parts. One fraction is directly attributable to carbon
dioxide (CO;) and is well quantified. For the year 2018, avi-
ation was estimated to be responsible for 2.5 % to 2.6 % of
global CO; emissions (Friedlingstein et al., 2019; Lee et al.,
2021; Boucher et al., 2021). The other contributing fraction
to aviation-induced climate change comes from byproducts
resulting from fossil fuel combustion, like nitrogen oxides
(NO,), sulfur dioxide (SO), and aerosol particles. Further-

are fossil or synthetic, leads to the emission of water vapor
(WV) as long as they contain hydrogen.

The effects of WV have received increasing attention in
recent years as the emitted WV in engine exhaust allows and
triggers the formation of condensation trails, also called con-
trails (Schumann, 1996; Kircher, 2018). Optically thin cir-
rus and contrails are known to have a net warming effect on
the climate (Burkhardt and Kircher, 2011; Schumann et al.,
2015; Lee et al., 2021). The influence of a perturbation, e.g.,
clouds, aerosols, or gases, on the Earth’s atmosphere and its
radiative transfer is quantified by the radiative forcing (RF).
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By definition, RF is defined as the difference in the net irra-
diance at the top of atmosphere under perturbed and unper-
turbed conditions (Ramanathan et al., 1989). Effective radia-
tive forcing (ERF) additionally includes the radiative impact
of adjustments in the troposphere and stratosphere (Bickel
et al., 2020). The aviation-induced global CO;-related ERF
is estimated to be around 30 mW m~2 (Boucher et al., 2021).
Contrail RF is estimated to be stronger, at about 60 mW m~2,
but is subject to much larger uncertainties (Burkhardt and
Kircher, 2011).

Contrail formation depends on the ambient conditions,
which have to be sufficiently cold and moist. The thresh-
olds of temperature, below which a contrail forms, and rela-
tive humidity, above which a contrail can form, are estimated
with the Schmidt—Appleman criterion (SAc, Schmidt, 1941;
Appleman, 1953). For a contrail to be persistent (with the
common meaning that is has a lifetime longer than 10 min),
the ambient air has to fulfill the SAc and must also be su-
persaturated with respect to ice. When these criteria are ful-
filled and persistent contrails have formed, they can remain
for hours, spread, merge, and increase the total cirrus cloud
cover. Employing climate simulations and analyzing satel-
lite observations, Burkhardt and Kircher (2011) and Quaas
et al. (2021) estimated an increase in total cloud cover due to
contrail formation of 6 % to 10 % in the midlatitudes of the
Northern Hemisphere, where most of the flights occur.

To lower the climate impact of aviation it is important to
reduce CO; as well as non-CO, effects. An approach to min-
imize non-CO; effects is active flight rerouting to avoid areas
where contrails are likely to form and persist, which would
require accurate numerical weather predictions. A useful pre-
requisite is to identify and document flight levels and re-
gions of the Earth’s atmosphere that are particularly prone
to contrail formation. Such a statistical database might be
obtained by ground-based or satellite observations. Ground-
based observations, such as those performed by Schumann
et al. (2013), used a rooftop camera to infer cirrus properties
and contrail occurrence. However, this approach is limited
to a single location or a few locations over land-covered ar-
eas. Alternatively, satellite observations provide a top-down
view with the required global coverage but come with some
drawbacks (Meyer et al., 2002; Minnis et al., 2013). De-
pending on the sensor and the satellite platform, the tem-
poral or spatial resolutions are often insufficient to detect
young contrails with low cloud optical thickness (Kércher
et al., 2009). Furthermore, satellite observations, similarly to
ground-based observations, can be compromised by under-
lying cloud layers between the surface and the cirrus. High
spatial resolution is provided by in situ measurement during
dedicated measurement campaigns, during which contrails
are directly probed and contrail properties are investigated.
Such measurement campaigns, for instance by Kramer et al.
(2009, 2020) and Voigt et al. (2017), are rare. Furthermore,
they may lack spatial representation by targeting specific at-
mospheric features as well as cloud conditions, which may

Atmos. Chem. Phys., 25, 157-181, 2025

bias the results (Petzold et al., 2020). The In-service Air-
craft for a Global Observing System (IAGOS; Petzold et al.,
2015) data set differs from field campaigns in that it covers
large areas of North America, the North Atlantic, and Eu-
rope, which have now been sampled for around 2 decades,
including its predecessor Measurement of OZone and water
vapour on Airbus In-service airCraft (MOZAIC; Marenco
et al., 1998; Petzold et al., 2017). Still, the coverage is lim-
ited to the current flight tracks.

Assessing contrail occurrence more systematically or over
a larger domain requires a modeling approach that can be in-
teractive or online. Interactive contrail models are typically
implemented in climate models (e.g., Bock and Burkhardt,
2016) by simulating ice-supersaturated regions and calculat-
ing contrail cirrus cover based on aircraft emission inven-
tories. Offline contrail models, such as CoCiP (Schumann,
2012), use meteorological fields to analysis contrail forma-
tion and evolution to contrail cirrus. However, the assess-
ment strongly relies on the accurate representation in the
model of the temperature and humidity fields at high alti-
tudes, as well as that of ice cloud amount and microphys-
ical properties. Offline models such as CoCiP require me-
teorological data, e.g., temperature and humidity, as input.
A well-established data set of meteorological data is pro-
vided by ERAS (Hersbach et al., 2020), which stems from
a state-of-the-art global modeling system of the European
Centre for Medium-Range Weather Forecasts (ECMWF) and
a large number of observational data streams. The ERAS
output is based on simulations with a specific, constant ver-
sion of the Integrated Forecasting System (IFS) of ECMWE.
Thus, the ERAS data set from 1940 to the present can pro-
vide some insight into trends in the Earth’s atmosphere. Pre-
vious studies have shown that the IFS scheme and the asso-
ciated data assimilation are able to represent the temperature
field well, as verified by radiosonde and satellite observa-
tions (Dyroff et al., 2015; Carminati et al., 2019). Higher un-
certainties with respect to IAGOS observations were found
in the reanalysis of relative humidity, which is generally
challenging due to the high temporal and spatial variabil-
ity of WV. Specific issues have been identified in the up-
per troposphere and lower stratosphere, as well as with the
general representation of ice supersaturation. For example,
Bland et al. (2021) compared radiosonde observations with
the operational ECMWEF IFS weather forecast and identified
a lower-stratosphere moist bias in specific humidity. Simi-
larly, Kriiger et al. (2022) compared measurements from a
differential absorption lidar with ECMWF ERAS reanalysis
data (on a relative tropopause coordinate) and identified a
small moist bias in the specific humidity in the upper tro-
posphere that increases to a moderate to significant moist
bias in the lower stratosphere. Contrarily, studies that com-
pared water vapor concentrations and ice supersaturation in
ERA-Interim and ERAS with aircraft in situ observations
found that conditions of ice supersaturation are not frequent
enough in those reanalysis products, suggesting a dry bias in
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relative humidity (Dyroff et al., 2015; Gierens et al., 2020;
Reutter et al., 2020; Schumann et al., 2021). Consequently,
there is no consensus on whether ECMWF reanalysis prod-
ucts are subject to a moist or dry bias in the upper tropo-
sphere. It is noted that in situ aircraft observations are po-
tentially biased in terms of spatial sampling because aircraft
typically avoid deep convective clouds and the outflow of
such clouds. However, cirrus clouds are typically not avoided
(Petzold et al., 2020), and therefore a potential sampling is-
sue with respect to cirrus clouds is not expected to play more
than a minor role.

Comparing and bias-correcting ERAS with IAGOS is im-
portant because (i) TAGOS data have been shown to be reli-
able, (ii) IAGOS samples temperature and relative humidity
at exactly at the locations and pressure levels that are relevant
to aviation studies, and (iii) ERAS is often used for the anal-
ysis of potential contrail formation. It is important to stress
that we do not seek to make a universally applicable cor-
rection of humidity in ERAS but rather provide a corrected
humidity to enable better estimates of contrail occurrence.
Relying on IAGOS data allows us to do so exactly at the lo-
cations and pressure levels that are relevant for aviation stud-
ies.

To mitigate the dry bias in relative humidity under condi-
tions close to ice supersaturation in ERA-Interim and ERAS,
studies have applied either multiplication factors (Schumann
and Graf, 2013; Schumann et al., 2015) or parameterized
corrections (Teoh et al., 2022a). However, these proposed
corrections consider neither the temperature dependence of
humidity nor the spatial variations in the relative humidity
bias, particularly at different pressure levels. In this study we
propose a correction for ERAS data that is based on a bi-
variate quantile mapping (QM), which is a standard method
of model bias correction (Cannon et al.,, 2015; Cannon,
2016, 2018). The QM method allows the removal of biases
based on the statistical distributions of an observed and mod-
eled quantity, for example temperature and relative humid-
ity, with the aim of better estimating the contrail formation
potential in air traffic regions. Here, the QM is trained on
3.5 years of IAGOS observations and collocated ERAS data
of temperature and relative humidity. The QM method is then
applied to 5.5 years of ERAS data and compared with IA-
GOS. Subsequently, we determine the impact of the correc-
tion on the estimation of non-persistent and persistent con-
trails with respect to IAGOS. In the case of false classifica-
tions the underlying differences in simulated and observed
temperature and relative humidity are determined to identify
systematic shortcomings in ERAS.

The QM correction aims to remove possible temperature
and humidity biases in ERAS post-processed data to better
estimate the contrail formation potential beyond the com-
mon locations of the IAGOS flight tracks. The advantage of
such a correction is that ERAS data away from the IAGOS
flight tracks can be used to estimate the large-scale contrail
formation potential, thus providing a broader perspective on
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potential contrail formation in space and time over the At-
lantic. Potential applications include the study of temporal
and spatial patterns of contrail formation and the develop-
ment of rerouting options based on statistical distributions of
contrail formation potential.

Subsequent to this Introduction, Sect. 2 describes the data
and methods used in this study. After that the results are pre-
sented in Sect. 3 and summarized in Sect. 4. Appendices A—C
provide detailed information about the IAGOS data analysis.

2 Data and methods

2.1 In-service Aircraft for a Global Observing System

In-service Aircraft for a Global Observing System (IAGOS;
Petzold et al., 2015) is a framework of commercial aircraft
equipped with a set of sensors for in situ measurements
of meteorological conditions, trace gas concentrations, and
cloud properties. Since 2015, all aircraft within the IAGOS
framework have been equipped with the “Package 1” (P1)
instrument system that includes a backscatter cloud probe
(BCP) to measure the particle number concentration Nijce
and a dedicated sensor (ICH; Helten et al., 1999) that mea-
sures temperature 7p; and relative humidity rp;. The BCP
is a single-particle backscattering optical spectrometer to de-
tect cloud particles with sizes between 5 and 75 um. Light
with 658 nm wavelength is emitted by a light-emitting diode
and directed through a quartz window to the outside of the
aircraft fuselage. The light is focused on a narrow range of
4 cm that represents the target area. Cloud particles within
the focus backscatter the radiation to a sensor. The intensity
of the radiation is proportional to the size, the refractive in-
dex, and the shape of the particles as well as the angle under
which the particles were hit by the beam. Directly from these
measurements the particle size and the particle number con-
centration N can be derived. More details on the BCP can
be found in Beswick et al. (2014). Measurements of N are
used to separate in-cloud (N > 0.015 cm™3) and cloud-free
measurements (N < 0.001 cm™3) following the thresholds
given by Petzold et al. (1997). For intermediate conditions,
where 0.001 < N < 0.015 cm_3, the measurements cannot
be clearly attributed to in-cloud or cloud-free conditions, so
they are assigned to the intermediate category (Petzold et al.,
2017; Sanogo et al., 2024).

The ICH package is comprised of a capacitive sensor
(Humicap-H, Vaisala, Finland) for measurements of relative
humidity (defined over liquid water) and a collocated PT-100
platinum sensor for temperature measurements. Both sensors
are mounted within a model 102 BX housing of Rosemount
Inc. (Aerospace Division, USA) to minimize heating from
solar radiation and thermodynamic effects. The recorded data
are post-processed by the IAGOS consortium to correct the
raw data following Helten et al. (1998) and Boulanger et al.
(2018, 2020). Hereby an “in-flight calibration method” (IFC)

Atmos. Chem. Phys., 25, 157-181, 2025
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correcting an offset drift during the course of the deployment
period is applied (Smit et al., 2008; Petzold et al., 2017).

Post-processed data of Tp; and rp; are stored every 4s.
However, the response time #; — 1/e of a sensor is an im-
portant characteristic as it directly affects the measurements.
t1 —1/e is commonly defined as the time that is required
by a sensor to adapt to 1 — é =0.63 of an abrupt change in
the measured quantity. The temperature sensor is character-
ized by a response time #; — 1/e of 4s and an accuracy of
£0.5 K. The IAGOS humidity sensor is characterized by an
average uncertainty of +6%. Including uncertainties from
sensor calibration and data post-processing, the uncertainty
ranges between 5 % and up to 10 % and increases with de-
creasing temperature (Helten et al., 1998). The humidity sen-
sor’s response time #; — 1 /e was determined to be 1 s at 293 K
and increases to several minutes at 233 K (Neis et al., 2015).
11 — 1/e of the relative humidity sensor increases due to re-
duced molecular diffusion into and out of the sensor’s poly-
mer substrate. In a first-order approximation, the distance be-
tween two IAGOS measurements of 7p; and rp; is 0.96 km
at a cruise speed of 240 m s~!. However, t; — 1 /e of the rela-
tive humidity sensor averages these measurements over a dis-
tance that ranges between 15 km (253 K) and 50 km (233 K)
at cruise altitude.

IAGOS measurements in the lower stratosphere that are
typically characterized by low values of relative humidity
(~rp; <10%) are subject to a moist bias. This moist bias
is a nonlinear function of the relative humidity and requires a
multidimensional regression correction that is currently un-
der development (Konjari et al., 2022). Therefore, this known
moist bias in TAGOS is not corrected in our analysis and it
should be kept in mind that subsequent differences between
ERAS and TAGOS for low values of relative humidity may
also be attributable to artifacts in the IAGOS measurements.
However, since the focus of this analysis is to investigate con-
trail formation and persistence, only high values of relative
humidity are relevant. Consequently, the moist bias for low
relative humidity values in the IAGOS observations has little
impact on our analysis.

In this study, we use only the IAGOS measurements that
fulfill the following criteria:

— TAGOS quality flag of Tp; and rp; is “good” and “lim-
ited”

— Measurements are located between 30° N and 70° N and
between 110° W and 30°E

— Measurements are between 325 and 150 hPa

— rp1 (with respect to liquid water) is between 0 % and
100 %

While IAGOS has been operated for many years, the global
horizontal and vertical coverage remains heterogeneous. Fig-
ure 1 shows a density plot of all IAGOS measurements from
January 2015 to June 2021 fulfilling the above criteria. Due

Atmos. Chem. Phys., 25, 157-181, 2025

Table 1. ERAS pressure levels (in hPa) and pressure ranges used to
collocate the IAGOS observations.

Pressure level Pressure range

(hPa) (hPa)

300 275.0< p <325.0
250 237.5<p <275.0
225 212.5< p <2375
200 187.5<p <2125
175 150.0< p <1875

to the history of IAGOS and the contributing airlines, the
highest measurement density is found across the North At-
lantic domain (Fig. 1, green, 65-5° W). A slightly reduced
density is found over North America (Fig. 1, red, 105-65° W)
and Europe (Fig. 1, blue, 5° W-30° E), particularly towards
the western and eastern boundaries of the respective boxes.
Outside of the boxes, the coverage is lower, and therefore we
focus our analysis on these three domains. These domains
also follow the selection from Petzold et al. (2020).

Figure 2a—e show the total numbers of measurements
per pressure level (p level) and the fractions attributable to
the three sub-domains, which can also be understood as a
proxy for the altitude distribution of commercial air traffic
in the North Atlantic corridor. The largest number of sam-
ples (35.3 %) is found at the 200 hPa level (Fig. 2d). Slightly
fewer samples are obtained at the 225 hPa level (Fig. 2¢) with
32.0 % and at the 250 hPa level (Fig. 2b) with 26.5 %. Con-
tributions from p levels 300 and 175 hPa are small at 2.5 %
and 3.3 %, respectively. Due to the typical flight profiles (for
an example see Fig. 10 in Petzold et al., 2015) the majority of
measurements at low p levels (Fig. 2e) are sampled over Eu-
rope, where aircraft reach their maximum cruising altitude
when returning to their main hubs. For intermediate p lev-
els, the fraction of samples over the North Atlantic is largest
compared to the EU and US domain (Fig. 2c), while for the
highest p levels the EU domain dominates again (Fig. 2a),
corresponding to where the majority of IAGOS-contributing
airlines have their main hubs.

The measurement density is a function of longitude, lat-
itude, and p level. In addition, the sampling is biased, i.e.,
by avoiding severe weather and by avoiding or favoring spe-
cific atmospheric circulation patterns, such as the jet stream
(Petzold et al., 2020). The North Atlantic flight tracks (routes
typically used by aircraft to cross the Atlantic) are selected
on a daily basis to avoid (westbound) or take advantage (east-
bound) of the jet stream. This might cause a bias in the
sampling of certain atmospheric conditions that might be as-
sociated with the jet stream and midlatitude storm activity
(Pasquier et al., 2019).

https://doi.org/10.5194/acp-25-157-2025
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Figure 1. Number of measurements per 2° x 2° grid box of analyzed IAGOS measurements for the time from January 2015 to June 2021.
The measurements are filtered for data quality and pressure levels. This study uses measurements in three boxes: United States (US, red),
North Atlantic (NA, green), and continental Europe (EU, blue). Longitude coordinates of the bounding boxes are selected to follow Petzold

etal. (2020).
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Figure 2. (a—e) Fraction of analyzed IAGOS observations by pressure level separated by sub-domain (see Table 1). The total number of
samples per pressure level and the fraction with respect to the total sample size are indicated at the top.

2.2 ERA5

Meteorological data are obtained from the ECMWF Coperni-
cus Climate Data Store (ECMWF CDS, 2021) using output
of the high-resolution component (HRES, T639) of ERAS
(Hersbach et al., 2020). The maximal spatial resolution on
the Cartesian grid with 0.25° x 0.25° and maximal temporal
resolution of 1h are used. We make use of the full vertical
resolution with a 50 hPa spacing between 350 and 300 hPa
and a 25 hPa spacing between 300 and 150 hPa. Along-track
temperature TgRra, relative humidity rgra, and cloud frac-
tion CFgry are extracted using the nearest-neighbor method,
i.e., selecting the ERAS grid points that are temporally and
spatially (horizontally and vertically) closest to the IAGOS
observations. Thus spatial and temporal interpolation of rel-
ative humidity is not done because the relative humidity de-
pends on the underlying temperature and absolute humidity
field, which are both related through the Clausius—Clapeyron
relationship. Due to the exponential nature of the Clausius—
Clapeyron equation, linear interpolation, for example, could
lead to incorrect values of relative humidity.

The ERAS data set was generated with the ECMWF In-
tegrated Forecasting System (IFS) Cycle 4112, which was
operational in 2016. Within ERAS the relative humidity is
provided with respect to liquid water or ice depending on
Tgra of the grid box. In general, relative humidity (unitless)
is defined as the ratio of the water vapor pressure e(7') to the

https://doi.org/10.5194/acp-25-157-2025

saturation water vapor pressure eg(7) as

‘ )
r= .
esat(T)
In ERAS, e (T) is given by
esat(T) =0 - esat,l(T) +(0-a)- esat,i(T)’ )

with ega¢,1(T) and ey i(T') the saturation water vapor pressure
over liquid water and ice, respectively. eg, 1(T) and egy i(T)
are given by

T—Ty
esat(T) = ay - exp {a3 : < ) } > 3)

T —ay

with a; =611.21 Pa, a3 =17.502, and a4 =32.19K for lig-
uid water and a; =611.21 Pa, a3 =22.587, and a4 = —0.7K
over ice; in both cases Tp is 273.16 K (Buck, 1981; Alduchov
and Eskridge, 1996; ECMWEF, 2020). The scaling factor « in
Eq. (2) is a piecewise linear function of temperature T deter-
mined by

0 for T < Tice
o= g)*_—; for Tiee <T <Tp 4)
1 for To<T,

with Tjce =250.16 K and Ty =273.16 K. For consistency and
comparability with IAGOS all extracted values of relative hu-
midity are converted to be defined solely over liquid water

Atmos. Chem. Phys., 25, 157-181, 2025
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(¢ =1) or ice (¢ =0) and are subsequently referred to as
rERA and rgra ice, respectively. For consistency, IAGOS rel-
ative humidity defined over liquid water is labeled with rp;
and defined over ice with rpy jce-

The fixed (Cartesian) grid resolution of 0.25° of ERAS
does not correspond to a constant longitudinal grid box size
in kilometers, which instead depends on the latitude. Consid-
ering the three sub-domains between 30 and 70° N, the spa-
tial resolution of one ERAS grid box ranges between 24 km
(30°N) and 14km (70° N). Therefore, we assume an aver-
age grid box size of 19 km. However, it should be noted that
ERAS is a spectral model with an internal Gaussian reso-
lution of around 31 km and, thus the effective resolution is
coarser than the Cartesian grid resolution (Hersbach et al.,
2020). While the IAGOS relative humidity measurements are
already smoothed due to the response time of the relative
humidity sensor, we additionally smooth the IAGOS mea-
surements by applying a Gaussian filter to account for the
mismatch in spatial resolution between IAGOS and ERAS.
The standard deviation o of a Gaussian filter is approximated
with

k—1 5
o=—c &)
which can be regarded as an approximation for a Gaussian
distribution, as 3o includes 99.7 % of the Gaussian distri-
bution. k is the window length of the smoothing filter and
achieved by setting o =3 based on the assumption of an av-
erage cruise speed of around 240 ms~! and a resulting seg-
ment length (distance between two measurements) of around
1 km.

2.2.1 In-cloud representation of supersaturation in
ERA5

Previous studies have shown that the upper troposphere is
frequently supersaturated with respect to ice under cloud-free
(Gierens et al., 1999; Petzold et al., 2020) as well as cloudy
conditions (Spichtinger et al., 2004; Dekoutsidis et al., 2023).
While ice supersaturation (ISS) in cloud-free conditions is
represented in state-of-the-art numerical weather models,
they currently lack an appropriate representation of ISS un-
der cloudy conditions. Often, ISS is clipped to rice = 100 %,
applying the so-called “saturation adjustment” (McDonald,
1963). This adjustment is also applied in the IFS ice cloud
microphysical scheme. The adjustment is a necessity because
of a missing diagnostic variable that would track the time-
dependent in-cloud saturation (Tompkins et al., 2007). As a
consequence of the adjustment, all available “excess” water
vapor, which is beyond the threshold, is deposited on existing
ice particles within one time step, forcing rice back to 100 %.
The adjustment approach proved to be suitable for most at-
mospheric conditions (Gierens et al., 1999; Tompkins et al.,
2007; Lamquin et al., 2009). However, the use of ERAS rel-
ative humidity data, which are subject to adjustment in the
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context of contrail formation analysis, leads to an underes-
timation of ice-supersaturated regions (ISSRs) in the upper
troposphere (Gierens et al., 2020).

To compensate for the relative humidity dry bias in
ERAS for contrail detection applications, rgra ice Values are
sometimes scaled by multiplication factors between 0.8 and
0.9, particularly in Schumann and Graf (2013) and Schu-
mann et al. (2015). An updated scaling method was pro-
posed by Teoh et al. (2022a, T22 hereafter) that enhances
TERA,ice > 100 % and reduces rgra.ice < 100 % by a factor
which depends on the original rgra ice. Within our study, we
use T22-corrected values of 7gra ice as a benchmark.

2.3 Quantile mapping

In this study we propose using a quantile mapping (QM)
method to remove the lack of ISS in ERAS. QM is a cor-
rection method that it is frequently used to correct model
biases in comparison to observations in a way that imposes
the observed statistical distribution (Maraun et al., 2010; Ma-
raun, 2012; Cannon et al., 2015; Cannon, 2018). Within our
study, the QM technique is applied to ERAS data and IAGOS
measurements, which are regarded as the reference. Subse-
quently, we provide a brief overview of the mathematical
concept of QM for which we follow the notations from Can-
non et al. (2015) and Cannon (2018).

The basis of QM algorithms is to consider cumulative dis-
tribution functions (CDFs), Fo and Fpp, of the observed
(x0,n) and simulated (xm 1) quantity, respectively. The CDFs
describe the probability that the value of a quantity (or ran-
dom variable) x, for example temperature or relative humid-
ity, has a value that is less than or equal to x. In our case x, b
represents the IAGOS Tp; or rp; measurements and xp h the
corresponding along-track data from ERAS. The subscript
“h” commonly refers to historical data, which can also be
understood as training data. The training data make use of
IAGOS measurements from January 2018 to June 2021, as
this period was considered to be stable in the IAGOS post-
processing. Based on the relationship of F, and Fy 1, the
biased model output xm p(?) at any given time ¢ is corrected.
The corrected value is represented by Xm p(¢) (Cannon et al.,
2015; Cannon, 2018). This is written in mathematical nota-
tion as

£m.p(t) = Fy g (Fn n[Xm p()]). (6)

Equation (6) therefore couples a (potentially biased) model
output to the most likely value that is observed in reality by
the convolution of Fiyp, and F, 0_}} The QM technique is ap-
plied to the entire reference period from January 2015 to June
2021, which includes but exceeds the training period. The
periods were chosen to (a) verify the general applicability of
the bivariate QM correction method with the same data set
and to (b) validate the stability of the bias correction in years
outside the training period.
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Equation (6) describes the basic QM bias correction that
depends only on one variable. Here, we propose a bivariate
QM version for Tgra and rgRra ice as the bias between ERAS
and TAGOS might depend on latitude. Such a multivariate
QM is similar to the suggested versions by Cannon (2016),
Cannon (2018), or Frangois et al. (2020).

For the temperature bias correction, F, , and Fiy 1, are de-
termined at each p level and for two latitude bands. The
latitude bands are defined by the outer boundaries of the
investigated area with 30 and 70°N, with the split center
point given by the 50th percentile of the measurements per
pressure level. Thus Fon(p, ®) and Fpn(p, ) are deter-
mined for different classes of pressure p and latitude &.
Fon(p, ®) and Fiyn(p, ®) span a temperature range from
190 and 273 K. Similarly, ric. is corrected with F, h(p, @, T)
and Fpn(p, P, T), which are calculated for each p level,
two latitude bands &, and five temperature bins. As above,
T ranges from 190 to 273 K with five temperature bins de-
fined by 20th percentile steps so that each temperature bin
contains an equal number of observations at each p level and
latitude bin. Consequently, Fo h(p, @, T) and Fiyn(p, P, T)
are calculated for a total of 80 bins. A visualization of the
resulting CDFs of temperature and relative humidity is given
in Appendix A.

The presented version of the QM correction assumes a
time-invariant bias between the model and observations. On
the model side, we assume that the ERAS5 data set is con-
stant in time, since it is generated only with the IFS Cycle
41r2 and therefore has the same implementation of the dy-
namical core and cloud microphysics representation. How-
ever, there may be some changes in the quantity and quality
of observations feeding into the ERAS data assimilation sys-
tem. The IAGOS reference observations may also vary over
time due to changes in instrument calibration and mainte-
nance procedures. The temporal consistency of IAGOS rel-
ative humidity measurements was investigated by means of
monthly climatologies. A constant bias in temperature and
relative humidity between ERAS5 and IAGOS was found. IA-
GOS relative humidity measurements from the year 2017 are
an exception, when IAGOS observations tend towards ele-
vated relative humidity observations with respect to the other
years, while the bias in temperature remained constant (see
Appendix B). Biases between IAGOS, ERAS, and corrected
ERAS were further separated for their dependencies on lat-
itude and longitude. While the bias in the temperature was
found to be independent of longitude and latitude, the bias
in relative humidity was smallest in North America and in-
creased towards continental Europe (see Appendix C).

2.4 Schmidt—Appleman criterion, potential contrail
formation, and contrail persistence

To allow for contrail formation the ambient air must be suffi-
ciently cold and moist. The formation is typically estimated
using relative humidity . and a critical temperature Ty
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threshold that is derived from the Schmidt—Appleman crite-
rion (SAc; Appleman, 1953). The SAc is based solely on
thermodynamic principles and has been determined to be a
valid approximation, although it does not provide informa-
tion on the fate of the contrail, which is a more compli-
cated function of the ambient conditions but also the inter-
actions of the vortex phase with the environment. The SAc
is a necessary but insufficient criterion for persistent con-
trails. For contrails to be persistent (lifetime > 10 min), the
ambient air must be additionally supersaturated with respect
to ice (rice > 100 %) in so-called ice-supersaturated regions
(ISSRs). However, even under slightly subsaturated condi-
tions contrails can form, but the persistence is uncertain. In
weakly subsaturated conditions the dissipation of ice crystals
is slow and, hence contrails can remain for hours (Li et al.,
2023). Within this study, we use the revised version of the
SAc, following Schumann (1996) and Rap et al. (2010). Cal-
culations are performed for kerosene with a fuel specific en-
ergy of Q=43.2MJkg~! and an emission index of water of
Ely,0 = 1.25. The overall propulsion efficiency 7 is set to a
typical value of 0.3 (Rap et al., 2010). For details on the SAc
and equations used to calculate Ty and rq; the reader is
referred to Wolf et al. (2023).

The SAc and the requirement for ice supersaturation sep-
arate the water vapor—pressure—temperature diagram (see
Fig. 2 in Wolf et al., 2023) in four different areas. The first
area represents conditions where the ambient air fulfills the
SAc but is subsaturated with respect to ice. In our study, con-
trails that form under these conditions are regarded as non-
persistent and are labeled as non-persistent contrails (NPCs).
Within the second area the SAc is fulfilled and ambient air is
additionally supersaturated with respect to ice, and persistent
contrails (PCs) can form. The third area is treated as a special
case, in which the ambient air does not fulfill the SAc but is
ice-supersaturated. Contrails that might have formed under
conditions “R1-NPC” or “R2-PC” and that are mixed in area
3 may persist and spread. Therefore, area 3 can be under-
stood as a potential “reservoir” (R) for contrails (Wolf et al.,
2023). The SAc and the ISS threshold are used to flag the
TAGOS measurements and the along-track ERAS for NPC,
PC, and R conditions. Samples that belong to none of these
three categories are flagged as “no contrails” (NoC).

3 Results

3.1 Distributions of temperature and relative humidity
from ERA5 and IAGOS

In a first step, along-track temperature and relative humidity
from January 2015 to June 2021 from IAGOS and ERAS are
compared in terms of probability density functions (PDFs),
mean values, and mean difference (MD). The performances
of the QM correction and the T22 correction are further quan-
tified by the root mean square error (RMSE), the mean abso-
lute error (MAE), the mean square error, and the mean differ-
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ence (MD). The analysis is limited to p levels 250, 225, and
200 hPa, representing the most frequented p levels (Fig. 2b—
d).

Beginning with the temperature distributions, Fig. 3 (first
column) shows that at p levels 200 and 225 hPa, measured
Tp; and simulated Tgra agree well in terms of the MD
(dashed lines) and the overall shape of the distributions. Only
minor deviations in the MD of —0.4 K (200 hPa) and —0.1 K
(225hPa) are found, with a negative MD suggesting that
ERAS is colder than observed on average (Tgra < Tp1; see
Fig. 3, second column). After the bias correction, the MD is
reduced at all p levels to below 0.1 K, and the shape of the
PDFs of Tgy', is also adjusted to better match the distribu-
tions of Tp; (Fig. 3, second column).

Relative humidity is plotted in the third column of Fig. 3.
The distributions of ric. are bimodal, although the two modes
have different magnitudes. The bimodal shape in the PDFs
of upper-air rice matches previous studies, e.g., Ruzmaikin
et al. (2014), who used satellite observations from the Atmo-
spheric Infrared Sounder (AIRS). The first mode at low rice
is caused by dry atmospheric conditions related to dry-air
intrusions from the stratosphere into the upper troposphere,
e.g., behind frontal zones (Browning, 1997), and flight sec-
tions within the lower stratosphere. The second mode at
Fice = 100 % 1is related to regions of high humidity or mea-
surements inside clouds. With the general decrease in ab-
solute humidity and possible intrusion of dry air from the
stratosphere, the first mode becomes more and more pro-
nounced with decreasing p, while the second mode flattens
and almost vanishes.

Comparing the PDFs of rgra ice and rpy jce minor differ-
ences are found for the first mode. However, larger differ-
ences appear for the second mode at rice = 100 %, where
the occurrence frequency of large rgra.ice Well exceeds
T'Plice> While 7grA ice > 100 % is underrepresented. The PDF
of rgra.ice close to 100 % is characterized by a triangular
shape, while the distribution of rpj jce is smaller in magni-
tude, broader in width, and skewed towards rpj jce > 100 %.
Furthermore, at all p levels, mean rgra jice (red line, column
three in Fig. 3) is generally shifted to lower values compared
to mean rpj ice (black line). This indicates a lack of ISSR in
ERAS that is expected from its use of saturation adjustment
(Sect. 2.2.1). The resulting MDs are determined to be —4.3 %
(200 hPa), —3.8 % (225 hPa), and —5.5 % (250 hPa).

Smoothing the IAGOS data, as explained in Sect. 2.2,
leads to mean values of 7p; and rpj jce for the native and
the smoothed data that are similar by 0.1°C and 1 %, respec-
tively. As smoothing did not change the mean values signifi-
cantly, the differences in the PDFs of ERAS5 and IAGOS, as
well as the bias in mean rgra ice compared to 7pj jce, cannot
be attributed to differences in the spatial resolutions. How-
ever, the smoothing of the IAGOS data leads to a reduction
in the variability as well as in the extreme values in measured
Tp1 and rpy ice (not shown here).
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To correct for the lack of ISS, i.e., the mismatch in the
PDFs (Fig. 3, third column), the QM technique is applied.
After the QM correction the MDs are reduced by almost
half to —1.3% (200hPa), —1.5% (225hPa), and —0.9 %
(250 hPa), which indicates a remaining slight dry bias in
TERA.ice compared to IAGOS as the MD remains negative
(see Fig. 5j). However, the QM correction leads to an adjust-
ment of all PDFs such that the shape of the PDFs of corrected
rﬁ‘l’{A’ice matches the IAGOS observations. For comparison,
we apply the T22 correction that only partly removes the rel-
ative humidity dry bias, resulting in MDs between —3.7 %
(250 hPa) and —2.0 % (225 hPa) (see Fig. 3, fourth column,
and Fig. 5j). Furthermore, differences in the second mode in
relation to the TAGOS observations remain as the T22 cor-
rection only scales values above a certain threshold, which
primarily shifts the bulk of data points from 100 % to higher
Fice- An overview of the original and corrected mean 7 and
Fice 18 given in Table 2.

The individual PDFs of ric. are used to compile joined
two-dimensional (2D) histograms that are shown in Fig. 4a—
c. In general, the frequency distribution of 7gra ice and rp1 ice
follows the diagonal line of “ideal” agreement (Fig. 4a).
However, the distribution is slightly shifted to below the 1 : 1
line, indicating a lower rgra.ice and therefore drier condi-
tions in ERAS compared to the IAGOS observations. Partic-
ularly striking is the elongated feature of the rgra ice distri-
bution positioned close to 100 % (second mode) and a flatten-
ing for rgra.ice > 130 % as a result of the saturation adjust-
ment. Gierens et al. (2020) presented a similar comparison
of rice between ERAS and IAGOS, providing only a scat-
ter plot and not a density distribution. They found a strong
scattering around the 1:1 line and described the distribu-
tion as “scattered all over the place”, with poor agreement
among rgra ice and rpi ice- While we agree that the distribu-
tions in Fig. 4a—c are subject to scattering, the majority of
the points (red to dark-red colors) show a reasonable align-
ment along the 1 : 1 line. For the individual pressure fields of
250, 225, and 200 hPa, R? scores of 0.74, 0.79, and 0.75 are
determined, respectively (see also Fig. 5h).

After the application of the QM correction the alignment
with the 1 : 1 line is improved (see Fig. 4b). As expected from
Fig. 3, the artificially pronounced second mode in rgra ice
is removed in rgl’{A’ice and the distribution extends further
towards rice > 130 %, better representing the conditions ob-
served by IAGOS. The QM correction leads to R? values of
0.73, 0.78, and 0.75 at 250, 225, and 200 hPa, respectively,
that are similar to the uncorrected ones (see also Fig. Sh).

For reference, the T22-corrected ric. is compared with
observed rpy ice and shown in Fig. 4c. The scaling of the
T22 method enhances rice values that are close to or above
100 % and shifts the elongated feature towards higher rice
but does not eliminate it. For this correction R? values of
0.73 (250 hPa), 0.78 (225 hPa), and 0.74 (200 hPa) are calcu-
lated. So this type of correction leads to a small decrease in
the R? score compared to the original ERAS data.
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Figure 3. Probability density functions (PDFs) of temperature 7 (in K) and relative humidity rj.. with respect to ice (in %) from IAGOS
(black), ERAS (red), and bias-corrected ERAS data (blue). From top to bottom, rows represent pressure levels 200, 225, and 250 hPa. The
first column shows PDFs of temperature from IAGOS Tp, ERAS Tgra, and the bias-corrected ERAS TS, . The second column presents

ERA"
the absolute difference of Tgra and TE{{A with respect to 7p;. Columns three and four are the same as columns one and two but for relative

humidity rjce. In addition, bias-corrected r;:r]%i ice Using the correction method after T22 is given in orange. Differences are calculated by
subtracting the IAGOS reference from the model output. In each plot, the median values of the distributions are indicated by the dashed
vertical lines, with the black line indicating the IAGOS data. For reference, the average measurement uncertainties for 7p; and rgra jce With
+0.5K and 10 % are indicated around mean 7pj and 7gRA ice» respectively.

Table 2. Mean values of temperature 7 and relative humidity rj.. from IAGOS and ERAS calculated from the original and the corrected
values using the QM correction and the scaling from T22. The data include filtered measurements from January 2015 to June 2021. Values
in parentheses are the differences relative to IAGOS.

cor

Pressure level (hPa)  T'p; (K) TgrA (K) TEra (K)
250 2219 2212(=07)  221.9(0.0)
225 2198 219.7(=0.1)  219.9(0.1)
200 2187 2183(-04) 218.7(0.0)
Pressure level (WPa)  7pyice (%)  TERAice (%)  Toma 1o (%) ozl . (%)
250 60.4 549(=55)  59.4(-09)  56.8(=3.7)
225 50.6 46.8(-38) 49.1(—15)  48.6(-2.0)
200 38.8 34.5(—43)  375(-13)  358(=3.0)

To quantify the performance and the impact of the QM
method, five metrics are calculated, namely the root mean
square error (RMSE), the mean absolute error (MAE), the RZ
score, the mean square error (MSE), and the mean deviation
(MD). This set of metrics has been selected to account for
the different sensitivity of the metrics to outliers.

The top row in Fig. 5 visualizes the calculated metrics for
the temperature. In general, the 250 hPa p level is charac-
terized by the largest RMSE of 2.1 K, MAE of 1.6K, and
MSE of 4.3 K2 in relation to the other p levels, which is ex-
plained by the enhanced natural variability in the tempera-
ture field with increasing p level. A larger natural variability
leads to larger differences among the IAGOS measurements
and the nearest ERAS values. At the 225 and 200 hPa lev-
els, in a more stratified atmosphere, the RMSE, MAE, and

https://doi.org/10.5194/acp-25-157-2025

MSE are generally lower and similar for both p levels with
values around 1.2K, 1K, and 1.5K2, respectively. The QM
correction leads to a minimal increase in the R? score at all p
levels, while RMSE, MAE, and MSE increase unnoticeably.
However, as expected and as demonstrated before, the MD is
significantly reduced.

Similarly, the bottom row in Fig. 5 visualizes the cal-
culated metrics for the original, QM-corrected, and T22-
corrected rice against the IAGOS observations. As for the
temperature, the RMSE, MAE, and MSE are largest for the
250 hPa p level, followed by the 225 and 200 hPa p levels. At
all p levels, the QM and T22 corrections lead to a constant or
marginally increased RMSE, MAE, and MSE, while the R?
score remains almost constant. The increase in RMSE, MAE,
and MSE appears counterintuitive from the results shown in

Atmos. Chem. Phys., 25, 157-181, 2025



166 K. Wolf et al.: Quantile mapping for contrail estimation from ERA5

(a) ERAS (b) ERAS QM (c) ERAS T22
P g = 5/’ 104
130 * el el g
1 e e Ak s 2
125 ] 2 = F >4 & 10 3]
- =}
- o
IF <37 e 0| EEFTTTUTTOEE v 102 3
O 5
-
= =]
o 8
E 10° =
o t 1071
50 100 150 50 100
RH; IAGOS [%] RH; IAGOS [%] RH; IAGOS [%]
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levels 250, 225, and 200 hPa are combined. Perfect agreement is indicated by the dashed diagonal line, and ice saturation is indicated by the
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Figure 5. Bar plots of (a, f) root mean square error (RMSE), (b, g) mean absolute error (MAE), (¢, h) R? score, (d, i) mean square error
(MSE), and (e, j) mean difference (MD) of ERAS against IAGOS. The first row shows metrics for 7' and the second row for rjce. The first
set of bars represents the original ERAS output (label Org), while the second set represents the data set after the quantile mapping correction
(label QM). In the second row a third set of bars indicates the T22 correction. The metrics are calculated for pressure levels of 250 (blue),

225 (orange), and 200 hPa (green).

Fig. 4, with an improvement in the mean values and the dis-
tributions. However, both correction methods are purely sta-
tistical and do not remove differences in the temperature and
relative humidity of individual data points. Instead singular
data points might be falsely adjusted by the QM correction,
which then creates outliers to which the RMSE and MSE
respond very sensitively, thus the large RMSE and MSE for
relative humidity. In contrast, MAE is less susceptible to out-
liers.

3.2 Distribution of relative humidity under cloud-free and
in-cloud conditions

The IFS ISS adjustment partly depends on the ERAS cloud
fraction CFgra as only cloud-containing grid boxes are
clipped in rice (Tompkins et al., 2007). The effect of CFgra
on the distribution of rice is investigated by separating
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r]f:‘l’{A’ice by using thresholds of CFgra <0.2 (cloud-free),

0.2, < CFgra < 0.8 (intermediate), and 0.8, £ CFgra <=1
(cloudy). Accordingly, IAGOS measurements of rpj jce are
separated for cloud-free, intermediate, and in-cloud measure-
ments using the cloud particle number concentration N as de-
scribed in Sect. 2.1. This is only a subset of the IAGOS data
used in this study because BCP data are not always avail-
able for these flights. Data from pressure levels 250, 225, and
200 hPa are considered here.

Figure 6a shows PDFs of ric. from IAGOS (black), ERAS
(red), and QM-corrected ERAS (blue). The data are filtered
separately for conditions, where IAGOS measures outside
of clouds or where ERAS indicates almost cloud-free condi-
tions (CF £ 0.2). This category includes 88.3 % of the ERAS
data and 97.7 % of the IAGOS data. For cloud-free condi-
tions, the distributions of rjce < 60 % are similar to the one
presented Fig. 3c, g, and k. As expected, the three PDFs of
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IAGOS, ERAS, and QM-corrected ERAS are characterized
by a peak towards small rjc., which is attributed to mea-
surements and ERAS output with dry conditions. Differences
in the PDFs appear when rjc. approaches 100 %, where the
probability of occurrence in rpy ic is higher compared to
FERA.ice- This resembles the scatter plot in Fig. 4a, where
TERA.ice Systematically tends toward smaller ric.. Recall that
TAGOS is subject to a slight moist bias in relative humidity
under conditions with low absolute humidity that are often
encountered in the lower stratosphere (see Sect. 2.1). It can
be seen in Fig. 6a that the QM correction has only a limited
impact on rE‘f{A’ice. This is due to the nature of, and is an ad-
vantage of, the QM technique, which respects the probability
of occurrence by giving less weight to rare conditions (log-
arithmic y scale). For cloud-free or almost cloud-free condi-
tions mean values for rpj ice, FERA ice, and r]f:‘f{A’ice of 28.9 %,
30.1 %, and 38 % were determined.

PDFs of rice of intermediate values are shown in Fig. 6b.
This category includes 7.3 % of the ERAS data and 1.3 % of
the IAGOS data. Within this category it is not clear whether
an ERAS data point should be considered cloudy or cloud-
free. The same is the case for IAGOS measurements. The
shape of the PDFs changed compared to Fig. 6a, as the
shape is now dominated by a peak in rjc. between 90 % and
100 %. The shape of rpj ice from IAGOS reveals the largest
variability (width of the distribution), partly due to the in-
termediate detection of in-cloud and cloud-free conditions.
QM-corrected values of rﬁ‘f{A)ice lead to a distribution where
the left tail resembles the distribution from the original data
TERA.ice» While the right tail approaches the distribution of
p1ice- Under intermediate cloud conditions the QM correc-
tion skews the distribution to the right, which leads to a mean
of "E?er,ice =109.3%. For rgra.ice and rpj jce mean values of
100.9 % and 99.4 % are determined, respectively. The im-
proved representation of rgra.ice in the intermediate cate-
gory is particularly important, as NPC and PC formation is
relevant from a radiative perspective in cloud-free or almost
cloud-free air.

Figure 6¢ shows PDFs of rice when CFgra is larger than
0.8, i.e., where an ERAS data point has a high probability of
being considered cloudy, or when IAGOS measurements are
from inside of clouds. This category includes 4.4 % of the
ERAS data and 0.9 % of the IAGOS data. The relatively lim-
ited number of samples (< 1 %) from within clouds causes
a less robust PDF compared to the PDF based on measure-
ments conducted outside of clouds. This difference might
be due to the fact that, compared to research aircraft mea-
surements, the backscatter cloud probe misses clouds with N
smaller than its detection limit of N =0.001 cm~3 (Beswick
et al., 2014; Petzold et al., 2017). All three distributions of
Fice are narrower compared to the cloud-free or intermedi-
ate conditions, with rpj jce being broadest. This is partly due
to the larger natural variability in the IAGOS measurements
compared to the ERAS simulations of rgra ice. The distri-
bution of rgrAa.ice 1 centered between 75 % and 100 % with
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a steep slope on either side. Particularly towards rgra ice of
100 % the cutoff of rgra ice for in-cloud conditions is promi-
nent, which is not represented in rpy jce. The QM correction
slightly broadens the distribution of rﬁ?{A’ice towards values
above 100 %. The bias in rgra ice under cloudy conditions
is reduced, resulting in a mean rE‘f{A’ice of 105.6 %. This is
closer to the measured mean r1aoGos,ice of 107.6 % compared
to the original output of r1oGos,ice With a mean of 99.6 %. In
addition, the distribution of QM-corrected rE‘f{A’ ice 18 slightly
broadened but does not resemble IAGOS and better agrees
with measurements from, e.g., Krimer et al. (2016, 2020)
and Li and Grof} (2022), who reported in-cloud rjc. between
90 % and 110 % due to the slow sublimation or growth of ice
particles in cloudy conditions.

3.3 Along-track contrail formation potential and the
effect of applied corrections

Along-track time series of uncorrected and corrected ERAS
data and IAGOS measurements are flagged for non-persistent
contrail (NPC), persistent contrail (PC), and reservoir (R)
conditions using the method described in Sect. 2.4. All data
points not belonging to any of the categories are flagged
for no contrail formation (NoC). Considering all data points
from January 2015 to June 2021 at p levels 250-200 hPa, it
is found that 44 % of the IAGOS observations show potential
for NPC formation. PCs appear to be less frequent with about
12.1 %, and R conditions are rare with an occurrence of only
1.2 %. Using the original along-track ERAS output, the con-
trail formation potential for NPC, PC, and R is estimated to
be 50.3 %, 7.9 %, and 0.8 %, respectively. Due to the dry bias
in relative humidity and the clipping of rgra ice at 100 % the
NPC category is enhanced in ERAS at the expense of the PC
category compared to the IAGOS measurements.

For reference, Teoh et al. (2020) (see Table 1 therein) es-
timated that 18.4 % of the flights form contrails (i.e., at least
one contrail section during a flight), with only 7.4 % of the to-
tal analyzed flight distance leading to contrails. While there is
reasonable agreement in the occurrence of contrails, we iden-
tified more than twice the chance of forming non-persistent
contrails. There are two main potential sources of disagree-
ment. First, the account of aircraft characteristics is different.
The estimates of our study solely rely on the SAc includ-
ing constant values for fuel properties (specific heat capacity
Q) and the overall propulsion efficiency n given in Sect. 2.4.
Contrarily, the more elaborate method by Teoh et al. (2020)
uses a fleet data set that includes flight-specific information
on aircraft engine type, thrust settings during flight stages,
and estimates of black carbon (soot) emissions. This infor-
mation was ingested into the contrail cirrus prediction model
CoCiP from Schumann (2012) to determine contrail forma-
tion and the related radiative effect. It is noted that CoCiP
only considers flight sections to be a contrail when a cer-
tain contrail radiative effect is exceeded; i.e., the ice particle
number is larger than 103 m~3 and the cirrus optical thick-
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Figure 6. (a—c) Probability density functions of relative humidity rjce With respect to ice (in %) from IAGOS (black), original ERAS (red),
and corrected ERAS (blue) using quantile mapping. Panels (a), (b), and (c¢) show the PDFs separated for cloud-free, intermediate, and
in-cloud conditions, respectively. Mean values of the distributions are indicated by the vertical lines.

ness is larger than 1076 (Schumann, 2012). Thus, the results
from Teoh et al. (2020) consider the potential for contrail
formation, actual aircraft emissions, the synoptic conditions,
and the contrail radiative effect. For our approach, with the
TAGOS data set, no such aircraft performance data are avail-
able. Secondly, the way flight distance is counted as contrail-
forming is different between the two studies. In our study, the
SAc accounts only for thermodynamic properties.

Subsequently, the impact of corrected Tgp), and rggiy e
on the along-track classification of NPC, PC, and R is inves-
tigated. The individual contributions of 7" and r are separated
by applying the QM correction separately to 7 and r. The
scaling method from T22 is shown as a benchmark.

Applying the QM correction only to Tgra leads to a reduc-
tion in the fraction of NPC from 50.3 % to 47.8 % and for PC
from 7.9 % to 7.7 %, respectively. The correction increases
the mean Ty, (ambient temperature), allowing fewer ERAS
samples to pass the T and ric thresholds for NPC and PC
formation. Consequently, the fraction of NoC or R condi-
tions increases, where supersaturation is reached but the SAc
is not fulfilled. The remaining differences in the distributions
of NPC, PC, and R between the Tgra-only corrected and the
TAGOS measurements indicate that temperature correction
alone is insufficient to better represent NPC and PC (see Ta-
ble 3).

Applying the QM correction only to rgra,ice reduces the
frequency of NPC to 46.3 %. At the same time the number
of PCs increases to 11.4 % and R conditions are slightly in-
creased to 1.2 %. Thus, this correction leads to an increase
in PC, mostly at the expense of the NPC category. This is
simply because of the higher mean rE‘f{A, .ce and correspond-
ingly more samples that pass the thresholds given by the SAc.
Compared to the Tgra-only correction, the rgra ice-only cor-
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rection has the largest impact on the categorization and is,
therefore, the main driver of potential misclassification and
needs to be correctly represented.

The scaling-based T22 correction is most similar to the
QM correction of rgra.ice only. After the T22 correction,
46.9 % of the samples were identified as NPC, which is
slightly above the IAGOS reference and similar to the es-
timated occurrence after the QM rgra ice-only correction.
With the T22 correction, PC and R conditions are found in
10.5 % and 1.2 % of the cases, which is also comparable to
the result from the QM rgRra ice-only correction.

Applying the QM correction to both Tgra and rgra ice re-
sults in a decrease in NPC to 44.0 %, which corresponds to
the occurrence of NPC that is found in the IAGOS data set
and is below the original ERAS data. It is also slightly lower
than after the QM rgra ice-only correction. This is due to the
simultaneous correction of T and rgRra ice as some samples
become too warm to form contrails. PC conditions are found
in 10.9 % of the samples, which is slightly less compared to
the QM correction of rgra ice. The frequency of R conditions
and NoC increase slightly. It is found that the combined cor-
rection of Tgra and rera ice leads to the best agreement with
the IAGOS observations. While the improvement is primar-
ily caused by the correction of 7gRra ice, it is emphasized that
T also has to be corrected as the calculation of rgRra ice de-
pends on the underlying temperature field. The conversion of
specific humidity to relative humidity and the conversion be-
tween relative humidity with respect to ice and liquid water
via the saturation curves become very sensitive to 7 when
approaching low temperatures that exist at typical flight lev-
els; see, e.g., Ambaum (2020).

For a detailed understanding of how the QM correction
modifies the classification of NPC, PC, R, and NoC, the re-
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Table 3. Fractions of measurement points (in %) labeled as non-persistent, persistent, and no contrail formation, as well as reservoir condi-
tions. The results using the scaling method after Teoh et al. (2022b) are labeled with T22.

IAGOS ERAS

Original T Tice T + Fice Tice
correction  correction  correction correction T22

Condition
NPC 44.0 50.3 47.8 46.4 44.0 46.9
PC 12.1 7.9 7.7 11.2 10.9 10.5
R 1.2 0.8 1.0 1.2 1.5 1.2
None 42.6 41.0 43.6 41.2 43.6 41.3

distribution among the contrail categories is determined by
tracking the classification before and after the corrections.
The distributions have to be interpreted qualitatively as the
statistics include a potential yearly variation. Figure 7a—d
show the contribution of the pre-correction categories to the
classification after applying a specific correction method.

For example, Fig. 7a shows that the majority of the QM
Tgra-only corrected ERAS5 samples that are now classified
as NPC were already NPC before the correction. Only a mi-
nority of the new NPC samples were previously identified as
PC or belonged to the NoC category before. The QM Tgra-
only correction does not significantly affect the PC category
but leads to the largest redistribution in the R category. Due
to the increase in mean Tgra, previous PC-flagged samples
now contribute 21 % to the R category. However, the propor-
tion of R conditions relative to the total number of samples
is small and thus the overall relevance is small. Similarly,
samples previously classified as NPCs contribute little to the
NoC category.

Similar to Fig. 7a, the QM rgraice-only correction, given
in Fig. 7b, and the T22 correction, given in Fig. 7d, lead to
only minor changes in the NPC category. In the case of the
QM rERA ice-only correction the newly flagged samples in
the R category are composed of samples that already belong
to the R category (62.5 %) or the NoC category (31.3 %). In
the case of the T22 correction a similar pattern is found but
with an additional share of previously flagged PC samples
(7.0 %). Both corrections show similar patterns for the newly
formed PC category, which now consist of about of 75 % and
25 % of former PC and NPC data points, respectively.

The QM correction, shown in Fig. 7c, is a superposition
of the QM Tgra-only and QM rgRra ice-0nly correction. No
redistribution within the NPC category is found. The R cate-
gory is subject to the strongest redistribution but keeping in
mind that the R category represents the smallest proportion
of all data points. The newly formed PC category now con-
sists of 29 % and 71 % of former NPC and PC data points,
respectively.
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3.4 Analysis of collocated contrail formation potential
from ERA5 and IAGOS

Beyond the comparison of bulk statistics, the collocated tem-
poral and spatial along-track representation of NPC and PC
in ERAS are validated against IAGOS observations using a
confusion matrix, where we consider NPC, PC, R, and NoC
conditions to be single binary events.

A confusion matrix is a table that is used to visualize the
classification performance of an algorithm (see Table 4 for a
schematic for a binary event). In our case the classification is
based on (i) the IAGOS observations and (ii) the ERAS5 data.
Perhaps persistent contrails form only in a minority of situa-
tions, so we computed the equitable threat score (ETS; Ma-
son, 2012) following the reasoning of Gierens et al. (2020)
given in Appendix A of their paper. The ETS can be regarded
as equal to the four entries of the contingency table when the
total number of samples is sufficiently large (Hogan et al.,
2010; Gierens et al., 2020), which is the case considering
our data set. The ETS ranges between 0 for random relations
and 1 for perfect correlation and is calculated on the basis
of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) by

TP —r
ETS = , (N
TP+ FN+FP —r
with
_ (TP +FP) - (TP + FN) 8)

T (TP+FP+EN+1TN)’

The ETS is calculated for the original and corrected ERAS
data against IAGOS estimates (see Table 5 and Fig. 8).

Statistics based on a confusion matrix like the one given in
Table 4 are a tough test for ERAS because even small spatial
or temporal errors in the temperature or humidity fields can
lead to misclassifications. To estimate the effect of a possible
pattern shift, we use the 3-hourly (3h) ERAS data on Tgra
and rgRra ice- Evaluating the NPC and PC formation as well
as the R condition with the confusion matrix between IAGOS
and the coarsened ERA5 (3 h), the ETS remains almost con-
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Figure 7. (a—d) Redistributed fractions (in %) of original ERAS contrail classification with respect to the classification after applying the
T-only correction, the r-only correction, the QM correction, and the correction after T22, respectively. The original classifications of non-
persistent contrails (NPCs) are given in blue, persistent contrails (PCs) are given in orange, reservoir conditions (R) are colored in green, and
samples that do not allow for contrail formation (NoC) are given in red.
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Figure 8. Fraction of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) results from ERAS data classifications
based on IAGOS observations (reference) for (a) non-persistent contrails, (b) persistent contrails, and (c¢) reservoir conditions. ERAS data
that are compared in their original form are labeled as“ERA”, data after the QM correction are labeled as “ERA cor2d”, and data using the
correction after Teoh et al. (2022b) are labeled as “ERA T22”.

Table 4. Schematic contingency table for a binary event. Adapted
from Stephenson (2000).

IAGOS ERAS detection
detection  Yes No
Yes True False
positive (TP)  negative (FN)
No False True
positive (FP)  negative (TN)

Table 5. Equitable threat score (ETS) calculated from the confusion
matrix between IAGOS (reference) and the original ERAS as well
as the corrected ERAS output.

ERA5 ERA5B3h) ERA5QM ERA5T22
PC 0.27 0.26 0.36 0.35
NPC 0.51 0.50 0.54 0.53
R 0.19 0.17 0.24 0.23
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stant. This indicates that the sensitivity of the confusion ma-
trix and the ETS to temporal and spatial decorrelations that
occur within 3h is low. In addition, the differences in ETS
between the original ERAS and the 3-hourly ERAS data pro-
vide a reference for estimating the impact of the corrections
in relation to temporal—spatial mismatches. Thus, differences
in the calculated ETS that are larger than that reference are
truly due to incorrect values of Tgra and rgra ice-

The application of the QM correction modifies the distri-
butions of temperature and relative humidity in such a way
that PC conditions are correctly detected more frequently, re-
sulting in an increase in ETS from 0.27 to 0.36. Similarly,
for the NPC and R categories an increase in ETS from 0.51
to 0.54 and 0.19 to 0.24, respectively, is observed. Thus, the
QM correction leads to an improvement across all categories.
The QM correction appears to be most effective for the PC
category, which is also the most relevant category consider-
ing the longevity and the potential radiative effects of con-
trails. Similar improvements in the contrail estimation are
observed for the T22 correction. For all categories, an in-
crease in the ETS is observed compared to the original ERAS
data. The T22-correction-related ETS values are compara-
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ble to those of the QM correction and are listed in Table 5.
Based on the original ERAS data, an ETS of 0.27 and 0.51 is
calculated for PC and NPC conditions, respectively. For ref-
erence, we provide values obtained by Gierens et al. (2020),
who compared ERAS with MOZAIC measurements. Gierens
et al. (2020) compared MOZAIC data and ERAS for indi-
vidual months, while we calculate the ETS on the basis of
several years. Therefore, the ETS values from Gierens et al.
(2020) are subject to significant monthly variations. For com-
parability, the ETS values from Gierens et al. (2020), given
for the months of January, April, July, and October in their
Table 1, were used to calculate mean ETS of 0.12 and 0.74
for PC and NPC conditions, respectively. Evaluating the con-
tingency tables by means of ETS, it can be concluded that
the QM correction and the T22 correction lead to a better es-
timation of all contrail types compared to the original ERAS
data. Compared to the mean values calculated from Gierens
et al. (2020) we found a lower performance of uncorrected
and corrected ERAS for the NPC category, while there is a
better performance for the PC category, especially after the
QM correction and the T22 correction.

3.5 Disentangling classification with respect to
temperature and relative humidity

Even after QM correction, about 16 % of the NPC and 11.5 %
of the PC observation—-measurement pairs are classified as
“false positive” and “false negative”. The sensitivity study
using 3-hourly ERAS data showed that this is unrelated to
spatial mismatches but is rather due to actual deviations
in temperature and relative humidity between IAGOS and
ERAS. Subsequently, we aim to quantify the mean differ-
ences in temperature and relative humidity that remained af-
ter the QM correction and that contribute to the misclassifi-
cation of potential contrail formation. Within the following
section all ERAS values are QM-corrected.

The along-track samples from IAGOS and ERAS are cat-
egorized by a contingency table with the categories NoC,
NPC, and PC, taking IAGOS as the reference. The created
contingency table is visualized in the legend of Fig. 9. The
diagonal elements of the contingency table represent combi-
nations of IAGOS and ERAS that agree in terms of contrail
occurrence, while all off-diagonal values are incorrectly clas-
sified. For each of the nine contingency table combinations
the corresponding mean differences in the temperature,

1 &
AT = — E Teras,i — T1AGOS, i» 9
n =1

L
and relative humidity,

n

— 1
Arice = - > FERAS.ice.i — TAGOS.ice.is (10)
i=1

are calculated, with n the number of data points in e@ cat-
egory. Figure 9a—c present the 2D space spanned by AT and

https://doi.org/10.5194/acp-25-157-2025

Ar for each of the contingency table combinations at p lev-
els 250, 225, and 200 hPa, respectively. In the following, a
notation of “A-B” with A, B € {NoC, NPC, PC} is used as
an abbreviation for the classification of A from IAGOS and
B in ERAS. For example, a notation of “NPC-PC” means a
combination of IJAGOS NPC conditions and ERAS5 PC con-
ditions.

In general, AT and Aric. are similar at all three p levels;
the three p levels are discussed simultaneously and the frac-
tion of each category compared to the total number of sam-
ples is given for the middle layer at 225 hPa. A total of 81.9 %
of the observation—model combinations are correctly catego-
rized and represented along the contingency table diagonal.
As expected, corresponding AT and Arice (black dots) are
close to the origin.

Contrarily, the off-diagonal groups are mostly located in
the top-left and lower-right quadrants. Misclassifications for
PC-NPC (green, 4.5 %) and NPC-PC (violet, 5.4 %) are
mostly due to errors in Arice. Samples in the PC-NPC group
(green) were incorrectly categorized due to relative humidity
that is too low in ERAS, while the NPC-PC samples (violet)
were too moist. But of course, since rice depends on 7', mis-
classifications are also caused by errors in 7', even if they do
not dominate in these cases.

Misclassifications for the combinations NoC-NPC (red,
3.7 %) and NPC-NoC (yellow, 1.9 %) are mostly due to er-
rors in T. For NoC-NPC and NPC-NoC, Téﬁ& was colder
or warmer than 7pp, respectively.

Least frequent are the misclassifications NoC-PC (light
blue, 0.3 %) and PC-NoC (dark blue, 0.5 %). These two
groups are subject to the largest AT and Arjce. Samples in
these categories were only found at the 250 and 225hPa p
level, while PC-NoC (dark blue) is not found at the 200 hPa
level. It is likely that data points in the two categories result
from small-scale variations captured by IAGOS that are not
represented by ERAS due to temporal and spatial resolution.

It is worth identifying whether the misclassification in
ERAS with respect to JAGOS is most often due to biases in
temperature or in humidity. Focusing on the PC estimation
using ERAS, the primary reason for a misclassification after
the correction is the deviation in rjce. This is shown by the
proximity of the violet and green dots to the y axis (small
AT), while the differences in ric. are larger than 20 %.
Hence, the underestimation (green dot) or overestimation (vi-
olet dot) of potential contrail formation is primary related to
the underlying humidity field in ERAS.

4 Summary

In this study we proposed a temperature and relative hu-
midity correction method for ERAS based on a bivariate
quantile mapping (QM) technique to better estimate the con-
trail formation potential. The QM correction was trained on
3.5 years of IAGOS observations and collocated ERAS data
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Figure 9. (a—c) Mean difference in temperature 7' (in K) and relative humidity rjce (in %) between IAGOS and ERAS corrected by quantile
mapping for three pressure levels: from left to right, 250, 225, and 200 hPa. Colored dots represent a combination of mean AT and Ar for
one of the nine categories of the contingency table (right). The area of the dots is proportional to the fraction of measurement—simulation
pairs with respect to the total number per pressure level. Colors indicate the classification using the legend shown in the right-hand panel
with the following categories: no contrail formation (NoC), non-persistent contrails (NPCs), and persistent contrails (PCs).

of Tgra and rgra.ice- The QM correction was then applied
to 5.5 years of ERAS data and compared with IAGOS. The
target region covers the eastern United States, the North At-
lantic, and continental Europe, spanning 30 to 70°N and
110° W to 30° E for pressure (p) levels 250 to 200 hPa, where
the majority of IAGOS observations are available (93.8 %).

Parallel to the IAGOS data post-processing and the cal-
culation of cumulative distribution functions (CDFs) for the
QM correction, the along-track biases in temperature and rel-
ative humidity between ERAS and IAGOS were analyzed. In
general, biases in temperature and relative humidity are char-
acterized by a dependence on p level, with the largest differ-
ences typically for the lowest p level at 200 hPa. Biases were
further separated for their dependencies on latitude and lon-
gitude. While the cold bias in temperature with respect to IA-
GOS was found to be independent of longitude and latitude,
the dry bias in relative humidity with respect to IAGOS was
smallest in North America and increased towards continental
Europe. The temporal consistency of IAGOS relative humid-
ity measurements was investigated by means of monthly cli-
matologies. A constant dry bias in relative humidity in ERAS
with respect to JAGOS was found. IAGOS relative humidity
measurements from the year 2017 are an exception, when
TAGOS observations tend towards elevated relative humidity
observations with respect to the other years, while the bias in
temperature remained constant.

Using the bivariate QM correction, the cold bias in Tgra
was reduced from —0.7, —0.1, and —0.4K at p levels 250,
225, and 200 hPa, respectively, to below 0.1 K at all p levels.
The dry bias in relative humidity was reduced from —5.5 %,
—3.8%, and —4.3 % to —0.9 %, —1.5 %, and —1.3 % at 250,
225, and 200 hPa, respectively. While a slight dry bias com-
pared to TAGOS remains, a significant improvement in terms
of the probability density functions (PDFs) of the relative
humidity distribution is achieved. PDFs of corrected rela-
tive humidity are almost identical in shape to the PDFs de-
termined from the IAGOS observations. A previously exist-
ing artificial peak at rgra ice = 100 % in the PDFs of ERAS,
which is caused by the saturation adjustment in ERAS, was
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cor
removed. Consequently, corrected values of rgp, ;.. better

represent the actual conditions in terms of mean value and
frequency of occurrence.

Subsequently, the impact of the QM correction on the
detection and classification of NPC, PC, and R with re-
spect to TAGOS was evaluated. Measurements from IAGOS
and along-tack ERAS data were flagged for NPC, PC, R,
and NoC conditions. Based on the original ERAS5 data set,
50.3%, 7.9 %, and 0.8 % of all data points were identified
as NPC, PC, and R, respectively. Compared to the IAGOS
estimates of 44.0 %, 12.1 %, and 1.2 % for NPC, PC, and
R, an overestimation of NPC and underestimation of PC
were identified in ERAS. After the ERA5 QM correction,
44.0 %, 10.9 %, and 1.5 % of the samples were identified as
NPC, PC, and R conditions, indicating a general improve-
ment of the contrail estimation with respect to the original
ERAS data. Using a parameterized relative humidity correc-
tion from Teoh et al. (2022a), used here as a reference for
comparison, led to 46.9 %, 10.5 %, and 1.2 % of NPC, PC,
and R conditions, respectively, which is comparable to the
performance from the QM correction.

The temporal and spatial estimation of NPC, PC, and R
in ERAS with respect to IAGOS was assessed with a con-
tingency table. Based on the contingency table the equitable
threat score (ETS) was calculated. The largest improvement
is found for the PC category with an increase in ETS from
0.27 to 0.36. Smaller improvements were found for the NPC
and the R category, with an increase in ETS from 0.51 to 0.54
and 0.2 to 0.24, respectively.

The contingency table further revealed that 81.9 % of the
data samples were coherently flagged in IAGOS and ERAS
after QM correction. In these cases almost no biases in tem-
perature and relative humidity between IAGOS and ERAS
remain. The remaining 18.1 % of the data points, which
were incorrectly classified for NPC, PC, and R conditions
by ERAS, are caused by remaining biases in temperature and
relative humidity of varying magnitude. The misclassifica-
tions were insensitive to the applied correction method. False
classifications of NPC as PC were primarily dominated by a
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relative humidity bias, while false classifications of NPC as
NoC were dominated by a bias in the temperature. However,
the majority of misclassifications were caused by combina-
tions of temperature and relative humidity biases, with ERAS
either being cold—-moist or a warm—dry biased compared to
TAGOS. Furthermore, the relative humidity bias between IA-
GOS and ERAS was found to depend on the temperature. As
a result, the QM correction leads to an estimation of NPC,
PC, and R in ERAS that is comparable to the distribution
identified in the IAGOS observations. Overall, the presented
QM correction allows removing the systematic bias in tem-
perature and relative humidity in ERAS using IAGOS as a
reference. Therefore, the method can be applied to ERAS
data to estimate the contrail formation potential away from
TAGOS flight tracks under the constraint that the correction
is applied to grid points within a specified domain between
105°W and 30°E and from 30 to 70°N. This provides a
broader perspective on potential contrail formation in space
and time over the Atlantic region. This allows the study of
temporal and spatial patterns of contrail formation over the
North Atlantic region to develop statistically based rerouting
options.

Appendix A: Cumulative distribution functions for
quantile mapping

Here we provide an example for calculated cumulative distri-
bution functions (CDFs) of relative humidity » defined with
respect to ice. IAGOS CDFs (F, ) and ERA CDFs (Fm )
are calculated on the basis of the observed IAGOS rela-
tive humidity (x, ) and simulated along-track ERAS rela-
tive humidity (xm n), respectively, following the description
in Sect. 2.3. Figure Al shows F, p (dashed lines) and Fiy n
(solid lines) for individual pressure (p) levels between 350
and 200 hPa. As described in Sect. 2.3 the full domain (spec-
ified in Sect. 2.1) is subdivided into two latitude bands. The
split point is determined by the 50th percentile at each p level
such that both latitude bands contain equal numbers of data
points. For legibility, only CDFs of the northernmost latitude
band are shown here. The selection is arbitrary and conclu-
sions are transferable between the two bands.

The black lines in Fig. Al indicate F, 1, and Fiy, p from the
quantile mapping (QM) approach that considers only the p-
level dependence and the latitude band. For the majority of
the p levels, Fy, 1 and Fy, 1, are similar in shape. An exception
is r between 100 % and 110 % at levels 350 < p <250hPa,
where Fi, h (ERAS) shows a dominant mode, while F, j, (IA-
GOS) remains flat. The mode in Fy, j is a superposition of
two effects. While the peak is of natural origin, as reported by
Kriamer et al. (2016, 2020), it is also caused by the saturation
adjustment in ERAS (see Sect. 2.2.1). This mode becomes
less prominent with decreasing p as the atmosphere gets
drier with altitudes, so supersaturation is less likely. Simulta-
neously, the differences between F, and Fp, j increase for
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Figure A1. (a—e) Cumulative distribution functions (CDFs) F of
relative humidity with respect to ice (in %). CDFs from ERAS Fyy, j,
and IAGOS F,, 1, are given by solid and dashed lines, respectively.
The black lines represent Fy, , and Fy, ;, that depend on p level
and latitude ®. Color-coded are Fiy,  and Fy 1, that additionally
consider five temperature bins with bin sizes defined by 20th per-
centiles.

r <20 %, where both F, ; and Fy, , are further characterized
by a steep slope. The largest effect in this regard is found at
the 200 hPa p level, where Fi, h contains a larger fraction of
high relative humidity values compared to Fj, j, indicating an
underestimation of r that is not attributable to the saturation
adjustment. For example, 50 % of the ERA relative humid-
ity values are smaller than around 15 %, while the respective
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Table A1. Notations.

Symbol Long name Unit

o Scaling factor in ERAS -

n Overall propulsion efficiency 0-1

P Latitude °

o Standard deviation of Gaussian distribution -
CFiaGos Fraction of in-cloud measurements by IAGOS 0-1
CFgraA Cloud fraction from ERAS 0-1

cp Isobaric heat capacity of air J kg_1 K-!
e(T) Water vapor pressure, temperature-dependent Pa

esat, 1(T) Saturation water vapor pressure over water, temperature-dependent Pa
esat,i(T) Saturation water vapor pressure over ice, temperature-dependent Pa

EI Emission index of water vapor for the fuel kg kg_]
F Cumulative distribution function for quantile mapping -

Njce Particle number concentration em ™3

p Pressure hPa

P Probability for contrail occurrence 0-1
TP1,ice Relative humidity with respect to ice from IAGOS package 1 (P1) %

Pl Relative humidity with respect to liquid water from IAGOS package 1 (P1) %

TERA, ice Relative humidity with respect to ice from ERAS %

Ferit Critical relative humidity from Schmidt—Appleman criterion [0-1]
r]f:%rA’ ice Relative humidity with respect to ice from ERAS bias-corrected %
rgl%i,i ce Relative humidity with respect to ice from ERAS5 corrected with method T22 %
TERAliq Relative humidity with respect to liquid water from ERAS %
rﬁ:‘f{A’li q Relative humidity with respect to liquid water from ERA5 %

t1 —1/e(T) Temperature-dependent sensor response time to adjust to a signal change by 63 % s

To Freezing temperature in ERAS K

Tice Lower temperature limit for scaling of relative humidity conversion in ERAS K

Terit Critical temperature from Schmidt—Appleman criterion K

Tp1 Temperature measured by IAGOS package 1 (P1) K
TERA Temperature from ERAS K
T]:fﬁrA Temperature from ERAS5, bias-corrected K
gsat,lig Saturation specific humidity with respect to a liquid water surface kg kg71
Gsat,ice Saturation specific humidity with respect to a ice surface kg kg_l
Oheat Specific heat capacity J kg71
Em,p(t) Transfer function for quantile mapping

value for IAGOS is around 22 %, indicating a general dry
bias unrelated to the saturation adjustment.

The color-coded lines in Fig. Al represent the bivariate
QM approach, where r is additionally separated for five tem-
perature (7') bins that are defined by 20 % steps. Fy,  and
Fo, 1 that result from the bivariate QM reveal a strong depen-
dence on T, which becomes visible in the deviating shapes
of Fnn and Fyp, at a constant p level and latitude band.
The systematic order of the colored lines further indicates
that 7 bins with low T (0-20th percentile, violet lines) are
mostly dominated by high relative humidity values, while
bins with higher 7 (80-100th percentile, red lines) are dom-
inated by low r. The CDFs with lower T are generally flat
with a continuous slope, while 7 bins with higher tempera-
tures are dominated by a steep slope for r < 10 %, particu-
larly for p <250 hPa. However, for the bivariate QM correc-
tion the actual shape of Fy, p and Fy  is less relevant than the
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difference. These differences between Fi, h and F;, 1, increase
with decreasing p level. The importance of considering the T’
dependence is further highlighted by the fact that the simpler
univariate QM approach (black) and related Fi,n and Fop
do not consider the shape and the shape difference required
to adequately correct r under different ambient conditions,
particularly with a decreasing p level.

Appendix B: Temporal consistency in temperature
and relative humidity of IAGOS and ERA5

Applying the quantile mapping (QM) correction in the pre-
sented form requires a time-invariant bias in temperature (7)
and relative humidity (rice) between IAGOS and ERAS. The
bias between the two might vary due to variations in the in-
strument calibration procedure or changes in the sampling
distribution due to seasonal flight schedules.
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We tested for time invariance by calculating mean values
of T and ric. from ERAS as well as IAGOS over all samples
for each month spanning January 2015 to June 2021 at p
levels of 250, 225, and 200 hPa.

Figure Bla shows that monthly mean Tgra (red) and Tp;
(black) agree well, which is expected from the small bias pre-
sented in Fig. 3. Furthermore, the monthly mean difference
between Tp; and Tgra, given in Fig. B1b, remains constant
with values around —0.5 K and a maximum of —1 K, except
for some individual spikes. Figure B1b also shows that QM-
corrected Tip'y (blue) better matches 7py, which is indicated
by maximum differences of +0.5 K.

Similarly, Fig. B1c shows monthly mean of rpj jce (black),
original ERAS5 rgraice (red), and QM-corrected ERAS
FERA.ice (Dlu€) ranging between 40 % and 50 % for the major-
ity of the period. An exception is the period after 2020, which
is due to low data availability (see Fig. Ble). Figure Blc il-
lustrates that rgra ice (red) follows rpj ice (black) with an off-
set between 3 % and up to —12 % that has been shown before
(fourth column in Fig. 3). Like for the temperature correc-
tion, Fig. B1d clearly shows that the QM correction increases
mean rgp ;.. such that the bias between ERAS and IAGOS
is reduced, bringing the monthly means of r]%‘f{A’ice closer to
0.

Even though the bias Arice =7ERA,ice — I'Pl,ice I€mains
fairly constant for the majority of the presented time se-
ries, the differences are particularly pronounced for the
years 2016 and 2017. However, their temperature bias
AT = Tgra — Tp; remains constant (Fig. B1b), which sug-
gests that changes in the sampling, e.g., due to modified air-
craft operations, are not the cause but the known ground-
ing problem of IAGOS acquisition in this time period (see
Sanogo et al., 2024).

In the absence of alternative observations to compare
against IAGOS, we turn to the interannual variation in rice
to confirm that relative humidity measurements for the years
2016 and 2017 are anomalous. Multiyear monthly clima-
tological means of rgra ice and rpj ice are calculated span-
ning the years 2015 to 2021. Using uncorrected rgra ice as
the reference, anomalies of rpj jce, 7ERA.ice, and r]f:‘l’{A’ice are
determined by subtracting the monthly mean of an individ-
ual year from the multiyear monthly climatological mean.
Figure B2 shows mean anomalies of rpj jce that range from
—11.9% (2017) to 0.8 % (2020). Similarly, mean anomalies
of rERA.ice range between —4.2 % (2017) and 5.5 % (2020).
The mean anomalies between ERAS and TAGOS are largest
for the year 2016 and particularly 2017; the difference be-
tween the anomalies for the year 2017 exceeds all other years
with a value of —6.8 %. Slightly smaller mean anomaly dif-
ferences between ERAS and IAGOS are found for the years
2016 of —4.7 % and 2020 of —4.7 %. Therefore, the year
2017 and parts of 2016 are special cases compared to the
other years in terms of anomalies during which rpj jce is
likely biased towards values that are too moist.
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Figure B1. (a) Time series of monthly mean temperature (in K)
from TAGOS (black), ERAS5 (red), and corrected ERAS (blue).
(b) Time series of temperature difference (in K) from ERAS mi-
nus IAGOS (red) as well as corrected ERAS5 minus IAGOS (blue).
Panels (c) and (d) are similar to (a) and (b) but for relative humid-
ity with respect to ice rjce in percent. (e) Total number of samples
available to calculate the monthly mean.
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June 2021. Differences are given in units of relative humidity.

Appendix C: Latitudinally and longitudinally
dependent deviations in temperature and relative
humidity between ERA5 and IAGOS

The bias between IAGOS and ERAS might depend on the
geographic position, e.g., due to characteristic spatial distri-
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butions of water vapor in the atmosphere. Such spatially de-
pendent biases in T and rjc. between ERAS and IAGOS are
identified by calculating mean differences for bins of 10° in
latitude and longitude at p levels 300, 250, 225, and 200 hPa.
The calculations include all samples from the years 2015 to
2021 and from within the defined sub-domain (30-70°N,
105°W=-30°E).

First, the longitudinal variation in AT 1is analyzed
(Fig. Cla). In general, a tendency toward more negative AT
is found for decreasing p levels, reaching a maximum at the
200hPa p level, where AT mostly reaches values of up to
—2K. Large AT at 200 hPa westwards of 80° must be cau-
tiously interpreted due to the low number of available sam-
ples in this pressure level and longitude bin (see Fig. Cle).
The generally negative AT indicates that the mean temper-
ature from ERAS is predominantly lower than measured by
TAGOS. AT at pressure levels 250 hPa (green) and 225 hPa
(red) is almost constant over the entire longitude range, with
AT being smaller than —0.5. An exception is the 300 hPa
level, where AT exceeds —0.5 K and reaches values of up
to —1 K east of 50° W. Separating AT for latitudes between
30 and 70° N does not reveal any latitudinal dependencies.
An exception is the 200 hPa p level, where AT increases to-
wards the Equator and reaches up to —1.7 K at 30° N.

Similar to T, the longitudinal and latitudinal dependence
of rice is analyzed (see Fig. Clc, d). In general, Arjc. in-
crease from the west, with Arjce around 0%, towards the
east, reaching Ar of up to —25 % at the 300 and 250 hPa
p levels. No systematic offset among the p levels is found.
While Arjg is largest at the 200 hPa level at 110° W, Arice is
among the smallest levels at 30° E. Conversely, Arjce is small
at the 250 hPa level at 110° W and is the second-largest Arjce
at 30°E. Similar to T, separating Arjce by latitude does not
show strong latitudinal sensitivity, with the smallest values
between —10 % and —4 % at the 225 and 200 hPa p levels.
The largest Arice values, of up to Arice = —25 %, are found
at the 300 hPa level, particularly between 40 and 60° N.

Separating biases in T and r clearly shows the necessity
of considering the p level in the QM correction. In contrast,
binning by latitude appears to be of minor importance, which
relaxes the requirement for more than two bins in the pro-
posed QM correction. In contrast, the dependency of rice on
the longitude is much more pronounced and would require
individual cumulative distribution functions but could not be
considered in the QM correction as dividing the data into
three sub-domains would lead to insufficient data in rarely
sampled combinations of 7" and p.
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Figure C1. (a-b) Temperature difference AT (in K) between ERAS and IAGOS as a function of longitude and latitude, respectively. (c—
d) Same as the top row but for the difference in relative humidity rjce (in %). Pressure levels of 300, 250, 225, and 200 hPa are indicated in
orange, green, red, and purple, respectively. (e—f) Fraction of available samples per longitude or latitude bin with respect to the total number

of samples per pressure level.
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